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Abstract
Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formu-
late personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been pro-
posed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug
structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most
of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell lines.

Results: In this paper, we propose a deep learning framework, named MSDRP for drug response prediction. MSDRP uses an interaction module
to capture interactions between drugs and cell lines, and integrates multiple associations/interactions between drugs and biological entities
through similarity network fusion algorithms, outperforming some state-of-the-art models in all performance measures for all experiments. The
experimental results of de novo test and independent test demonstrate the excellent performance of our model for new drugs. Furthermore,
several case studies illustrate the rationality for using feature vectors derived from drug similarity matrices from multisource data to represent
drugs and the interpretability of our model.

Availability and implementation: The codes of MSDRP are available at https://github.com/xyzhang-10/MSDRP.

1 Introduction

In recent years, cancer becomes one of the leading causes of
death, seriously threatening human health. Cancer heteroge-
neity leads to differences in tumor growth rate, invasion abil-
ity, drug sensitivity, and prognosis, which greatly limits many
therapeutic strategies (Fan et al. 2019). Therefore, being able
to predict drug response in vitro is expected to help physicians
target specific therapies for different types of tumors while
minimizing drug toxicity for patients and saving medical costs
(Adam et al. 2020). Recently, high-throughput screening tech-
niques pave the way for researchers to analyze genomic pat-
terns of cancer and measure drug candidate sensitivity
in vitro. Therefore, discovering anticancer drug response
based on the patient’s clinical molecular features accurately
and robustly becomes a significant challenge in the era of pre-
cision medicine. In recent years, the development of high-
throughput screening techniques facilitates the initiation of
several large cancer genome projects to analyze the genomic
patterns of cancer. For example, Cancer Cell Line
Encyclopedia (CCLE) (Barretina et al. 2012) performs large-
scale deep sequencing of more than 1000 human cancer cell
lines covering more than 30 tissue sources, integrating genetic
information such as DNA mutation, gene expression, and
chromosome copy number. Genomics of Cancer Drug

Sensitivity (GDSC) (Yang et al. 2013) is the most frequently
used dataset in current drug response prediction studies,
which provides researchers with multiomics data including
genome, transcriptome, proteome, and methylome data.

Openness and availability of large-scale datasets related to
drugs and cell lines facilitate development of drug response
prediction methods (Liu et al. 2019, 2020, Hostallero et al.
2022, Nguyen et al. 2022). For example, Peng et al. (2022)
proposed a method using parallel heterogeneous graph con-
volutional networks to predict drug response. The method lin-
early transforms the gene expression of cell lines and
molecular fingerprints of drugs into vector space of the same
dimension and inputs them into the interaction model consist-
ing of a parallel graph convolutional network layer and a
neighborhood interaction layer. Chawla et al. (2022) pre-
sented a predictive approach for inferring drug response in
cancers using gene expression data. The method demonstrates
the benefits of considering pathway activity estimates in tan-
dem with drug descriptors as features. Zhu et al. (2022) pro-
posed a deep learning method with similarity enhancement.
The method constructs twin graph neural networks for drug
response prediction (TGDRP) and a similarity augmentation
(SA) module to fuse fine-grained and coarse-grained informa-
tion of drugs and cell lines. More recently, Wang et al. (2023)
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predicted drug–cell line pair (DCP) drug response by con-
structing a sparse network with DCP similarity information.

Although some methods use SMILES sequences or similari-
ties of drugs to predict drug response, most of them obtained
drug features based on a single drug description (drug struc-
tures), without considering the relationships between drugs
and biological entities (e.g. targets, diseases, and side effects).
Some studies show that the associations/interactions between
drugs and biological entities are crucial to the recognition of
drug functions (Chen et al. 2021). Considering the above limi-
tations, we propose a deep learning framework, named
MSDRP for drug response prediction. MSDRP uses a similar-
ity network fusion (SNF) (Wang et al. 2014) algorithm and
an interaction module to integrate multiple heterogeneous
data sources. More specifically, we first collect the multi-
source data for drugs and cell lines, and calculate multiple
similarity matrices for drugs and multiple feature matrices for
cell lines. Then we use the SNF algorithm to fuse the similarity
matrices calculated based on the drug structure and fill the
similarity matrices calculated based on the drug-related bio-
logical entities. Moreover, to capture the pairwise correlations
between drugs and cell lines, we design an interaction module
consisting of an outer product unit and an inner product unit.
We concatenate drug embeddings, cell line embeddings, and
higher-order correlation embeddings, and then feed them into
a prediction module to predict potential drug responses.
Experimental results show that our method outperforms
other state-of-the-art methods in the drug response prediction.
We also conduct de novo test and independent test to demon-
strate the prediction capability of our model on new drugs.
Moreover, we perform a set of ablation experiments to illus-
trate the effectiveness of each component and the effectiveness
of our model. Finally, we conduct several case studies to eval-
uate the interpretability of our model and the rationality for
using feature vectors derived from drug similarity matrices
from multisource data. All results show that MSDRP can be
used as a powerful tool for drug response prediction.

