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ABSTRACT

FINITE ELEMENT FREQUENCY DOMAIN
SOLUTION OF NONLINEAR PANEL FLUTTER WITH
TEMPERATURE EFFECTS AND FATIGUE LIFE ANALYSIS

David Yongxiang Xue
Old Dominion University, 1991
Director: Dr. Chuh Mei

A frequency domain solution method for nonlinear panel flutter with thermal effects
using a consistent finite element formulation has been developed. The von Karman
nonlinear strain-displacement refation is used to account for large deflections, the quasi-
steady first-order piston theory is employed for aerodynamic loading and the quasi-steady
thermal stress theory is applied for the thermul stresses with a given change of the
temperature distribution, A1'(x, y, =). The equation of motion under a combined thermal-
aerodynamic loading can be mathematically separated into two equations and then solved
in sequence: 1) thermal-zerodynamic postbuckling and 2) limit-cycle oscillation. The
Newton-Raphson iteration technique is used to solve the nonlinear algebraic equations
and an updated linearized eigen-solution procedure is adopted to solve the nonlinear
differential equations. The finite-element frequency domuin solution results are compared
with numerical time integration results. Limit-cycle responses, flutter boundaries, snap-
through areas and stress distributions are obtained from the present analyses. The effects
of different temperature distributions, pane!l aspect ratios and boundary support conditions

are investigated.
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The influence of temperature and dynamic pressure on panel fatigue life is also
presented. The relation of dynamic pressure versus panel life time at a given temperature
is established and an endurance and failure dynamic pressures on panel fatigue life can

be estimated.
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Chapter 1

INTRODUCTION

The major objective of this dissertation is to develop a consistent finite element
formulation and a solution procedure for solving nonlinear panel flutter with temperature
effects and to estimate panel fatigue life. The nonlinear panel flutter formulation is based
on quasi-steady first-order piston theory aerodynamics, von Karman large deflection plate

theory and quasi-static thermoelasticity.

1.1 The Nature of the Problem

Panel flutter, an aeroelastic stability structural problem, has been a research topic for
the past three decades and has recently received renewed interest.

When a vehicle flies at a supersonic speed in the air, some skin panels may experience
high level vibrations and fail due to the aerodynamic pressure on the vehicle surface. This
aeroelastically induced, self-excited motion has been described as panel flutter. The panel
motion related aerodynamic pressure causes an unsymmetric panel defiection as shown in
Fig. 1.1. Experiments showed that there are critical dynamic pressures (air flow speeds) in
panel flutter. Below these critical pressures the panel has a random oscillation with small
amplitude. The amplitude of the oscillation is a small fraction of the panel thickness.
The predominant frequency components are observed to be near the lower panel natural
frequencies. Basically, the panel is undergoing a linear oscillation. These critical dynamic
pressures are also called the flutter boundury. Beyond this boundary, the amplitude of the

panel oscillation grows rapidly to the order of the panel thickness. From a linear theory,
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0%}

Self-excited oscillation of an external panel of a flight
vehicle when exposed to supersonic air flow (M_>VZ)

Temperature AT(X,Y,2)

Aerodynamic pressure
(1st-order piston theory)

Deformed shape

Air flow
.4

/ / // LUUDTRSRRTER st @//// > X
////////////// Thickness, h

Panel length, L

Fig. 1.1 Panel flutter
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3

the panel is considered to be unstable. But experiments and large deflection nonlinear
theory have shown that the frequencies of the panel oscillation are related to the panel

deflections and the panel has a stable limit-cycle oscillation.

Many studies have been contributed to develop the model of the aerodynamic pressure
and to predict the flutter boundaries and the limit-cycle responses of a panel. These will

be reviewed in the section entitled Literature Survey.

Temperature plays an important role in panel flutter by inducing inplane forces,
bending moments and causing an additional stability problem. This stability refers to the
phenomenon that under a certain combination of temperature and aerodynamic pressure,
the panel has a snap-through behavior which may lead to a chaotic motion. Most studies
on panel flutter treated a uniform temperature change as an equivalent mechanical loading,
In reality, however, it may not be casy 10 find the equivalent loading for complex
structures and arbitrary temperature distributions. This is one of the reasons that the

finite-element method is chosen in this study.

The present finite-element solution hus the following features:

1) Temperature effects are brought in from the strain energy due to thermal stress. It
is valid for complex structures and arbitrury temperature distributions. No equivalent

mechanical simulation is required.

2) The aerodynamic pressures and thermal loading are applied simultaneously. The

solution procedure is mathematically consistent.

3) The different panel behaviors can be classified clearly by using a two-step solution

procedure and stability analyses.
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4

Panel failure happens frequently in experiments and it should be one of the most
important phenomenon considered in panel design. A linear analysis normally only
provides critical flutter boundaries but not the stress information. A nonlinear analysis,
however, provides the amplitude (or panel deflection) and frequency of the panel motion,
thus the cyclic stress could be determined. This research extends the study of nonlinear
panel flutter to include the estimation of the panel fatigue life. The established relation
between the panel fatigue life, the aerodynamic pressure and the temperature may be

useful in panel design.

1.2 Literature Survey

1.2.1 Nonlinear Panel Fluiter

Several notable surveys on panel flutter have been reported by Fung [1]°, Johns [2,

3], Dowell [4] and most recently by Reed et al [5].

As mentioned previously, flutter motion is induced by high speed air flow on one
side of a panel. The aerodynamic pressure on the panel surface is developed as a function
of the panel motion itself. It is essential to model the aerodynamic pressure accurately.
There are several aerodynamic theories in the literature such as described in Refs. [6-12].
Among them, the quasi-steady first-order piston theory aerodynamics proposed by Ashley
and Zartarian is mostly applied for the air flow with large Mach numbers (M > V2).
Since the assumption of quasi-steady aerodynamics neglects the three-dimensionality and
the unsteadiness of the air flow, it cannot be applied for the airflow with a Mach number
near one. For a lower Mach number (Mo, ~ 1), the lincarized (inviscid, potential)

aerodynamic theory (8-10] is more suitable. At the earlier stage of research on panel

. - . -
The numbers in brackets indicate references.
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5

flutter, numerous studies were devoted to linear structural and aerodynamic models [13-
17]. The differential equation of linear panel flutter may be solved by a Fourier method
in the frequency domain. The critical dynamic pressure and flutter boundary could be
found by increasing the aerodynamic pressure and reaching the coalescense of two linear
frequencies. According to the linear flutter theory, beyond this critical dynamic pressure
the panel will undergo fluttering motion and the amplitude of the panel motion will
increase exponentially with time, However, experiments [6, 9, 18] sh‘owed that the
panel oscillation acquires a stable and nearly sinusoidal character which is independent
of the initial condition when the dynamic pressure exceeds the flutter boundary as shown
in Fig. 1.2. This motion is called limit-cycle oscillation. A large-deflection nonlinear
structural theory should be applied 10 analyze the panel limit-cycle responses. When a
plate structure with immovable inplune edges has a large laweral deflection, a stretching
inplane force is induced. This stretching force prevents the increase of the deflection,
Since the stretching force is a function of the deflection, a structure nonlinearity then
occurs. The von Karman large deflection plate theory [19) is often used to account for this
geometric nonlinearity, and it has been successfully applied to the nonlinear panel flutter
problem. Figure 1.3 [4] shows that a time integration solution based on von Karman
plate theory and first-order piston theory aerodynamics agrees well with experimental
results. Two comprehensive books by Dowell [20, 21] are helpful for understanding the
fundamentals of linear and nonlinear pane! flutter.

For nonlinear analysis, several analytical solution procedures have been proposed
to solve the nonlinear differential equations of motion for panel flutter. Time numerical
integration was applied by Dowell [22] for 2-D and 3-D rectangular plates and by Evensen
and Olson [23) for circular cylindrical shells. In this approach, Galerkin’s method has

been used to reduce the panial differential equations of motion to a system of nonlinear
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Fig. 1.3 Comparison of experimental results and first-order
piston theory solutions (from Ref. [4])
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ordinary differential equations in time. Then the time numerical integration is used.
Following the time-displacement history, the limit-cycle oscillation is finally obtained
independently from the initial conditions. At least six natural modes are needed to obtain
a converged solution [22]. Time numerical integration generates informative results but
takes a relatively long computational time.

The harmonic balance method has been applied successfully to nonlinear panel flutter
analyses [15, 24-27]. Fung [15] and Kobayashi {24] solved 2-D plates, Librescu [25]
developed general solutions for rectangular and cylindrical specific orthotropic plates.
Eastep and McIntosh [26] and Kuo, Morino and Dugundji [27] solved rectangular
plates. Theoretically, the harmonic balance method could adopt multiple harmonic modes
and give an accurate solution, but, since it is complex mathematically and requires
lengthy mathematical manipulations, only two modes have been used to demonstrate
the technique. For panel flutter, however, due to the complication of the deflection, more
modes may be needed to acquire accurate results.

Perturbation methods are widely used in solving nonlinear problems and have been
employed to solve panel flutter by Morino [28, 29] for rectangular plates and by Eslami
[30] for specific orthotropic plates. Perturbation methods are normally limited to solving
small nonlinearity problems, due to the assumption of a small disturbance from an
equilibrium position.

The finite element method is a powerful numerical technique. Olson [31] first applied
this technique to linear panel flutter in 1967, and was foliowed by many researchers [32-
37]. The application of finite element methods to nonlinear panel flutter started in 1977
by Mei [38] for a 2-D plate. A triangular plate using 18 degree-of-freedom (d.o.f.)
triangular element was solved by Mei and Wang [39] in 1982. Both references [38] and

[39] neglected the effect of membrane displacement. Han and Yang [40] applied a 54
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d.of. triangular element and considered the effect of membrane displacements. They
also gave a survey on finite eiement solutions of nonlinear panel flutter. Recently, Gray,
Mei and Shore {41] extended the finite element method to nonlinear panel flutter with
nonlinear aerodynamic theory (third-order piston theory serodynamics) by using a 8 d.o.f.

2-D plate element including membrane displacements.

The finite element approach for panel flutter is a frequency domain solution which is
more efficient than the Galerkin/time domain solution. Because of the non-symmetry of
the panel deflection, multi-modes are needed in Galerkin/time integration and harmonic
balance solutions to represent the flutter deflection. In the finite element solution,
however, only one deflection mode is used. This is due to the nature of the finite
element method which assumes the real deflection (on the element nodes) directly. How
to deal with nonlinear time function is a key point for the application of the finite-element
method to nonlinear panel flutter. For solving a steady-state nonlinear oscillation, the
common practice is to linearize the nonlinear time functions and then use an iterative
scheme to obtain the converged solution. Several iterative linearization methods have
been proposed to solve nonlinear structural vibration problems. Some of them have
been applied to nonlinear panel flutter. Mei [38] assumed an average inplane stretching
force for linearizing the time function and turned the nonlinear oscillation problem to an
equivalent linear eigen-problem. The inplane stretching force was improved by Mei and
Wang [39] in solving a triangular plate. Han and Yang {40] assumed a simple harmonic
time function and neglected the third harmonic terms in a trigonometry transformation.
Sarma and Varadan [42] simply used the maximum deflection shape to account for
nonlinear stiffness matrices. The LUM/NTF (Linearized Updated Mode/Nonlinear Time

Function) approximation given by Gray, Mei and Shore [41] simplified the nonlinear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

quadratic terms to the simple harmonic terms in solving 2-D nonlineuar panel flutter with
a nonlinear aerodynamic theory (3rd order piston theory).

In all those finite element solutions, the time functions in the nonlinear equations
of motion are linearized to simple harmonic functions. In a general nonlinear structural
oscillation problem, this may not be suitable for representing a highly non-harmonic
motion. Fortunately, in nonlinear panel flutter most of the steady-state limit-cycle
oscillations are harmonic like motions, therefore, the finite element methods yield accurate
results by comparison with Galerkin/time integration multi-modes results.

Two finite element solution procedures which are able to solve the periodic (non-
harmonic) motions have been proposed by Lau and Cheung [43], and Kapania and Yang
[44]. A harmonic balancing is used 1o obtain nonlinear modal functions. Those solution
methods have not been applied to nonlinear panel flutter. To the author’s knowledge,
the expansion of multi-harmonic time functions will greatly increase the dimensions of
system equations in panel flutter problem, and, as mentioned previously, the time domain

numerical solution needs at least six modes to have convergent solutions.

1.2.2 Temperature Effects

When a vehicle flies, the supersonic air fiow not only produces an acrodynamic
pressure but also raises temperatures on the vehicle surface. The temperature could induce
inplane forces and bending moments in the panel. The induced inplane forces may cause
instability and complex behavior in panel flutter. Most panel flutter studies [22, 45, 46])
have used an equivalent mechanical compressive load to simulate the uniform temperature
effects. Few analyses dealt with wemperature directly. Houbolt [45] investigated the
linear flutter boundaries with uniform temperature changes by using two linear natural

modes in a Galerkin’s scheme. Yang and Han [46] also solved the uniform temperature
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affected linear flutter problem by using a finite element method. Nonlinear panel fiutter
with mechanical inplane load using finite elements was solved by Han and Yang [40]
as well. In their finite element solution procedure, the static deflection is obtained by
simply dropping time derivative terms in the equation of motion, and it is not associated
with the dynamic response. Mathematically, this is inconsistent. Dowell [22] gives a
relation between equivalent mechanical inplane pressure and the uniform temperature
effect. Effects of nonlinear temperature distribution on linear panel flutter was studied

by Schaeffer and Heard [47).

So far, there is no analytical study available in the literature on nonlinear panel
flutter with variable temperature distributions using finite clement methods. With the
development of high supersonic flight vehicles, such as the National Aero-Space Plane
(NASP), High Speed Civil Transport (HSCT) and Advanced Tactical Fighter (ATF), the
thermal stress analysis requires an efficient finite element panel flutter solution procedure

for complex panels and temperature distributions.

1.2,3 Stability Boundary Analysis

As mentioned in Sec. 1.1, there are two kinds of stabilities in temperature affected
panel flutter problems. One is the flutter which leads to a limit-cycle motion, and the
other is the snap-through which leads to a chaotic motion. The limit-cycle phenomenon
has been observed in experiments [18] and simulated in time integration solutions [22,
23]. Chaotic motions have been studied by Dowell [48] using time numerical integration
and by Holmes {49, 50] using the methods of differential dynamics. In the frequency
domain, however, the stabilities of panel futter have not been well studied so far. In
other structural dynamic problems, the snap-through dynamic stability has been studied

by many researchers [51-54]. It is known that a minimum potential energy criterion or an
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adjacent equilibrium criterion [55] can provide this stability determination. It is applied

in the present study.

1.2.4 Panel Fatipue Life

An important panel phenomenon often observed in flutter experiments is that many
panels failed immediately before the flutter motion reached a steady-state. It could be
considered that fatigue caused the failure of those panels. The flutter induced panel failure
is the motivation that drives researchers to study panel flutter, but very few studicz have
been directed toward the failure mechanism and no analytical report has been found in

the literature.

The panel fatigue analysis in this research is based on Heywood’s fatigue formulation
[56). Heywood proposed his approach based on the experimental data of aluminium
alloys. This approach has been chosen as a design tool for aircraft structures [57].
There are different fatigue analyses and concepts in recent developments [58, 59], but
Heywood's approach is a traditional method which is easy to be understood and widely

used in current design practice.

1.3 Scope

In this dissertation, the following contents are included according to the research

sequence:

1) First, the finite element formulation for nonlinear panel flutter with temperature effects

is derived in Chap. 2.

2) A consistent solution procedure is presented in Chap. 3. This procedure results in
solving two coupled equations : a nonlinear static equilibrium equation and 2 non-

linear dynamic equation. The Newton-Raphson iterative method is used to solve a
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set of noniinear algebraic equations and an iterative linearized eigen-solution approx-
imation [41] is employed to obtained the dynamic limit-cycle response. Stability

determinations are also provided.

3) Chapter 4 introduces three types of elements used in this study: a triangular DKT
(Discrete Kirchhoff Theory) 15 degrees-of-freedom (d.o.f.) element which has 9
bending d.o.f. and 6 membrane d.o.f; a rectangular 24 d.o.f. element which has 16
bending d.o.f. and 8 membrane d.o.f; and an 8 d.o.f. 2-D strip element which has

4 bending d.of. and 4 membrane d.of.

4) Flutter results and discussions are presented in Chap. 5. The phenomenon of temper-
ature affected panel is shown by a 2-D strip example. The results compare well with
the time domain solutions. The illustration of the limit-cycle motion and the determi-
nation of the stability boundary are also shown in examples. New results which are
not found in other solutions are also included. A 3-D square panel is investigated by
using triangular DKT and rectangular elements, the application of DKT element and

the effects of aspect ratio are also considered.

5) The panel fatigue life analysis and results are presented in Chap. 6. Only the nonlinear

panel analysis can provide fatigue information.
6) Conclusions and future work are outlined in Chaps. 6 and 7.

7) A classical solution using a two-step solution procedure for solving temperature
affected free vibration of a simply supported beam is given in Apperdix E. The
resulting formulation is compared with a one step solution and solved by several

nonlinear differential equation solvers.
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Chapter 2

FINITE ELEMENT FORMULATION

In this chapter, the equation of motion of temperature affected nonlinear pane! flutter

is developed based on the following theories and assumptions:
1} Isotropic material obeys Hooke's law (small strain).

