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ABSTRACT

FINITE ELEMENT FREQUENCY DOMAIN 
SOLUTION OF NONLINEAR EANEL FLUTTER WITH 

TEMPERATURE EFFECTS AND FATIGUE LIFE ANALYSIS

David Yongxiang Xue 
Old Dominion University, 1991 

Director: Dr. Chuh Mei

A frequency domain solution method for nonlinear panel flutter with thermal effects 

using a consistent finite element formulation has been developed. The von Karman 

nonlinear strain-displacement relation is used to account for large deflections, the quasi

steady first-order piston theory is employed for aerodynamic loading and the quasi-steady 

thermal stress theory is applied for the thermal stresses with a given change of the 

temperature distribution, AT(x, y, c). The equation of motion under a combined thermal- 

aerodynamic loading can be mathematically separated into two equations and then solved 

in sequence: 1) thermal-aerodynamic postbuckling and 2) limit-cyde oscillation. The 

Newton-Raphson iteration technique is used to solve the nonlinear algebraic equations 

and an updated linearized eigen-solution procedure is adopted to solve the nonlinear 

differential equations. The finite-element frequency domain solution results are compared 

with numerical time integration results. Limii-cycle responses, flutter boundaries, snap- 

through areas and stress distributions are obtained from the present analyses. The effects 

of different temperature distributions, panel aspect ratios and boundary support conditions 

are investigated.
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The influence of temperature and dynamic pressure on panel fatigue life is also 

presented. The relation of dynamic pressure versus panel life time at a given temperature 

is established and an endurance and failure dynamic pressures on panel fatigue life can 

be estimated.
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Chapter 1 

INTRODUCTION

The major objective of this dissertation is to develop a consistent finite element 

formulation and a solution procedure for solving nonlinear panel flutter with temperature 

effects and to estimate panel fatigue life. The nonlinear panel flutter formulation is based 

on quasi-steady first-order piston theory aerodynamics, von Karman large deflection plate 

theory and quasi-static thermoelasticity.

1.1 The Nature of the Problem

Panel flutter, an aeroelastic stability structural problem, has been a research topic for 

the past three decades and has recently received renewed interest.

When a vehicle flies at a supersonic speed in the air, some skin panels may experience 

high level vibrations and fail due to the aerodynamic pressure on the vehicle surface. This 

aeroelastically induced, self-excited motion has been described as panel flutter. The panel 

motion related aerodynamic pressure causes an unsymmetric panel deflection as shown in 

Fig. 1.1. Experiments showed that there are critical dynamic pressures (airflow speeds) in 

panel flutter. Below these critical pressures the panel has a random oscillation with small 

amplitude. The amplitude of the oscillation is a small fraction of the panel thickness. 

The predominant frequency components are observed to be near the lower panel natural 

frequencies. Basically, the panel is undergoing a linear oscillation. These critical dynamic 

pressures are also called the flutter boundary. Beyond this boundary, the amplitude of the 

panel oscillation grows rapidly to the order of die panel thickness. From a linear theory,

1
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Self-excited oscillation of an external panel of a flight 
vehicle when exposed to supersonic air flow (MJ^ST)

Air flow

Temperature AT(x,y,z)

Aerodynamic pressure 
(1st-order piston theory)

Deformed shape

/ / / /
/

/  . **“ ‘ * v *

~7~ / / / ' " * ’ *
' ' \ / / / /

Thickness, h
/ 777' / / / / / / / / /

Panel length, L
< ------------------------ -----------------►

Fig. 1.1 Panel flutter
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3

the panel is considered to be unstable. But experiments and large deflection nonlinear 

theory have shown that the frequencies of the panel oscillation are related to the panel 

deflections and the panel has a stable limit-cycle oscillation.

Many studies have been contributed to develop the model o f the aerodynamic pressure 

and to predict the flutter boundaries and the limit-cycle responses of a panel. These will 

be reviewed in the section entitled Literature Survey.

Temperature plays an important role in panel flutter by inducing inplane forces, 

bending moments and causing an additional stability problem. This stability refers to the 

phenomenon that under a certain combination of temperature and aerodynamic pressure, 

the panel has a snap-through behavior which may lead to a chaotic motion. Most studies 

on panel flutter treated a uniform temperature change as an equivalent mechanical loading. 

In reality, however, it may not be easy to lind the equivalent loading for complex 

structures and arbitrary temperature distributions. This is one of the reasons that the 

finite-element method is chosen in this study.

The present finite-element solution has the following features:

1) Temperature effects are brought in from the strain energy due to thermal stress. It 

is valid for complex structures and arbitrary temperature distributions. No equivalent 

mechanical simulation is required.

2) The aerodynamic pressures and thermal loading are applied simultaneously. The 

solution procedure is mathematically consistent.

3) The different panel behaviors can be classified clearly by using a two-step solution 

procedure and stability analyses.
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Panel failure happens frequently in experiments and it should be one of the most 

important phenomenon considered in panel design. A linear analysis normally only 

provides critical flutter boundaries but not the stress information. A nonlinear analysis, 

however, provides the amplitude (or panel deflection) and frequency of the panel motion, 

thus the cyclic stress could be determined. This research extends the study of nonlinear 

panel flutter to include the estimation of the panel fatigue life. The established relation 

between the panel fatigue life, the aerodynamic pressure and the temperature may be 

useful in panel design.

1.2 Literature Survey

1.2.1 Nonlinear Panel Flutter

Several notable surveys on panel flutter have been reported by Fung [1]*, Johns [2,

3], Dowell [4] and most recently by Reed et al [5J.

As mentioned previously, flutter motion is induced by high speed air flow on one 

side of a panel. The aerodynamic pressure on the panel surface is developed as a function 

of the panel motion itself. It is essential to model the aerodynamic pressure accurately. 

There are several aerodynamic theories in the literature such as described in Refs. [6-12]. 

Among them, the quasi-steady first-order piston theory aerodynamics proposed by Ashley 

and Zartarian is mostly applied for the air flow with large Mach numbers (Moo > \/2). 

Since the assumption of quasi-steady aerodynamics neglects the three-dimensionality and 

the unsteadiness of the air flow, it cannot be applied for the airflow with a Mach number 

near one. For a lower Mach number (Moa ss 1), the linearized (inviscid, potential) 

aerodynamic theory [8-10] is more suitable. At the earlier stage of research on panel

The numbers in brackets indicate references.
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5

flutter, numerous studies were devoted to linear structural and aerodynamic models [13- 

17]. The differential equation of linear panel flutter may be solved by a Fourier method 

in the frequency domain. The critical dynamic pressure and flutter boundary could be 

found by increasing the aerodynamic pressure and reaching the coalescense of two linear 

frequencies. According to the linear flutter theory, beyond this critical dynamic pressure 

the panel w ill undergo fluttering motion and the amplitude of the panel motion will 

increase exponentially with time. However, experiments [6, 9, 18] showed that the 

panel oscillation acquires a stable and nearly sinusoidal character which is independent 

of the initial condition when the dynamic pressure exceeds the flutter boundary as shown 

in Fig. 1.2. This motion is called limit-cycle oscillation. A large-deflection nonlinear 

structural theory should be applied to analyze the panel limit-cycle responses. When a 

plate structure with immovable inplane edges has a large lateral deflection, a stretching 

inplane force is induced. This stretching force prevents the increase of the deflection. 

Since the stretching force is a function of the deflection, a structure nonlinearity then 

occurs. The von Karman large deflection plate theory [ 19] is often used to account for this 

geometric nonlinearity, and it has been successfully applied to the nonlinear panel flutter 

problem. Figure 1.3 [4] shows that a time integration solution based on von Karman 

plate theory and first-order piston theory aerodynamics agrees well with experimental 

results. Two comprehensive books by Dowell [20, 21] are helpful for understanding the 

fundamentals of linear and nonlinear panel flutter.

For nonlinear analysis, several analytical solution procedures have been proposed 

to solve the nonlinear differential equations of motion for panel flutter. Time numerical 

integration was applied by Dowell [22] for 2-D and 3-D rectangular plates and by Evensen 

and Olson [23] for circular cylindrical shells. In this approach, Galerkin’s method has 

been used to reduce the partial differential equations of motion to a system of nonlinear
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Fig. 1.2 Experimental panel flutter response (from Ref. |18])
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W/h

EXPERIMENTAL DATA 
CONVENTIONAL FLUTTER ANALYSIS 

CONVENTIONAL NOISE ANALYSIS

NOISE FLUTTER.0

Fig. 1.3 Comparison of experimental results and first-order 
piston theory solutions (from Ref. [4])
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ordinary differential equations in time. Then the time numerical integration is used. 

Following the time-displacement history, the limit-cycle oscillation is finally obtained 

independently from the initial conditions. At least six natural modes are needed to obtain 

a converged solution [22], Time numerical integration generates informative results but 

takes a relatively long computational time.

The harmonic balance method has been applied successfully to nonlinear panel flutter 

analyses [15, 24-27]. Fung [15] and Kobayashi [24] solved 2-D plates, Librescu [25] 

developed general solutions for rectangular and cylindrical specific orthotropic plates. 

Eastep and McIntosh [26] and Kuo, Morino and Dugundji [27] solved rectangular 

plates. Theoretically, the harmonic balance method could adopt multiple harmonic modes 

and give an accurate solution, but, since it is complex mathematically and requires 

lengthy mathematical manipulations, only two modes have been used to demonstrate 

the technique. For panel flutter, however, due to the complication of the deflection, more 

modes may be needed to acquire accurate results.

Perturbation methods are widely used in solving nonlinear problems and have been 

employed to solve panel flutter by Morino [28, 29] for rectangular plates and by Eslami 

[30] for specific orthotropic plates. Perturbation methods are normally limited to solving 

small nonlinearity problems, due to the assumption of a small disturbance from an 

equilibrium position.

The finite element method is a powerful numerical technique. Olson [31] first applied 

this technique to linear panel flutter in 1967, and was followed by many researchers [32- 

37]. The application o f finite element methods to nonlinear panel flutter started in 1977 

by Mei [38] for a 2-D plate. A triangular plate using 18 degree-of-freedom (d.o.f.) 

triangular element was solved by Mei and Wang 139] in 1982. Both references [38] and 

[39] neglected the effect of membrane displacement. Han and Yang [40] applied a 54
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d.o.f. triangular element and considered the effect of membrane displacements. They 

also gave a survey on finite eiement solutions of nonlinear panel flutter. Recently, Gray, 

Mei and Shore [41] extended the finite element method to nonlinear panel flutter with 

nonlinear aerodynamic theory (third-order piston theory aerodynamics) by using a 8 d.o.f. 

2-D plate element including membrane displacements.

The finite element approach for panel flutter is a frequency domain solution which is 

more efficient than the Galerkin/time domain solution. Because of the non-symmetry of 

the panel deflection, multi-modes are needed in Galerkin/time integration and harmonic 

balance solutions to represent the flutter deflection. In the finite element solution, 

however, only one deflection mode is used. This is due to the nature of the finite 

element method which assumes the real deflection (on the element nodes) directly. How 

to deal with nonlinear time function is a key point for the application of the finite-element 

method to nonlinear panel flutter. For solving a steady-state nonlinear oscillation, the 

common practice is to linearize the nonlinear time functions and then use an iterative 

scheme to obtain the converged solution. Several iterative linearization methods have 

been proposed to solve nonlinear structural vibration problems. Some of them have 

been applied to nonlinear panel flutter. Mei [38] assumed an average inplane stretching 

force for linearizing the time function and turned the nonlinear oscillation problem to an 

equivalent linear eigen-problem. The inplane stretching force was improved by Mei and 

Wang [39] in solving a triangular plate. Han and Yang [40] assumed a simple harmonic 

time function and neglected the third harmonic terms in a trigonometry transformation. 

Sarma and Varadan [42] simply used the maximum deflection shape to account for 

nonlinear stiffness matrices. The LUM/NTF (Linearized Updated Mode/Nonlinear Time 

Function) approximation given by Gray, Mei and Shore [41] simplified the nonlinear
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quadratic terms to the simple harmonic terms in solving 2-D nonlinear panel flutter with 

a nonlinear aerodynamic theory (3rd order piston theory).

In all those finite element solutions, the time functions in the nonlinear equations 

of motion are linearized to simple harmonic functions. In a general nonlinear structural 

oscillation problem, this may not be suitable for representing a highly non-harmonic 

motion. Fortunately, in nonlinear panel flutter most of the steady-state limit-cycle 

oscillations are harmonic like motions, therefore, the finite element methods yield accurate 

results by comparison with Galerkin/time integration multi-modes results.

Two finite element solution procedures which are able to solve the periodic (non

harmonic) motions have been proposed by Lau and Cheung [43], and Kapania and Yang 

[44]. A harmonic balancing is used to obtain nonlinear modal functions. Those solution 

methods have not been applied to nonlinear panel flutter. To the author’s knowledge, 

the expansion of multi-harmonic time functions w ill greatly increase the dimensions of 

system equations in panel flutter problem, and, as mentioned previously, the time domain 

numerical solution needs at least six modes to have convergent solutions.