2 Materials and methods

2.1 Datasets

In the paper, we formulate drug response prediction task as a
regression problem, where IC50 values are served as continu-
ous target values. The benchmark dataset for drug response
prediction is obtained from Zhu et al.’s (2022) study. The to-
tal number of IC50 values in our benchmark dataset is
82 833, which comprises 170 drugs and 580 cell lines. In ad-
dition, to discover the sensitivity of new drugs (all related-cell
lines are unknown) to cell lines, we collect an independent
dataset to test the models. Firstly, we collect the IC50 values
of drug–cell line pairs from Peng et al. (2022), which contains
436 cancer cell lines and 24 drugs from CCLE database.
Then, we remove the duplicated drugs and cell lines in our
benchmark datasets. Finally, there are 763 IC50 values in the
independent test set, including 12 drugs and 138 cell lines.

2.2 Cell features

Let Scell ¼ fc1; c2; . . . cmg represent the set of all m different
cell lines. We adopt the collection approach similar to Zhu
et al.’s (2022) study and obtain multiomics data of cell lines
in CCLE database. We construct four feature matrices of cell
lines, including three omics matrices based on the multiomics
data and a similarity matrix calculated by Chebyshev distance

based on the known IC50 values between drugs and cell lines.
In feature matrix, a row indicates the feature vector for a cell
line. More specifically, we first collect three types of omics
data for the cell lines in the benchmark dataset, including
gene expression, somatic mutation, and copy number varia-
tion. Then, we obtain 706 cancer-related genes from
COSMIC database (Tate et al. 2019). Finally, we construct
three omics matrices fM exp ;Mmu;Mcnvg 2 Rm�706 to repre-
sent the multiomics data associated with 706 genes in these
cell lines (see Supplementary Fig. S1). In addition, based on
known IC50 values between drugs and cell lines, we construct
a cell line-drug IC50 values matrix for cell lines. The matrix
can be described as MCD 2 Rm�n. We can get the cell line sim-
ilarity matrix SMCD 2 Rm�m calculated by Chebyshev dis-
tance. We denote va and vb to represent the a-th and b-th row
of a matrix, respectively. The Chebyshev distance between the
a-th and the b-th row is defined as follows:

DChebyshevða;bÞ ¼ maxðjva
c � vb

c jÞ; (1)

where va
c andvb

c represent the c-th element of va and vb, re-
spectively. By calculating the Chebyshev distance between the
rows in the matrix, we can derive a similarity matrix.

2.3 Drug features

Let Sdrug ¼ fd1;d2; . . . dng represent the set of all n different
drugs. To obtain a rich set of drug features, we collect
SMILES sequences of drugs, drug–drug combination scores,
known drug–target interactions, known drug–disease associa-
tions, known drug–microRNA associations and known drug–
adverse drug reaction (ADR) associations. Based on these
drug multisource data and known IC50 values between drugs
and cell lines, we construct 12 matrices for drugs. Firstly, we
construct six molecular fingerprint matrices based on molecu-
lar fingerprints and the dimensions of the row in these matri-
ces are 1024, 881, 2048, 200, 2586, and 315, respectively.
Then we construct six association matrices based on the asso-
ciations/interactions between drugs and biological entities and
the dimensions of the row in these matrices are n, 822, 5181,
636, 4693, and m, respectively. In a molecular fingerprint or
association matrix, a row represents the molecular fingerprint
representation of a drug or the associations/nonassociations
between the drug and a class of biological entities. Assuming
that similar drugs may produce similar reactions, we calculate
12 drug similarity matrices of n� n dimensions by Chebyshev
distance based on six molecular fingerprint matrices and six
association matrices of drugs (see Supplementary Fig. S1). In
addition, to effectively integrate the similarity information
from multiple biological data sources, we use an SNF algo-
rithm to fuse 12 similarity matrices of drugs into a fusion sim-
ilarity matrix of n� n dimensions. In each similarity matrix
or fusion matrix, the row represents a type of similarity vector
for a drug and the value of i-th row and j-th column repre-
sents the similarity between di and dj.