2) The pane! is thin (L/h > 20). Inplane inertia, rotatory inertia and transverse shear

deformation effects are negligible.
3) von Karman large deflection strain-displacement relations are valid.

4) The panel is in a supersonic air flow (Mo, > V/2), the acrodynamic first-order piston

theory is valid,

5) The quasi-steady state thermal stress theory with arbitrary temperature distributions

is applied.
2.1 Displacement Functions

The finite element method assumes that the displacement solution is a node displace-
ment vector {W}. For a plate structure, this vector consists of bending and membrane-

displacement vectors {IV,} and {i},} ie,

{Ww}= { ‘11"’ } @1

The element displacement vectors can be expressed as

w} = { o } @2

14
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The displacement distribution within an element is discribed by interpolation func-
tions. The finite element tnterpolation functions are assumed at the element level and
are usually in the form of polynomial functions. The transverse deflection, w, and the

inplane displacements, z and v, are first written in the form,

w=ay, +ap,z+apy+ ... ety +...0= [Hal{ap} 2.3)
U= Ly + Qi + gy + - .u,,,k;rlgl +.oo=[He{awm} (2.4)
V= Gy F Gngga® + oo F Uy, 2y 4 o= [ {am) (2.5)

The generalized coordinates, {«;}, {«,,} could be transferred in terms of the element

nodal displacements, {w;} and {w,,} as,

{as} = [1){en} (2.6)

{am} = [Tm]{wm} 2.7)

The element displacement functions then could be expressed in terms of element nodal

displacement as,

w = {1 {ws} = [Cow){ws} 2.8)
U= [Ifu][Tm]{wm} = [Cu}{wm} (29)
v = [H[Twl{wn} = {Cel{wn} (2.10)

where the [Cy), [Cy] and {C,] are row vectors of interpolation functions.
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2.2 Nonlinear Strain-Displacement Relation
Considering small inplane strain and large lateral displacement, the total strain vector

is given by

{e} = {c} +={x} (2.11)
where the membrane strain vector {c¢} consists of two purts:
{c} = {cm) + {e) (2.12)
The linear membrane strain vector {¢,,} is related to the displacements as
ur
{Cm} = Uy (2.13)
Uy + 0x

The nonlinear stretching strain vector, {¢y}, induced from large lateral deflection by the

von Karman strain-displacement relation [60, 19} is given as

-~
~
‘?‘."

(2.14)

NS =t |

{eo} = ¢ 05,
W W,y

The vector of bending curvatures {x} is expressed as

W rr

{x} == wyy
2w 4y

(2.15)

By using finite element displacement functions, Eqs. (2.3)-(2.10), the membrane strain
and curvature vectors can be expressed in terms of the element nodal displacements. The

linear membrane strains from Egs. (2.9), (2.10) and (2.13) become

2(11,)
{em} = %[UJ [Tm]{“’m}
LU+ &1

= [Cr){wm} (2.16)
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The nonlinear membrane strains from Eqs. (2.8) and (2.14) are:

wy 0 w
) =3 0 oy {2

w
|y
wy W,

[C

= 11{0)

211,
=§M{§$@hnwm
2 21,

= ={0})[Cp){wn} (2.17)

I | o=

where the slope matrix and vector are

w, 0
[U] =10 wy

wy o uy
and
{0} = {“} (2.18)
W,

and the curvatures from Eqs. (2.8) and (2.15) are

2
= e U]

{}) = | =55 [Hu) | [Ti]}{ws}
— 5255 [H]

= [Cyl{wp} 2.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

2.3 Thermal Stress Resultants

In thermal elasticity, if a structure (material) meets the following assumptions [61]:
a) material is linear elastic, strain is small;
b) material is isotropic;
¢) no initial thermal stress;
d) small temperature variation; and
e) a locally reversible process (entropy dy; = 0),
the general stress-strain relation for a plane stress (o, = 0) subjected to a temperature

variation AT(z,y, =) is given by

{o} =X o, } =[E}s} - {oar) (2.20)

where the strain vector {¢} is given by Eq. (2.11), the elastic coefficient matrix is

expressed as

P Il v O
[E]=l— s|v 1 0
Tloo i

and the thermal stress vector is expressed as

. l
EaATl(x,y, =
{oaT) = —l(—l—l 1 @.21)
-V
0
The force and moment resultants are defined as
k2
{N, M} =/ (1) {o)d: (2.22)
=uf?
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or in terms of strains and curvatures as

19

[N} = [A){e) — {Nar)
{M} = [Dl{«} = {Mar} (2.23)
where the inplane stiffness matrix is
. 1 v O
=221, 1 o (2.24)
=v"lo 0 1z
the bending stiffness matrix is
£h3 bow 0
[l)] = l—, v 0 (2.25)
12(1 = »?) 0 0 1=
the thermal inplane force vector is
7o hy2 1
{Nar) = / AT(wyy.s)d= l
1l =w —h/2 0
Napy
= NA'I'y (226)
0
and the thermal bending moment vector is
npe hf2 1
{Mar} = Ea (/ AT(x,y,2)z (1:) 1
l—wv =hf? 0
A[A'I'r
= ¢ Map, (2.27)
0
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24 First-Order Piston Aerodynamic Theory

Aerodynamic pressute acting on a panel is obtained from the first-order piston
aerodynamic theory [6]. This theory describes the serodynamic pressure on a skin panel
of a flight vehicle when it is exposed to supersonic air flow (Fig. 2.1).

By applying aero-elasticity and assuming that
1) The local motion of the panel acts as a piston,

2) The air is ideal and it has a constant specific heat, the process of the air flow is

isentropic,
3) The local panel motion velocity is much smaller then the air flow velocity, and
4) The air flow is parallel to the punel surface.

The first-order piston theory |6, 9] can be expressed as

2q M2 =21
Py=~—lw, +—F—-w 2.28
3 Wer ok Mi -1v it (2.25)

where F; is the aerodynamic pressure loading,
v is the air flow velocity
Mo, is the Mach number (M = v/v,, v, is the sonic speed),
qg= pa% is the dynamic pressure,
pa is the air mass density, and
B=ML-1

Equation (2.28) can also be written as

D g D
]7‘1 = - </\-1-73w', + w—oF'w‘() (2.29)
where
2q L3
=30 (2.30)
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Fig. 2.1 Piston theory
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is the nondimensional dynamic pressure,

pav(MZ —2)

b= = 2.31)

is the nondimensional acrodynamic damping parameter,

D
wy =\ =77 2.32
? phil? (2.32)

is the convenient reference frequency, and L is the total panel length along the x-direction.
Equation (2.28) or (2.29) shows that the aerodynamic load is generated by the panel
motion itself and related to the local normal component of the air flow velocity. Thus,
this pressure is a function of the local panel slope, w ., and the panel vibration velocity,
w,¢. This feature leads to a self-excited vibration.

Substituting Egs. (2.8) into Eq. (2.29), the dynamic loading can be expressed in a

finite element form as

D 9 do D
Pu = —/\F%[Cw]{u}b} -_ w_oﬁ

J
[Cul; tn) (2.33)
2.5 Equations of Motion

In this study, the governing equation is derived using the principle of virtual work
with the incorporation of D’Alembert’s principle. This method states that for a structure
in equilibrium, the total work done by internal and external forces (including inertia force)

on an infinitesimal virtual displacement is zero.
SW =10 — ol =0 (2.34)
The virtual work of the internal forces on a plate element is given by

§Wing = ] ({6c}T{N} + {6;:}T{1\!})(1A (2.35)

A
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where the virtual strains and curvatures can be expressed by Eqs. (2.12) and (2.16-2.19)

as
(5e) = 8([Cultion} + 0ol
le{(swm} + (?12' 0][(:0 {wb})
= [Cu]{bwm} + [0][Cy]{Sw;)} (2.36)
where
6(Gl0CoMn}) = HenCultund + SICal{6w)
= [()] [Cg]{(S’w(,}; 2.37)
and
{6} = [Cy){6wy} (2.38)

Substituting Egs. (2.36), (2.38) and (2.23) into (2.35), the virtual work of internal forces
becomes
Wint = [ ([160m)"1Cul" + (G} T 0411 = {Var))
+ [ ICT (D)) — {Mar))] )da
= [ ()T iCulTAle) ~ (B0} (Cl" M)
+{6ws}T(ColT 0" Ale} ~ (8w} ICol 0 {Nar)
+{8wi} ICT[DH{x} - {5} (G {Mar} ) dA

- /,, ({wn} T ICA TANC ) {0} (2.392)
+ {6w,,,}T[C,,,]T[:i]%[()][C'g]{-w(,} (2.39b)
— {8wn} [Cu] {Nar) (2.39¢)
+ {6w} [l [0 TANC ) (2394)
+ () 1G] 0 AL 0] Col ) (2.3%)
— {8w Y (Col 01" { Nar) 2.390)
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+ {8wi} (Gl [D)[Cul e}
— {sun}T(C) {Mar})dA
Terms (2.392) and (2.39g) result in the linear stiffness matrices:

{80} Tk} {0} + {S10g} o] {20}

where

(k) = / | [Cun] T [A)[CundA

= [ el ol

24
(2.39g)
(2.39h)

(2.40)

(2.41)

(2.42)

Geometric stiffness contribution due to the thermal stresses is given by Term (2.39f)

- / (5w 1Cel" 0" {Nar)da
A

(2.43)

According to the definition of matrices 0] and {Na7}, Egs. (2.18) and (2.26), the

following transformation holds

IVA'I'J:
T we 0w,
[0} {Nar} = [ 0w, w:]{ Nary
' ’ NATry
— Nar: NA'I‘xy] { Wwr }
Natz ¥ NATy Wy

= [Nar][Co]{w}

where

Nar:  Nare ¥

Narl =
[ AI‘] A’A'I‘rg ArATy

When Nat;, = 0 according to Eq. (2.26), the Term (2.43) then becomes

—{8ey} T ar]{een)

(2.44)
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where
(kvar] = / [Col" (Nar)[Coldt (2.45)
A
The first-order nonlinear stiffness matrices due to large transverse deflection are obtained

from Terms (2.39b) and (2.39d) by

L ({5w,,,}T[C,,,]T[A]%[0][6‘0]{405} + {m}"[cg]"'[o]"'[,x][c,,,]{wm})dA (2.46)

To make Term (2.46) into a symmetric form, the following transformation has to be

arranged

(8w )T [Co]T 101 AN (e} = é{m}"’[caJT[o]"’mncm]{wm}

R T
+ 5 (6w} 1Co) [N [Col{s) (2.47)
where [N,,] is constructed from {&,,} in the sume fashion as Eqs. (2.43) and (2.44) and

{N} = [A[Cru){wnm}

Then Term (2.46) becomes symmetric as

1 1 P 1 o
3{6wrll}T[’llrnb]{wb} + 3{‘5""&}1 [”lbm]{wm} + 3{5“’0}1 [”]Nm]{wb} (2.48)

where
feLyug] = f Cal TAIC A (2.49)
A
(1] = / l [ColT1O [A)C)d A (2.50)
[”lmb] = [” 1bm]T
and

2] ] = / (Col [N n][ColdA @51)
A
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The second-order nonlinear stiffness matrix can be obtained from Term (2.39¢) as

/A {6wz,}T[Co]T[0]T[/1]%[0][091{wb}d/l = %{5%}["‘2%]{%}

where
(2] = / 1 g[cg]"[o]"'[,q][o][cg]dA (2.52)

Finally, Terms (2.39¢) and (2.39h) can be represented by thermal load vectors as

_/ {6wm}T[Cm]T{iVAT}dA = _{6"‘)::1}’1‘{1)3:1/)'1‘}
A

where
{Puar} = /‘ [C',,,]T{z\"_\y‘}dzl (2.53)
and
- /1 (8w} (G {Mar)da = (6w} { Piar)
where

(Piaz]} = / el {iar)aa (2.54)

Combining the above results, Eq. (2.39) can be written as

6Wint = {620311}7‘[13:1:]{“":::} + é{&(t),,,}T[Ill,"(,]{wb} - {6wru}T{PanT}
b o1 1
+ ;{510(,}1 ["lbm]{wm} + {61111,}1 (3["11\'1:1] + 5[712%]

~ [kyaT] + [k,,]) {wy} = {6w) {Prar) (2.55)

The virtual work of external force is due to the aserodynamic pressure and the inertia

forces by using the D’Alembent’s principle as

SWep = / Sw(—phto + P )dA (2.56)
A
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Using Eqs. (2.8), the following expressions can be obtuined
Sw = [Cypl{bwy}
w = [C]{y}
W = [Co){uy} (2.57)

Substituting Eqgs. (2.33) and (2.57) into Eq. (2.56), the external forcing terms in the

virtual work for an element become

1 T “ /) ) N '
6Wczt = {6wb}r j;l [C.'u’]l (_ph[(-"m]{“’b} IE (; [C u]{“b J ] - [Cw]{'lU[,})(IA
= —;15{6105}T[1rlb]{'t'i'g} - {6101,}T£:L[g]{tb(,} - {5:05}7.,\[(4“]{1%} (2.58)

where the mass matrix [z}, the damping matrix [¢] and the aerodynamic matrix {a,]

are defined as

pul = [ lC Tl (2.59)

lg) = / ‘%[C.,.]T[Cw]d.‘l (2.60)
D

[aa) = LZ‘J'[C ) ()[C‘w]dl (2.61)

and w} = -7 is same as in Eq. (2.32). Using Eqs. (2.34), (2.55) and (2.58), the

element equilibrium can be reached as

ky —kyar 0 U nly, nlg, Iin2y 0 ag 0 W
([ 0 kn)t3|ne 0 |30 o] TMo o))l wm
g:;_ q 0 Ibl, L THY, 0 t?’b _ PmA'I'
+ [0 0] { oy, } + u—’;j' [ 0 0] { ‘I’xlx } B { Pb.-l'l' + {f}
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where {f} is an element boundary constrain force vector. In the sysiem equations
they will cancel each other and be eliminated by boundary conditions. Summing the
contributions from all elements, the system finite element equation of motion can be

obtained as

{w}
+ "’i[(:]{w} + :T_:[M]{l'i’} —{Par)

s
Yo

{w(w, W, ﬁf)} = [A’ — Kyar + %m + %1\’2 + A,

=0 (2.62)

where the linear stiffness matrix is

a_thy 0
IA] B [ 0 ]\‘m]

the temperature stiffness matrix is

’ ) — 1\’[\'A'I‘ 0
[Knar] = [ 0 0]

the aerodynamic matrix is

ey

the mass matrix is

- [

the damping matrix, [G], is same as [/}, the first-order nonlinear stiffness matrix is

' _ .(\’ l “\" m -l\, lbl“
[.’\ l]_ [ _1\7']'“b 0

the second-order nonlinear stiffness matrix is

N2y 0
] =
V2] [ 0 OJ
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the thermal force vector is

Pyar
Il —
{IAI } { PmA'I'}
Y 1,
{W} = { "Vm}

2.6 Incremental Stability Equations

and the displacement vector is

The temperature effects cause a stability problem in panel flutter. The adjacent-
equilibrium criterion [55] can be used to investigate the stability of a given equilibrium

configuration. For given small increments to the equilibrium displacements

(W} = {iV,} 4+ {AW}

{

[#)~ i+ ()

i} = (i} + {arr) 2.63)
)

{z/;(W + AW, W, + AW, W, + AV } can be expanded by using a truncated Taylor

series as

{(Wo + AW, + A1, 1T, + A1) = {p(We, 1, ﬂ-'u)}

o [ ) o

[ dz,

b (I n,,,w) {AW}
A

"1'/ W,,,w;,,w) {AW}

= {0) (2.64)

where the incremental quantities {Af1'}, {L\ﬂ-'} and {Aﬁ"} are arbitrarily small and

{¢(Wo, Wo, ﬁfo)}, Eq. (2.62), is in an equilibrium configuration. From Eq. (2.62),
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the total differential of {1!:(”", W, ﬁ-')} is

- l 1
{dlb(W, W, W)} =[N = Kyar+ AJ{dIV} + d( [71\'1 + ;A’?] {I-V})

,(J‘_d \ ./ L x ...,
+2 ci{ v} + = (M){aiiv} (2.65)
The term d([3 N1+ §N2]{1V}) should be evaluated from Eq. (2.49-2.52) as

1 1 1 I 1 1
—_ —_— y ; _ - — i\ _ — . 37
d([QM + 31\@]{11/}) = (1[2.\4 + 3.\f_»}{nf} + [2N1 + 31\'2]{(111 }

where

1 1 [ ANy + 582 1N, W
- - 9 X = » i 3 2 HY]
d[2N1+3N-]{H} d_g/\’l,,,;, 0 W,

4

1
éd[A’ll\'m]{ ”"b} + éd[.wlb,"] { i'Vm} + Ed[N?‘bb]{ "Vb}

1
L ;(![N Laa {3}
Using Eqs. (2.51), (2.44) and (2.18), the terms at the above equation can be deduced in

the elemental level as

dinl ym){ws} = / 1 (Col P d[Now)[Co)d A wp)}
= [ GBI ANCldA o)
= il i)

dntilwnd = [ 1G0T LAIC A )
= [ (G IlCaldatdm)
= [l {des)

dinl){wy} = / . [Cn] T [AO)[Cold A {wy)
= [ 1T LABCoI A )

= (1l ){dwy}
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A2} = 5 / (ol a1 (Coldaten)
= é / 2(Cy] (01 [A)O)Co)d A { ey}

=2 [ Sic O AN0IC A du)

A=

= 2n2y {dwy}
in which, terms

[d0][Co){ron} = [O)Cu){duwy}
and
d([()]T[A][(}]) = 2[0)" [A}[0)

could be derived from their definition using simple matrix multiplication. The following

relation is then achieved

d([ ~N1 + —N }{IV}) ([N1] + [N2) {1V (2.66)
and Eq. (2.64) becomes
(K = Kyar + Ay + N1o + N2 J{AW]) + % [C‘]{AIV} + —-[M]{/_\W} 0
or
[Kro]{AW) + %{G]{Ati/} + é{.u]{m'i'} =0 2.67)

where the tangent stiffness matrix [Np) = [N — KNyar + Ade + N1y + N2,) and [N1,)]
and [N2,] are evaluated by {IV,} from the configuration {dv( , W, Wo) } Equation

(2.67) is the incremental equilibrium equation corresponding to governing equation (2.62).