1.2.2 Temperature Effects

When a vehicle flies, the supersonic air flow not only produces an aerodynamic 

pressure but also raises temperatures on the vehicle surface. The temperature could induce 

inplane forces and bending moments in the panel. The induced inplane forces may cause 

instability and complex behavior in panel flutter. Most panel flutter studies [22, 45, 46] 

have used an equivalent mechanical compressive load to simulate the uniform temperature 

effects. Few analyses dealt with temperature directly. Houbolt [45] investigated the 

linear flutter boundaries with uniform temperature changes by using two linear natural 

modes in a Galerkin’s scheme. Yang and Han [46] also solved the uniform temperature
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affected linear flutter problem by using a finite element method. Nonlinear panel flutter 

with mechanical inplane load using finite elements was solved by Han and Yang [40] 

as well. In their finite element solution procedure, the static deflection is obtained by 

simply dropping time derivative terms in the equation of motion, and it is not associated 

with the dynamic response. Mathematically, this is inconsistent. Dowell [22] gives a 

relation between equivalent mechanical inplane pressure and the uniform temperature 

effect. Effects of nonlinear temperature distribution on linear panel flutter was studied 

by Schaeffer and Heard [47].

So far, there is no analytical study available in the literature on nonlinear panel 

flutter with variable temperature distributions using finite element methods. With the 

development of high supersonic flight vehicles, such as the National Aero-Space Plane 

(NASP), High Speed Civil Transport (HSCT) and Advanced Tactical Fighter (ATF), the 

thermal stress analysis requires an efficient finite element panel flutter solution procedure 

for complex panels and temperature distributions.

1.2.3 Stability Boundary Analysis

As mentioned in Sec. 1.1, there are two kinds of stabilities in temperature affected 

panel flutter problems. One is the flutter which leads to a limit-cycle motion, and the 

other is the snap-through which leads to a chaotic motion. The limit-cycle phenomenon 

has been observed in experiments [18] and simulated in time integration solutions [22, 

23]. Chaotic motions have been studied by Dowell [48] using time numerical integration 

and by Holmes [49, 50] using the methods of differential dynamics. In the frequency 

domain, however, the stabilities of panel flutter have not been well studied so far. In 

other structural dynamic problems, the snap-through dynamic stability has been studied 

by many researchers [51-54]. It is known that a minimum potential energy criterion or an
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adjacent equilibrium criterion [55] can provide this stability determination. It is applied 

in the present study.

1.2.4 Panel Fatigue Life

An important panel phenomenon often observed in flutter experiments is that many 

panels failed immediately before the flutter motion reached a steady-state. It could be 

considered that fatigue caused the failure of those panels. The flutter induced panel failure 

is the motivation that drives researchers to study panel flutter, but very few studicc have 

been directed toward the failure mechanism and no analytical report has been found in 

the literature.

The panel fatigue analysis in this research is based on Heywood’s fatigue formulation 

[56]. Heywood proposed his approach based on the experimental data of aluminium 

alloys. This approach has been chosen as a design tool for aircraft structures [57], 

There are different fatigue analyses and concepts in recent developments [58, 59], but 

Heywood’s approach is a traditional method which is easy to be understood and widely 

used in current design practice.

1.3 Scope

In this dissertation, the following contents are included according to the research 

sequence:

1) First, the finite element formulation for nonlinear panel flutter with temperature effects 

is derived in Chap. 2.

2) A consistent solution procedure is presented in Chap. 3. This procedure results in 

solving two coupled equations : a nonlinear static equilibrium equation and a non

linear dynamic equation. The Newton-Raphson iterative method is used to solve a
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set of nonlinear algebraic equations and an iterative linearized eigen-solution approx

imation [41] is employed to obtained the dynamic limit-cycle response. Stability 

determinations are also provided.

3) Chapter 4 introduces three types of elements used in this study: a triangular DKT 

(Discrete Kirchhoff Theory) 15 degrees-of-freedom (d.o.f.) element which has 9 

bending d.o.f. and 6 membrane d.o.f.; a rectangular 24 d.o.f. element which has 16 

bending d.o.f. and 8 membrane d.o.f.; and an 8 d.o.f. 2-D strip element which has 

4 bending d.o.f. and 4 membrane d.o.f.

4) Flutter results and discussions are presented in Chap. 5. The phenomenon of temper

ature affected panel is shown by a 2-D strip example. The results compare well with 

the time domain solutions. The illustration of the limit-cycle motion and the determi

nation of the stability boundary are also shown in examples. New results which are 

not found in other solutions are also included. A 3-D square panel is investigated by 

using triangular DKT and rectangular elements, the application of DKT element and 

the effects of aspect ratio are also considered.

5) The panel fatigue life analysis and results are presented in Chap. 6. Only the nonlinear 

panel analysis can provide fatigue information.

6) Conclusions and future work are outlined in Chaps. 6 and 7.

7) A classical solution using a two-step solution procedure for solving temperature 

affected free vibration of a simply supported beam is given in Appendix E. The 

resulting formulation is compared with a one step solution and solved by several 

nonlinear differential equation solvers.
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Chapter 2

FINITE ELEMENT FORMULATION

In this chapter, the equation of motion of temperature affected nonlinear panel flutter 

is developed based on the following theories and assumptions:

1) Isotropic material obeys Hooke’s law (small strain).

2) The panel is thin (L ^  > 20). Inplane inertia, rotatory inertia and transverse shear 

deformation effects are negligible.

3) von Karman large deflection strain-displacement relations are valid.

4) The panel is in a supersonic air flow (M ^ > v/2), the aerodynamic first-order piston 

theory is valid.

5) The quasi-steady state thermal stress theory with arbitrary temperature distributions

The finite element method assumes that the displacement solution is a node displace

ment vector {VF}. For a plate structure, this vector consists of bending and membrane- 

displacement vectors {IF t} and {IF,,,} i.e.,

is applied.

2.1 Displacement Functions

(2 .1)

The element displacement vectors can be expressed as

(2.2)

14
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The displacement distribution within an element is discribed by interpolation func

tions. The finite element interpolation functions are assumed at the element level and

are usually in the form of polynomial functions. The transverse deflection, w, and the

inplane displacements, u and v, are first written in the form,

w  =  +  a ^ x  +  abzy +  . . .  abxx h j*  +  . . . =  [//« .]{«*} (2-3)

u =  + a„l2x -f- ; /  + .. .  = (2.4)

v ~  -{- (imk+.2.v 4 -... 4- 4". • • =  (2.5)

The generalized coordinates, {«&}, {n(»} could be transferred in terms o f the element 

nodal displacements, {«;<,} and {«>,„} as,

l« l}  =  ['-/*]{«’,,} (2-6)

{«m } =  [jTOT]{wn»} (2-7)

The element displacement functions then could be expressed in terms of element nodal 

displacement as,

=  [('«.]{u’i }  (2-8)

u =  [ l i u][Tm}{wm} =  [Cu}{wm} (2.9)

o =  [ H A [ r m] { w ni } =  [Ce] { Wm} (2.10)

where the [CU)], [Cu] and [C,,] are row vectors o f interpolation functions.
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2.2 Nonlinear Strain-Displacement Relation

Considering small inplane strain and large lateral displacement, the total strain vector 

is given by

{£} =  {c} + = {« } (2.11)

where the membrane strain vector {e} consists of two parts:

{c} =  {c,(1} +  {cy} (2.12)

The linear membrane strain vector {cm} is related to the displacements as

1
v,y (2.13)

. «,» + ‘’.X J
The nonlinear stretching strain vector, {(<>}, induced from large lateral deflection by the 

von Karman strain-displacement relation [60, 19] is given as

j,

The vector of bending curvatures {«} is expressed as

(2.14)

{«} =  -

XV. X X

yyw (2.15)

By using finite element displacement functions, Eqs. (2.3)-(2.10), the membrane strain 

and curvature vectors can be expressed in terms of the element nodal displacements. The 

linear membrane strains from Eqs. (2.9), (2.10) and (2.13) become

{ e™} —

(2.16)
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The nonlinear membrane strains from Eqs. (2.8) and (2.14) are:

l V . T 0

0 w , 9

“ V  .

ID

= 2 I W }

-W S 8 )« «
= j[0 ][C '»){n} 

where the slope matrix and vector are

and

W,r U
0 w<s

U ' . u  U ' ,

{</} =

and the curvatures from Eqs. (2.8) and (2.15) are

{ « }  =

iix2 
0 

' 0?
D2 

OtOy

-[/A,]

(2.17)

(2.18)

(2.19)
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2.3 Thermal Stress Resultants

In thermal elasticity, i f  a structure (material) meets the following assumptions [61]:

a) material is linear elastic, strain is small;

b) material is isotropic;

c) no initial thermal stress;

d) small temperature variation; and

e) a locally reversible process (entropy = 0),

the general stress-strain relation for a plane stress (crz = 0) subjected to a temperature 

variation A T(x,y,z)  is given by

where the strain vector { t }  is given by Eq. (2.11), the elastic coefficient matrix is 

expressed as

(2.20)

and the thermal stress vector is expressed as

/
EaA T(x ,V, ; )

0
(2.21)

The force and moment resultants are defined as

/,/■-'
(2.22)
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or in terms of strains and curvatures as

19

m  = [ A ] { c ) - { N &T) 

{ M ) = \ D ) { K} - i A l x r } (2.23)

where the inplane stiffness matrix is

(,1] =
Eh

1 -  u-

1 // 
v  1 

0 0

0
0

i-y

the bending stiffness matrix is

'  1 12 ( 1 - 1/ - )  

the thermal inplane force vector is

1 v  0

v 1 0
0 0 ^

f A 'av, 
•'Va '/’, 

0

and the thermal bending moment vector is

1
1
0

' 1 '

0\ J

(2.24)

(2.25)

(2.26)

(2.27)
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2.4 First-Order Piston Aerodynamic Theory

Aerodynamic pressuie acting on a panel is obtained from the first-order piston 

aerodynamic theory [6]. This theory describes the aerodynamic pressure on a skin panel 

o f a flight vehicle when it is exposed to supersonic air flow (Fig. 2,1).

By applying aero-elasticity and assuming that

1) The local motion of the panel acts as a piston,

2) The air is ideal and it has a constant specific heat, the process of the air flow is

isentropic,

3) The local panel motion velocity is much smaller then the air flow velocity, and

4) The air flow is parallel to the panel surface.

The first-order piston theory |6, 9] can be expressed as

(2.28)

where Pa is the aerodynamic pressure loading,

v is the air flow velocity

Moo is the Mach number (M ^  =  v/vu, oQ is the sonic speed), 

<1 =  Pa^r is the dynamic pressure,

pa is the air mass density, and

0  =

Equation (2.28) can also be written as

(2.29)

where

(2.30)
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First-order piston theory aerodynamics

= _ 2 a
p

M«-2 
W,x + —  w,t

[T V

* 7 7 7 7 7 7 7 7 7 7
L

q  =  oPaV

Fig. 2.1 Piston theory
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is the nondimensional dynamic pressure,

_ P a v j A l ^ - i )
P̂ phbJo

is the nondimensional aerodynamic damping parameter,

(2.31)

I  D
(2.32)

is the convenient reference frequency, and L is the total panel length along the x-direction. 

Equation (2.28) or (2.29) shows that the aerodynamic load is generated by the panel 

motion itself and related to the local normal component of the air flow velocity. Thus, 

this pressure is a function of the local panel slope, u\x, and the panel vibration velocity, 

wit. This feature leads to a self-excited vibration.

Substituting Eqs. (2.8) into Eq. (2.29), the dynamic loading can be expressed in a 

finite element form as

In this study, the governing equation is derived using the principle of virtual work 

with the incorporation of D’Alembert’s principle. This method states that for a structure 

in equilibrium, the total work done by internal and external forces (including inertia force) 

on an infinitesimal virtual displacement is zero.