2.3.1 Drug fingerprints
We obtain the SMILES sequence of the drugs from PubChem
database (Kim et al. 2019). Here, we calculate six molecular fin-
gerprints for drugs, including Extended-Connectivity FingerPrints
(ECFP), PubChem Substructure FingerPrints (PSFP), Daylight
FingerPrints (DFP), RDKit 2D normalized FingerPrints (RDKFP),
Explainable Substructure Partition FingerPrints (ESPFP), and
Extended Reduced Graph FingerPrints (ERGFP). We construct
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six matrices fMRDKFP;MESPFP;MERGFP;MECFP;MPSFP;MDFPg 2
Rn�n for drugs to represent the above molecular fingerprints and
through Chebyshev distance to calculate six similarity matrices
fSMRDKFP; SMESPFP; SMERGFP; SMECFP; SMPSFP; SMDFPg 2 Rn�n.

2.3.2 Chemical–chemical combined scores
Some literatures show that the interaction pattern between
drugs is an important information for drug response predic-
tion (Duan 2010). We collect drug–drug combined scores
from STITCH database (Kuhn et al. 2008). Firstly, we use
PubChem compound id to map the compound id in STITCH
database, which provides a large number of known and pre-
dicted interactions between compounds. Then, we collect the
combined scores between drugs from STITCH database and
construct Mcombined 2 Rn�n. Since the chemical–chemical com-
bined scores in STITCH range from 1 to 1000, we divide
scores by 1000 to ensure that the similarity values of drugs
are between 0 and 1. Finally, we construct the matrix
SMcombined 2 Rn�n to represent the combined scores between
pair-wise drugs, if the drug–drug combined scores are known.
The corresponding value in the matrix SMcombined is combined
scores divided by 1000, otherwise it is set to 0.

2.3.3 Drug–target interactions
The known drug–target interactions are obtained from
DrugBank database (Wishart et al. 2018) and DGIdb data-
base (Freshour et al. 2021). Firstly, we find that the id of
drugs through PubChem database. Then, we use the
PubChem id to map the drugs in DrugBank database and ob-
tain the known interactions between drugs and targets. In ad-
dition, we download known drug–target interactions from
DGIdb database and use drug name to map the drugs. After
screening and integration, there are 822 targets that have
interactions with the drugs of the benchmark datasets. We use
the matrix Mtarget 2 Rn�822 to represent the known interac-
tions of drugs in the benchmark dataset and 822 targets. If
the drug interacts a target, the corresponding value of the ma-
trix Mtarget is set to 1, otherwise, it is set to 0. The similarity
matrix calculated by Chebyshev distance can be described as
SMtarget 2 Rn�n.

2.3.4 Drug–disease associations
It is reported that the relationships between drugs and dis-
eases are predictive of drug-related prediction tasks. We ob-
tain the known drug–disease associations from CTDbase
database (Davis et al. 2021), which provides a vast array of
associations between drugs, genes, diseases, and more. We
download the known drug–disease associations from
CTDbase and use the names of drugs in the benchmark data-
set to map the associations. After screening, there are 5181
diseases associated with the drugs in the benchmark dataset.
We use the matrix Mdisease 2 Rn�5181 to store the known asso-
ciations between drugs in the benchmark dataset and 5181
diseases. If the drug associates with a disease, the correspond-
ing value of the matrix Mdisease is set to 1, otherwise, 0. We
use the matrix SMdisease 2 Rn�n to represent the similarity ma-
trix calculated by Chebyshev distance.

2.3.5 Drug–microRNA associations
It is documented that microRNA pharmacogenomics facili-
tates the understanding of different individual responses to
certain drugs. We obtain the known drug–microRNA associa-
tions from ncDR database (Dai et al. 2017), which provides

some validated and predicted drug resistance-associated
microRNAs and long coding RNAs. We download the known
drug–microRNA associations and use the drug name to map
the drugs in ncDR database. After screening, the number of
microRNA associated with the drugs in the benchmark data-
set is 636. We use the matrix MmiRNA 2 Rn�636 to represent
the known drug–microRNA associations. If the drug is associ-
ated with a type of microRNA, the corresponding value of the
matrix MmiRNA is set to 1, otherwise, it is set to 0. The similar-
ity matrix calculated by Chebyshev distance is described as
SMmiRNA 2 Rn�n.