The small increment displacement { A1} can be assumed as a harmonic disturbance

and Eq. (2.67) can be written as

[Kro){ g} = Aw?[M]{Aq) (2.68)
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where disturbance vector {Ag} and incremental frequency Aw are expressed as
{AW) = {Ag)e

and

Aw? = Ya 20 + (AQ)

Wo W

Equation (2.68) represents  linear incremental system, when the incremental frequency
is zero, the incremental motion of the system is unbounded. Therefore, the stability
boundary for snap-through is assumed to be the points where the tangent stiffness matrix

[/1,] becomes singular, that is
(K]l = 0 (2.69)

and the incremental frequency vanishes.
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Chapter 3

SOLUTION PROCEDURE

In this chapter, the equation of motion, Eq. (2.62), is mathematically separated into
two equations which are solved in sequence: 1) thermal-serodynamic static equilibrium
(time-independent deflection) and 2) limit-cycle oscillations. The Newton-Raphson
iterative method is applied to solve a set of nonlinear algebraic equations and an iterative
linearized eigen-solution procedure is employed to obtain the dynamic responses from
a set of nonlinear ordinary differential equations. The snap through stability boundaries

are obtained by using an adjacent equilibrium criterion.
3.1 Preliminary Process

The finite element equations of motion for temperature affected nonlinear panel
flutter, Eq. (2.62), is a set of nonlinear ordinary differential equations with respect to
time t. According to the definition of the thermal load vector {ar}, and Egs. (2.26),
(2.27), (2.53) and (2.54), it is a time independent term. The solution of a differential
equation with a constant term is the sum of a time-dependent homogeneous solution and

a time-independent particular solution.

(W} = (W}, + {W}, 3.1

For this problem, the homogeneous solution refers to a seif-excited dynamic oscilla-

tion, {W},, and the particular solution refers to a thermal-aerodynamic static equilibrium

33
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deflection, {IV},. Both deflections {I}"} and {11}, are considered to be large. Substi-

tuting Eq. (3.1) into Eq. (2.62) leads to

(), + () + Za{v} + (1)
+ O]+ (K] = UwarDUITY, + (7)) + (HVIL o+ N2, ) (), + (7D

= {Par} (3.2)

The subscripts s and ¢, [ ], and [ ];, denote that the corresponding nonlinear stiffness

matrix is evaluated by using {1V}, or {IV},.

3

In Eq. (3.2), the nonlinear stiffness matrices (V1],,, and [N2],,, are evaluated by

Egs. (3.1), (2.49-2.52) and (2.18) as

[‘\,1.'\’1::]_\;4.1 ["Vlbm]:,.H

N1 =
[ ]-“’H [-’\rlmb]s-H 0

Using Eqs. (2.49)-(2.51) and noting that [N'1,,] are linear functions of { '}, the following

relations can be found as

[N1xmlore = [N 1xml, + [N wmly

(Nlpm]oqr = (N1, + [N L],

(Nmtlyqe = [V L], + IV Ly
Thus the matrix [N1],,, can be separated us

[N1),,, = V1], + (V1] (3.3)

The element second-order nonlinear stiffness matrix [n2y},,, can be derived as

2lese = [ GG OE (AL ol

= [ Scal” (0 + ), + i icokta

A
= (n2y], + (02w}, + 2[n2u},,
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where

w2l = [ 5ICol" 0L Cold
Thus, the matrix [N2],,, can be written as

(N2, = (N2], + [V2], + 2[V2],, (3.4)
Substituting Eqgs. (3.3) and (3.4) into Eq. (3.2) and collecting dynamic terms, a new

dynamic equation can be obtained as

wis[M]{Iff’}‘ + f’-}%{@]{w}t + (/\[Au} + (K] = [Knar] + é{Nl],
#32 Jw, + (Gl + S+ v, ) o),
¥ (%{mh + 2N, + %1;\?2},,) (1), =0 3.5
The fourth term, (1[N1], + §(¥2], + 3[V2],,){WW},, in Eq. (3.5) is rearranged as fol-
lows
a) The term [N1],{W}, can be rearranged as

1Vl = [1\’1.’\'"1]( [‘I\’]bm]g W
[NI]!{” }s [ [/\71,"(,]‘ 0 ”,vm .

_ [N 1 Nm][ { “b}s + [N Lo ]f { W, }s
- {[‘/\rlmb]g{“"b}_‘ 3.6)

Using the transformation in Eq. (2.47), the following relation can be established as
[I\IIan]({]'Vb}s = [A,lbm]s{l'vm}[
[-]\rlbm]f{nl.m}s = [‘Nl:\'m]s{”',b}c
[A,llllt‘)]l{li’b}s = [’,\Yllublﬁ{‘[‘,{)}l (37)

and the following substitution holds

(N1, (W}, = (V1) {1V}, (3.8)
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b) The term [N2],{}}, can be rearranged as

2, {w}, = [["26’&]' g] { o }

= [1 %[(‘U]I[0}{1[/1][0]‘[('01([1{u.b}s
:[ ffj'[C{)]?'[()J'{‘[/I][0]3[6’0]([/1{uvb}l

-

= [n2],{w},

and

N2 {1V), = [V, (1), (39)

where the following transformation has been made as

OLCulwd, = | 0 0} { }

Wiy Wi

“’[‘; (‘)J.I
= U'j‘y U'_,.”

Wy yty r + W Wsy

= [0),[Col{ws}, (3.10)

c) Following the same manner in (b}, the last term can be transformed as

(V2] (1), = [N2] {1V}, (3.11)
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Separating static terms from Eq. (3.2), noting that {ﬁ’ } = {Ii’ } = 0 and using

& 3

Egs. (3.8-3.11) in Eq. (3.5), finally the following two equations can be obtained

(,\[Aa] +[K] - [Knar) + é[Nl]s + %[N'_)]s) {W}, = {Par} (3.12)

%[M]{ﬁ/}’ + 9‘;[(;1{11/}1 + (A[.xl,,] + K] - [Kyar] + %[Nl], + %[Nz],){W},

W

F (NI, 4+ [N2], + [N21,) (1), = 0 (3.13)

The total panel response is the sum of {I¥V}, and {1V}, according 1o Eq. (3.1). A

close examination of Egs. (3.12) and (3.13) reveals that:
1) Eq. (3.12) is a set of nonlinear algebraic equations which holds a particular solution

for the governing equation, Eq. (2.62).

2) Equation (3.13) is a set of nonlinear differential equations which holds a homogeneous

solution for Eq. (2.62).

3) The aerodynamic effects (,\[Au], f‘j[G]) and thermal loading ([Kxa7], {PaT}) are

coupled in both equations, and

4) Equation (3.12) has to be solved first 1o determine the static deflection {W},, the

dynamic response {11}, can then be obtained from solving Eq. (3.13).

3.2 Thermal-Aerodynamic Postbuckling

This section describes the solution procedure to obtain thermal-aerodynamic post-
buckling from Eq. (3.12). First, the critical thermal buckling temperature is determined,

then the postbuckling deflection is solved by a Newton-Raphson iterative scheme.
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3.2.1 Critical Thermal Buckiing Temperature

As a parameter, the linear critical thermal buckling temperature in this study is the
temperature that causes a flat plate to lose stability under only a temperature induced
inplane force. Equations for solving for the critical temperature are obtained from
Egs. (2.62) and (2.67) by neglecting the thermal bending moment, the aerodynamic

effects and the nonlinear terms as

{1\'111]{”/m} = {PmA'I'} (3-14)

(3.15)

Ky—Kyar+ Ny, 0 Al
§] 1\';" Al 1"m -

Equation (3.14) gives an equilibrivm configuration for a given temperature change,
ATo(z,y,z) and Eq. (3.15) is then used to investigate the stability of this equilibrium
configuration and find the critical temperature. The matrix [N1p,,] in Eq. (3.15) is a
linear term evaluated by a known {iV,,} from Eq. (3.14). Since the matrices [KyaT]

and [N1y.,) have a linear relation with temperature, they can be rewritien as
[Nxar] = p[Knarl,
and
(NInw] = p[Nlyw),
with
AT = pAT, (3.16)
where [ |, denotes that the corresponding matrix is evaluated with AT, (z,y, 2).

In Eq. (3.15) AW,, is obviously equal to zero, the stability equation becomes a

eigen-equation as

([We] = il[Kwvar], — [Nyl ) {AW} =0
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or
[W){®} = p[Knar = Nywl, {9} (3.17)

The critical temperature at which buckling occurs corresponds to the lowest value of
eigenvalue, g1, and is given by AT, (v, y,2) = iy ATu(w, y, =). The vector {d},, is the
corresponding buckling mode shupe. A flowchart for determining the critical temperature
is shown in Fig. 3.1.

After solving for the critical temperature, A7T.., a temperature status could be
described by a nondimensional ratio, AT/AT,.

3.2.2 Solution of Thermal-Aerodynamic Postbuckling

Equation (3.2) can be referred to us & postbuckling problem with a cestain combination
of dynamic pressure A and temperature ratio A7 (x,y,=)/A7%. 1t can be solved by
using the Newton-Raphson iteration method. This method is a well developed procedure
for solving nonlinear static problems [62-66]. For sufficiently small load increments,
convergence can be achieved even when severe nonlinearities are present [65, 66]. In
addition, any level of accuracy can be obtained depending on the convergence criteria,
For Eq. (3.12), if a solution is known for configuration {lV'},, then the solution at

configuration {W; + AW,} can be approximated by a truncated Taylor expansion as

[B(W)} = (A[Aa} K]~ [Kyarl + 5101, + §[s\'zl,) (W}, - {Pa} =0 (3.18)

[V, + AW} = {e(iT)) + {—"{,{ﬂ‘}” ]{AH-'};O

or

LU P,
[ vy, ]{—““ bo = — (V) (3.19)
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START

AT(x,y,2) = ATo(x,y,z)

!

Use AT(x,y,2) to form {PmaT}

!

Solve Eq. (3.14) for {Wm}
[Knl{Wm} = {Pmat}

l

Use ATo(x,y,2) and {Wm}
to form [N 1Nm] and [KnaT]

l

Solve Eq. (3.17) for u; and {®h
[Kpl{®} = p[KNaT~ NINn){®}

:

ATedx,y,2) = 1ATolx,y,z)
{Wnla = ]J.I{Wm}

Fig. 3.1 Flow-chart for critical temperature
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For an approximate solution {1V;}, from Eq. (3.18)

—(B(W)) = {Par) - (A[Au] 18] - [nar] + 5V + §[~2};) (i),

= {AF), (3.20)

the Jacobian matrix of {y(1V,);} (tangent stiffness matrix) can be found from the

incremental equation, Eq. (2.67), by neglecting the time derivative terms as

o1 HP(Ws)i}
Hrl; = FITAY
- d{l‘_f,} [()\[A,,} K] = yarl + 51N + %[.f\’z],-) (Wi}, - {Par}
= MAd + (K] = [Knar] + V1) + (V2] (321)

Equation (3.19) thus becomes
[Krl{ani), = {AF) (3.22)
Using {AW;}, to update {}¥;}, us
{Wip1}, = {Wi}, + {AW), (3.23)

until {AF},; or {AW;}, approaches zero. The convergence criteria are shown in

Appendix A. An initial evaluation is necessary for the iteration scheme. The critical

buckling mode, {®},,, and corresponding inplne displacement, {¢,,},, are used to
form an initial value
W
I -
{” I}s - { Wl }s
where
(Wi}, = 0.50{a},,
(3.29)

{”"m 1 }s = (—\II’/AT") {q)’" }""
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the factor 0.50 has been proved 10 be a satisfactory value for the thermal-aerodynamic
postbuckling analyses. Also for an incremental process of (AT'/AYer); (7 =1,...n),

the previous converged solution can be used for the next initial evaluation as

(AT/AT);
" bl L 2 WLV
Wil (AT/AT,), tWil, (3:23)

The computational flowchart of this solution is shown in Fig. 3.2.

3.2.3 Stability Boundaries

In Sec. 2.6, a dynamic stability equation, Eq. (2.67), is derived for a equilibrium
configuration ¢»(I'V0,I'Vo,l7ffo). According to the adjacent equilibrium criterion [55],
when the tangent stiffness matrix [A'p ) becomes singular, snap-through happens and the
motion becomes unstable. If the equilibrium configuration f:'w(H",,, W, 171",,) is chosen
from the solution of Eqs. (3.12) and (3.23), ¢({117},.0,0), it can be seen that the
two tangent stiffness matrices [Ap] and [Ayp]; in Eqs. (2.67) and (3.22) are identical.
When |[K7]| = 0, Eq. (3.22) does not have a unique solution {AW;},. Thus the
static postbuckling deflection, {I},, does not have a converged solution and becomes
unstable. It can be concluded that the stability boundaries obtained from the static

equation Eq. (3.12) and Eq. (2.67) are equivalent at #(1V).

3.3 Flutter Responses

3.3.1 Reduction

The nonlinear flutter characteristics for temperature affected panels can be determined

from Eq. (3.13) with the solution of {1V,} from Eq. (3.12). Rewrite Eq. (3.13) as
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START

Use Fig. 3.1 to find AT,

!

jin Doj=1, m
AT

ATy, 2); = (A—Fcr) AT, (x,y,2)
]

No

Use Eq. (3.24) 10 estimate {W};
0.5{¢}

Y (B Vake

Use Eq. (3.25) to update {W};
L » (AT/AT,);
{W}s= -(Z'IYA—'I'C,)'ET{W}S

®

Fig. 3.2 Flow-chart of two-step solution procedure for nonlinear panel flutter
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( Start solving thermal-aerodynamic postbuckling )

Use AT(x,y, 2); to form {P_ 41} and [Knu1]

v

Dok=1,n

v

Use Ay to form A, [A,]

v

Use {W}; to form [N1], and [N2],

v

Use Egs. (3.20) and (3.21) to form [K] and {AF}

Kyl = [A A, + K - Kyar+ N1+ N2,]

{AF} = {P} ~[ AA, + K = Kar + N1, + SN2, (W},

v

Solve Eq. (3.22) for {AW},
[Krl{aW}, = {AF}

v

Update {W}e={W}s+ {AW}

No

Fig. 3.2 Continued (1)
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(' Start solving dynamic response )

Use converged {W}; to form
[Nle]s, [Nlbm]S and [szb]s

!

Solve Eq. (3.36) for linear response
K[Mb]{¢} = (Kk[An] + [Kb] - [KNAT] + [NINm s

Ny el T IN s + IN2, 1) 0}

Nonlinear Yes
limit cycle

analysis
?

K], Ky

coalesce
f’

CONTINUE

A=A, atAT(x,y,2); —

v

CONTINUE

( stor )

Fig. 3.2 Continued (2)
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©

1

Start solving nonlinear
limit-cycle response

v

For given ¢/h, normalize {$}L
as initial displacement

yi=1
Use {W}s, {0}, Egs. (3.45) and (3.46)
to form [KTy]; and [K2);

v

Solve Eq. (3.55)

M0k = (16 + 2RIk + 2R3, o

i=i+1l
No

Kl , Kz
coalesce
l’)

A=% atAT(x,y,z);

v

CONTINUE

( stor )

Fig. 3.2 Continued (3)
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M, 0)( W, } G 0)[ W
1 . da .
5’[ 0 ol{w.,. Teelo u]{n',,, },
Aa K 0 NAT ] 1 ' m ¥
+(,\[ 0]+[&5 ' ]_[]\AA] 0]+%[1\l_\ J\l; ] +%[A2u, 0 ){PV},}
0 0 0 Ky 0 o] ¥Nn, 0 ], 0 0]/ \Wal,
Nlym Nlbm] [N?u, U} [N'Zu, 0] ){ W, }
+ + + =0 3.26
([ Nlmb U a2 0, 0 st 0 U 3 H’m ¢ ( )

or
:}E[Mb]{wb}‘ + &[G]{lifb}"*' (A[Au]"' [Kb] - [1\'1\'AT]+ ;'l_i[Nle}l + %[Ngbblt) {”/b}[
+(%[Nlbm]t + [‘Nlbmls){‘/v"'}! + ([l\rle]s + []V‘,be]s‘ + [A’be]s){l'Vb}‘ = O (3'27)

and
. . . ] .
(K H{Won}, -+ (N 1) (W3}, + 5[1\’1,,,,,],{1[/,,}, =0 (3.28)
The inplane displacement can thus be expressed in terms of lateral displacement as
, A ' l ,
{Wa}, = ~[Naw] ! ([1\' L], + ;)-[Nl,,,b],) {W}, (3.29)
Substituting Eq. (3.29) into Eq. (3.27), the following equation holds
1 7 gu HES . .
I\ A7 =1 / ; — P AT
MW} + UG ] + Ol + 1K) = [Kvar] + [N Ll
1 |
+ [N2u] {We}, + (.‘2'[-’\’11\’"!]1 + ?[Ngbb]t + {N?bb]s:) {We},

.
..