(2.33)

2.5 Equations of Motion

5 \V =  611',,, -  = 0 (2.34)

The virtual work of the internal forces on a plate element is given by

(2.35)
A
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where the virtual strains and curvatures can be expressed by Eqs. (2.12) and (2.16-2.19) 

as

= [C’m] { ^ „ 1} + [«][6V]{6fui } (2.36)

where

=  ~ [^ ][c -v ]{^ }  +  l̂ m c 9]{swk}

= (2-37)

{5k } = [£4]{6«>4} (2.38)

and

Substituting Eqs. (2.36), (2.38) and (2.23) into (2.35), the virtual work of internal forces 

becomes

W n t  -  J  ( [ { & & , „ } 7 ’ [ C W ] T  +  { W ' t o f t y ] 7 ]  { [ A] { e )  -  { N & t } )

+  [ { ^ } T[Cfc]T([/)]{K} -  {iUA7’} ) ] ) ^

=  J ( { S w m) T [Cm]T \ A ) { t )  -  {6u,m) T [Cm]T { N x r }

-  {5«*} W V I V a t }

+ { ^ 6 } r [C6]7 [£ ]{*} -  {5«’i}7 [Cfc]7 {3 /AT})</.4 

=  J  ( { ^ » } T[C„,]T[/1][C,„]{w,u} (2.39a)

+  { ^ , n} r [CM1]r [.4 ]i[0 ][C j,]{n } (2.39b)

- { ^ , « } T [CIII]r {A V r} (2.39c)

+  {5uti }T [C7ff]T[0]’i ’H l[C IIJ]{w „I } (2.39d)

+  { ^ } T[C'elr [0]T[.4]i[0][C<,]{zc4} (2.39e)

-  { ^ 4}T[C0]7’[^]'/'{A 'A r } (2.39f)
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+ { ^ t } r [C't ]T [D][C6]{«r6}

-  { < ^ } T[C6]T {;UAT})<M 

Terms (2.39a) and (2.39g) result in the linear stiffness matrices:

24

(2.39g)

(2.39h)

(2.40)

where

[*n,] =  /  [Cmf [A ] [C m}dA 
Ja

(2.41)

(2.42)

Geometric stiffness contribution due to the thermal stresses is given by Term (2.390

-  f  {Stob}r [Cg]T[e)r {N ^ T )dA 
Ja

(2.43)

According to the definition o f matrices |fl] and { A'ay}, Eqs. (2.18) and (2.26), the 

following transformation holds

0  l Vfy 

0 Wry WrX

Nxi ' t  ^ATxy 
Na Txy A!ATy j

f AWr* 
N ± r9 

. Na t -xs 
w

r

W.1

(2.44)

where

A!ATr ^ATxy
N a T i S  ^ A T y  j

When N&Txy =  0 according to Eq. (2.26), the Term (2.43) then becomes
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where

[ W ]  = /  [CV]T[A?at ][CV]^1 (2.45)
JA

The first-order nonlinear stiffness matrices due to large transverse deflection are obtained 

from Terms (2.39b) and (2.39d) by

J  + {{i o»}r [cv]r Mi r a « )

To make Term (2.46) into a symmetric fonn, the following transformation has to be 

arranged

+ (2-47)

where [JVW] is constructed from {Nm} in the same fashion as Eqs. (2.43) and (2.44) and

{Nm} =  [,l][C,a]{m„i }

Then Term (2.46) becomes symmetric as

i{£ inm}T[nl,n6]{u7fc} + J{6w i}7 [u l6,„]{«?„,} -f ^ {<?>«’[,}7 (2.48)

where

[« U ]=  /  [C',„]7,[/l][0][CV]f//l (2.49)
JA

(nU,„) =  /  [C,]:rt«]r [/l)[C„l]rfyl (2.50)
JA

and

I» l.v ,„]=  f [Ctf]7,[AfMj[C(,]rf.4 (2.51)
JA
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The second-order nonlinear stiffness matrix can be obtained from Term (2.39e) as 

j T { ^ 6 } r [Cfi]T [^]7 [^]^[0][C'f;]{u;i)}(//l = ^{6u>t}[u2w]{u;6}

where

[r266] = J  | [ C / [ 0 ] 7 '[/l](0][C*]rf/l (2.52)

Finally, Terms (2.39c) and (2.39h) can be represented by thermal load vectors as

-  f  {8wm}T[Cm\r { N * r }dA =  - { 6 w mf { P ta* T}
Ja

where

and

i/'„.A-r) = /  [( - . / (A 'A rV M  (2.53)
Ja

-  f
Ja

where

{ PbAT} =  /  [Cb\T {M A r }dA (2.54)
Ja

Combining the above results, Eq. (2.39) can be written as

r p  |  * * i  t p

W illi  =  {&*>»»} {Z^mAr}

+  [wU»»«]{«>ro} + {5 in }7 ^ [n l/v ,,, ]  + ^[«2jfc]

-  [kf i&r] +  [*&]) { n }  -  {Siob}r {PbAT} (2.55)

The virtual work of external force is due to the aerodynamic pressure and the inertia

forces by using the D’Alembert’s principle as

S\\ = J  8w{—p!nu +  Pa )UA (2.56)
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Using Eqs. (2.8), the following expressions can be obtained
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5tv =

w  =  [C -V -] { tc’i }

■<a =  K-ui ]{«'(.} (2.57)

Substituting Eqs. (2.33) and (2.57) into Eq. (2.56), the external forcing terms in the

virtual work for an element become

w „ ,  =  /  i c y 'T - M ic , „!{<;.,) -  A ^ | - ( t v n » i )  -
JA V i. u x  u>u /

=  — -  {6wt)}T— [</]{tirt} -  {Swb}1 A[aa]{tu4} (2.58)
<̂ o u'o

where the mass matrix [777*,], the damping matrix [</] and the aerodynamic matrix [aa] 

are defined as

H l  =  /  ^ [ C ' uf [ C w]<lA (2.59)
J A

(2.60)

(2.61)M  = j A p [ C . f  |<M

and J l  =  is same as in Eq. (2.32). Using Eqs. (2.34), (2.55) and (2.58), the 

element equilibrium can be reached as

( H — ^NAT 0
0 km

aljYm
n l »nt 0

1
+  3

7i 2 it 0
0 0 +  A

«0 0 
0 0 ) t )

+ 9a_
LOft

9 0 
0 0

Wb I »l, b 
0 0 { f* 1 =

I  i l ’ j l l  J

‘ in AT 
1\ a t

+ {/}
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where { / }  is an element boundary constrain force vector. In the system equations 

they w ill cancel each other and be eliminated by boundary conditions. Summing the 

contributions from all elements, the system finite element equation of motion can be 

obtained as

{V->(i'K, lk , l'k) }  = A' -  h'NAT +  i /V l + i/V2 + XAa {W)

= 0 (2.62)

where the linear stiffness matrix is

[A'] = l<b 0
0 A',„

the temperature stiffness matrix is

[A'a'a t ] =

the aerodynamic matrix is

l-l»] =

the mass matrix is

[M1 =

KiXAT d 
0 0

Mb 0 
0 0

the damping matrix, [G], is same as [M\, the first-order nonlinear stiffness matrix is

t-'Vl] =

the second-order nonlinear stiffness matrix is

A71 A'ui -'V If,,, 
AM ,„b 0

[N 2 ]  =
N2bb 0 

0 0
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the thermal force vector is

and the displacement vector is

{IK } =
IK',,,

2.6 Incremental Stability Equations

The temperature effects cause a stability problem in panel flutter. The adjacent- 

equilibrium criterion [55] can be used to investigate the stability of a given equilibrium 

configuration. For given small increments to the equilibrium displacements

{ I I '}  -» {IK ,} + {A IK }

{ l i ' }  - *  { lK „ }  +  { A l l ' }

{ i: '}^ { in }  + {Air} (2.63)

|^(V K 0 +  AIK, W0 +  AIK , IK0 + A l l ' ) }  can be expanded by using a truncated Taylor 

series as

{ ^ ( lK 0 +  AIK, W0 +  AIK, li> +  A IK ) }  =  {  V ( l i i ,  W0, l i '0)  }

+

+

+ 

= {0}

{AVK}

{ a i k }

{Artr}

(2.64)

where the incremental quantities {A ll '} ,  | A l i ' )  and | a U; )  are arbitrarily small and 

{ ^ ( lK 0, IK0, IK0)  ) ,  Eq. (2.62), is in an equilibrium configuration. From Eq. (2.62),
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the total differential of jV '^lK, IK, IK^ j  is

{ # ( i v ,  W, H ') }  =  [A' -  A .va t + +  - / ( [ - , 'VI + jA ' 2  { IK } )

The term d ( [ i(V l +  £-N2] {IK }) should be evaluated from Eq. (2.49-2.52) as

(2.65)

i f t ' l  +  1 jV2 {IV } U , / ~Nl  + -jV2 
2 3

{IK } + ^Arl +  ]-N2 {dW}

where

I n i  +  i(V2
2 3

{IK } = d ^jVIjVhi + j  Ar2(,{, 7  N 1

£a' i iii6 '  0 p.}
ir f [ jV ljV„1]{l-KA} +  ^ [J V llm]{IK Ill} +  l-d [N2bb}{Wb} 

1
—r/[Ar 1 }

Using Eqs. (2.51), (2.44) and (2.18), the temis at the above equation can be deduced in 

the elemental level as

d [» l//„,]{■«>&} =  /  [CVj^/[jY,rl][C'fl]rM{iU|,}
Ja

= j [ [ c / [ 0 ] T{.4][Cf„ ](M { (/w„ l }

=  [nl (,,„]{(/([>,„}

4 7JHm]{«’m} =  [  [6’djJ [do]1 [/lKC ^ld.'^tt’,,,}
Ja= J \C,?\N„\\C,\iA{im}

= [n lA»HJ]{</it»i}

</|nl„.i]{<»4} =  j  |C ,JT|..1l[<Wl[C,l<M {»',,}

-  [» l , (li]{</u’t}
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4 >2« J M  =  5 /  |C,]'r </([91r l/l][<l])|C,]rf.'l|.cj)
" J A

= 5 / 2[C(,|r [»]r |/l][1W][C’l,],M{„.l }
“ Ja

= 2 /  ||C * |, '[«rM[9]|C»|</yl{JtB,}

in which, terms

{dO][Cy]{wb} = [0][C0]{<Uob)

and

rf([#]r [/l]|«|) =  2[9l', '(/l][1W|

could be derived from their definition using simple matrix multiplication. The following 

relation is then achieved

d{  l N l  +  =  ([iVJ] +  <2-66)

and Eq. (2.64) becomes

[K  -  K h m  +  XAU +  N \ 0 +  Ar20]{A iY } +  ^ . [C ] { A iv }  + - i[A /]{A V V }  =  0

or

[AYoKAlT} +  ^ [ c ; ] { A lk }  + ^ [ A / ] { A l ' i ' }  =  0 (2.67)

where the tangent stiffness matrix [AY0] =  [A' -  AYay' + A/la + Arl 0 +  N20] and [Arl 0] 

and [7V20] are evaluated by {lYo} from the configuration l'K0, IVo) }• Equation

(2.67) is the incremental equilibrium equation corresponding to governing equation (2.62).

The small increment displacement { A l l ’ } can be assumed as a harmonic disturbance 

and Eq. (2.67) can be written as

[AYa]{Afy} = Au;“ [A)]{Af/} (2.68)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

where disturbance vector {Ar/} and incremental frequency Aw are expressed as

{A l l ' }  = {^<1}cMh

and

A n  / A f i \ 2 
Aw“ -  ga + ( ------)

W 0 \  W y  /

Equation (2.68) represents a linear incremental system, when the incremental frequency 

is zero, the incremental motion o f the system is unbounded. Therefore, the stability 

boundary for snap-through is assumed to be the points where the tangent stiffness matrix 

[AYo] becomes singular, that is

HAYdl = 0 (2.69)

and the incremental frequency vanishes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

SOLUTION PROCEDURE

In this chapter, the equation of motion, Eq. (2.62), is mathematically separated into 

two equations which are solved in sequence: 1) thermal-aerodynamic static equilibrium 

(time-independent deflection) and 2) limit-cycle oscillations. The Newton-Raphson 

iterative method is applied to solve a set of nonlinear algebraic equations and an iterative 

linearized eigen-solution procedure is employed to obtain the dynamic responses from 

a set of nonlinear ordinary differential equations. The snap through stability boundaries 

are obtained by using an adjacent equilibrium criterion.

3.1 Preliminary Process

The finite element equations of motion for temperature affected nonlinear panel 

flutter, Eq. (2.62), is a set of nonlinear ordinary differential equations with respect to 

time L According to the definition of the thermal load vector {/^a t ). and Eqs. (2.26), 

(2.27), (2.53) and (2.54), it is a lime independent term. The solution of a differential 

equation with a constant term is the sum of a time-dependent homogeneous solution and 

a time-independent particular solution.

o n  =  o n  +  o n  o .D

For this problem, the homogeneous solution refers to a self-excited dynamic oscilla

tion, {IF },, and the particular solution refers to a thermal-aerodynamic static equilibrium

33
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deflection, {1K}S. Both deflections { IK } ,  and {1K}( are considered to be large. Substi

tuting Eq. (3.1) into Eq. (2.62) leads to

i l M | ( { v V } j  +  { v K } () + ^ [ G ] ( { l K } j + { r K } J

+(am.]+[/'i - [AVarDHin,+om+(iiwiu+}ia'2U,)(o-i/)s + on,)
= { ^ a t } (3.2)

The subscripts ,s and 1, [ ]., and ( ]/, denote that the corresponding nonlinear stiffness 

matrix is evaluated by using { IK},  or { lK } r

In Eq. (3.2), the nonlinear stiffness matrices [iVl]^+/ and [)V2]a+< are evaluated by 

Eqs. (3.1), (2.49-2.52) and (2.18) as

[A'l

Using Eqs. (2.49)-(2.51)and noting that (AT,.] are linear functions o f { IK},  the following 

relations can be found as

[•WKVrnL-H =  [A'I.VhiL +  (A'ltfm]/

(A'U,„],+( =  [A'l/„„], + [Arlt ,„ ](

iA'lmii).<+/ = [A 1 + [Ar!»«/»](

Thus the matrix [Arl ] s+, can be separated as

1^11+1 =  [A'lj* +  [A'l]f 

The element second-order nonlinear stiffness matrix [ji2 jt]s+1 can be derived as

[» 2 » U l =  JA | c » f i < , [ . 4 P L +,K'«].M

=  /  | t c , ] r (PLr  +  M 'Q m K W . +  [0 ],)[t'»]<M
A

=  [»2i 4  + I«2m1, +  2[n2M]at

(3.3)
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where

l'i’r[» 2 « l, =  j

Thus, the matrix [/V2]a+( can be written as

m U ,  =  |A'2], + [A'2], +  2[A'2]„ (3.4)

Substituting Eqs. (3.3) and (3.4) into Eq. (3.2) and collecting dynamic terms, a new 

dynamic equation can be obtained as

4 [M1{lV},+ SIG1(|V}, + ( A|/1“1 + [A] “ |a' a’a t1  + 5 [JV11‘
+ j|W 2 ],) { I I ') ,  +  ( j IA ' l ] ,  +  j[/V2], +  | | /V 2 |„ )  (W ) ,

+  (g lA 'l] , +  ^[A'2], +  |[A '2 ]„ ) ( l l ' l ,  =  0 (3.5)

The fourth term, (^[A'l], + j[A '2 ]( + f[A'2]s, ) { i r } s, in Eq. (3.5) is rearranged as fol

lows

a) The term [A^l ]({ c a n  be rearranged as

~  l l A ' i , ( i n ) ,  J  ̂ '

Using the transformation in Eq. (2.47), the following relation can be established as

(A 'iAr.1,), { i n } ,  =  i A ' n j . { i 'U ,

[A'H,,,],)!)-,,,), =  [A'l,v„,1,(11),),

lA ' I J . fH ' l } ,  =  [A’ l ,„ tL { i n ) ,  (3.7)

and the following substitution holds

[A'1],{H'), =  (A'1],{IK}, (3.8)
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and

[»2w3t 0 
0 0

it’i
wm

b) The term [Ar2]f { l'K}3 can be rearranged as 

[nSMw}, =

=  J a ^ Q f r n i w u c o m ^ ) ,

-  [«23af{w)t

(3.9)

where the following transfonnation has been made as

«’i,x 0
9

_wt,y wt,x

= (I I,

. U>t,yU’s,x +  wt^w^y .

wi , X  v

0 ^s,y
H’s, y ^s,r.