2.3.6 Drug–ADR associations
We collect the drug–ADR associations from SIDER (Kuhn
et al. 2010) and ADReCS (Cai et al. 2015) databases. SIDER
contains records of marketed drugs and their adverse drug
reactions. ADReCS is a comprehensive ADR ontology data-
base, containing 1355 single active ingredient drugs and
134 022 drug–ADR pairs. We download known drug–ADR
associations from these databases and use PubChem com-
pound id to map the drugs. After screening, the number of
ADR associated with drugs of the benchmark datasets is
4693. We use the matrix MADR 2 Rn�4693 to represent the
known drug-side effect associations. If the drug associates
with a type of ADR, the corresponding value of the matrix is
set to 1, otherwise, it is set to 0. We use the matrix
SMADR 2 Rn�n.

2.3.7 Drug interaction profiles
Similar to the cell lines, based on the transposition of the
IC50 value matrix of cell line–drug pairs, we can calculate the
similarity matrix SMDC 2 Rn�n for drugs by Chebyshev
distance.

2.3.8 The completion and fusion of drug similarity matrices
Since our method introduces multiple biological data sources
of drugs, the record of these biological data sources is incom-
plete, resulting in sparse association matrices. Considering the
above limitations, we use an SNF algorithm to fuse the simi-
larity matrices calculated based on drug SMILES sequences
into a fusion similarity matrix and then use it to fill the simi-
larity matrices calculated based on the drug related biological
entities. More specifically, firstly, since each SMILES sequence
corresponds to a unique chemical structure, the similarity ma-
trices calculated based on SMILES sequences are dense and
complete and can accurately represent the feature of drug
structures. SNF algorithm can exploit the complementarity of
data to compute and fuse similarity networks obtained from
each type of data separately (Wang et al. 2014). Here we use
the SNF algorithm to fuse six similarity matrices calculated
based on drug SMILES sequences (SMECFP, SMPSFP, SMDFP,
SMRDKFP, SMESPFP and SMERGFP) into a fused matrix
DM0

SMILES 2 Rn�n. Secondly, since the associations/interac-
tions between biological entities and drugs are noisy, the simi-
larity matrices calculated based on these matrices are
incomplete. Therefore, we use SM0

SMILES to fill the five similar-
ity matrices calculated based on the drug-related biological
entities. We define the set SD ¼ fMcombined;Mtarget;Mdisease;
MmiRNA;MADRg, the set SDM ¼ fSMcombined; SMtarget;
SMdisease; SMmiRNA; SMADRg and the set S0DM ¼ fSM0

combined;
SM0

target; SM0
disease; SM0

miRNA; SM0
ADRg. The filling process can

be described as the following:
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S0DM½d�ðrÞ¼
SMSMILESðrÞ if ther� throwinSD½d� is
thezerovector
SDM½d�ðrÞ otherwise

;

8<
: (2)

where SDM½d�ðrÞ and S0DM½d�ðrÞ represent the r-th row and r-th
column of the d-th element in SDM and S0DM, respectively.
SMSMILESðrÞ represents the r-th row and r-th column in
SMSMILES.

2.4 Method

After data preprocessing, we can obtain 12 similarity matrices
(SM0

combined, SM0
target, SM0

disease, SM0
miRNA, SM0

ADR, SMECFP,
SMPSFP, SMDFP, SMRDKFP, SMESPFP, SMERGFP and SMDC) for
drugs and four matrices (M exp ,Mmu,Mcnv and SMCD) for cell
lines. To effectively integrate the similarity information from
multiple biological data sources, we also use an SNF algo-
rithm to fuse 12 similarity matrices of drugs into a fusion sim-
ilarity matrix SMfusion 2 Rn�n. Motivated by effectively joint
effect of drug molecular structures and the associations/inter-
actions between drugs and biological entities in drug-related
prediction tasks (Zhao et al. 2022), we propose a novel deep
learning model, called MSDRP, for drug response prediction
based on multisource data of drugs and cell lines, respectively.
We take drug–cell line pair di-cj as an example. For di, we ex-
tract the i-th row of each similarity matrix and the fusion ma-
trix to generate 12 similarity vectors and a fusion vector,
respectively. Similarly, for cj, we extract the j-th row of each
feature matrix to generate four cell line feature vectors. The
model can be described as four steps (see Fig. 1): (i) projecting
the 12 similarity vectors of the di and four feature vectors of
cj into the vector space of the same dimension; (ii) capturing
di and cj interaction embeddings through the interaction mod-
ule; (iii) extracting embeddings of di and embeddings of cj

through the MLPFused module, MLPDrug module, and MLPCell

module; and (iv) integrating higher-order correlation embed-
dings of di-cj, embeddings of di and embeddings of cj, and
then feed into a prediction module to predict the IC50 values.
Next, we discuss the implementation details of each step.