= (G0 WVt ) 1™ ([l + 5N Ll ) (V)

=90 (3.30)
According to Eqgs. (2.47) and (3.29), the following relation can be obtained,

[/Vl.'\’m]f { H/b}[ = [-’\rlbm]; { 1 i"m };

c =11 Loy
= '_[-Nlbm];[I\ml : ([J\ lmbls + 3[1\ lrub][) {l'ifb}g (3.31)
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Finally, by substituting Eq. (3.31) into Eq. (3.30), the dynamic equation contains only

one unknown vector, {1V, },, and can be expressed as

1 ] Yu 4
-— A/ =[G
w2 [Mb]{”b}t + Wo [G]{” b}z
+ ()\[Aa] + [I{b] - [I\’NA'I‘} + [‘NlA’m]_\, + [Ngbb],g - [Allbm],[[\'m]_l{Nlmb],) {H/b}t
s =1l —
+ ([Ngbb]u - {Nlbm],[-[\m] I:;[Nlmb]t - [Nlbm]g[h m] I[Nlmb],«;) {"Vb}t

1 1 . e
4 (g[Nbe]g - §[A,1bm]g[1\m] I[Arlmb]g) {”[b}g =0 (332)

3.3.2 Linear Flutter

Equation (3.32) is a set of nonlinear ordinary differential equations, The equation
for linear panel flutter with the effects of the temperature can be obtained from assuming

small dynamic amplitude and neglecting nonlinear dynamic terms in Eq. (3.32) as

wig[Mbl{wb}t + e}

+ (/\[Aa] + [1\}1] - [KNA'I‘] + [NI{'\’ml,; + [szb}s - [Nlbm}s[[\'m]_l [Nlmblg) {"Vb}t

=0 (3.33)

Solving for linear flutter response can be described as: for a given temperature seek a
critical dynamic pressure A, at A = A, the panel amplitude starts to increase with time.

For solving the linear differential equation of Eq. (3.33), assuming

(W}, = {¢}™ (3.34)

where {¢} is a displacement vector and the panel motion parameter, €, is in general

complex

Q=a+iw (3.35)
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In Eq. (3.35), « is the panel damping rate and w is the panel frequency. Then the

Eq. (3.33) can be written in a nondimensional eigenvalue form

h‘[ﬂlb]{(,b} = (MAd) + [1\'1,] — [1\‘1\'43'1‘] + [Nl,\',n]s

- [Nlbm]x[[\’m]_l[Nlmbl,q + [N?bb]g){é} (336)

where according to Egs. (2.59) and (2.60), [G] = [A],) and the eigenvalue is

ee {2 2 (3.37)
\wo/ We

Without the aerodynamic loading, Eq. (3.36) degenerates into free vibrations of thermally
affected plates, and eigenvalues » are real and positive. As A is increased in value
monotonically from zero, the symmetric, real stiffness matrices are perturbed by the
skewed aerodynamic matrix [A,] so that two eigenvalues «; and x2 approach each other
until they coalesce to a value re, at A = A, For A > A, the two eigenvalues become

a complex conjugate pair
KN =HKp + iiil (338)

According to Eqs. (3.34) and (3.35), flutter occurs at the point that the panel parameter
« has positive values and the panel amplitude increases exponentially with time. When
a = 0, the corresponding aerodynamic pressure is denoted as the critical dynamic pressure
Acer In the absence of aerodynamic damping, g, = 0, A, = Ac,. In the presence of

Jas EG. (2.31) may be expressed as

w2
o = (_-—\) (3.39)

where 1 = p,L/ph is the air-panel mass ratio and for Mo >> 1 the following

approximation is used in deriving Eq. (3.39)

(11130—2)' T o
ME—1) \J/NZ —1) " Mx
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When A > ), , the complex eigenvalue is related to the punel motion parameters, a and

w, Eqgs. (3.37) and (3.38) become

ri=h']g—ir€]

w
- _(i) + (i‘i) —g —-;(2—“- + g‘,)-“’— (3.40)
Wo Wy Ly Wy Wy

The critical A is reached when a = 0, thus from Eq. (3.40) we have

‘)
] =k
W

w
Ja—— = K
Wo
and
Yu = h'[/\/lijf (3.41)

Before dynamic pressure A reaches A, go > #7/\/k1 and a is negative, the amplitude of
the panel motion reduces with time to a static status. Beyond the critical dynamic pressure,
ga < &1/+/5p and « is positive, the amplitude of the panel increases exponentially with

time and flutter occurs.

3.3.3 Nonlinear Flutter

The limit-cycle flutter motions can be solved from Eq. (3.32) by using the following

updated linearized eigen-solution procedure.
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a) Harmonic assumption
Assume harmonic solution as Eqgs. (3.34) and (3.35) expressed,
(W3}, = {¢}c¥ = ®{$}(coswt + i sinwt) (3.42)

where {¢} is an eigenvector and @ = a + w is a panel motion parameter. Noting

[G] = [M;) and using Eq. (3.37) to rewrite Eq. (3.32) as
(—&[My) + K]+ [KIn] + W24 {)e =0 (3.43)
where
(K1) = MAL 4 [15] = [Kxar] + [N L], + IN20], = (N L) SR )" [N L), (3.44)
is the total linear stiffness matrix,
[K1n] = [N2u),, = [N Ly K] ™ %[Nl,,,;,]t — (N 8] [N L], (3.45)
is the total first-order nonlinear stiffness matrix, and
[20) = 5[N], = SN Tl Kl [V gl (3.46)
is the total second-order nonlinear stiffness matrix.
b) Linearization of nonlinear time functions
Seeking a stable solution for a constrained system, the harmonic response can be
chosen as either cos (w) or sin {wi) and for a limit-cycle oscillation a = 0 in Eq. (3.42),
the nonlinear stiffness matrices [A'l x] and [A'2y] can be evaluated by
{113}, = {0} coswi (3.47)

as

(KNix] = 1\'1.&] coswt (3.48)
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[W2x] = [1\'2,\'] cos? wt (3.49)

where [KTx] and [K2y] have the sume forms as [A'1y] and [A'2y] except using {¢}

instead of {1V} in evaluating element matrices. Equation (3.43) can now be written as
(—s[My) coswt + (K] coswt + [K1p] cos* wt + [R2x] coslwi) {4} =0  (3.50)

In nonlinear vibration and flutter problems [67, 40], the nonlinear cubic time function

cos® wi is often linearized by a trigonometric identity as
3 l . ) .3
cos’ wt = T(J coswt + cosdwt) = rhia wt (3.51)

the term cos 3wt can be neglected based on the assumption that the dynamic response
from high frequency is much smaller than the response of low frequency. Based on the

same consideration, the NTF/LUM method [41] lincarizes the quadratic time function as

coswi = (5 + 3 cos .Zwt) = 5
and
2 V2
cos” wl =—\‘/)—_ coswi (3.52)

Substituting Eqs. (3.51) and (3.52) into Eq. (3.50), one has

({A’L] + g[—lﬁy] + % 1\'2,\:1) {8} = &[AM,){0} (3.53)
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c¢) Linearized eigen-solution

Equations (3.53) can be treated as a nonlinear eigen-function where [K1y] and
[K2x] are functions of eigenvector {¢}. It cun be solved by an iterative linearized
solution procedure.

For a given amplitude ¢, the initial vector {¢} , is obtained from a normalized linear

flutter eigenvector as

{0}, = (o}, (3.54)

where the maximum element of the linear flutter eigenvector {¢}; has been normalized
10 unity.
Using an iterative procedure, re-evaluate the nonlinear stiffness matrices l]\’l N]j and

WN]J. by updated eigenvector {};, the (j + 1) th iteration can be expressed as

. \/.-7 Y :j Y ;
Kjr1 (M8} ;4 = ([/\,_] + 5~ [RTx]; + I[/‘z“']i {6} ,41 (3.55)
Using a linear eigen-solver with certain convergence criteria shown in Appendix A, one
eigenvector and corresponding eigenvalue can be obtained. As a linearized solution
procedure the eigen-solver produces all eigenvalues and eigenvectors in each iteration,
but only one eigenvalue and eigenvector, which is used to evaluate nonlinear stiffness

matrices, is the true solution.

To save computational time, an eigen-solver which solves for only one or few modes

is needed.
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d) Limit-cycle response

For a given temperature and maximum panel deflection ¢, the limit-cycle motion
happens when the dynamic pressure reaches a critical value, A = Ay, This critical value
is referred to a = 0 in Eq. (3.42). To obtuin this limit-cycle dynamic pressure A;, a
searching process has to be applied, which is similar to the process for determining A,
in Sec. 3.3.2. As for linear flutter, in the absence of aerodynamic damping, g, = 0, A; has
been reached when two eigenvalues coalesce or eigenvalue « becomes a complex pair; in
the presence of aerodynamic damping, ¢, # U, \; has been reached when g, = £/ /kp
as discussed in Sec. 3.3.2.

The difference between linear and nonlinear flutter is that the linear critical dynamic
pressure A, is deflection independent and the limit-cycle dynamic pressure J\; is deflection
dependent. For a given A and initia! amplitude ¢;, if dynamic pressure A is less than
the limit-cycle dynamic pressure Ay, (with deflection ¢;{¢};), A\ < A1, a is negative
(90 > &1f\/rR for g, # 0), the amplitude of a punel decreases with time. Since in
nonlinear flutter the eigenvalue components xp and x; depend on the deflection, the
value x7/,/&kp also changes with time, until a = 0 (¢, = x1/\/np for g, # 0), with
a new amplitude level which is corresponding to A. On the other hand, beyond the
limit-cycle dynamic pressure Ay, A > Ay, a is positive (g, < x1/\/kr for g4 # 0), the
amplitude of the panel increases with time until the deflection reaches a new level with

= 0. This panel behavior indicates that for a given dynamic pressure A(A > A, ), there
is a panel oscillation with certain amplitude (deflection) and this osciilation is independent
of initial conditions. Any initial deflection will finally result in a stable oscillation with

a certain amplitude. This motion is the so-catled limit-cycle oscillation.
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In the computation process, the amplitude is fixed, the dynamic pressure A changes

until @ = 0, A = A;. A complete computational flowchart is given in Fig. 3.2.
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Chapter 4
FINITE ELEMENTS
In this study, three types of elements are described. They ure: an 8 degrees-
of-freedom (d.o.f.) strip element; 2 15 d.o.f. ‘DKT’ triangular element and a 24
d.o.f. rectangular element. In the selection of elements, this research is focused on the
application of ‘DKT’ element for nonlinear panel Qutter.

4.1 Strip (2-D) Element

For a 2-D plate element, its width is assumed to be infinite. A strip with unit width is
used for calculation. An 8§ d.o.f. element with 4 bending d.o.f. and 4 membrane d.of. is

shown in Fig. 4.1. The displacement functions are shown as follows

w = ay + asx + agr® + aqa? = [1){u)
= [Ho][T3]{w}

= [Cul{ws} 4.1

= a5+ ag.r + a;,r'“' + «13;:-3 = [Il“]{am}
= [“u][ll‘nt]{wm}
= [Cm]{wm} (4.2)

where the bending and the membrane nodal displacement vectors are

{wb}T = [wy, wep, wa, W) 4.3)
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*Element Displazcements
{Wb}t =[ W1 Wix W2 W2x ]
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{wm}T = [“l s, U2, u.c'.?] (4-4)

The matrices [/fy], {/.], (73] and [1},] are given in Appendix B. For evaluating stiffness
matrices in Egs. (2.41)-(2.52), the mutrices [(',], [C], [Cy] ure also given in Appendix
B.

The formulation developed in Chap. 2 is based on 3-D plates, for 2-D plates the
y coordinate should be removed from all matrices. The 2-D panels are divided into 12

elements of equal length and a simply supported 2-D plate has total of 24 d.o.f. in bending.
4.2 DKT Triangular Element

In the selection of a suitable plate element, two factors are considered to be important:
accuracy and efficiency. Several elements have been applied to nonlinear panel flutter
analyses [38-41] as mentioned in Sec. 1.2.1. In this study, a nine d.o.f. triangular element
called ‘DKT’ (Discrete Kirchhoff Theory) element is used for rectangular plates. Batoz
[68] studied the DKT element and concluded that it is one of the most efficient, cost
effective and reliable elements of its class for static bending. Batoz also shows that the
convergence properties of the DKT element do not deteriorate with an increase in the
element aspect ratio, which is not so for other elements. Therefore, the DKT element
becomes quite attractive to users over other nine d.o.f. plate-bending triangular elements.
However, DKT element has not received widespread adoption since its formulation might
appear to be ‘strange-looking’ (mathematical expression is cloudy) [69), implementation
complications [70) and difficulties in applications [71}. Lau, Cheung and Wu [72, 73]
used a modified DKT element for solving thin plate nonlinear vibration with a generalized
incremental Hamilton’s principle. In their DKT element, a problem dependent factor

was introduced in the formulation. It may raise a question: for a problem without a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

comparible result, how to determine this factor? In this study, the DKT element without
modification 1s adopted based on references [68] and |74|. The DKT element (Fig. 4.2)

defines element shape functions due to slopes (see detailed derivation in Ref. [68]) as

d

7 = UL(€m){w) @5)
Juw
d—'} = (1,6, )] {w) (4.6)

where £, 7 are area coordinates (refer 1o Ly and L in reference [75]) and the displacement

vector {wp} is

{u)b}7 = [lUl s Wrly Wygy Way W, Wy, W3, W3, I“y;l]
the nine components of shape function vectors, [/1,] and [/{,], are

= =1.5(agNg — agNs)

Hzo = Ny — CsNg — Cg N

I3 = —(bs N5 + b Ng)

= = 1.5(dgNg — d5N5)

Hys = =(b3N5 + b Ng)

Hys = Ny — 5Ny — ¢\ 4.7
The functions H.4, M5, Hrg, Iy, Hys and [ are obtained from the above
expressions by replacing N, by N> and indices 6 and 5 by 4 and 6, respectively. The

functions H.7, His, Ho, Hy7, Il,s and If,y are obtained by replacing N; by N3 and

indices 6 and 5 by 5 and 4, respectively. Also Ny~ are given in Appendix C and
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Fig. 4.2 DKT tiangular element
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a = =i/l
by = 3 x)./u/[:)
; J,,)/h,
Ju/lu

1
(y'} 5 );’j

(z’ -{-JU) (4.8)

di. =

where k = 4, 5, 6 for the sides ¢j = 23, 31, 12 respectively, and

Wi = &=k

Yij = Yi — Yj (4.9)

According to Eg. (2.17), the slope transformation matrix [Cy] can be found as

- (1]

The curvature transformation matrix [ can be derived [68] as

| ynllle] ¢ +palte] ,
[C[,] = —.LJ;[Hy] tp[” ] (4.11)

24
—ay {1 ¢ -;1,[11] +J31[Hy] +«,,,[u]

where A is the area of an element
240 =gy g = w2 g (4.12)

The matrices [Hy),e, [f:]y, [H,]. and [11,],, are listed in Appendix C.
To develop mass and aerodynamic matrices the following displacement functions

[75] are used,
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w = [Cul{ws}

( LY(142Le42Ly) +2L1LeLy YT (wr )
1/%(&?31113 - .'1‘121/3) + .-1;//1 1/_)]/3(3.‘31 - 1‘13) Wi
LiysiLs — yialea) + $Ly LoLalysy — y12) Wy
Lv::(l + 263 -i-'.“zl) + 2Ly 1Ly 103

= < Lg(wn[:; — xa3l3) + %1,1142],3(1'13 —aa3) ? < wro (4.13)

Li(y1ady — yaslg) + %1411"2143(5112 -~ Y1) Wya
Lg(l + 2Ly +2La) + 2L LyLy w3
Li(a23ly — a3 Ly) + S L1 LaLy(aas — x3)) wr3

\ La(y2sLlz —ysily) + %511421/3(123 - Y31) 4 { 10y3 )

where Ly, L., L3 are area coordinates.
The derivative matrix %[(}“,] which is needed in the derivation of the [e,] matrix
is listed in Appendix C. The membrane displacement functions are linear functions of

the nodal displacements [75]

{u}_ aj) + a2 + agy )
v) T lag+asz +agy L'
Ly Ly L3 0 0 0 2
= $ o
0 0 0 Ly Ly L] ]
. U-
— C. {u‘rl“} \ '3 7 (4.14)
L~
The inplane strain vector {¢,,} is
U
{Sm} = Uy = [Cm][wm] 4.15)
Uy + v,

where
|| ¥ dm W ¢ 0 0
Cul=57| 0 0 0w vy wn (4.16)

g2 Xpy 21 Yoy Y Yg2

With the information of [Cy], {Ci], Z[Cu], [Cs) and [Cy), all the finite element matrices
can be evaluated from Eqs. (2.41)-(2.61). A half-plate example has a symmetric 3x8x2

mesh (see Fig. 4.3). For a simply supported plate, there are 69 bending d.o.f.
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Fig. 4.3 DKT element mesh
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4.3 Rectangular Plate Element

The rectangular element used in this study is a 24 d.o.f. plate element (see Fig. 4.4).
This element showed reasonable accuracy and efficiency in former studies [76, 77). It
is a conforming element which has a bi-cubic interpolation function for the transverse

displacement, w, and a bi-linear function for the inplane displacements, v and v.

w=a) + axz + a3y + (1.13:'“' + aszy + agy2 + a-;:z:3 + ag.'vzy
+ agxy® + ajoy® + anz’y + appa’y® + apsey® + aya’y?
+ aysz?y® + ayeady®
= [Hu{a}
= [I][T3]{w)
= [Cul{ws} 4.17)

U = )+ U2 + U3l + Gpaly = [l'ln]{“m}

U = (s o+ Uil + gty + gty = [”v]{“m} (418)

{4 =[] ton)

.}IU. 124
= _Hu_ [-[m]{um} (419)
where
{wb}T = [w1, w2, W3, W1, We1 -0 Wy1 oo Wagl - . . Weya) (4.20a)
{w }T = [ay, w2, g, g, vy, v, 03, 2y (4.20b)
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The inplane strain vector is

Ur
{5“1 } = Vy = [Cm] {wm } (42 1)

Uyt Uy
The matrices, [Tp), [Th] as well as [C], % [Cwl, [Cu, [Cy] and {Cy), which are required

by Eq. (2.41)-(2.61), for a rectangular element are given in Appenldix D.