( II  w Uy J

(3.10)

c) Following the same manner in (b), the last term can be transformed as

1* 4 , o a  =  ( A '- 'y in , (3.11)
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Separating static terms from Eq. (3.2), noting that j lK  j  =  j lK  j  = 0  and using 

Eqs. (3.8-3.11) in Eq. (3.5), finally the following two equations can be obtained

( * [ / ! . ]  +  |A] -  =  { /ja t } (3.12)

i ( A / ] { t v } j +  & | O l { l t ' } i + ( a [.4„] + {/,] -  tA > 4T) +  jIA 'l ] ,  +  { iy } ,

+  ( [M ) , + I/V-2]„ + [ A " 4 ) ( in , = 0  (3.13)

The total panel response is the sum of { I K } ,  and {IK }, according to Eq. (3.1). A 

close examination of Eqs. (3.12) and (3.13) reveals that:

1) Eq. (3.12) is a set of nonlinear algebraic equations which holds a particular solution 

for the governing equation, Eq. (2.62).

2) Equation (3.13) is a set of nonlinear differential equations which holds a homogeneous 

solution for Eq. (2.62).

3) The aerodynamic effects and thermal loading ([AVa t ], {F’a ’t }) arc

coupled in both equations, and

4) Equation (3.12) has to be solved first to determine the static deflection { the 

dynamic response {VK}< can then be obtained from solving Eq. (3.13).

3.2 Thermal-Aerodynamic Postbuckling

This section describes the solution procedure to obtain thermal-aerodynamic post- 

buckling from Eq. (3.12). First, the critical thermal buckling temperature is determined, 

then the postbuckling deflection is solved by a Newton-Raphson iterative scheme.
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3.2.1 Critical Thermal Buckling Temperature

As a parameter, the linear critical thermal buckling temperature in this study is the 

temperature that causes a flat plate to lose stability under only a temperature induced 

inplane force. Equations for solving for the critical temperature are obtained from 

Eqs. (2.62) and (2.67) by neglecting the thermal bending moment, the aerodynamic 

effects and the nonlinear tenns as

lA '„i]{ iy „,} =  {Pm&r}  (3-14)

A 't -  A’a'a v  +  A; 1a' i« 0
0 A ',„

Equation (3.14) gives an equilibrium configuration for a given temperature change, 

AT0{x,y,z)  and Eq. (3.15) is then used to investigate the stability of this equilibrium 

configuration and find the critical temperature. The matrix [fVljy,,,] in Eq. (3.15) is a 

linear term evaluated by a known {H7,,,} from Eq. (3.14). Since the matrices [A'jVat] 

and [jV l^m ] have a linear relation with temperature, they can be rewritten as

[A '.v a v ] =  / ' [A 'a-a '/ 'L

and

[ # ! # , „ ]  =  fi[N 1 jVi»]0

with

A T  = fiAT0 (3.16)

where [ ]0 denotes that the corresponding matrix is evaluated with &T0(x,y,z).

In Eq. (3.15) A iy „, is obviously equal to zero, the stability equation becomes a

eigen-equation as

( [ / v 6] -  /t ( [A *A 'A 7 ’]0 -  [A T  A’ j ii]0 ) ) { A H ' ( , }  =  0

A l l ’,,
=  0 (3.15)
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or

(3.17)

The critical temperature at which buckling occurs corresponds to the lowest value of 

eigenvalue, f i i ,  and is given by ATcr(.v,y,:) — The vector {4>}cr is the

corresponding buckling mode shape. A flowchart for determining the critical temperature 

is shown in Fig. 3.1.

After solving for the critical temperature, ATcr, a temperature status could be 

described by a nondimensional ratio, A7’/A7 'rr.

3.2.2 Solution of Thermal-Aerodynamic Postbuckling

Equation (3.2) can be referred to as a postbuckling problem with a certain combination 

of dynamic pressure A and temperature ratio AT {x ,y ,z ) /& T cr- It can be solved by 

using the Newton-Raphson iteration method. This method is a well developed procedure 

for solving nonlinear static problems [62-66], For sufficiently small load increments, 

convergence can be achieved even when severe nonlinearities are present [65, 66]. In 

addition, any level of accuracy can be obtained depending on the convergence criteria. 

For Eq. (3.12), i f  a solution is known for configuration {H7}*, then the soluuon at 

configuration {W 3 +  AW *} can be approximated by a truncated Taylor expansion as

( « )  = ( W  + [K] -  [/vV at] + + |lA'2],) {H'}„ -  {Pa t} = 0 (3.18)

< * (» r ,+ A H y }  = w i r j }  +  {a i k } ,  -  o

or

(3.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



^  START ^

Use AT(x,y,z) to form {PmAT}

AT(x,y,z) = ATo(x,y,z)

Solve Eq. (3.14) for {W m} 

[KmKWm) = {PmAT}

Use ATo(x,y,z) and {Wm} 

to form [N InoJ and [K natI

Solve Eq. (3.17) for p.i and {<D}i 

[K b ]{0 } = |x[KNAT-NlNm]{0}

ATcr(x,y,z) = |iiATo(x,y,z) 

{W m}cr =  llH W m }

Fig. 3.1 Flow-chart for critical temperature
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For an approximate solution {IK;},, from Eq. (3.18)

=  { P a t } -  + [A] -  [A'.v a t ] + | [A 'l] ;  + ^[A'2],.) {JV,}3

=  {A FJ; (3.20)

the Jacobian matrix of (tangent stiffness matrix) can be found from the

incremental equation, Eq. (2.67), by neglecting the time derivative terms as

d m w s h )
[AH- = d{Wt }s

d
f  A|/1„) +  [A'] -  | +  {[AM], + {[A ’2],) ( l l ' i ) ,  -  {Pi t )

d{W),

= A[/1J + |A'] -  [ A W ]  +  [A 'lli + [A'2li (3-21)

Equation (3.19) thus becomes

[A H {A 1K ,}, =  {AA},. (3.22)

Using {AIK;},, to update {II ';} , as

{ H ' i + i } < =  { H ' f } ,  +  { A H ' i } ,  (3.23)

until {A F } i or {A IK ;}, approaches zero. The convergence criteria are shown in

Appendix A. An initial evaluation is necessary for the iteration scheme. The critical

buckling mode, {4>}cr, and corresponding inplane displacement, {!>,„ } rr, are used to 

form an initial value

where
{vyfc, b  =  o .5 0 {*}fr

(3.24)
{H'IIlI} < = (A77A7,fr ) { * „ , } „
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the factor 0.50 has been proved to be a satisfactory value for the thermal-aerodynamic 

postbuckling analyses. Also for an incremental process of {A T /A Tcr)j, ( j  =  1 , . . .» ) ,  

the previous converged solution can be used for the next initial evaluation as

(A7’/A 7 ’cr) I+i

<3'25)

The computational flowchart of this solution is shown in Fig. 3.2.

3.2.3 Stability Boundaries

In Sec. 2.6, a dynamic stability equation, Eq. (2.67), is derived for a equilibrium 

configuration ij>(\Vot W0, l i 70 j .  According to the adjacent equilibrium criterion [55], 

when the tangent stiffness matrix [AVJ becomes singular, snap-through happens and the 

motion becomes unstable. If the equilibrium configuration i K,, l i ^  is chosen

from the solution of Eqs. (3.12) and (3.23), r/*( {1 i } s,0, U), it can be seen that the 

two tangent stiffness matrices [AVJ and [AY] • in Eqs. (2.67) and (3.22) are identical. 

When |[AY] | =  0, Eq. (3.22) does not have a unique solution {AW t-}a. Thus the 

static postbuckling deflection, {H7}3, does not have a converged solution and becomes 

unstable. It can be concluded that the stability boundaries obtained from the static 

equation Eq. (3.12) and Eq. (2.67) are equivalent at V’( HY)-

3.3 Flutter Responses

3.3.1 Reduction

The nonlinear flutter characteristics for temperature affected panels can be determined 

from Eq. (3.13) with the solution o f { l l7,} from Eq. (3.12). Rewrite Eq. (3.13) as
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(5>

T  START J  

1
Use Fig. 3.1 to find ATCT

I"
Do 1 = 1, m

Use Eq. (3.24) to estimate (W }s

0 . 5 { $ „  1
{W }s = * ►

Use Eq. (3.25) to update {W }s 
_ ( A W U  

iW>s (A T /A T J j-! l  ls

A  K

Fig. 3.2 Flow-chart of two-step solution procedure for nonlinear panel flutter
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(  Start solving thermal-aerodynamic postbuckling )

Norm ^10  ?
No

Yes

© ©

Do k = 1, n

Use to form ̂ [ A j

Update {W }s = {W }s + {AW }:

Use {W }s to form [N l]s and [N2],

Use A T (x ,y ,z ) j to form {Pm^x} and

Solve Eq. (3.22) for {AW } 

[Kt]{A W }s = {AF}

Use Eqs. (3.20) and (3.21) to form [KT] and {AF} 

[K j] = [ ^ ^ 3  + K — Kn a t+ N1s + N2S]

{AF} = {P } - [ x kAa + K -  Km T + ~N1S +

Fig. 3.2 Continued (1)
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f  Start solving dynamic response ^

Use converged {W }s to form 
[N1nJ „  [N l bm]s and [N2bb],

Solve Eq. (3.36) for linear response 
K[Mb}{§} = (Xk[Aal + [K b] -  [ K ^ ]  + [N1nJ

- [N lb J , [K mr 1lN l inb]s + [N 2 bb]s){<J>}

Nonlinear 
limit cycle 
analysis

Yes

No

YesK i, k 2 

coalesce

No

CONTINUE

CONTINUE

Fig. 3.2 Continued (2)
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Start solving nonlinear 
limit-cycle response

For given c/h, normalize 
as initial displacement

Use {W }s, {<)>}, Eqs. (3.45_)_and (3.46) 
to form lK lN]j and [K2N1;

Solve Eq. (3.55)

Norm 10-5 
for No

Yes

Kb  k2 
coalesceNo

Yes

CONTINUE

Fig. 3.2 Continued (3)
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'Mb 0 

0 0

+ a
Aa 01 

0 0 +
Kt o
0 K.n

li 'xxr 0 
0 0 + k

A'l.v,,, A ' I tll 

N lmk 0
+ h N2tt 0 

0 0

■([ N \ mb 0

'JV2„, O' N2t i O'
+ +

« 0, 0. it 0 0.
(3.26)

or

^ [M 4] { t y t } i + t [G ] { iV 6} (+ ( ’A [ /g + | /H ] - [A > a7.]+ i|jv iA .,,,il + i[W 2 (l | , ) { i n } ,  

+(j|JVlfc»], +  [ « , , „ ] , )  W . , } ,  +  ([A'U',,,1. +  |A '2 „|„  +  |JV2»),){H't}i =  0 (3.27)

and

-I- [A 'U tU m } ,  + ^[Arl m/,],{lK t } ( =  o (3.28)

The inplane displacement can thus be expressed in terms of lateral displacement as

{H'rnl, = - [A '„ r ‘ ([A-1,„»L + jIA 'W ],) (VVi), (3.29)

Substituting Eq. (3.29) into Eq. (3.27), the following equation holds

^ W ] { i n } ( + ^|C.'l{li-i}( + (A[/l„| + (Ail -  [AW l ] +

+  lATCuUOVi}. +  ( |[A 'l,v .„ ], +  i[A '2 „ |, +  [jY **],,) {IK,},

-  (|[JVl»ro], + [JVlj.,,1,) [A',,.]-1 A/VU,}, + i[A'l,„,],) {H'l},

=  0 (3.30)

According to Eqs. (2.47) and (3.29), the following relation can be obtained,

[Arl jVm]/{ W b} J =  [A  1 tuu ], { 1 I'm }(

=  - [X h ,u } l [I<»i r 1 ( [A T mtL  + ^ [A 'l(IIi ] ^ { i y t } t (3.31)
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Finally, by substituting Eq. (3.31) into Eq. (3.30), the dynamic equation contains only 

one unknown vector, and can be expressed as

+  ( \ [ A tt] +  [ I<b] -  [A 'a 'a '/’] +  [ i V I + [ i \%b}3 -  [A H 6llJ]3[A'„.] " 1 [TV 1 r iii]3 , 

+  ( lX 2 bb\st -  l N l haU K n , r ll1 [ m mb]t -  [(V1 4 , „ [A' „ , ] “ 1 [iV 1 mfc]ŝ

+  Q l ^ ] ,  -  ^ l h n ] t[Kmr l [N \mi} ^  {Wb} t =  0 (3.32)

3.3,2 Linear Flutter

Equation (3.32) is a set of nonlinear ordinary differential equations. The equation 

for linear panel flutter with the effects of the temperature can be obtained from assuming 

small dynamic amplitude and neglecting nonlinear dynamic terms in Eq. (3.32) as

+ +  \Kb] -  [A'a'AV’] + [A'ltfmL, +  -  [.'VUm]s[A„,] 1 [iV lmfr]ŝ  { VVfi}4

=  0 (3.33)

Solving for linear flutter response can be described as: for a given temperature seek a

critical dynamic pressure Acr, at A =  Acr the panel amplitude starts to increase with time.