In step 1, for similarity vectors of di, we design 12 transfor-
mation matrices, i.e.fG1;G2; . . . ;G12g 2 Rn�s where s is set
to 128, representing the dimension of each vector transformed
into a specific vector space. The transformed vector g0k of k-th
similarity vector of di can be calculated as follows:

g0k ¼ gkGk; (3)

where gk is the k-th similarity vector of di. Similarly, for fea-
ture vectors of cj, we design four transformation matrices
fH1;H2;H3;H4g. The transformed vector h0l of the l-th fea-
ture vector of cj can be calculated as follows:

h0l ¼ hlHl; (4)

where hl is the l-th feature vector of cj.
In step 2, we design an interaction module, including both

outer product and inner product units, to capture fine-grained
and coarse-grained interactions between di and cj. In outer
product unit, we first perform the outer product operation be-
tween the transformed vectors of di and the transformed vec-
tors of cj. For the k-th transformed vector g0k of di and the l-th
transformed vector h0l of cj, the outer-interaction map
Intermapouter

k;l can be calculated as follows:

Intermapouter
k;l ¼ g0k � h0l; (5)

where � represents the outer product operation and
Intermapouter

k;l is an s� s matrix. Here, we can get 48 (12� 4)

Figure 1. The architecture of MSDRP
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different outer-interaction maps to represent di-cj. Then we
use the CNN network to learn the outer-interaction embed-
dings from the multiple outer-interaction maps. The CNN
network consists of two residual blocks and a CNN layer.
The residual block can be described as follows:

xeþ1 ¼ hðxeÞ þ sðxe;WeÞ: (6)

The residual block is divided into two parts direct mapping
part hðxeÞ and residual part sðxe;WeÞ. The xeþ1 is the e-th
layer output. The CNN network can effectively utilize the lo-
cal features of di and cj interactions. Finally, we use a max-
pooling layer to capture the global information from the
extracted interaction embeddings. In inner product unit, we
first perform the inner product operation and calculate the
inner-interaction vectors as follows:

Intermapinner
k;l ¼ g0k � h0l; (7)

where � represents the inner product operation and
Intermapinner

k;l is a vector of dimension s. Here, we can get 48
(12� 4) different inner-interaction vectors to represent di-cj.
Then we use an MLPInner module to obtain the inner-
interaction embeddings of di-cj from the multiple inner-
interaction vectors. The MLPInner module consists of four
fully connected layers, in which the numbers of neurons are
1024, 1024, 512, and 128, respectively.

In step 3, here we use three similar MLP modules to capture
the embeddings of di and cj. We firstly use the MLPFused mod-
ule and the MLPDrug module to jointly learn embeddings of di

from the fusion vector and the transformed vectors, respec-
tively. Then, we use the MLPCell module to learn embeddings
of cj from the transformed vectors. Each MLP has two fully
connected hidden layers, and the number of neurons in hid-
den layer is s. The activation function in each layer in MLP
modules is the Rectified Linear Unit (ReLU) function.

In step 4, we concatenate higher-order correlation embed-
dings of di-cj, embeddings of di and embeddings of cj, and
then feed them into a prediction module consisting of four
fully connected layers to produce the final predicted IC50 val-
ues between di and cj.

To train our model, we use the PyTorch (Paszke et al.
2019) framework to implement the model code. The model is
trained end-to-end using the mean square error as the loss
function. We use the Adam (Jais et al. 2019) as the optimizer
with the default learning rate of 1e-4 and the weight decay co-
efficient of 3e-4. We perform early stopping to avoid overfit-
ting. If the loss of models on the validation set does not
decrease within 10 epochs, the training will stop.

3 Results

3.1 Performance evaluation metrics and framework

We first compare our model with some state-of-the-art meth-
ods based on the benchmark dataset. We split the benchmark
dataset into nonoverlapping training, validation, and testing
sets in a ratio of 8:1:1. For comparison fairness, the hyper-
parameters in other methods are set according to the optimal
value as suggested by the authors. To further demonstrate the
effectiveness of integrating multisource features, we also add
our five drug-related biological entities associations/interac-
tions to TGSA (TGSAþ). We add a fully connected layer to
extract features from these associations/interactions and then