A simply supported half (3x8) square plate has total 96 bending d.o.f.
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Chapter 5

NUMERICAL RESULTS AND DISCUSSION

In this chapter, numerical results are provided for several examples mentioned in
Chap. 4. To verify the accuracy of the finite element formulation and the solution pro-
cedure, results are first compared with Dowell’s [9] six-mode time numerical integration
results, Dowell’s results have also been compuared with many other solutions [40-42].
Panel stability boundaries are presented for different temperature distributions and plate
aspect ratios. An illustration of limit-cycle motion is first shown in the frequency do-
main solution for nonlinear panel flutter. Three different temperature distributions are
considered in the numerical examples. They are: (1) a uniform temperature 1, (2) a non-
uniform temperature with only inplane variation 7°(r, y) and (3) « complete non-uniform

temperature T'(z,y, 2).
5.1 Two-Dimensional Plate

As the first example, a 2-D plate has been investigated using the strip element

described in Sec. 4.1. Three temperature distributions are obtained from a general

expression:

AT(z, =) =T, + (1““‘+1“'1‘:) i

5 ; sin — (5.1)

where T, is the temperature at upper surface of the panel (== %) and T; is the

temperature at the lower surface (= = —%). The three temperature cases are

67
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1) Uniform, AT} = T,

s

2) Sinusoidal, A7%(x) = T'sin 7 (5.2)
where 7, = 0 and 7y = 7; = 1" are assumed.
3) Sinusoidal variation with 2 and linear variation with z,
. kz\ . 7z
ATy{w,z)=T{1+ — ) sin (5.3)
h 1
h h

by setting 7, = 0, 75 = 0 and 1, = 7.

Solution convergence is examined first by using various degrees of mesh refinement
for a simply supported 2-D plate subjected to a uniform temperature 7, /AT, = 7.0 and
a dynamic pressure A = 103.318 (or \/rt = IS\/UE‘) and observing the difference
in crtical buckling temperatures, aero-thermil postbuckling deflections and stresses,
and critical dynamic pressures. All elements are taken to be of equal length in the
analysis (Table 5.1). It was found that there is approximately a 2.13% difference
between the eight-element solution and the twelve-element solution, whereas there is
less than 0.78% difference between twelve and sixieen-element solutions in maximum
stress. The percentage differences in critical temperature, postbuckling deflection, and
critical dynamic pressure are much smaller than those in maximum stress. Therefore, a
twelve-element model is used for the results presented in the following sections. The

material properties of the 2-D plate are:

Young’s modulus E = 10.4x 108 psi

Poisson’s ratio v =03

Coefficient of thermal expansion  « = [2.9x 10 in/in/°F
Mass density p=.261658x 107 1b-secfin.4
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Table 5.1 Comparison of different element meshes for simply supported 2-D panels

Element mesh

Difference % between elements of

8 12 16 8 and 12 12 and 16
Ws/h (x=0.5L) 1.0620¢ 1.0614 1.0613 0.060 0.0010
at AT/AT,, =70,
A =103.318
x (c/h = 0.0) 202.7141 202.0195 201.9055 0.343 0.056
at AT/ATe =170,
A =103.318
Maximum Stress (psi) 3319.6619 3248.9212 3223.7589 2.131 0.774
at ATYANT e, =7.0,
A =103.318
Aer 285 285 285 0 0
Ky 767.5043 767.9667 768.0457 0.0602 0.0103
at ATYAT, = 2.0,
cfh =00
Al 193.3875 191 191 1.036 0
Ky 424.2135 422.1536 422.1508 0.486 0.0065

at AT/AT. = 2.0,
c/h =0.6
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The 2-D panel dimensions are:

Length L=12in.
Thickness h = 0.064 in.

§.1.1 Critical Temperature

Using the computational flowchart shown in Fig. 3.1, the critical temperatures can
be determined from a linear thermal buckling analysis. From Egs. (3.14), (3.17), (2.45)
and (2.53), it can be seen that the temperature distributions A7%(2) and ATy(z, =) have
identical critical temperatures, The exact critical temperature for 2-D plates with simply

supported or clamped edges can be obtained from the expressions

_Lha / - Ter(2)de = 1;7? simply supported (5.4)
(1=l J, 7 122 D clamped

Results from finite element solutions and the exact solutions are given in Table 5.2. The

finite element results agree extremely well with the exact solution results.

5.1.2 Aerodynamic-Thermal Postbuckling

For a given aerodynamic pressure A and temperature A7’ the postbuckling deflection
{Ws}, can be obtained from Eq. (3.12) by using a Newton-Raphson iteration procedure
described in Sec. 3.2.2. The relations among the nondimensional mid-chord deflection
ﬁ-{;Wf, aerodynamic pressure A and temperature ratio A7' /AT, of a simply supported
panel are shown in Fig. 5.1 for AT\, ATy(x) and Fig. 5.2 for ATy(x, 3).

The solution obtained by Houbolt [45] using a two-mode Galerkin method is also
shown in Fig. 5.1. Good agreement exists for low values of dynamic pressure (A <
103.318 or A/7* < 3,/1/8), but not for high dynamic pressure (A >109.585 or
A/m* > 9/8). An explanation is that more than two modes are needed at high dynamic
pressure for Galerkin method, because the panel deflection is more complicated (see

Fig. 5.3). InFig. 5.1, each curve represents the aerodynamic-thermal postbuckling
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Table 5.2 Comparison of critical buckling temperature for 2-D panels

Critical temperature °F

AT(z) Exact solution Finite element
Eq. (5.4) method
Simply Supported
Uniform T, 1.395028 1.395037
T'sin 3 2191305 sin - 2.191319 sin 2%
Clamped
Uniform 7, 5.580112 5.580686
T'sin 3 8.765219 sin £ 8.766120 sin ZF
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behavior of the panel for a specific value of dynamic pressure A, and the curve for A =
0 represents an elastic thermal postbuckling problem. It can be seen that in the region
where AT/AT,, < 1, the panel remains flat and there is no buckling deflection. In the
region where 1 < AT/AT,, < 2.542, the increasing of the dynamic pressure A will result
in reduction of the deflection of the buckled panel to zero, the bucked panel is blown flat.
In the region where AT/AT,, > 2.542, increasing A will reduce the buckled deflection
until it reaches a static stability boundary at A = 114.163 (or \/#* = 1.172). Beyond
this value, the static instability will occur. In the finite element solution procedure,
the iterations will not converge due to this instability. The determination of stability
boundaries are shown in the next section. It can also be seen in Fig. 5.1 that the relation
between the square of deflection and the temperature change is linear as those obtained
by Houbolt’s two-mode Galerkin method. However, a nonlinear relation was obtained
in Ref. 46. Similar deflection curves are plotted in Fig. 5.2 for temperature distribution
AT3(z,z). The results of Aly(x, =) are different from those of AT and ATs{z) in
that the panel will never be blown flat and the linear relations no longer exist. This is
because of the effects of therma! bending moments. The postbuckling deflections {3},
of a simply supported 2-D pane! at various dynamic pressures, and at AT/AT,, =3.0or
7.0 are shown in Figs. 5.3(a), (b) for AT} and AT, () and Figs. 5.4(), (b) for AT3(z, 2)
temperature distributions. It is interesting to note that the maximum deflections occur
near the 2/3 length of the panel for A # 0. The deflections are larger for the AT3(x, <)
distribution due to the thermal bending momenis. Also it can be seen that an increase in

velocity A (dynamic pressure) will reduce the buckled deflection.

5.1.3 Limit-Cycle Responses

Flutter response of a puanel can be obuained by solving Eq. (3.55) following the

computational flowchart in Fig. 3.2. A simply supported 2-D plate has been investigated.
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a) Limit-cycle illustration

As mentioned in Secs. 3.3.2 and 3.3.3, the critical and limit-cycle dynamic pressures
are obtained at the coalescence of two eigenvalues. Figure 5.5a shows the results for
a simply supported panel at AT/AT,, = 2.0 (A7} or AT,(«x)) with different given
maximum amplitudes, c/h = 0.0, 0.6 and 0.8. Why is the panel motion called “limit-
cycle”? To illustrate this limit-cycle motion an example is chosen under a given condition
of AT/AT,, = 2.0 and A = 285. For an arbitrary given initial condition c/h = 0.8,
Eq. (3.55) gives a solution at point by. According to the analysis given in Sec. 3.3.3,
b; has a negative damping rate «, thus the amplitude will decrease with time until it
reaches a; which is the coulescense point corresponding to ¢/h = 0.6 and o = 0. On
the other hand, if an initial condition is given such that ¢/h is less than 0.6, the solution
has a positive «, the amplitude will grow up until it reaches the point a; with ¢/h = 0.6.
Figure 5.5b gives a phase-plane plot to display the limit-cycle motion, cycles by and a;
denote points b; and a; in Fig. 5.5a. It also can be seen in Fig. 5.5a that all points at b;,
ci, d; and e; will be dampened or excited to points &; depending on whether their « is
negative or positive. It is concluded that tor a given dynuamic pressure A and temperature
ratio AT /AT, there is a unique limit-cycle motion with a corresponding amplitude and
frequency and it is independent from the initial condition. When A < A, the amplitude

of the limit-cycle is zero, which refers to a linear oscillation.
b) Eigenvalue and amplitude vs. dynamic pressure

As the results of the above illustration, the relations of eigenvalue and limit-cycle
amplitude vs. dynamic pressure for a simply supported panel with different temperatures

are plotted in Figs. 5.6-8 for AT}, A7%(x) and in Figs. 5.9 and 5.10 for AT3(z, 2).

These curves correspond to a stable status (points of a;s in Fig. 5.53). For A > A,
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they refer to limit-cycle motions, and for A < A, they are flat or buckled panels with
negligible small amplitude vibration and the wo lowest eigenvalues are «y and «a.

In Fig. 5.6, the coalescence of the first and second eigenvalues occurs at A, = 343.35
for AT/AT,, = 0. Classical analytical methods established coualescence at 343.36. Thus,
the finite element result compare extremely well with classical solutions. The effect of
temperature on panel flutter behavior can be seen in Figs. 5.7 and 5.8, the critical dynamic
pressure drops drastically 10 A, = 190.92 at A7'(«)/AT,r = 2.0. The panel is thermally
buckled at AT(z)/AT, =20 and A = 0. As A increages, the aero-thermally buckled
deflection {I/}, and the eigenvalues x1 and «7 all decrense. When A reaches the value
of 103.35, the panel becomes flat and the lowest eigenvalue x| is zero. As A increases
further, the panel remains flat and the two eigenvalues approach one another and finally
coalesce at A, = 190.92. As A exceeds the critical value, limit-cycle panel motions occur
and each A corresponds to & certain amplitude.

In Fig. 5.8, the critical dynamic pressure reduces to the smallest critical dynamic
pressure, A, = 114.163, at AT(x)/AT,, = 3.2. The panel is thermally buckled at
AT(z)/AT,, =32 and A =0. As \ increases, the acro-thermally buckled panel flattens
out. When A reaches A.., the panel deflection and the eigenvalues ~; and s, are all
zero. As A increases further from the critical value, the panel goes immediately to the
limit-cycle motion. The limit-cycle amplitudes ¢/h = 0.2, 0.4, 0.6, 0.8 and 1.0 (also the

total panel deflections since {I¥}, = 0) ure indicated on the limit-cycle curves.

¢) Comparison with time-domain solations

A comparison is made with Dowell's six-mode limit-cycle oscillation results (Fig. 8
of Ref. [22]) obtained by numerical time integration. However, since the finite-element

formulation presented in this study difters slightly from the formulation presented in Ref.
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[22), the finite-element inplane stiffness matrices were scaled by (1 — »*) to correlate
with Eq. (1.4) of Ref. [22]. This comparison is shown in Fig. 5.11 for several uniform
temperature changes AT/AT., (= —11,/7* in Ref. [22]) of O, 1.0, 2.0 and 3.0. The
present finite-element results agree extremely well with Dowell’s results.

5.1.4 Total Deflections vs. Dynamic Pressures

The total deflection Wy,ax/h (at x = 0.75L) versus dynamic pressures A with different
AT(z)/ AT, are plotted in Fig. 5.12. The curves on the left side are static deflections
obtained from Eq. (3.12), since for those cases, A has not reached the critical value and the
flutter (limit-cycle oscillation) has not started ({11}, = 0). On the other hand, the curves
on the right side are dynamic maximum amplitudes obtained from Eq. (3.13) only, since
for those cases, the panel has been blown flat ({11'}, = 0) already. The discontinuities of
the curves for temperature ratios over 3.2 (e.g. A7 (x)/AT,, = 4.0 or 7.0) are due to the
chaotic area (Fig. 5.14). It can be considered that the chaotic motions are bounded with
a static deflection (1V,),../# < 1.1 and a dynamic amplitude ¢/h € 1.5 for temperature
ratio of 7, and both (I¥,},,./# and ¢/h are within 0.65 for temperature ratio of 4.

A similar plot for the temperature distribution A73(x, =) is shown in Fig. 5.13. Since
the panel is no longer blown flat beyond critical dynamic pressure A, the total deflection
is the sum of the static deflection and the limit-cycle amplitude, w = w, + w;.

5.1.5 A Map of Panel Behavior, A vs. AT/AT,,

Figure 5.14 is a map of dynamic pressure A vs. temperature ratio AT /AT, for a
simply supported panel subjected to a temperature distribution ATy or AT5(x). It shows
the complete behavior of the panel. For easy understanding, the comresponding phase

plane plottings of different regions of Fig. 5.14 are attached in Fig. 5.14(a).
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Two stability boundaries can be found for a panel subjected to combined aerodynamic
and thermal loads as discussed in Sec. 1.2.3. A flutter boundary can be obtained by
solving Eqgs. (3.36) and (3.41) and a snap-through region can be obtained by checking the
determinate of the tangent matrix [/i'7| in Eq. (3.22) according to the adjacent equilibrium
criterion.

In Fig. 5.14, curve DA is the flutter boundary and the snap-through chaotic area is
bounded by curve BAEF. With the examination of the static equation (Eq. 3.12), the
line CAEG divides the buckled and the flat plate regions. In the region above CAEG,
Eq. (3.12) gives a converged trivial solution, {1V}, = 0, and the panel is flat. The region
below the curve CAB, Eq. (3.12) gives a converged non-trivial solution ({W}, # 0),
and the panel is buckled. Within the area of BAEF, bifurcation occurs and Eq. (3.12)
fails to have a converged real solution ({1} is undetermined). With the examination of
the dynamic equation, Eq. (3.13), it is found that there is no flutter motion in the region
below the curve DAB. The panel remains in an equilibrium position. In reality, any
disturbance can only cause a small-amplitude vibration. In the region above the curve
DAEG, Eq. (3.13) has a converged limit-cycle solution, the panel oscillates from a flat
static equilibrium position ({}¥}, = 0), and hannonic motion is obtained. Any initial
disturbances can lead the panel to oscillate with a certain frequency and an amplitude
corresponding to the given dynamic pressure A and temperature ratio A7'(z)/ATe. In
the region of GEF, Eq. (3.13) is solved based on a buckled panei and a non-harmonic
periodic motion is expected. In the area of BAEF Eq. (3.13) does not have a convergent
solution, {W,} is undetermined and snap-through or chaotic motion happens [48-50].
The importance of the static equation, Eq. (3.12), is that it can not only deal with static
equilibrivm, but also determines the nature of the dynamic solutions due to the coupling

of Eqgs. (3.12) and (3.13). The snap-through boundaries of a panel could be traced out
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by applying Eq. (3.12) with increments of temperature and dynamic pressure. These
boundaries exhibit trends similar to other analytical solutions [22, 45]. In Fig. 5.14 DA
is a critical flutter boundary obtained from Eq. (3.33) or from Eq. (3.55) with trivial
amplitude, ¢ = 0. With the increase of dynumic deflection ¢/h, parallel like curves
could be drawn in the limit-cycle region of DAG. It can be considered that the values
at the low ends of those curves bound chuotic motion. In the statically buckled area
FEG, a non-harmonic periodic motion should be expected. This is physically due to the
non-trivial deflection {W,} and mathematically leads to a quadratic nonlinear term in
Eq. (3.13). The LUM/NTF solution procedure also approximates this quadratic term to
a simple harmonic term, therefore this approach still gives a harmonic approximation.
More accurate methods (time integration [22), harmonic increment [43]) are needed to
analyze the non-harmonic motion but would increase computation time, It is found
that at moderately large dynamic pressure A and temperature AT'/AT,,, some dynamic
instability could be reached. At that time, Eq. (3.13) can not give a converged solution
in the iteration. This phenomenon was also observed in the time-integration solution
(22, 48].