For solving the linear differential equation of Eq. (3.33), assuming

=  (3.34)

where {0 } is a displacement vector and the panel motion parameter, ft, is in general 

complex

SI =  « +  Aj (3.35)
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In Eq. (3.35), a is the panel damping rate and u> is the panel frequency. Then the 

Eq. (3.33) can be written in a nondimensional eigenvalue form

Without the aerodynamic loading, Eq. (3.36) degenerates into free vibrations of thermally 

affected plates, and eigenvalues i; are real and positive. As A is increased in value 

monotonically from zero, the symmetric, real stiffness matrices are perturbed by the 

skewed aerodynamic matrix [/!„] so that two eigenvalues /« i and k > approach each other 

until they coalesce to a value ncr at A =  Acro. For A > Acr„, the two eigenvalues become 

a complex conjugate pair

According to Eqs. (3.34) and (3.35), flutter occurs at the point that the panel parameter 

a has positive values and the panel amplitude increases exponentially with time. When 

a =  0, the corresponding aerodynamic pressure is denoted as the critical dynamic pressure 

Acr. In the absence of aerodynamic damping, ga =  0, Arr =  Acru. In the presence of 

ga, Eq. (2.31) may be expressed as

where /z =  paLjph  is the air-panel mass ratio and for »  1 the following 

approximation is used in deriving Eq. (3.39)

K[Mbm  =  (A[.4„] +  \Kh\ -  [ A W ]  + [.'VljVm],

-  +  [ A ' W M (3.36)

where according to Eqs. (2.59) and (2.60), [C»] = [Mi] and the eigenvalue is

i  /\U!0)  UJ0
(3.37)

(3.38)

(3.39)
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When A > Acrg, the complex eigenvalue is related to the panel motion parameters, a and 

u, Eqs. (3.37) and (3.38) become

K = Kji — IK]

+

n
-9 a  —  

UJu
•>

o. . /  _ a 
-  (hi ? I 2 hU.’d \  Ur’c I

(3.40)

The critical A is reached when a = 0, thus from Eq. (3.40) we have

(hi —  =  *  I  
W0

and

(Jit = '>'//\/^ /f (3.41)

Before dynamic pressure A reaches Acr, (ja > k-i ! \ / kTi and a is negative, the amplitude of 

the panel motion reduces with time to a static status. Beyond the critical dynamic pressure, 

da < Ki Iy /^ l t  and a is positive, the amplitude of the panel increases exponentially with 

time and flutter occurs.

33.3 Nonlinear Flutter

The limit-cycle flutter motions can be solved from Eq. (3.32) by using the following 

updated linearized eigen*solution procedure.
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a) Harmonic assumption

Assume harmonic solution as Eqs. (3.34) and (3.35) expressed,

{ W b} t =  {4>}cUl =  ea t {<j>}{cosul +  i sin u;l) (3.42)

where {^ }  is an eigenvector and (1 = cv +  iu  is a panel motion parameter. Noting 

[G] =  [A/;,] and using Eq. (3.37) to rewrite Eq. (3.32) as

(-K[A/*3 +  [A'i] +  [ I < l N ] +  [A'2Ar]){^}eUi =  0 (3.43)

where

[A ' i ]  =  X [ Aa] +  [A'i] -  [ A W ]  +  [AM.VmL +  ~  [Ar 16„ i ] s[A'f„ ] “ 1 [iV 1 „ j6] ,  (3.44)

is the total linear stiffness matrix,

[A l„ ]  =  [A'2„k, -  [A 'li„ ,U A \„ r ‘ i[A 'l„ ,ll], -  [A'llln],[A',„]-1[A'l,„l ]J (3.45)

is the total first-order nonlinear stiffness matrix, and

|A'2a ! = i[A'2«], -  |(A'U„,],[A-llt] -1[A']„lt], (3.46)

is the total second-order nonlinear stiffness matrix.

b) Linearization of nonlinear time functions

Seeking a stable solution for a constrained system, the harmonic response can be

chosen as either cos (ujt) or sin (u.’() and for a limit-cycle oscillation a =  0 in Eq. (3.42),

the nonlinear stiffness matrices [A'l/y] and [A'2,v] can be evaluated by

{ ]Yb} t =  { Q} c o ^ l  (3.47)

as

[A 1*] =  [AT.,] costot (3.48)
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(A'2,y] =  [A'2a'] cos2 aA (3.49)

where [A'Iat] and [A'2at] have the same fonns as [ A ' I a n d  [A’2.y] except using {$} 

instead o f { l-K} in evaluating element matrices. Equation (3.43) can now he written as

(—K[Mj]coswt +  [A'/Jcoswt + [A '!a '] cos'ud +  [/\2a'] cos3wf) {</>} =  0 (3.50)

In nonlinear vibration and flutter problems [67, 40], the nonlinear cubic time function 

cos3wf is often linearized by a trigonometric identity as

the term cos3u;< can be neglected based on the assumption that the dynamic response 

from high frequency is much smaller than the response of low frequency. Based on the 

same consideration, the NTF/LUM method [41] linearizes the quadratic lime function as

(3.51)

cos u)l

and

cos wi (3.52)

Substituting Eqs. (3.51) and (3.52) into Eq. (3.50), one has

(3.53)
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c) Linearized eigen-solution

Equations (3.53) can be treated as a nonlinear eigen-function where [A'lyv] and 

[A'2jv] are functions of eigenvector {<,•;}. It can be solved by an iterative linearized 

solution procedure.

For a given amplitude c, the initial vector {<f>} , is obtained from a normalized linear 

flutter eigenvector as

{d>, = c { t } L (3.54)

where the maximum element of the linear flutter eigenvector {<£}y has been normalized 

to unity.

Using an iterative procedure, re-evaluate the nonlinear stiffness matrices [A 'ljy ] . and 

|A'2jv]^ by updated eigenvector { ^, the (j  + 1) th iteration can be expressed as

« j+ i[M *]{0 }j+ i = + ^ [ A ' l  n ] j + {<?}>+] (3-55)

Using a linear eigen-solver with certain convergence criteria shown in Appendix A, one 

eigenvector and corresponding eigenvalue can be obtained. As a linearized solution 

procedure the eigen-solver produces all eigenvalues and eigenvectors in each iteration, 

but only one eigenvalue and eigenvector, which is used to evaluate nonlinear stiffness 

matrices, is the true solution.

To save computational time, an eigen-solver which solves for only one or few modes 

is needed.
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d) Limit-cycle response

For a given temperature and maximum panel deflection c, the limit-cycle motion 

happens when the dynamic pressure reaches a critical value, A = A;, This critical value 

is referred to a =  0 in Eq. (3.42). To obtain this limit-cycle dynamic pressure A;, a 

searching process has to be applied, which is similar to the process for determining Acr 

in Sec. 3.3.2. As for linear flutter, in the absence of aerodynamic damping, ga =  0, A/ has 

been reached when two eigenvalues coalesce or eigenvalue n becomes a complex pair, in 

the presence of aerodynamic damping, </„ ^  U, A; lias been reached when ga =  n j j  

as discussed in Sec. 3.3.2.

The difference between linear and nonlinear flutter is that the linear critical dynamic 

pressure Acr is deflection independent and the limit-cycle dynamic pressure Aj is deflection 

dependent. For a given A and initial amplitude <■{, i f  dynamic pressure A is less than 

the limit-cycle dynamic pressure Aj, (with deflection c,-{^};), A < A/,, n is negative 

(ga >  Kily/KR for </u ^  0), the amplitude of a panel decreases with lime. Since in 

nonlinear flutter the eigenvalue components mi and k / depend on the deflection, the 

value Kj/y/Jm also changes with time, until o =  0 (ga =  Kj /y /F j l  for ga /  0), with 

a new amplitude level which is corresponding to A. On the other hand, beyond the 

limit-cycle dynamic pressure A/,, A > A/,, o is positive (<y(1 < nj/y/tTH for g„ ^  0), the 

amplitude of the panel increases with time until the deflection reaches a new level with 

a  =  0. This panel behavior indicates that for a given dynamic pressure A(A > Acr), there 

is a panel oscillation with certain amplitude (deflection) and this oscillation is independent 

of initial conditions. Any initial deflection w ill finally result in a stable oscillation with 

a certain amplitude. This motion is the so-called limit-cycle oscillation.
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In the computation process, the amplitude is fixed, the dynamic pressure A changes 

until a =  0, A =  A/. A complete computational flowchart is given in Fig. 3.2.
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Chapter 4 

FINITE ELEMENTS

In this study, three types of elements are described. They are: an 8 degrees- 

of-freedom (d.o.f.) strip element; a 15 d.o.f. ‘DKT’ triangular element and a 24 

d.o.f. rectangular element. In the selection of elements, this research is focused on the 

application of ‘DKT’ element for nonlinear panel liutter.

4.1 Strip (2-D) Element

For a 2-D plate element, its width is assumed to be infinite. A strip with unit width is 

used for calculation. An 8 d.o.f. element with 4 bending d.o.f. and 4 membrane d.o.f. is 

shown in Fig. 4.1. The displacement functions are shown as follows

w =  a| +  a j x  -f (ij.f' +  u.\.r* -  [//«,]{<!(,}

= [ / / . M M

« — +  «7.r" +  <i s r 3 — [ / / u] { « m }

= [C1,„]{«?„,} (4.2)

where the bending and the membrane nodal displacement vectors are

= [«’i, n’i-i. “V ’ ] (4.3)

56
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* Displacement Functions
w = ai+a2X+a3X2+a4X3 = [Cw]{Wb} 
u = as+a6x+a7x2+a8x3 = [Cu]{wm}

* Element Displacements
{ W b } t = [ W l  W1 ,X  W 2 W 2 , X  ]

{Wm } 1 = [ Ui U i,x U2 U2,x ]

|  2 (W)
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< --------------
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Fig. 4.1 2-D  (Snip) dement
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V*{ l^m} =  [^11 (4-4)

The matrices [ / /u,], [//«], [7f,] and [ 7 are given in Appendix B. For evaluating stiffness 

matrices in Eqs. (2.41)-(2.52), the matrices [£•’„,], [C't], [C'y] are also given in Appendix 

B.

The formulation developed in Chap. 2 is based on 3-D plates, for 2-D plates the 

y coordinate should be removed from all matrices. The 2-D panels are divided into 12 

elements of equal length and a simply supported 2-D plate has total of 24 d.o.f. in bending.

4.2 DKT Triangular Element

In the selection of a suitable plate element, two factors tire considered to be important: 

accuracy and efficiency. Several elements have been applied to nonlinear panel flutter 

analyses [38-41] as mentioned in Sec. 1.2.1. In this study, a nine d.o.f. triangular element 

called ‘ DKT’ (Discrete Kirchhoff Theory) element is used for rectangular plates. Batoz 

[68] studied the DKT element and concluded that it is one of the most efficient, cost 

effective and reliable elements of its class for static bending. Batoz also shows that the 

convergence properties of the DKT element do not deteriorate with an increase in the 

element aspect ratio, which is not so for other elements. Therefore, the DKT element 

becomes quite attractive to users over other nine d.o.f. plate-bending triangular elements. 