concatenate it with the latent representations of drugs output
by the GNN module in TGSA to construct new representa-
tions of drugs. We use three indicators widely used in regres-
sion tasks to measure performance: root mean square error
(RMSE), mean absolute error (MAE), and Pearson correlation
coefficient (r). Table 1 shows the comparison results between
MSDRP and other methods. Our method gets 5.02%,
3.71%, and 0.3% improvements in RMSE, MAE, and r over
the second-best method TGSA, respectively. The comparison
result indicates that the introduction of known associations/
interactions between drugs and biological entities as the drug
features and the capture of interactions between drugs and
cell lines through the interaction module can effectively im-
prove the performance of the models in drug reaction predic-
tion. Moreover, we compare the prediction performance of
different distance calculation methods (see Supplementary
Table S1) and select Chebyshev distance as the better similar-
ity measure to calculate the similarity matrices. In addition,
we conduct the ablation experiment to observe whether each
module is beneficial to MSDRP, and the results show that the
current model architecture and feature selection scheme are
optimal for our prediction tasks (see Supplementary
Table S2).

3.2 De novo test and independent test

To evaluate the performance of our model for new drug re-
sponse prediction, we conduct de novo test with two experi-
ment settings for a comprehensive comparison. Assuming that
Dtrain and Ctrain are the sets of drugs and cell lines in the train-
ing set, respectively. When predicting the drug response be-
tween drug di and cell line ci in the testing set, there are two
different experimental settings:

1) ES1: There are no drug di and known IC50 values of
drug di (all related-cell lines are unknown) in the training
set: di 62 Dtrain.

2) ES2: There are no cell ci and known IC50 values of cell ci

(all related-drugs are unknown) in the training set: ci 62
Ctrain .

In de novo test, we evaluate tCNNS, DeepCDR, MSDRP,
BiGPicture, Precily, and TGSA under ES1 and ES2 settings on
the benchmark dataset, respectively. We randomly select 20%
drugs/cell lines in the benchmark dataset and the ratio of
drugs and cell lines under ES1 and ES2 settings in the test set,
validation set, and training set is 4:1:1, respectively. Tables 2
and 3 show the results under ES1 and ES2 experimental set-
tings, respectively.

Table 1. Comparison between our model and some state-of-the-art

models.

Methods RMSE MAE r

tCNNs 0.95160.009 0.70060.008 0.94260.001
DeepCDR 0.91460.018 0.67460.014 0.94660.001
GraphDRP 0.95360.019 0.70260.017 0.94260.002
BiGPicture 1.24860.008 0.99760.006 0.74260.001
Precily 1.35360.009 1.00060.009 0.87960.003
TGSA 0.87760.008 0.64660.006 0.95160.001
TGSAþ 0.86860.012 0.63960.010 0.95260.002
GADRP 0.96260.010 0.71960.009 0.91660.001
MSDRP 0.83360.005 0.62260.007 0.95460.001

The optimal value in each column has been emphasized in bold.
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In addition, we use the independent test to show the predic-
tive performance of our method. Our independent dataset
contains 763 IC50 values including 12 drugs and 138 cell
lines. Here, we compare MSDRP with BiGPicture, Precily,
and TGSA on independent dataset and Table 4 shows the
results.

These results show that our model is competitive and has
better performance than three state-of-the-art deep learning
models.

3.3 Analysis of the contribution of each feature of

drug and cell line

One of the main advantages of our framework is the use of
data from multiple data sources. To build MSDRP, we con-
struct 12 feature matrices and four feature matrices for drugs
and cell lines, respectively. Next, we investigate the matrices
that produce the most contribution to MSDRP and the consis-
tency and complementarity of these different matrices. To an-
swer the first questions, we delete a matrix of drug or cell line
in turn and use the remaining 11 matrices of drugs or three
matrices of cell lines to represent the features of drugs or cell
lines, and then reconstruct an MSDRP. As a result, 16
MSDRP models based on different combinations of data
sources are obtained by using the same hyperparameters

mentioned in Section 2. Table 5 shows the performance when
one drug feature matrix is removed. For drugs, MSDRP with-
out SMESPFP produces the highest RMSE and MAE. Table 6
shows the performance of our method when one cell line fea-
ture matrix is removed. For cell lines, without M exp produce
the highest RMSE and MAE.

Therefore, these contribute the most to the model. To an-
swer the second questions, we plot the correlation heatmaps
for the feature matrices of drugs and cell lines, respectively.
Specifically, we calculate the Spearman correlation coeffi-
cients between the 12 feature matrices of the drug and the
four feature matrices of the cell line, respectively. Then we
plot two heatmaps based on the calculated correlation coeffi-
cient matrices to represent the correlation between multiple
features of the drug and cell line, respectively. In addition, to
explore the consistency and complementarity of these multi-
source data, we compute the Pearson correlation coefficients
for all the feature pairs and plot two heatmaps. As shown in
Supplementary Figs S2 and S3, there is complementary infor-
mation in different data, and the combination of these differ-
ent data is beneficial in enhancing the predictive performance
of our model.