Figure 5.15 is a similar map for the temperature distribution AT3(x, z). Due to the
thermal bending effects, the panel deforms all the time, there is no flat panel in any
region. Also in the limit-cycle areas of Figs. 5.13 and 5.135, solutions are based on a

harmonic motion assumption as mentioned previously.

5.1.6 Stability Boundaries

Figure 5.16 shows the effects on stability boundaries of different temperature distribu-
tions for a simply supported panel. In Fig. 5.16, the subscript o denotes the temperatures

AT, and AT5(z), subscripts 1 and 2 refer to AT3(x,z) fork =1 and k =2 in Eq. (5.3).
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Curves DA; represent flutter boundaries and B; A; [ denote boundaries of snap-through
motion. It can be seen that the punel with a larger thermal bending moment ts more
stable, its flutter and the snap-through areas ure smaller. Figure 5.17 shows the stability
boundaries for two different boundary conditions, simply supported and clamped, under
uniform temperature and AT>(x) distributions. As expected, the panel with more
constraints is more stable. The clamped panel is more stable than the simply supported

panel.

5.1.7 Stress Results

Since a panel may have a static deflection or a limit-cycle oscillation in different
regions as shown in Fig. 5.14, corresponding static and dynamic stresses can be calculated
from Eq. (2.20). The dynamic cyclic stresses are related to a fatigue life analysis and
will be discussed in Chap. 6. In this section, the static stresses of & simply supported
panel subjected to temperature A7) or AT () are investigated.

Stresses (static) at the top and bottom surfaces (+/:/2) of the simply supported panel
at AT/AT,, =7.0and A =0, 103.318 and 114.163 are shown in Fig. 5.18. The maximum
stress moves from the midspan (A = 0) to the location of 3/4 span when A increases.
The maximum compressive stresses are larger than maximum tensile stresses, because
the membrane stress of the panel is compressive. Examining Figs. 5.3 and 5.18 reveals
that the largest maximum stress occurs at A = 114.163 (static stability boundary) whereas

the panel deflection is the least, but the panel curvature is the largest.

Figure 5.19 shows the stresses of a simply supported panel at an air flow of A =
103.318 and uniform temperature and A7%(a) changes AY'/AT,, = 3.0, 7.0 and 11.0. It

is clear from Fig. 5.19 that the higher the temperature rise, the higher the stress becomes.
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The stress at x/L = 3/4 and deflection at x/L = 2/3 as a function of uniform temperature
change and flow velocity are shown in Fig. 5.20. Although panel deflection decreases
when air flow velocity A increases, the muaximum stress still increases for AT/AT,,
> 7.0. This occurs because the higher air velocity will produce larger panel curvature
which causes higher stress.

5.1.8 A Summary of Temperature Effects

a) Temperature distributions AT} and AT%(x)

For a given 2-D panel with certain boundary conditions subjected to two different
temperature distributions AT'(x), and AT (x),, it is found thut although the critical

temperatures are different (A7..)y # (A7), their average values are identical, i.e.,

I I
/ Tcr(‘l')ud;r = / :l'c"(w)bd'v (5.5)

o
Equation (5.5) is useful. It implies that the critical temperature of any arbitrary tempera-
ture distribution can be determined from the critical temperature of a uniform temperature
distribution (Table 5.2). Thus, the critical temperature of a simply supported beam under

sinusoidal temperature distribution is

L Ty L
/ AT sin —’da:=—/- 1.395037 dx
0 L o

or
Al = 2.191319 2K
Furthermore, for the case of same temperature ratio

AT(), AT,
ATer(2)y Ml

(5.6)

3
the panel responses are identical, except for inplane displacements. In former sections

since the temperature ratio AT'(x)/AT., is the chosen parameter, temperatures AT
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and AT3(z) thus have the same results. A comparison of the results for a 2-D simply

supported panel is given in Table 5.3.

b) Temperature distribution AT3{z, =)

i) With a temperature distribution AT3(wxr, =}, @ panel has the same critical temperature

as with temperature A75%(x) as mentioned in Sec. 5.1.1.

it) A panel subjected to temperature A73(w, =) has a thermal bending effect, which

stabilizes the panel as shown in Fig. 5.16.

iif) Due to the effects of thermul bending, the panel deforms all the time, no flat

equilibrium exists.
5.2 Three-Dimensional Rectangular Plate

A 3-D rectangular plate is modeled by using the DKT triangular element and the
rectangular element introduced in Chap. 4. The finite element results are compared
with the time integration solution for demonstrating the accuriacy of the present solution
procedure. The flutter behavior of 3-D plates was obtained by using DKT elements

except for a few cases.

Similar to 2-D plates, the general temperature distribution is expressed as

T.+71;, T,-1;
AT(e ) = Tt (20 B i) i) 6

The considered temperature cases are

1) Uniform A7y =1,

1, 2r Ty bz
2 AT: f)=—[1-cos— 05 — — .
) 5(z,y,2) 1 (I €05 — )(l-i-ws b)(l+ lz) (5.8
) AT(z,y,z) = Tosin eos L2 (1 4+ &2 (5.9)
a 2b h
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Table 5.3 Comparison of uniform (T,) and sinusoidal temperature (T'sinwz/L) distributions on

nonlinear flutter results for a simply 2-D supported panel

AAY?;(E?) AT(x), °F % % at %Ii ;—:at %Ii o at 'T, ksi K ic;
7.0 To = 9.7653 0 1.2248 0.003628 1.3471 - -
7.0 T = 153392 0 1.2248 0.006187 1.3470 - -

11.0 T, = 15.3454 g. 1.6189 0.013847 4.7245 - -

11.0 T = 24.1045 % 1.6189 0.017868 4.7246 - -
2.0 T =2.7901 1.9608* 0.0 0.0 -0.5347 422.1536% -
2.0 T = 4.3826 1.9608* 0.0 0.000047 -(0.5347 422.1536% -
2.0 T =2.7901 4.8661* 0.0 0.0 5.4032 1486.9967* 1.0
2.0 T =4.3826 4.8661° 0.0 0.000056 5.4032 1486.9967* 1.0

*Critical dynamic pressure A./x* and critical eigenvalue «.,.

*Limit-cycle dynamic pressure A;/x* and limit-cycle eigenvalue «;.

S01
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T 2xr Iy
4) AT (z,y) = jlo (I — Cos —:> (1 4 cos —y~) (5.10)

Sy AT(a,y) =Ty sin 1(15 cos 71:“ (5.11)

where 0 < £ < 2, —1/2 < z < hf2. All the temperature distributions are formulated for
a half-plate since the panel is symmetric about the x-axis, Fig. 4.3.

A mesh of 8x3 for the half-plate is adopted for rectangular elements and a mesh
of 8x3x2 for the half-plate, Fig. 4.3, is used for the DKT triangular elements. The

material properties are taken as

Young’s modulus E = 10.0x10° psi

Poisson’s ratio v=03

Coefficient of thermal expansion o = 12.5x10°8 in./in./°F
Mass density o = 0.2588x 1073 1b-sec?/in.?

The 3-D panel dimensions are:

Length a=121in.
Width b=121in.
Thickness h = 0.05 in.

5.2.1 Critical Temperatures and Effects of Temperature Differential

As for the 2-D panel, the critical temperatures of a 3-D panel can also be obtained
from solving Eq. (3.17). The critical temperatures for different temperature distributions
are listed in Table 5.4 for a simply supported square plate. From Table 5.4, it can be
seen that the DKT element gives accurate critical temperature. It is also noticed that for
different temperature distributions the critical integral average values, [ ATe (2, y)dzdy,
are not equal. A relation similar to Eq. (5.5) does not exist for 3-D panels. This implies
that an equivalent mechanical loading s hard to be found for non-uniform temperature
in 3-D plates. Although the equal critical integral average values do not exist for 3-D

panels, the conclusion in Sec. 5.1.8(a) still holds for inplane temperature variations for
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Table 5.4 Critical temperature of a simply supported square panel
with different temperature distributions

ATy ATs and ATy ATy and ATy
[Eqs. (5.8) and (5.10}] [Eqgs. (5.9) and (5.11)]

rectangular element

3x8 1.757468 5.219418 3.516656
DKT element

Ix8x2 1.766503 5.307396 3.549326
exact 1.757480 - -
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square plates. That is, if two different temperature inplane variations, AT'(z,y), and

AT({z,y),, have the same ratio to their critical values, ie.,

AT(r,y), _ AT(e,y),
ATer(wr9)y | Al 9

(5.12)

o

their critical flutter responses, A, and J\;, are same,

Table 5.5 shows flutter results for simply supported panels for « /6 =1 and 2 and three
temperature distributions. It can be seen that the differences between flutter responses
for different temperatures on a square plate are mostly less than 5%. Similar results can
also be observed in thermal postbuckling from Fig. 5.18 of Ref. |78]. Two curves are
plotted for different temperature distributions of clamped square plates in the figure of

deflections vs. thermal loads. If plotted by A7'/AT,.,, two curves are identical.

For a rectangular plate (/b # 1), however, the above conclusion may not be true.
In Table 5.5, the differences between flutter responses for different temperatures of a

rectangular plate are larger.

5.2.2 Comparison with Time-Domain Solutions

Figure 5.21 shows the comparison of the present finite element and the time domain
solutions [22] on the relation of limit-cycle maximum wmplitude vs. dynamic pressure at
various uniform temperatures. The maximum amplitude is located near the point z = 37“
and y = 0. Good agreement is obtained for both rectangular and triangular elements.

In this comparison, the relation between mechanical loading (7, = R,) and uniform

temperature is:

LT (5.13)
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Table 5.5. Comparison of flutter results of simply supported rectangular panels with different temperature distributions

"uolssiwiad noyym payqiyosd uononposdas Joyung “usumo WBLAdod sy Jo uoissiiad yum paonpoidey

ATy =T, AT = %(1 — €OS 2?%) (1 + cos %) ATy = Tysin %cos Z—;}L

a/b=1.0
AT 1.766 5.307 3.549
Acr(@t AT/IAT,, = 0.8) 371.093 364.623 368.681
Aor(@t AT/IAT,, = 1.2) 309.117 301.275 307.068
Afat AT/IAT, = 2.0, ¢/h = 0.4) 226.500 216.590 225.084
X(at ATIAT o = 2.0, ¢/h = 1.0) 399.093 379.139 390.363
Wilh(at AT/AT,, = 3.0, A = 100, 1.145 1.223 1.191
x=172,y=0)
Wi/h(at AT/AT,, = 3.0, A = 180, 0.967 1.005 0.995
x=Lf2,y=0)

a/b=2.0
AT, 4.428 12.882 8.755
Aat AT/AT, = 1.5, ¢/h = 0.6) 536.250 557.889 552.750
Ai(at AT/AT,, = 1.5, ¢/h = 1.2) 1108.121 1012.300 1040.625
We/h(at AT/AT, = 3.0, A = 180, 1.011 1.161 1.106
x=L[2,y=0)
We/h(at AT/AT, = 5.0, A = 300, 1.365 1.661 1.557
x=Lf2,y=0)
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Fig. 5.21 Comparison of finite element and time integration (six modes)
limit-cycle results for a simply supported square panel
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5.2.3 Dynamic Pressure vs. Temperature

The map of dynamic pressure vs. temperature in a 3-D plate with a uniform
temperature distribution was obtained using DKT elements and is plotted in Fig. 5.22.
It can be seen that the flutter behavior of a 3-D panel is similar to Fig. 5.14 for a 2-D
panel. Thus, the stability boundaries and different panel regions can also be understood

as those introduced in Fig. 5.14.

5.2.4 Effects on Stability Boundaries

a) Effects of thermal bending

When a temperature distribution varies through the panel thickness (AT and ATg),
it will produce a thermal bending moment in the plate. Figure 5.23 shows the effects of
this thermal bending on stability boundaries for a 3-D plate with different temperatures.
Figure 5.23 was obtained by using DKT elements. In Fig. 5.23, the curves Al and A2
with k = 1 or 2 refer to Eq. (5.8) of temperature A75(x.y,z). Curve AO correspondsto a
uniform temperature. It can be seen that the emperature differential across the thickness

stabilizes the panel and reduces the Hutter areas.

b) Effects of aspect ratios

In Fig. 5.24, the stability boundaries are given for panel aspect ratios a/b = 1.0
and 2.0. These resuits were obtained by using DKT elements for a simply supported
panel subjected to uniform temperature A7}y, The critical wemperature AT, (°F) equals
1.766503 for the case of a/b = 1.0 and 4.428412 for &/b = 2.0. The panel with higher

aspect ratio is more stable.
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Fig. 5.22 Stability boundaries and limit-cycle amplitudes of a simply
supported square panel with uniform temperatures
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Fig. 523 Stability bounduries of a simply supported square panel
at temperatures ATs = L (1 ~ cos ZL) (1 + cos 3L) (1 + &)
with £ =0, 1 and 2
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Fig. 5.24 Stuability boundaries of simply supported panels with the aspect
ratios, a/b = 1 and 2, for uniform temperatures
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c) Effects of boundury conditions

Figure 5.25 shows the stability bounduries of simply and clamped supported square
panels. The considered temperature distribution is uniform A7j. The result shows that
the more restrained panel is more stable. The minimum critical dynamic pressure (A) of

a clamped panel is higher then that of a simply supported panel (A).

5.2.5 Deflection vs. Dynamic Pressure

The total panel deflection vs. dynamic pressure for a simple supported 3-D square
panel with uniform temperatures is plotted in Fig. 5.26. The general nature of the
results is same as that of the 2-D panel, Fig. 5.12. The curves at the left side of the
figure are static deflections, and those on the right side are limit-cycle amplitudes. The
disconnection of curves at higher temperature is due to the snap-through and chaotic

motions,

5.2.6 Panel Deflection

It has been known that before the dynamic pressure reaches to its critical value Ay,
a panel has a buckled deflection due 10 temperatures and aerodynamic pressures, while
beyond A, the panel has a limit-cycle oscillation. Several selected panel deflection
shapes are shown in Figs. 5.27-5.30. Figure 5.27 shows the buckled defiections of a
square plate at a uniform temperature AT'/AT,, = 3.0 for dynamic pressures A = 0, 100
and 200. Figure 5.28 shows the limit-cycle deflection of a square plate at a uniform
temperature AT /AT, = 1.5 for the cases of ¢/h = 0.6 and 1.2. Figures 5.29 and 5.30
are similar to Figs. 5.27 and 5.28 for a rectangular plate with an aspect ratio a/b = 2.0.
These figures show that the air-flow is going 10 blow the buckled panel flat and the panel

with the aspect ratio a/b = 2.0 is more stable then a squure panel.
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Fig. 5.27 Deflections of a simply supported square panel at
uniform temperature A7'/A7,., = 3.0 and dynamic
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uniform temperature A7/A7,, = 1.5 and \; = 342.1 and 582.5
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5.2.7 Panel Stress Distribution

The principal stresses at the top surface (z = ’::) and limit-cycle amplitude of a
square panel are plotted in Fig. 5.31. The panel is stnply supported, subjected to a
uniform temperature AT /AT, = 2.0 and a dynamic pressure A; = 399.24. The maximum

principal stress is located where the lurgest curvature exists.
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Fig. 5.31 Deflection shape and stress distribution of a simply supported square panel
at A = 399.24 and AT/AT ;= 2.0
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Chapter 6

FATIGUE LIFE ANALYSIS

In common fatigue analyses, the relation between stresses and failure cycles is often
presented by S-N curves or Goodmian diagrams. For a general nonlinear structural
vibration, the deflection and the frequency are related 1o each other, thus the stress level
and failure time are coupled. They are detennined by initial conditions for free vibrations
and dominated by input forces for sieady-stae forced vibrations. In panel flutter limit-
cycle motions, the dynamic equation of motion, Eq. (3.13), is similar to those for a free
vibration problems, but the response is independent from the initial conditions. From the
flutter analyses, it has been found that for a given temperature AT'/AT,, and dynamic
pressure A there is a unique limit-cycle motion with a certain amplitude and frequency.
Since the panel stress is related to the panel amplitude and the stress cycle is related
to the frequency, for a given temperare AT /AT, and aerodynamic pressure A the
cyclic stress can be obtained. This implies that a relation between the temperature ratio,

dynamic pressure and fatigue life time can be established.