However, DKT element has not received widespread adoption since its formulation might 

appear to be ‘strange-looking’ (mathematical expression is cloudy) [69], implementation 

complications [70] and difficulties in applications [71]. Lau, Cheung and Wu [72, 73] 

used a modified DKT element for solving thin plate nonlinear vibration with a generalized 

incremental Hamilton’s principle. In their DKT element, a problem dependent factor 

was introduced in the formulation. It may raise a question: for a problem without a
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comparable result, how to determine this factor? In this study, the DKT element without 

modification is adopted based on references [6 8 ] and [74], The DKT element (Fig. 4.2)

defines element shape functions due to slopes (see detailed derivation in Ref. [6 8 ]) as

=  Wx{Z,v)){u>b} (4.5)

= [ilyiZ, »/)]{«•’*} (4.6)

where j/ are area coordinates (refer to L2 and L3 in reference [75]) and the displacement 

vector {tuf,} is

7*{tl^ } =  [«?! , «>,! , Wyi , U'J, Wj-J, U’yj, W3, ilV.ll «Vl]

the nine components of shape function vectors, [ l l x] and [I/,,], are

l l x\ = —1.5(«uArG -  nsA's)

HX'i ~ N\ — C5N5 — CciVc 

HxZ — + b$N$)

U,j\ = -1.5((/6 AfG -  (/oA's)

Hg‘‘ =  — ( (J.j AVi +  /'o A 'jj)

l ly i  = A'i -  c 5 j\'r, — cqA'h (4.7)

The functions Hx i , l l x5, l l xc, l l yii, 119$ and 11 yG are obtained from the above

expressions by replacing Ari by Ar> and indices 6  and 5 by 4 and 6 , respectively. The

functions Hx7 , Hxs, Hxt), 11 y7 , 11,̂  and I Iyu are obtained by replacing N\ by and

indices 6  and5 by 5 and4, respectively. Also A ' i - A ;<j are given in Appendix C and
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Fig. 4.2 DKT triangular element
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a* = - x i j f f i j

h  =

Ck =

<k = - v a lH j  

Ck=

“  (;i7j + 2/0')

where fc =  4, 5, 6 for the sides i j  — 23, 31, 12 respectively, and

,1' i j  — .r, .t.'j

Vij =  U i - V j

According to Eq. (2.17), the slope transformation matrix [Ce] can be found as

[C$] =
WA

The curvature transformation matrix [C’t] can be derived [68] as 

I
[Cil =  ;2A

l / 3 i  [ / / x ] , j  +  yn[HA,t}

_ -x i i [H A c  -  xiAHA,,, +  i/si +  y

where A is the area of an element

(4.8)

(4.9)

(4.10)

(4.11)

'd .'l =  3'31 1/12 “  3-12 1/31 (4.12)

The matrices [//*],$, [7/£],t;, ant* are listed in Appendix C.

To develop mass and aerodynamic matrices the following displacement functions 

[75] are used,
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w =  [(?«,] {xut }

Z/j ( 1  +  2L'> +  2 L 3 ) +  2L\ L2L3 
Li(x-,nLz — xy>L->) + h l ' \L ‘>LAx‘i'i ~  •Tr.>)

(l/31 Z<3 — UViL-l)  +  h i- \^ 2 ^ ' i { .U ' i \  — 2/1■-')

Lo(l +  -Z>3 +  2Lj) + 2LiL>Lj  
L i ix iyL i  — X0 3 L 3 ) + L‘>Ls{x vi -  a’23) 4 1X7*2 (4.13)
^ 2 ( 2/ 1 2 ^ 1  — 2/2 3 Z/3 ) +  7 Z/ 1  —  2/ 2 3 )

■£3(1 +  2Lj +  2 L0 ) -\-2L \ L > L 3 
Ll(*23£2 — 3:31 I / i )  +  ^LiLoL^XTi ~  £31)
^3(2/23^2 -  2/31^l) +  \L\L->i^{iJ-n ~ 2/3l)

where L \ , L i i  £ 3  are area coordinates.

The derivative matrix whiclt is needed in the derivation of the [«(t] matrix

is listed in Appendix C. The membrane displacement functions are linear functions of 

the nodal displacements 175]

1 / \
XUl

It’l l

w->

<

Wy2
XX>3

WrZ

k XUy3

f u ■) f Q'l +  CV2 x +  0 3 y 1

I v /  \  q.i +  os£ +  002/ J
r i i  z»2 £ 3  0  0  0

0 0 0 L j L'2 7 .3

( '  1
r , {«•’»»! }L'11

XX1 
«2 
«3  

X’l 
( > >

f’3 (4.14)

The inplane strain vector {cm} is

M  =

where

S«T

. l l ,!l +  (V  .

= [C'r„][xD,. (4.15)

I
2/23 2/31 «12 0 0 0

0  0  0 ■1'32 .(• 13
~  -2/1

. •X‘32 3; I3  *X'21 2/23 2/31 2/ 1 2 .

(4.16)

With the information o f [Cu,], §j[Cu\,  [Co] and [Ct], all the finite element matrices

can be evaluated from Eqs. (2.41)-(2.61). A half-plate example has a symmetric 3x8x2 

mesh (see Fig. 4.3). For a simply supported plate, there are 69 bending d.o.f.
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Fig. 4.3 DKT element mesh
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4.3 Rectangular Plate Element

The rectangular element used in this study is a 24 d.o.f. plate element (see Fig. 4.4). 

This element showed reasonable accuracy and efficiency in former studies [76, 77]. It 

is a conforming element which has a bi-cubic interpolation function for the transverse 

displacement, w, and a bi-linear function for the inplane displacements, u and v.

w =  a\  +  azx  +  asy +  (qx" +  ii'yxy -f aciT +  G'X'3 +  “ &x2y 

+  a^xy2 +  aJ0y3 +  rtnx'Sy +  a\2X2y~ +  a ^ x y 3 + <iux3y2 

+  0 1 5  x2 y3 + fiic.r3 ? ;3 

= [Hw]{ab]

=  [Ctt,]{uy,} (4.17)

H  =  « m l  +  U n i > X  +  U , n M I  +  « , „< 1 X I /  ~  [ 7 / „ ] { « , „  }

v =  tt„,5 + flmC-r + <h„~U + «|,|8-HJ = [//,,]{«„. } (4.18)

D  =

I L
1U

where

Hu [7’„, ]{«.’„<} (4.19)

A{lUi} =  tuo, «J3, tU-l, U?X 1 . . . W y l  . . . l O x y l  . . . IUXJ,4 ] (4.20a)

'P
{u?w} =  [«|,tio, li:J, iq , Vi, t’2 , t’3 , »m] (4.20b)
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Fig. 4.4 Rectangular element
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The inplane strain vector is

{<■,„} = ! v y 1 =  [C(„]{tt>„,} (4.21)
I  v,r +  U,y j

The matrices, [Tj], [T,„] as well as [C,,,], [C,,,], [C,„], [C't] and [C'o], which are required

by Hq. (2.41)-(2.61), for a rectangular element are given in Appendix D.

A simply supported half (3x8) square plate has total 96 bending d.o.f.
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Chapter 5

NUMERICAL RESULTS AND DISCUSSION

In this chapter, numerical results are provided for several examples mentioned in 

Chap. 4. To verify the accuracy of the finite element formulation and the solution pro

cedure, results are first compared with Dowell’s [91 six-mode time numerical integration 

results. Dowell’s results have also been compared with many other solutions [40-42], 

Panel stability boundaries are presented for different temperature distributions and plate 

aspect ratios. An illustration of limit-cycle motion is first shown in the frequency do

main solution for nonlinear panel flutter. Three different temperature distributions arc 

considered in the numerical examples. They are: (1) a uniform temperature Tu, (2) a non- 

uniform temperature with only inplane variation and (3) a complete non-uniform

temperature T{x,y,z).

5.1 Two-Dimensional Plate

As the first example, a 2-D plate has been investigated using the strip element 

described in Sec. 4.1. Three temperature distributions are obtained from a general 

expression:

A W f  \  r r  , f T n +  , T u  -  T i  \  . 7TXA r ( i , : )  =  i „ - f  I — -—  +  — - — - J s in —  (5.1)

where Tu is the temperature at upper surface of the panel ( r  =  4) and Ti is the 

temperature at the lower surface (c =  —7 ). The three temperature cases are

67
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1) Uniform, A7\ =  T0

2) Sinusoidal, AT‘>(x) =  7’sin (5.2)

where T0 =  0 and Tu =  7',- =  T  lire assumed.

3) Sinusoidal variation with x and linear variation with c,

(5.3)

by setting Ta =  0, 7’, = 0 and T„ =  T.

Solution convergence is examined first by using various degrees of mesh refinement 

for a simply supported 2-D plate subjected to a uniform temperature T0jA T cr =  7.0 and 

a dynamic pressure A = 103.318 (or , \ / 7r'f =  3 \ / l /8 )  and observing the difference 

in critical buckling temperatures, aero-thermal postbuckling deilections and stresses, 

and critical dynamic pressures. All elements are taken to be of equal length in the 

analysis (Table 5.1). It was found that there is approximately a 2,13% difference 

between the eight-element solution and the twelve-element solution, whereas there is 

less than 0.78% difference between twelve and sixteen-element solutions in maximum 

stress. The percentage differences in critical temperature, postbuckling deflection, and 

critical dynamic pressure are much smaller than those in maximum stress. Therefore, a 

twelve-element model is used for the results presented in the following sections. The 

material properties o f the 2-D plate are:

Young’s modulus 
Poisson’s ratio

Mass density
Coefficient of thermal expansion n =

E = 10.4x 106 psi 
// = 0.3
n = 12.9x 10'() in./in./°F 
!> = .261658xlO'3 lb-sec2 /in . 4
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Table 5.1 Comparison o f different element meshes for simply supported 2-D  panels

Element mesh Difference % between elements of

8 1 2 16 8  and 1 2 1 2  and 16

Ws/h  (x=0.5L) 
at A T /A T cr = 7.0, 
A « 103.318

1.0620 1.0614 1.0613 0.060 0 . 0 0 1 0

k (cjh -  0 .0 ) 
at A T IA T ct = 7.0, 
A = 103.318

202.7141 202.0195 201.9055 0.343 0.056

Maximum Stress (psi) 
at A T /A T Cr = 7.0,
A = 103.318

3319.6619 3248.9212 3223.7589 2.131 0.774

A CT 285 285 285 0 0

t'l
at AT/ATcr  = 2 .0 , 
c/h -  0 . 0

767.5043 767.9667 768.0457 0.0602 0.0103

A/ 193.3875 191 191 1.036 0

m
at AT/ATcr  = 2.0, 
c/h ~ 0 . 6

424.2135 422.1536 422.1508 0.486 0.0065
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The 2-D panel dimensions are:

Length
Thickness

L =  12 in. 
h = 0.064 in.

5.1.1 Critical Temperature

Using the computational flowchart shown in Fig. 3.1, the critical temperatures can 

be determined from a linear thermal buckling analysis. From Eqs. (3.14), (3.17), (2.45) 

and (2.53), it can be seen that the temperature distributions A 7 -2 (a ) and A Ti(x,z) have 

identical critical temperatures. The exact critical temperature for 2-D plates with simply 

supported or clamped edges can be obtained from the expressions

Results from finite element solutions and the exact solutions are given in Table 5.2. The 

finite element results agree extremely well with the exact solution results.

5.1.2 Aerodynamic-Thermal Postbuckling

For a given aerodynamic pressure A and temperature A T, the postbuckling deflection 

can be obtained from Eq. (3.12) by using a Newton-Raphson iteration procedure 

described in Sec. 3.2.2. The relations among the nondimensional mid-chord deflection 

jjr iy a2, aerodynamic pressure A and temperature ratio AY'/A7'cr of a simply supported 

panel are shown in Fig. 5.1 for A7’|, A7;j(a-) and Fig. 5.2 for A 'i^ r ,  c).

The solution obtained by Houbolt [45] using a two-mode Galerkin method is also 

shown in Fig. 5.1. Good agreement exists for low values of dynamic pressure (A < 

103.318 or A /7T4 < 3^/l/S ), but not for high dynamic pressure (A >109.585 or 

A /7r4 >  9/S). An explanation is that more than two modes are needed at high dynamic 

pressure for Galerkin method, because the panel deflection is more complicated (see 

Fig. 5.3). In Fig. 5.1, each curve represents the aerodynamic-thermal postbuckling

simply supported 
clamped

(5.4)
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Table 5.2 Comparison of critical buckling temperature for 2-D panels

A  T{x)

Critical temperature °F

Exact solution 
Eq. (5.4)

Finite element 
method

Simply Supported

Uniform T0 1.395028 1.395037

T s i n f 2.191305 sin ^ 2.191319 sin ^

Clamped

Uniform T0 5.580112 5.580686

T  sin *£• 8.765219 sin ^ 8.766120 sin ^
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2-MODE GALERKIN'S METHOD 
12-ELEMENT SOLUTION

81.680

A  103.318

109.585

109.585
114.163

UNSTABLE

1 41 0 1 20 2 4 6 8

AT/A Ter

Fig. 5.1 Midspan deflection as function of flow velocity and uniform or 
A T(x) temperature for a simply supported 2-D panel
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Fig. 5.2 Midspan deflection as function of flow velocity and temperature 
&Ta(x, c) for a simply supported 2-D panel
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behavior of the panel for a specific value of dynamic pressure A, and the curve for A = 

0 represents an elastic thermal postbuckling problem. It can be seen that in the region 

where A T /A T cr < 1, the panel remains fiat and there is no buckling deflection. In the 

region where 1 < A T jA T cr < 2.542, the increasing of the dynamic pressure A w ill result 

in reduction of the deflection of the buckled panel to zero, the bucked panel is blown flat. 