3.4 Analysis of the association between drugs and

pathways

Some literature shows that drugs exert the effects by affecting
related biological pathways rather than targeting a single pro-
tein (Wang et al. 2021). To analyze associations between
drugs and signaling pathways, we obtain 292 Biocarta path-
way gene sets from MSigDB (Liberzon et al. 2011). The
MSigDB database provides many gene sets. A gene set is
called a pathway which is a collection of genes with similar
positions or functions. We obtain gene expression data of 580
cell lines in our benchmark dataset from CCLE database.
Based on gene expression data and gene sets, we calculate
pathway activity scores for each cell line, following the
method of Suphavilai et al. (2018). We predict IC50 values

Table 3. Comparison results of the proposed model and other methods

on the benchmark dataset under the setting ES2.

Methods RMSE MAE r

tCNNs 1.42960.008 1.00660.007 0.82260.002
DeepCDR 1.57560.013 1.19460.010 0.68860.001
BiGPicture 1.27660.010 1.01060.005 0.89260.003
Precily 1.40560.008 1.04960.009 0.87760.002
TGSA 1.34460.009 1.03960.012 0.87560.001
GADRP 1.25560.011 1.06960.009 0.71760.002
MSDRP 1.02460.009 0.77260.006 0.92060.001

The optimal value in each column has been emphasized in bold.

Table 4. Comparison results of our model and other methods on the

independent dataset.

Methods RMSE MAE r

tCNNs 1.942 1.461 0.606
DeepCDR 1.892 1.358 0.674
BiGPicture 1.805 1.279 0.732
Precily 1.932 1.479 0.595
TGSA 1.847 1.321 0.656
GADRP 1.880 1.569 0.533
MSDRP 1.644 1.067 0.847

The optimal value in each column has been emphasized in bold.

Table 5. Performance of our method when one drug feature matrix is

removed.

Excluded matrix RMSE MAE r

SMDFP 0.850 0.629 0.953
SMERGFP 0.855 0.636 0.952
SMESPFP 0.868 0.642 0.951
SMECFP 0.848 0.630 0.953
SMPSFP 0.858 0.636 0.952
SMRDKFP 0.847 0.629 0.953
SM0

target 0.853 0.635 0.952
SM0

ADR 0.855 0.633 0.952
SM0

disease 0.857 0.642 0.952
SM0

miRNA 0.861 0.642 0.951
SM0

combined 0.854 0.631 0.952
SMDC 0.859 0.637 0.951

Table 6. Performance of our method when one cell line feature matrix is

removed.

Excluded matrix RMSE MAE r

M exp 0.863 0.641 0.951
Mmu 0.858 0.646 0.953
Mcnv 0.851 0.634 0.953
MCD 0.853 0.638 0.951

Table 2. Comparison results of the proposed model and other methods

on the benchmark dataset under the setting ES1.

Methods RMSE MAE r

tCNNs 1.82960.012 1.53460.009 0.65460.002
DeepCDR 1.83160.023 1.66360.016 0.63360.003
BiGPicture 1.74160.016 1.25460.009 0.85260.001
Precily 1.52760.007 1.13360.007 0.86060.002
TGSA 1.79460.009 1.30160.008 0.83960.002
GADRP 1.48060.011 1.36960.010 0.83360.001
MSDRP 1.28560.009 0.90160.008 0.91560.001

The optimal value in each column has been emphasized in bold.
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between 170 drugs and 580 cell lines, and then select the top
10 drugs with the lowest average of predicted IC50 values.
We then calculate the Pearson correlation between the path-
way activity scores and the predicted drug responses (see
Fig. 2). We observe that the drugs with the lowest average of
predicted IC50 values are sensitive to most of the key path-
ways, which indicate that our model can accurately predict
drug responses. For example, most pathways are sensitive to
Paclitaxel, which is consistent with the existing literature
(Singla et al. 2002). Some studies show that inhibition of JNK
(one of the main four groups of the MAPK pathway) or the
absence of JNK prevents vinblastine-induced cell death
(Kolomeichuk et al. 2008),which is consistent with our pre-
diction that the MAPK pathway is sensitive to vinblastine.
These results highlight the capability of MSDRP for discover-
ing drug sensitivity and its interpretability. In addition, we

conduct the case analysis on the top three drugs with the low-
est average of predicted IC50 values. For each drug, MSDRP
estimates the predicted IC50 values for all cell lines. We rank
the predicted IC50 values and select the top 10 cell lines for
drugs. We find that many newly predicted drug responses are
supported by DrugBank database and recently published ex-
perimental studies (see Supplementary Table S3).