6.1 Stress Representation

The stress expression, Eq. (2.20), can be rewritten in terms of panel displacements as

(o} = 1B (Culfion} + S0H0 +lCH 0} ) ~ foar) (6D

According to Eq. (3.3), the displacement vector can be separated as

{wen} = {wn ), + {wwm], (6.23)

124
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and
{wi} = {w} + {we}, (6.2b)
Substituting Eq. (6.2) into Eq. (6.1), the stress vector becomes
|
{‘7} = [E][le({wm}z + {“"m}s) + 5[1':]([0]t + [0]5)({0}1 + {0}3)
+ 2[L]|C]({we} + {wn},) — {oar}

= (8)([Cultion) + 31001 )

+{E)=[Col{ws}, +[0],10},)

+1E)([Cultion + UL 4G, )~ foar) 63)

where [0],{0}, = [0],{¢}, according 10 their definitions. The system inplane dynamic
displacement vector {1V, }, can be expressed in terms of the lateral dynamic displacement

vector {W;}, by Eq. (3.29) as
- 1
{"Vm}g = _[1\’m] ! ([J\,qubls + ,_)'["\’lmb][> {H,b}t
Using Egs. (3.47) and (3.48) the system {l1",,} , can be expressed as

A A | I — N
(Wi}, = =[] l[.‘\’l,,,(,L{Q} coswd — ;[A ) l[}\'l,,,(,]l{(,ﬁ} cos” wi

= {dar}, coswt + {oar}, cos® wi (6.4a)

The corresponding element inplane dynamic displacement vector {w,, } can be obtained

from the system vector {1V,,} as
{wim}; = {9m}, coswl -+ {9}, cos”w! (6.4b)
The slope vector {0}, and matrix [0], can be expressed as

{0}, = {()}‘coswl

0, = [()L cosw! (6.4c)
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By substituting Eqgs. (3.47), (6.4b) and (6.4c¢) into Eq. (6.3), the time characteristic of the

stress vector can be found as

{o} = [E]([C,,.]{qu}, + (0,40 },) cos?
+ [E)((Cd{bm}, + =[Col{n} +[0),{0},) coswt
+(8)([Guln), + 0,001, +5{C0w), ) - fosa)
= {o1} + {02} + {oy} (6.5)
where {0} is a stretching stress vector corresponding 10 the term with cos® (wt), {o2}
is a bending stress vector with time factor cos (wt), {03} is a static stress vector, and

{¢s} is corresponding element mode vector from {¢} (Eq. 3.47).

In the absence of {1¥,} which refers to the limit-cycle aren DAEG in Fig. 5.14.

Equation (6.5) reduces to

{on)} = E] ({(',,,]{¢;,,, REIGAL }I) cos?

{o2} = z[Cs]{¢} coswi

{o3} = ~{oar} (6.6)
A total cyclic stress and its components o, o and o3 of a simply supported 2-D plate
(at z = 11 L/12 and z = h/2) are plotted in Fig. 6.1 where o, denotes the total alternating

stress and oy, is the total mean swess. The alternaticg and mean stresses, o, and op,

are basic parameters in fatigue analysis.
6.2 Heywood’s Fatigue Approach

The fatigue life analysis of various aircraft materials has been studied in Ref. [57]
and Heywood’s engineering approach was applied to aluminum alloys. This approach is

based on testing data and can be expressed as

0a = (|l = om/o][de+ (1 = Ag)] (ksi) 6.7)
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where
Ao = {1 +0.0031n" /(1 + 0.0450,) /(1 + 0.0031x")]

¥= (0’,,,/0‘1)/ [1 + (0111/320)4]

n = log (N)
In Eq. (6.7), o, (ksi) is the alternating stress, oy (ksz) is the temperature-dependent

ultimate tensile strength of the materials, o, (ksi) is the mean stress and N is the
number of cycles to failure. Equation (6.7) is used to estimate the fatigue characteristics
of an aluminum alloy panel by knowing any three of the parameters o, o, N Or o4 and
solving for the fourth parameter. In the common fatigue analysis, Eq. (6.7) is plotted as
a o, —log N (§-N) or o,~0,, (Goodman diagram) curve. For example, Fig. 6.2 shows
the o, —log N curves with oy = 10ksi at ¢, = 7.83 and 10.8 ksi und Fig. 6.3 shows the

Oa—0m curve at gy = 40 Lsi (same as Fig. 3.5 of Ref. [56)).
6.3 Limit-Cycle Dynamic Pressure vs. Fatigue Life

In panel flutter fatigue analysis, it is inconvenient to use o, —log (N) or o4—0,, curves,
because o, and oy, are related to frequency for a certain panel, and also because they
are determined uniquely at a given temperature and dynamic pressure. That is, a panel
under different dynamic pressure \; would have different o, —log (N) curves, and on
each curve only one point (o, o, N) suits the panel behavior (see Fig. 6.2). Besides
the failure cycle number N may not be a clear measure of service life, for the same N the
related different frequencies might give different life quantities. By applying Heywood's
approach and transferring life cycles N to life time H (hours) for the stresses associated
with various limit-cycle dynamic pressures ;, a A-H curve (limit-cycle dynamic pressure
vs. failure hours) can be plotted for a certain panel at a given temperature. An endurance
and a failure dynamic pressure can also be determined. These ware important information

for panel design.
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6.4 Examples of Fatigue Life Analysis

In fatigue life analyses, a 2-D simply supported panel is investigated for demonstra-
tion. The material ultimate tensile stress is chosen to be 40 ksi. The deflections and total
stress distributions for the case of AT'(w)/AT,, = 3.0 and A; = 1045.59 are plotted in
Figs. 6.4 and 6.5, it can be seen that the nenlinear stretching stress plays a significant role.
Some of the stresses, frequencies, dynamic pressures and panel life arc listed in Table
6.1 for reference. The A-H curves are plotted in Figs. 6.6 and 6.7 with different scales.
It can be seen that when the dynamic pressure A; is less than 1350 for AT'(«)/ATe, =0,
the panel has “infinite” hours of life time. This dynamic pressure is called the endurance
dynamic pressure A.. For the case of AT'(«)/AT,, = 2.0, N = 1240; AT (z)/ATer =
3.0, A, = 1170, and AT (2)/AT,, = 4.0, A, = 1100. Recull the critical dynamic pres-
sures, A, = 129 at AT(2}/AT,, = 3.0 and ., = 191 at AT (x)/AT,, = 2.0. They are
much lower than the endurance dynamic pressures. This implies that the design based on
the linear theory is conservative, and the nonlinear panel flutter and fatigue analyses can
increase the design dynamic pressure. In addition, the \-H curves can be vsed with the
well-known Miner’s linear cumulative damage theory (79] in estimating panel fatigue life.

The percentage of damage D due to dynamic pressure A; with /i; hours is accumulated as
p=%"-Mi 6.8)
= H(A;)
This equation can be easily proved from Miner’s theory as

_ ni niffi ki
b= Z N; Z Niffi 2 H(\)
where f; is frequency in cycles/hour.

Another interesting result noticed from Fig. 6.6 is when the dynamic pressure reaches

a certain level (for example, A7'()/AT,, = 3.0 and \; = 1800), the panel would fail
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immediately, although at that time, the total stress is much less wan the ultimate strength
of 40 ksi. (see Table 6.1). This dynamic pressure is called failure dynamic pressure
Ag. For the case of AT'(x)/ATer = 0.0, Ay = 2000; AT'(w)/ATr = 2.0, Ay = 1900;
and AT(z)/AT,, = 4.0, Ay = 1750. The endurance and failure dynamic pressures, A,
and Ay, are useful information for panel design and are listed in Table 6.2 for a simply

supported square plate.
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Fig. 6.4 Limit-cycle deflection of a simply supported 2-D panel
at AT(x)/AT, = 3.0 and \; = 1045.6
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Table 6.2 Critical, endurance and failure dynamic pressures of a
simply supported 2-D punel (o = 40ks?)

AT(2)/ AT,

A 0.0 20 3.0 4.0
Acr 350 191 129 114*
Ae 1350 1240 1170 1100
Ar 2000 1900 1800 1750

*The dynamic pressure on the chuotic boundary
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Chapter 7

CONCLUDING REMARKS

A consistent finite element formulation and frequency domain solution procedure
for solving thermally affected nonlinear panel flutter has been studied. The panel is
subjected to aerodynamic pressure and temperature eftects simultaneously. The finite
element differential equation of motion conutins a time independent load vector. The
total solution consists of two parts: the time independent particular solution and the time
dependent homogeneous solution. The particulur solution refers to static equilibrium
and the homogeneous solution refers to a self-excited dynamic oscillation. The system
equation of motion thus is separated into two sets of equations which are solved in
sequence. The two sets of equations are acrodynamically-thermally coupled. The
aerodynamic-thermal postbuckling static equilibrium is obtained from the solution of
a set of nonlinear algebraic equations using Newton-Raphson iteration and the dynamic
oscillation is solved from a set of nonlinear ordinary differential equations using an
updated linearized eigen-solution procedure in the frequency domain.

The static equilibrium determines the characieristic of the dynamic oscillation and
plays a significant role in panel stability. There are two kinds of instabilities in thermally
affected panel flutter problems: a flutter instability which leads to limit-cycle motion
and a snap-through instability which leads to chaotic motion. A flat equilibrium leads
to a harmonic limit-cycle motion and an aerodynamically-thermally buckled equilibrium

leads to a non-harmonic periodic limit-cycle motion.
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The limit-cycle motion is a stable solution obtuined from the nonlinear dynamic
equations, the flutter boundary is referred to the swble solution with a trivial amplitude
(or a linear solution), The snap-through boundary can be obtained by using the adjacent
equilibrium criterion or checking that the static equations have no convergent solution.
According 1o the consistent solution procedure, an instability from the static equation
actually is the instability of the dynamic system since the two equations are coupled.

The limit-cycle motion of nonlinear panel flutter has been observed in experiments
[18] and obtained in time numerical imegration |22], but has not been demonstrated
in frequency domain finite element solutions. In the present study, a demonstration of
limit-cycle motion (Fig. 5.54,b) is for the first time provided in the frequency domain for
nonlinear panel flutter. It aids in understanding the nonlinear punel flutter phenomenon.

The temperature effects on nonlinear panel flutter result from thermally induced
inplane forces and bending moments. The thermal inplane force causes a bifurcation
problem in panel flutter and thermal bending moments reduce the panel unstable area.
For a 2-D panel with arbitrary temperature inplane variations A75(a), if their temperature
ratios AT;/AT,,, are the same, their effects on nonlinear panel flutter responses are the
same. Therefore an equivalent mechanical load can be applied for thermal effects. This
conclusion, however, does not apply to 3-D rectungular plates («/b # 1). The equivalent
mechanical load is hard to be formuluted, the thermal analysis is necessury in temperature
affected nonlinear panel flutter.

For the temperature distributions A7'(w,2) or AT(x,y,=), the thermal bending
moment has a local property which will affect the global behavior of the panel. The
increasing temperature through the panel thickness from midpline to top surface will
stabilize the panel by increasing the critical dynamic pressure and reducing the unstable

area.
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Fatigue life for temperature affected panel flutter has been investigated by applying
Heywood’s formula for aluminum alloy plates. According 1o the unique feature of limit-
cycle motion in nonlinear panel flutter that the dynamic pressure A untquely relates to
cyclic stresses of the panel, a relation of dynumic pressure vs. panel life time (A-H curve)
can be established for a given temperature ratio AT'/AT,, and an endurance dynamic
pressure A, and a failure dynamic pressure Ay can be obtained from the A-H curve. In a
common fatigue analysis, the S-N curve represents the property of a material. The A-H
curve, however, represents the property of a swructural configuration. Thus, it gives the
panel designer more straightforward fatigue life information for the panel.

The ‘DKT’ triangular element, without using a modification factor, has been applied
in the present research. It was shown that this element is an accurate and efficient
triangular element for thermal structural and nonlinear flutter analyses.

The above conclusions are considered 1o be the major contributions of this disser-
tation. The two-step solution procedure is applicable not only to the present research,
but also to general nonlinear dynamic problems with combined louading effects. It is the
first time that this two-step solution procedure was applied to a nonlinear static (post-
buckling) and nonlinear dynamic system and introduced into finite element solutions.
Similar solution procedures were adopted in Galerkin solution procedures by Houbolt
[45] for solving postbuckling and linear panel ilutter and by Bisplinghoff and Pian [80]
for solving a thermal postbuckling and lineur vibration system. In their classical analyt-
ical solutions, the two deflections are assumed based on physical considerations without
introducing mathematical meaning: particular and homogeneous solutions, since in the
analytical equation of motion there is no time independent erm. In the absence of aero-
dynamic effects, the two-step solution procedure can be applied to a thermal postbuckling

and nonlinear vibration system. In Appendix E, un analytical solution has been studied
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and compared to Eisley's solution [81]. It can be found that the two-step solution is a
complete solution which covers Eisley's solution. The study in Appendix E also implies
that in solving aero-thermal postbuckling problem several possible solutions exist and the
Newton-Raphson iteration gives a stable solution.

In the present study, the Linearized Updated Mode with Nonlinear Time Function
(LUM/NTF) approximation solution procedure [41} is used in solving nonlinear ordinary
differential equations. In Appendix E, the LUM/NTF approximation is applied to classical
and finite element equations and is compared with other classical solutions for thermally
affected nonlinear vibration problems. It was found that for the case of an equation
without quadratic nonlinear time function this method agrees well with classical solutions;
for the case of an equation with quadratic nonlinearity the LUM/NTF approximation gives
harder spring results and the perturbation method gives softer spring results, This is
because a nonlinear system with only cubic nonlinearity has an oscillation which is close
to harmonic motion; whereas with a quadratic nonlinearity, the system has a nonharmonic
motion and the LUM/NTF approximittion is based on harmonic assumptions. In the
present study of thcrmully affected nonlinear panel flutter most of the oscillations are

close to harmonic motion, thus results agree well with time integration results.

The analyses and solution procedure provided in the present research is a powerful
practical tool for studying nonlinear panel flutier. It opened the doors for future work. For
example, the solution procedure can be extended to solving flutter of panels with static
pressure differentials, random excitations, composite materials, arbitrary boundaries and
other interacting loading as well as complex configurations. By eliminating or replacing
the aerodynamic loading, the solution procedure can also be applied to solve other
thermally affected dynamic problems. On the other hand, the nonlinear finite element

solver also needs to be extended so that it is able to solve nonharmonic motion accurately.
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A complete study of thermally affected nonlinear panel flutter should also include the
study of panel chaotic motion, only a classical time numerical integration method has
been applied to this study. To use the advantages of the finite efement scheme to obtain

this chaotic motion is an open topic for future reseuarch.
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APPENDIX A

CONVERGENCE CRITERIA

The displacement convergence criteria (norms) used for the present study are due
to Bergan and Clough [82). For the thermal postbuckling formulation, two norms are
considered: the modified absolute norm and the modified Euclidean norm. These two

norms, respectively, are defined as

Ay
| Av;
llelly = = / (A.1)
N ; vj',.(.f
Y a P 1/2
1 ¢ Av;
llell g = NZ ” Jf (A2)

=

where N is the number of system degrees-of-freedom. Convergence is considered to be
achieved when either of these two norms satisfy the postbuckling convergence criteria.
The quantity Av; is the change in the jth displacement component for a given iterative
cycle, and v; . is the largest displacement component of the proper “type”. For example,
if j corresponds to a rotation w; or w, then v;..s is the largest rotation; whereas,
if j corresponds to an inplane displacement « or v then v, ; is the largest inplane

displacement.
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APPENDIX B

2-D PLATE ELEMENT MATRICES
Matrices [H,,] and [/{,] in Eqs. (4.1) and (4.2) are
(Ho] = ] = [1 & &% 2*] (B.1)

Matrices [73] and [7},] in Eqgs. (4.1) and (4.2) are

1 0 0 0

0 i 0 0
=3/ =2ft 34 —1]I
PYJA VIC R I

1] = [T] = (B:2)

where [ is element length. Mauices [C,,], {(3] and [Cy] in Egs. (2.41--2.52) for 2-D
(eight d.o.f. element) plate are:

[Co] = [Co] = [0 1 20 32%][T}) (B3)

[C=[00 =2 —G)[7y] (B4)
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APPENDIX C

TRIANGULAR ELEMENT MATRICES

Shape functions in Eq. (4.7) are

Ny=2(1-€- u>(é . u)
N = €(26 - 1)

Ny =7(2n—1)

Ny =€y

No=1dy(l &=y

No =-1£() =& —y) (C.1)

where £ and 7 are the area coordinates Lo and Ly of Ref. {75].