In the region where A T /A T cr > 2.542, increasing A will reduce the buckled deflection 

until it reaches a static stability boundary at A = 114.163 (or A/ - ' 1 = 1.172). Beyond 

this value, the static instability will occur. In the finite element solution procedure, 

the iterations will not converge due to this instability. The determination of stability 

boundaries are shown in the next section. It can also be seen in Fig. 5.1 that the relation 

between the square of deflection and the temperature change is linear as those obtained 

by Houbolt’s two-mode Galerkin method. However, a nonlinear relation was obtained 

in Ref. 46. Similar deflection curves are plotted in Fig. 5.2 for temperature distribution 

A T 3( x ,  z ) .  The results of A7;ri.i:,_) are different from those of A 'i\  and A'l'^ix) in 

that the panel w ill never be blown flat and the linear relations no longer exist. This is 

because of the effects of thermal bending moments. The postbuckling deflections { H ^  

of a simply supported 2 -D panel at various dynamic pressures, and at A T /A T cr = 3.0 or 

7.0 are shown in Figs. 5.3(a), (b) for A7‘| and A7’_>(.r) and Figs. 5.4(a), (b) for AT^(x,z) 

temperature distributions. It is interesting to note that the maximum deflections occur 

near the 2/3 length of the panel for A ^  0 . The deflections are larger for the ATz(x, z) 

distribution due to the thermal bending moments. Also it can be seen that an increase in 

velocity A (dynamic pressure) will reduce the buckled deflection.

5.1.3 Limit-Cycle Responses

Flutter response of a panel can be obtained by solving Eq. (3.55) following the 

computational flowchart in Fig. 3.2. A simply supported 2-D plate has been investigated.
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a) Limit-cycle illustration

As mentioned in Secs. 3.3.2 and 3.3.3, the critical and limit-cycle dynamic pressures 

are obtained at the coalescence of two eigenvalues. Figure 5.5a shows the results for 

a simply supported panel at A T /A T cr — 2 . 0  (A 7) or A7-_>(.r)) with different given 

maximum amplitudes, c/h = 0.0, 0.6 and 0.8. Why is the panel motion called “ limit- 

cycle"? To illustrate this limit-cycle motion an example is chosen under a given condition 

of A T /A T ct = 2.0 and A = 285. For an arbitrary given initial condition c/h = 0.8, 

Eq. (3.55) gives a solution at point bi. According to the analysis given in Sec. 3.3.3, 

bi has a negative damping rate n, thus the amplitude will decrease with time until it 

reaches ai which is the coalescense point corresponding to c/h = 0.6 and cv = 0. On 

the other hand, i f  an initial condition is given such that c/h is less than 0 .6 , the solution 

has a positive a, the amplitude will grow up until it reaches the point ai with c/h = 0 .6 . 

Figure 5.5b gives a phase-plane plot to display the limit-cycle motion, cycles bi and aj 

denote points bi and ai in Fig. 5.5a. It also can be seen in Fig. 5.5a that all points at bi, 

Cj, d; and e; w ill be dampened or excited to points a; depending on whether their a  is 

negative or positive. It is concluded that for a given dynamic pressure A and temperature 

ratio AT/ATc r , there is a unique limit-cycle motion with a corresponding amplitude and 

frequency and it is independent from the initial condition. When A < Acr the amplitude 

o f the limit-cycle is zero, which refers to a linear oscillation.

b) Eigenvalue and amplitude vs. dynamic pressure

As the results of the above illustration, the relations of eigenvalue and limit-cycle 

amplitude vs. dynamic pressure for a simply supported panel with different temperatures 

are plotted in Figs. 5.6-8 for A 7 \, AT->{x) and in Figs. 5.9 and 5.10 for AT 3 (x,e). 

These curves correspond to a stable status (points o f UjS in Fig. 5.5a). For A > Acr,
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Fig. 5.8 Dynamic response of a simply supported 2-D panel at A T (x ) /A T cr = 3.2
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they refer to limit-cycle motions, and for A < Xcr, they are flat or buckled panels with 

negligible small amplitude vibration and the two lowest eigenvalues are k\ and K2.

In Fig. 5.6, the coalescence of the lirst and second eigenvalues occurs at Acr = 343.35 

for AT/ATc- = 0. Classical analytical methods established coalescence at 343.36. Thus, 

the finite element result compare extremely well with classical solutions. The effect of 

temperature on panel flutter behavior can be seen in Figs. 5.7 and 5.8, the critical dynamic 

pressure drops drastically to A(r = 190.92 at A7 '(.r)/A '/]T -  2.0. The panel is thermally 

buckled at A T (x ) jA T cr = 2.0 and A = 0. As A increases, the aero-thermally buckled 

deflection {W } 4 and the eigenvalues u i and « 2  all decrease. When A reaches the value 

o f 103.35, the panel becomes flat and the lowest eigenvalue is zero. As A increases 

further, the panel remains flat and the two eigenvalues approach one another and finally 

coalesce at Acr = 190.92. As A exceeds the critical value, limit-cycle panel motions occur 

and each A corresponds to a certain amplitude.

In Fig. 5.8, the critical dynamic pressure reduces to the smallest critical dynamic 

pressure, Acr = 114.163, at A7'(a-)/ATcr = 3.2. The panel is thermally buckled at 

A T (x )/A T cr = 3.2 and A = 0. As A increases, the aero-thermally buckled panel flattens 

out. When A reaches Acr, the panel deflection and the eigenvalues k \ and « 2  arc all 

zero. As A increases further from the critical value, the panel goes immediately to the 

limit-cycle motion. The limit-cycle amplitudes c/h = 0.2, 0.4, 0.6, 0.8 and 1.0 (also the 

total panel deflections since {IKj-j -  0 ) are indicated on the limit-cycle curves.

c) Comparison with time-domain solutions

A  comparison is made with Dowell’s six-mode limit-cycle oscillation results (Fig. 8  

of Ref. [22]) obtained by numerical time integration. However, since the finite-element 

formulation presented in this study differs slightly from the formulation presented in Ref.
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[2 2 ], the finite-element inplane stiffness matrices were scaled by ( l  — i/2) to correlate 

with Eq. (1.4) of Ref. [22]. This comparison is shown in Fig. 5.11 for several uniform 

temperature changes A T /A T cr {= in Ref. [22]) of 0, 1.0, 2.0 and 3.0. The

present finite-element results agree extremely well with Dowell’s results.

5.1.4 Total Deflections vs. Dynamic Pressures

The total deflection Wmax/h  (at x = 0.75L) versus dynamic pressures A with different 

A T {x ) /A T ct tire plotted in Fig. 5.12. The curves on the left side are static deflections 

obtained from Eq. (3.12), since for those cases, A has not reached the critical value and the 

flutter (limit-cycle oscillation) has not started ( { I I ’ }, = 0). On the other hand, the curves 

on the right side are dynamic maximum amplitudes obtained from Eq. (3.13) only, since 

for those cases, the panel has been blown flat ({1K } 3 = 0) already. The discontinuities of 

the curves for temperature ratios over 3.2 (e.g. AT(.r)/A'J'cr = 4.0 or 7.0) are due to the 

chaotic area (Fig. 5.14). It can be considered that the chaotic motions are bounded with 

a static deflection (H/s)lliax//t <1.1 and a dynamic amplitude c/h < 1.5 for temperature 

ratio of 7, and both (H/ra)max//f and c/h are within 0.65 for temperature ratio of 4.

A similar plot for the temperature distribution ATs(-x,: )  is shown in Fig. 5.13. Since 

the panel is no longer blown flat beyond critical dynamic pressure Arr, the total deflection 

is the sum of the static deflection and the limit-cycle amplitude, w = ivs +  u>j.

5.1.5 A Map of Panel Behavior, A vs. ATlATcr

Figure 5.14 is a map of dynamic pressure A vs. temperature ratio AT/ATcr for a 

simply supported panel subjected to a temperature distribution A 'l\ or ATo(x). It shows 

the complete behavior of the panel. For easy understanding, the corresponding phase 

plane plottings of different regions of Fig. 5.14 are attached in Fig. 5.14(a).
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Two stability boundaries can be found for a panel subjected to combined aerodynamic 

and thermal loads as discussed in Sec. 1.2.3. A flutter boundary can be obtained by 

solving Eqs. (3.36) and (3.41) and a snap-through region can be obtained by checking the 

determinate of the tangent matrix [AV] in Eq. (3.22) according to the adjacent equilibrium 

criterion.

In Fig. 5.14, curve DA is the flutter boundary and the snap-through chaotic area is 

bounded by curve BAEF. With the examination of the static equation (Eq. 3.12), the 

line CAEG divides the buckled and the flat plate regions. In the region above CAEG, 

Eq. (3.12) gives a converged trivial solution, {IK }* = 0, and the panel is flat. The region 

below the curve CAB, Eq. (3.12) gives a converged non-trivial solution ({VK}a ^  0), 

and the panel is buckled. Within the area of BAEF, bifurcation occurs and Eq. (3.12) 

fails to have a converged real solution ({IK }, is undetermined). With the examination of 

the dynamic equation, Eq. (3.13), it is found that there is no flutter motion in the region 

below the curve DAB. The panel remains in an equilibrium position. In reality, any 

disturbance can only cause a small-amplitude vibration. In the region above the curve 

DAEG, Eq. (3.13) has a converged limit-cycle solution, the panel oscillates from a flat 

static equilibrium position ({ IK }, = 0), and harmonic motion is obtained. Any initial 

disturbances can lead the panel to oscillate with a certain frequency and an amplitude 

corresponding to the given dynamic pressure A and temperature ratio A T (x )/A T cr. In 

the region o f GEF, Eq. (3.13) is solved based on a buckled panel and a non-harmonic 

periodic motion is expected. In the area of BAEF Eq. (3.13) does not have a convergent 

solution, {VKj} is undetermined and snap-through or chaotic motion happens [48-50]. 

The importance of the static equation, Eq. (3.12), is that it can not only deal with static 

equilibrium, but also determines the nature of the dynamic solutions due to the coupling 

o f Eqs. (3.12) and (3.13). The snap-through boundaries of a panel could be traced out
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by applying Eq. (3.12) with increments of temperature and dynamic pressure. These 

boundaries exhibit trends similar to other analytical solutions [22, 45]. In Fig. 5.14 DA 

is a critical flutter boundary obtained from Eq. (3.33) or from Eq. (3.55) with trivial 

amplitude, c = 0. With the increase of dynamic deflection cjh, parallel like curves 

could be drawn in the limit-cycle region of DAG. It can be considered that the values 

at the low ends of those curves bound chaotic motion. In the statically buckled area 

FEG, a non-harmonic periodic motion should be expected. This is physically due to the 

non-trivial deflection {Wa} and mathematically leads to a quadratic nonlinear term in 

Eq. (3.13). The LUM/NTF solution procedure also approximates this quadratic term to 

a simple harmonic term, therefore this approach still gives a harmonic approximation. 

More accurate methods (time integration [22], harmonic increment [43]) are needed to 

analyze the non-harmonic motion but would increase computation time. It is found 

that at moderately large dynamic pressure A and temperature A T /A T cr, some dynamic 

instability could be reached. At that time, Eq. (3.13) can not give a converged solution 

in the iteration. This phenomenon was also observed in the time-integration solution 

[22, 48].

Figure 5.15 is a similar map for the temperature distribution A '/^a-,;;). Due to the 

thermal bending effects, the panel deforms all the time, there is no flat panel in any 

region. Also in the limit-cycle areas of Figs. 5.13 and 5.15, solutions are based on a 

harmonic motion assumption as mentioned previously.

5.1.6 Stability Boundaries

Figure 5.16 shows the effects on stability boundaries of different temperature distribu

tions for a simply supported panel. In Fig. 5.16, the subscript o denotes the temperatures 

A 7 j and A ^ x ) ,  subscripts 1 and 2 refer to A T ^x ,  c) for k = 1 and k = 2 in Eq. (5.3).
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Curves DAi represent flutter boundaries and BiA iE  denote boundaries of snap-through 

motion. It can be seen that the panel with a larger thermal bending moment is more 

stable, its flutter and the snap-through areas are smaller. Figure 5.17 shows the stability 

boundaries for two different boundary conditions, simply supported and clamped, under 

uniform temperature and A 7 ’2 (x) distributions. As expected, the panel with more 

constraints is more stable. The clamped panel is more stable than the simply supported 

panel.

5.1.7 Stress Results

Since a panel may have a static deflection or a limit-cycle oscillation in different 

regions as shown in Fig. 5.14, corresponding static and dynamic stresses can be calculated 

from Eq. (2.20). The dynamic cyclic stresses are related to a fatigue life analysis and 

w ill be discussed in Chap. 6 . In this section, the static stresses of a simply supported 

panel subjected to temperature A 'l \  or A T>(x) are investigated.