3.5 Analysis of drug response in AML cell lines

Acute myeloid leukemia (AML) is a cancer caused by the ex-
cessive proliferation of blood cells in the bone marrow, which
is characterized by drug resistance, relapse, and refractory,
etc. (Khwaja et al. 2016). Although some useful drugs are de-
veloped to the treatment of AML, new therapy options are ur-
gently needed to further improve the survival rate of patients.
We select AML cell lines from our dataset and perform de

Figure 2. Association of the 10 drugs with the pathways. For visualization, the top 40 pathways with the highest cross-drug correlations are selected.

Negative and positive correlations between pathway activity and drug sensitivity scores are denoted as “sensitive” and “resistant” associations,

respectively
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novo test for these cell lines as one of the case studies. More
specifically, we first select 10 AML cell lines in the benchmark
dataset and then remove the drug responses associated with
these cell lines from the benchmark dataset and use the
remaining drug responses as the training set. Finally, we pre-
dict IC50 values between 170 drugs and these cell lines and
plot a heat map. Through the analysis of the prediction results
shown in Fig. 3, we find that nine drugs are sensitive to these
AML cell lines and some biological experiments show that the
above nine drugs can play a therapeutic role in AML (Beguin
et al. 1997, Cortes et al. 2002, Kindler et al. 2005, Yu et al.
2007, Advani et al. 2010), which demonstrates that MSDRP
can be used as a powerful tool for predicting drug response.

To justify the reliability of the drug representations based
on similarity calculation, we focus on analyzing the correla-
tion of the features between these drugs. We first screen 12
types of features of these nine drugs from feature matrices.
Then we calculate the correlations among multiple features of
these drugs separately, and plot 12 correlations heatmaps of
features (Supplementary Fig. S4). From the results, we can
find that there is at least one correlation evidence between
these drugs. Among them, eight of the 12 features between
Cytarabine and Gemcitabine are highly correlated (as shown
in Table 7). These results justify the use of similarity to repre-
sent drugs and the significantly positive effect of these similar-
ities on the model correctly predicting IC50 values between
drugs and cell lines.

4 Discussion and conclusion

In this article, we develop a new learning method to integrate
multisource data of drugs and cell lines for predicting drug re-
sponse. MSDRP introduces an interaction module and an
SNF algorithm to integrate multisource heterogeneous data of
drugs and cell lines. To verify the effectiveness of our model,
we compare MSDRP with the existing state-of-the-art models.
Our results show that MSDRP is superior to competing

methods. Furthermore, we evaluate the performance of our
model in the response prediction of new drugs through de
novo test and independent test. Moreover, we perform case
studies to illustrate the interpretability of our model and the
plausibility of representing drugs using feature vectors derived
from similarity calculated based on multisource data. All ex-
perimental results show that our model performs better on
drug response prediction tasks compared to the existing
methods.

Although MSDRP has shown effective performance in pre-
dicting drug response, it is important to be aware of several
limitations. Firstly, the known associations/interactions be-
tween drugs and biological entities are incomplete, resulting
in sparse association matrices. Secondly, the number of sam-
ples is critical for model training, but gathering a large num-
ber of known IC50 values between drugs and cell lines is
difficult. Furthermore, since drugs are composed of molecules,
it is our ideal situation to be able to represent drugs through
graphs. In the future, we will further collect drug-related data
and consider using GNN to capture graph-level representa-
tions of drugs.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Figure 3. Heatmap of drug response of 170 drugs on 10 samples

Table 7. Numbers of highly correlation evidences among nine drugs.

Drug name Drug name The number of correlations

Cytarabine Gemcitabine 8
Camptothecin Topotecan 8
Mitoxantrone Epirubicin 8
Mitoxantrone Camptothecin 5
Mitoxantrone Paclitaxel 5
Mitoxantrone Epirubicin 5
Paclitaxel Epirubicin 5
Mitoxantrone Staurosporine 4
Mitoxantrone Topotecan 4
Camptothecin Epirubicin 4
Camptothecin Staurosporine 4
Paclitaxel Staurosporine 4
Paclitaxel Gemcitabine 4
Epirubicin Staurosporine 4
Epirubicin Topotecan 4
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