The derivatives of the [H,} and {#,] functions with respect to £ and 4 which are

needed in Eq. (4.11) are
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s — )
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(= P5(1 —2y) = &(Ps — P5)

§(Py + 1%)

HelPy= | &ro—r)
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L gs{] = 29) + &(q1 — g5)
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gs{1 = 20) + &(q1 — ¢5)

where 9 2
Pp=—buij/l; L= —byiifl,

. 2 3017
= .5;1'£j!lfj/1ijl P = 'if/ij/{ij
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k=4,5, 6 for 25 =23, 31, 12 respectively

Tij = XX Ui = Yi Y

[' —( 2 +1/U)
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The derivative matrix 5‘7;[6',.,] for triangular clement which is needed in Eq. (2.61) is

d, .
8_1'[0'”}

[ Y3 1
RY A 1 (La+ La) + —1(!12314'_! La+ ysibo Ly 4+ yaliy L)
z s

ngﬂ(i nha—rala)+ L7 + ""ﬁ(!"'_‘:!l"_‘!-:i +uymbaLy+yindy La)

1.1

— 1z

Ll—(JJH’J = als) + 2 (bl ysi by bg 4+ yiad L)

3L" (Ls + L)+ '—('IJLLJLI + malaly + yusLeLa)

y:n (1'1"141 —rogly) + L3+ —(JJlLJ 1+ ni2Laly + yeaLlaLa)
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2y (arLaty + yrada by + yoyba L)

Y Yt —
LE_J“ (n2ly — yals) + =
A i

3L3"""(L. + Lo )+—(J.,1,,1..+J.J1J1 +ynLlaly)
L3l
T(ywh Lo+ yaaLaLo + ys1Laly)

— Uil
I

yl'{x sglo —2a10y) + !._;

L3—(J'JL-—J.31L|)+ (nala by + yoslale + yar Lylsy)
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APPENDIX D

RECTANGULAR ELEMENT MATRICES

The inverse of matrix {13] in Eq. (4.17) is expressed as

ay 0y ag
1 0 0 0 0 0 0 0
1 i 0 al 0 0 ad 0
1 a b i@ iih b a* @b
1 0 b 0 02 0 0
0 1 0 0 0 0 0
0 1 0 2a 0 0 3a2 0
0 1 0 2a b 0 3a2 2b
0 1 0 0 b 0 0 0

L] = 0 0 ! 0 0 0 0 0
0 0 1 0 7 0 0 a
0 0 1 0 @ 2b 0 @’
0 0 ] 0 0 20 0 0
0 0 0 0 | 0 0 0
0 0 0 0 1 0 0 2a
0 0 0 0 l 0 0 2a
0 0 0 0 { 0 0 0
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Qg Q)2
0 0 0 0
0 0 0 0

al? 33 30 Al
0 i3 0 0
0 0 0 0
0 0 0 0

b* 0 3a%b 2ab*
b2 0 0 0
0 0 0 0
0 0 @’ 0

2ab 302 ad 2ih

0 302 0 0
0 0 0 0
0 0 3al 0

2b 0 3a* dab

25 0 0 0

where & and b are the length and width of the rectangular plate element.

0
ab?

Bal?

0

B2

20
0
0
0

6a°h

0

] e,
cC o c & e o
(]

c o o &

3ath?

Galb?
0

159

ailg

% 5
w O O o;’,oo
< 2

(= I o R - |

3a3h®

9a20°

(D)
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Matrix [7,] in Eq. (4.19) is expressed as

Uy Us V) Vs
r1 0 0 0 i
—at a* 0 0 0
= 0 0 b
aht b o'l -t
[Tm] = (DZ)
I U 0 0
—u a' 0 0
0 - ¢ 0 b
| atht —a'bt bt —a'h ]
where a* = 1/a and b* = 1/b.
Matrix [Cy] in Eq. (4.21) is expressed as
() = 10,0[T0] (D.3)
where
01 0y 0000
[Ha)=10 0 0 0 0 0 1 «
0 01 « 0 1 0 4
Matrix [Cy] in Eq. (2.17) for the rectangular element is expressed as
(Co] = [H)[13] (D.4)
where
Q) Qy ag
0 1 0 2 3 3z 22y
Hgl = o
[Ho] [[) 0 1 0 X 2y 0 x*
Qg Qg2 Qg
y2 0 3%y 2ay® b Bty 2u 3atyd
ory 3yr 3 Wy eyt Wy 3y 3%yt
Matrix [C}) in Eq. (2.19) for the rectangulur element is expressed as
(D.5)

[C3] = (][ 13)
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where
[0 33 (e ¥ (43
0 0 0 2 0 U G 2y
(Hyl=0 0 0 0 0 2 0 ¢
0 0 0 0 2 0 0 4x
Qg a2 a1
0 0 Gzy 2y° 0  Gaxy* 2P Gy’

2 6y 0 2t Gay 2 Grly  Gady
N S

dy 0 Gx* Sry Oy 12ty ey® 18230

Matrix [Cy] in Eq. (4.17) is expressed us
[Cu] = [H][T] (D.6)

where ,

Hal = [ ey o wy o 0" Py w7 Py oy

et 28y 2ty wsya]

Matrix (%[Cw] in Eq. (2.61) for the rectangular element is expressed as

17 i)
—( = — Ry D.
()l[( u] (.)'t_[uuhlb] ( 7)

where

a M3 2 *) 23
%[Hw] =[0 1020y 032° 2y y° 0 3%y 2ay?

y3 33'2y2 2y’ 3.{:'-'!/3]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

APPENDIX E
CLASSICAL SOLUTIONS FOR NONLINEAR FREE VIBRATION OF A 2-D

PLATE WITH EFFECTS OF TEMPERATURE OR INPLANE COMPRESSION

In this appendix, the classical solution using a two-step solution procedure has been
investigated for nonlinear free vibration of & 2-D plate with uniform temperature or
inplane compression effects. The purpose of this classical study is to verify the two-step
solution procedure and compare with the one step solution by using various nonlinear
differential equation solvers. The nonlinear equation of motion for a 2-D plate with

immovable inplane edges can be expressed us [80]
(D, pp)err —=Nw,pp +phbic =0 (E.1)

and

L,
N=L / At 4 N, e (E2)
11 U 2 !

where the bending stiffness D = ﬁ, the membrane stiffness A = %, and N, is
the axial force. When N, is induced by a uniform temperature change AT, it can be

expressed as

af bl

1 —w

AT

.’\’0 = ."\"‘)']' = -

and

L f5/A 4 abbh
= - —w”, — ——AT ) dx
N I«A (zu., l_y.ﬁ.])u
1
{

L o=t
.‘l ' -L 1 :-])
. /” (_.-_2_“»'1_ — ETT) ([.I (E‘3)
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AT, = kX DLZ"‘, k = 1 for simply supported plates and & = 4 for clamped
plates Eq. (5.4). To compare the two solution procedures, a simply supported panel

is investigated as follows.

I. One step solution procedure:

One step solution procedure was adopted by Eisley [81] for a classical solution as
well as by Yang and Han [83] and Kapania and Yang [44] for finite element solutions
to solve large-amplitude vibrations with compressive inplane forces. The corresponding
classical solution may be expressed as:

By assuming

el

w(a, ) = ci(1) sin —1—' (E.4)

and substituting Eq. (E.4) to Eq. (E.3), the following results can be obtained as

™ T
= — —cth
W L'cos T ci(t)
'-, 2T a0 7 2T 9
w?: = ;:'l cos %C-'(,I-(t) = —‘-T'})‘ COS ;-l + l)(f“'{!’l"(t)
L ] L ,
1 i 1 - 3;""' " o
A §w:rd‘7' = Tﬁl (('us I + |)([.l‘ it ()
l " i 12
= —P ()T
The inplane force becomes
Ebh 7r2 ._\[ 7r-D
= 5 () - ES5

Substituting Eqs. (E.4) and (E.5) 1o Eq. (E.1), the equation of motion can be simplified as

md

Dey(t )—bm rl‘ + Net()

[

‘1

s -1— + pbhu (1) sin % =0

- D ! ATD o Ebh ke
+ _4 ’(t) - g 4 l, ( ) R 4
pbh L AIC, pbh L (1 —w2)pbhdL

Gt =0

. ) AT Sl en?
/1t [ —_— ’, . :;&‘- _ '.J — .
I )+uo(1 M,")Lu) k3 "(n) Sy =0 (E.6)
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where
. wYD
W = ——
¢ LA pbh

(E.7)
Equation (E.6) can be solved by many approximation methods, hereinafter a simple
harmonic linearization is applied as:
By assuming
Pt) = coswl

and

R (1) = cos? wl =% coswl
the solution of Eq. (E.6) can be obuained as

N\ 2 AT Qg en?

(&) =1-am 5 &

The above linearization uses the same assumption discussed in Sec. 3.3.3(b) and the
solution, Eq. (E.8) is identical to the solutions from perturbation and harmonic balance

methods. This solution agrees with the solutions from Refs. [81], [83] and [84].

II. Two step solution procedure:

Two step solution procedure was adopted by Bisplinghoff and Pian [80] for a classical
solution by assuming the total deflection is the sum of a lurge static deflection and a small
linear oscillation. In the present study, both static deflection and dynamic amplitude are
considered to be large as

w(x d) = w® + w (E.9)

Substitute Eq. (E.9) into Eq. (E.3) as

. R AT 72D
N= Zj;, 3(“’.:'*‘“’,:) dv — —

= Al L2
1 L ‘3 3 At[\ QD
= Z/o %{(‘ui‘,)“ + 2:0;"111{[, + (u‘ﬂ) }d;x- - mfl_-’ (E.10)
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By using Egs. (E.9) and (E.10), the equation of motion, Eq. (E.1), becomes

D(wsxzzz + wdzrzr)
A 2, 2 AT 72D
_ {E?Z[, [(w;) + ‘.Zw'x'w:lr -+ (w:ﬂ) }(11,‘ - ./-_\-T;"[JT} (.w:*xu + wfixz)
+ p()h l}')d = {} (E.l 1)

Separating w® and w! from Eq. (E11), the following two equations can be obtained as

s A [t Al =D,
Dw,xxx: - ﬂ / ( ) ‘11 + A[C,_I,Tw"” ={ (E.12)

L 2
Dwffu.mr - %/ [710 w‘l 4- (w‘!) ](Lr cwth, = 1\’(0‘1 »+pbh W =0 (E13)

Equation (E.I12) is a nonlinear static equation and Eq. (E.13) is a nonlinear dynamic
equation. The two equations are coupled. Equwion (E.12) should be solved first,

Eq. (E.13) then can be solved.

a) Solution of static equilibrium

Solve the static equation (E.12), by assuming

w® =, sin Tt (E.14)

and substituting it into Eq. (E.12) as

™4 . me Ayt owax AT D T
pa(]) s+ T T+ RO =0
the following result can be obtained as
g 4D AV
, — (- = = E.l
Cot— (1 - 57 )Ce=0 (E.15)

- . 4
For a 2-D plate with a rectangular cross secuon, [ = %"—, Eq. (E.15) becomes

CN L ATNG
(77) *5(‘ - M:.r)T"”“ (E10
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so, the solution of static equation is

A
—— < E.17
Colh =0 (L\Tcr < l) ( )

and
(E.18)

b) Solution of dynamic responses
For solving the dynamic equation, Eq. (E.13), first assume

(E.19)

. Owar
w! = Cgsin —[—f."(‘)

and substitute Eqgs. (E.14) and (E.19) into Eq. (E.10) as

L 2 oo I e s
/ (w‘i) de = C307° (1) / cos” (u—)d.r :
o ' I

L 2l . 2
/ u} T.U dl = C Cd'dl( )T / (-052 (71'[-1)([-]' = C'u(/'ddl(t):;r_[l

I

5 ‘1"‘ (l)

-

1[A 72 AT =*D
= e { = | — _' 1y '- " —_
ATI‘ Ax AI' m2D
! /v — =t —_—— —

= (E.20)

|"

C+ L5

9 1 972
then substitute Egs. (E.14), (E.19) and (E.20) into Eq. (E.13) as

14 2 2
@mwwu%;T[ dmw—+qwm”](02wm¥)

w

S|

+ NCy— ?@"’(I) + pbh Cysin ?tfﬂ(l) =0

"W

A 3.4 =
¢u+ QLWM uuuf1”<unm+——CWm

AT 72D =

AL D ].t,(!)+ﬁ/fb¢() Y
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C, AT oCoC Cy "’,3 Lo
{1+9(}z) AT () + 97 11 (z)+s<h)¢(z)+;§¢(t)_o

(E21)

According to the solution of static equation, Eqs. (E.17) and (E.18), Eq. (E.21) can be

further defined as:

when
) A’ 1 , "
Co/h =0, lor T{, <1 or _/;L,Ij,”

Eq. (E.21) becomes
: 1.
(E.22)

ATy

and when

1/ AT AT
wh=2 =2 1), for > |
Calh 3(A7;, ) AT, =

Eq. (E.21) becomes

2( AT —1)¢(t)a:\/ (;" -1) ('h’ 2(1) + 3(5 ) (1) + _¢(z
(E23)

AT,

Equation (E.22) is identical to Eq. (E.6), thus iis solution is Eq. (E.8)

)

w\? AT 9(Cy,
— =] - — 4+ -
ATy h

U-'O

(E.24)

From this result, it can be concluded that the two-step solution procedure covers the

one-step solution. When A7T'/AT,, > |, the real solution of Eq. (E.24) requires the

following condition
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This condition can be explained by a dynamic stability analysis. According to Stoker’s
analysis [84] that if the coefficient of term (i} in Eq. (E.21) or (E.6) is negative, the
singularity point is a saddle, so the motion with smaller amplitude is locally unstable

(see page 49 of Ref. [84]).

c) Solution of Equation (E.23)
Rewrite Eq. (E.23) as

At 4 Asth? 4+ Ay 4 =0 (E.25)

L AT "
=2 — -1 |l
Al (A’[’C’- )u'f)
AT Cy o
iy = 2“ — — 3
Ay :i:\/ I(A'l'”- l) 0 W
("f : °r
Ay = -4 we
i i( I/ ) v

Equation (E.23) is a nonlinear ordinary difterential equation with a quadratic nonlinearity.

with

There is no exact analytical solution availuble for Eq. (E.23). Several numerical solutions

are discussed as follows.

(1) Direct numerical integration:

Assume that the motion is periodic,
Pt+71) = (L) (E.26)
and at { = {; the motion reaches its maximum deflection

() =1

ofly) =0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169
Multiply %ﬁ’l to Eq. (E.25) and integrate between ¢; and {2 as

‘2 - . 12 .
—/ dldrdtz/ (Au;"u' A+ Ao 2+ A3y )u’l
t !

1 1

(1 -y (E27)

dt = e (E28)
\/Ax(l — ) 4 22 (] — ) 4 (] = )
The period T' can be obtained by numerical integration as
4H+T "
T = / dt = )[ &
VAl = ey B = ) (1= )
According to Eq. (E.27) the phase plane is symmetric with ¢ axis, thus
N
4 (E.29)

VO(VHO)
T=2 f
! VAU = 82) + (1= g8) 4 (1 = )
where 3, can be numerically solved from Eq. (E.27) with ¢ = 0, the frequency then

can be obtained as

2
w = T
/

(2) Perturbation solutions

According to the Equation 8-61 of Ref. [85], the perturbation solution corresponding

o) e
404 O\

to Eq. (E.25) is
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and its higher order solution can be found as

\ 34y 5 /A\° MEERRIZAS
2 I e = ‘,1 _|—_—— = — E.31
v [ +4 Al G(:l]) :l 1+ | [4 /1; (i(/h) ] ( )

(3) Harmonic solution (LUM/NTEF)
In this harmonic solution, the following assumptions made by LUM/NTF are ap-
plied:

#(l) = cos(w!)

cos® wt) = 3 cos(wl) + T cos () 27 cos ()

and

” . V2
cos™ (wi) == Cus (w!)

Substituting these approximations into Eq. (E.25), the solution can be obtained as

> 2 3
W= A+ 4:’!3 + E/h (E.32)

d) Numerical comparison

Three cases of Cy/h = 0.2, 0.4 and 0.6 with emperature ratio KA'J!‘, = 2.0 are
compared by using above three solution methods. The results are shown in Table E.1.
The direct integration phase plotting of Eq. (E.25) is shown in Fig. E.1. With the help of
Fig. E.1, it can be found from Table E.1 that the two-step procedure provides complete
solutions. When AT/AT,, > |, a smaller vibration is around one buckled position, the
numerical approximation should be based on Eq. (E.23) and with a larger amplitude the

vibration is uround two buckled positions, the upproximated solutions should be based on
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Eqg. (E.22). It is also found that for a buckled beam. the motion is no longer harmonic,

the LUM/NTF approximation which is based on a harmonic assumption is not accurate.
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Table E.1 Numerical comparison of direct integration, perturbation
and harmonic methods for solving free vibration of a 2-D
simply supported panel with emperature effects using
the two-step solution procedure

w
Wy
AT Co e Cy Cy Cu
=20, =2 =0.577 =2 € =0. =€ =0.
AT, - 20 g = 0ar oo P =00
Direct integration, Eq. (E.29) 1.1979 1.0008 1.4055
Perturbation (1) Eq. (E.30) 1.2806 0.7483 -
Perturbation (2), Eq. (E.31) 1.3200 0.9051 0.2687
(Higher Order)
Harmonic, Eq. (E.32) 1.6807 1.9569 2.2394
(LUM/NTPF)
Harmonic or Perturbation 0.5997 1.0720 1.4556
Eq. (E.24)*

*In Eq. (E24) & = & 4 G
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Fig. E.1 Phase and time history plottings of Eq. (E.25)
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