Stresses (static) at the top and bottom surfaces (± /t/2) of the simply supported panel 

at A T /A r cr = 7.0 and A = 0, 103.318 and 114.163 are shown in Fig. 5.18. The maximum 

stress moves from the midspan (A = 0) to the location of 3/4 span when A increases. 

The maximum compressive stresses are larger than maximum tensile stresses, because 

the membrane stress of the panel is compressive. Examining Figs, 5.3 and 5.18 reveals 

that the largest maximum stress occurs at A = 114.163 (static stability boundary) whereas 

the panel deflection is the least, but the panel curvature is the largest.

Figure 5.19 shows the stresses of a simply supported panel at an air flow of A = 

103.318 and uniform temperature and A 'A(.r) changes A7'/A7'cr = 3.0, 7.0 and 11.0. It 

is clear from Fig. 5.19 that the higher the temperature rise, the higher the stress becomes.
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The stress at x/L = 3/4 and deflection at x/L = 2/3 as a function of uniform temperature 

change and flow velocity are shown in Fig. 5.20. Although panel deflection decreases 

when air flow velocity A increases, the maximum stress still increases for A T /A T cr 

> 7.0. This occurs because the higher air velocity will produce larger panel curvature 

which causes higher stress.

5.1.8 A Summary of Temperature Effects

a) Temperature distributions A7) and A7’>(x)

For a given 2-D panel with certain boundary conditions subjected to two different 

temperature distributions A7’( r )u and A T[.v)b, it is found that although the critical 

temperatures are different (A7'rr) j ^  (A7<-,)i, their average values are identical, i.e.,

Equation (5.5) is useful. It implies that the critical temperature of any arbitrary tempera

ture distribution can be determined from the critical temperature of a uniform temperature 

distribution (Table 5.2). Thus, the critical temperature of a simply supported beam under 

sinusoidal temperature distribution is

Furthermore, for the case of same temperature ratio

the panel responses are identical, except for inplane displacements. In former sections 

since the temperature ratio A7’(.r)/A7'cr is the chosen parameter, temperatures AT)

(5.5)

or
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and AT^ar) thus have the same results. A comparison of the results for a 2-D simply 

supported panel is given in Table 5.3.

b) Temperature distribution A Tz(x,z)

i) With a temperature distribution A7’3 ( ; r , a  panel has the same critical temperature 

as with temperature AT^a-) as mentioned in Sec. 5.1.1.

ii) A panel subjected to temperature A7’3 (:r,r) has a thermal bending effect, which 

stabilizes the panel as shown in Fig. 5.16.

iii)  Due to the effects o f thermal bending, the panel deforms all the time, no flat 

equilibrium exists.

A 3-D rectangular plate is modeled by using the DKT triangular element and the 

rectangular element introduced in Chap. 4. The finite element results are compared 

with the time integration solution for demonstrating the accuracy of the present solution 

procedure. The flutter behavior o f 3-D plates was obtained by using DKT elements 

except for a few cases.

Similar to 2-D plates, the general temperature distribution is expressed as

5.2 Three-Dimensional Rectangular Plate

(5.7)

The considered temperature cases are

1) Uniform A'J\ =  Ta

2 ) A 7 M * , ^ )  =  y ( l - c o s (5.8)

3) (5.9)
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Table 5.3 Comparison o f uniform (T0) and sinusoidal temperature (Tsin i tx /L )  distributions on

nonlinear flutter results for a simply 2-D supported panel

A  T(x) 
ATcr(.r)

AT(.r), ° F
A Wa 2L

h at 3
u 2L 
— at —- 
It 3

3L , .
cr at — , ksi 

4
K

c
h

7.0 T0 = 9.7653 0 1.2248 0.003628 1.3471 - -

7.0 T = 15.3392 0 1.2248 0.006187 1.3470 - -

1 1 . 0 T0 = 15.3454 a
a 1.6189 0.013847 4.7245 - -

1 1 . 0 T = 24.1045 a
X

1.6189 0.017868 4.7246 - -

2 . 0 T = 2.7901 1.9608* 0 . 0 0 . 0 -0.5347 422.1536* -

2 . 0 T = 4.3826 1.9608* 0 . 0 0.000047 -0.5347 422.1536* -

2 . 0 T = 2.7901 4.8661 + 0 . 0 0 . 0 5.4032 1486.9967+ 1 . 0

2 . 0 T = 4.3826 4.8661 + 0 . 0 0.000056 5.4032 1486.9967+ 1 . 0

^Critical dynamic pressure Acr/ 7r4 and critical eigenvalue ncr. 
+Limit-cycle dynamic pressure A //tt4 and limit-cycle eigenvalue kj.
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) (5.10)

(5.11)

where 0 <  k <  2, — h/2 < z <  /i/2. A ll the temperature distributions are formulated for 

a half-plate since the panel is symmetric about the x-axis, Fig. 4.3.

A mesh o f 8x3 for the half-plate is adopted for rectangular elements and a mesh 

of 8x3x2  for the half-plate, Fig. 4.3, is used for the DKT triangular elements. The 

material properties are taken as

5.2.1 Critical Temperatures and Effects of Temperature Differential

As for the 2-D panel, the critical temperatures of a 3-D panel can also be obtained 

from solving Eq. (3.17). The critical temperatures for different temperature distributions 

are listed in Table 5.4 for a simply supported square plate. From Table 5.4, it can be 

seen that the DKT element gives accurate critical temperature. It is also noticed that for 

different temperature distributions the critical integral average values, f  ATcr{x,y)dxdy, 

are not equal. A relation similar to Eq. (5.5) does not exist for 3-D panels. This implies 

that an equivalent mechanical loading is hard to be found for non-uniform temperature 

in 3-D plates. Although the equal critical integral average values do not exist for 3-D 

panels, the conclusion in Sec. 5.1.8(a) still holds for inplane temperature variations for

Young’s modulus 
Poisson’s ratio
Coefficient of thermal expansion 
Mass density

E = lO.Ox 106 psi 
v =0.3
a = 12.5 x lO ' 6  in./in./°F 
P = 0.2588x 10' 3 lb-sec2 /in . 4

The 3-D panel dimensions are:

Length
Width
Thickness

a = 1 2  in. 
b = 1 2  in. 
h = 0.05 in
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Table 5.4 Critical temperature of a simply supported square panel 
with different temperature distributions

A Ta A ? 5  and A7V 
[Eqs. (5.8) and (5.10)]

A7g and A7g 
[Eqs. (5.9) and (5.11)]

rectangular element

3x8 1.757468 5.219418 3.516656

DKT element

3x8x2 1.766503 5.307396 3.549326

exact 1.757480 - -
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square plates. That is, i f  two different temperature inplane variations, A7’(x, y)a and 

A T(x, y)b, have the same ratio to their critical values, i.e.,

A7 \ x ,y )u AT(x ,y)b
ATcr{.v,y)a ATc,(x ,y )b

their critical flutter responses, Acr and A/, are same.

Table 5.5 shows flutter results for simply supported panels for u/b = 1 and 2 and three

temperature distributions. It can be seen that the differences between flutter responses

for different temperatures on a square plate are mostly less than 5%. Similar results can

also be observed in thermal postbuckling from Fig. 5.18 of Ref. [78j. Two curves are

plotted for different temperature distributions of clamped square plates in the figure of

deflections vs. thermal loads. I f  plotted by A7'/A7'£T, two curves are identical.

For a rectangular plate ( « / 6  ^  1), however, the above conclusion may not be true.

In Table 5.5, the differences between flutter responses for different temperatures of a

rectangular plate are larger.

5.2.2 Comparison with Time-Doniain Solutions

Figure 5.21 shows the comparison of the present finite element and the time domain 

solutions [2 2 ] on the relation of limit-cycle maximum amplitude vs. dynamic pressure at 

various uniform temperatures. The maximum amplitude is located near the point x =  

and y =  0. Good agreement is obtained for both rectangular and triangular elements. 

In this comparison, the relation between mechanical loading (/?r =  Rg) and uniform 

temperature is:

- f e  =  i£  (5-13)
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Table 5.5. Comparison o f flutter results o f simply supported rectangular panels with different temperature distributions

E-?il<
1 II£<

1 i 2srxV i  i ~y \
1  C0S a J O + ' O 5 J

A ^  rr, . xn y~ 
ATS =  T0 sin —  cos —  

a 2b

a/b=1 . 0

t> 1.766 5.307 3.549
Ac,(at AT/ATcr = 0 .8 ) 371.093 364.623 368.681
Ac,(at AT}ATcr = 1.2) 309.117 301.275 307.068
A,(at ATIATcr -  2.0, c/h = 0.4) 226.500 216.590 225.084
A/(at AT/ATCr = 2.0, c/h = 3.0) 399.093 379.139 390.363
Wsfhfat AT/ATcr = 3.0, A = 100, 1.145 1.223 1.191
x = L/2, y = 0)
WJh(at AT/ATcr = 3.0, A = 180, 0.967 1.005 0.995
x = Lf2, y = 0)

a/b = 2 . 0<1 4.428 12.882 8.755
A/(at AT/ATcr = 1.5, clh = 0 .6 ) 536.250 557.889 552.750
A/Cat AT/ATcr = 1.5, c/h = 1 .2 ) 1108.121 1012.300 1040.625
Ws/h{at AT/ATCr = 3.0, A = 180, 1 . 0 1 1 1.161 1.106
x = L/2, y  = 0)
Ws/h{at AT/ATCr = 5.0, A = 300, 1.365 1.661 1.557
x = Lt2. y = 0)

o
VO
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Fig. 5.21 Comparison of finite element and time integration (six modes) 
limit-cycle results for a simply supported square panel
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5.2.3 Dynamic Pressure vs. Temperature

The map of dynamic pressure vs. temperature in a 3-D plate with a uniform 

temperature distribution was obtained using DKT elements and is plotted in Fig. 5.22. 

It can be seen that the flutter behavior of a 3-D panel is similar to Fig. 5.14 for a 2-D 

panel. Thus, the stability boundaries and different panel regions can also be understood 

as those introduced in Fig. 5.14.

5.2.4 Effects on Stability Boundaries

a) Effects of thermal bending

When a temperature distribution varies through the panel thickness (A7’s and ATg), 

it w ill produce a thermal bending moment in the plate. Figure 5.23 shows the effects of 

this thermal bending on stability boundaries for a 3-D plate with different temperatures. 

Figure 5.23 was obtained by using DKT elements. In Fig. 5.23, the curves A1 and A2 

with k = 1 or 2 refer to Eq. (5.8) of temperature A 7 H (;r .c ). Curve AO corresponds to a 

uniform temperature. It can be seen that the temperature differential across the thickness 

stabilizes the panel and reduces the flutter areas.

b) Effects of aspect ratios

In Fig. 5.24, the stability boundaries are given for panel aspect ratios a/b = 1.0 

and 2.0. These results were obtained by using DKT elements for a simply supported 

panel subjected to uniform temperature A 'A . The critical temperature A!Fcr (°F) equals 

1.766503 for the case of a/b = 1.0 and 4.428412 for a/b = 2.0. The panel with higher 

aspect ratio is more stable.
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Fig. 5.22 Stability boundaries and limit-cycle amplitudes of a simply 
supported square panel with uniform temperatures
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Fig. 5.23 Stability boundaries of a simply supported square panel 
at temperatures A = y  (I -  cos ^ p ) ( i  +  cos ^ ) ( 1  + 
with k = 0 , l and 2
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Fig. 5.24 Stability boundaries of simply supported panels with the aspect 
ratios, a/b = 1 and 2 , for uniform temperatures
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c) Effects of boundary conditions

Figure 5.25 shows the stability boundaries of simply and clamped supported square 

panels. The considered temperature distribution is uniform A7!j. The result shows that 

the more restrained panel is more stable. The minimum critical dynamic pressure (A) of 

a clamped panel is higher then that of a simply supported panel (A).

5.2.5 Deflection vs. Dynamic Pressure

The total panel deflection vs. dynamic pressure for a simple supported 3-D square 

panel with uniform temperatures is plotted in Fig. 5.26. The general nature of the 

results is same as that of the 2-D panel, Fig. 5.12. The curves at the left side of the 

figure are static deflections, and those on the right side are limit-cycle amplitudes. The 

disconnection o f curves at higher temperature is due to the snap-through and chaotic 

motions.

5.2.6 Panel Deflection

It has been known that before the dynamic pressure reaches to its critical value Acr, 

a panel has a buckled deflection due to temperatures and aerodynamic pressures, while 

beyond Acr, the panel has a limit-cycle oscillation. Several selected panel deflection 

shapes are shown in Figs. 5.27-5.30. Figure 5.27 shows the buckled deflections of a 

square plate at a uniform temperature A T /A T cr = 3.0 for dynamic pressures A = 0, 100 

and 200. Figure 5.28 shows the limit-cycle deflection of a square plate at a uniform 

temperature A T /A T cr = 1.5 for the cases of c/h = 0.6 and 1.2. Figures 5.29 and 5.30 

are similar to Figs. 5.27 and 5.28 for a rectangular plate with an aspect ratio a/b = 2.0. 

These figures show that the air-flow is going to blow the buckled panel flat and the panel 

with the aspect ratio a/b = 2 . 0  is more stable then a square panel.
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Fig. 5.25 Stability boundaries of clamped and simply supported 
square panels with uniform temperatures
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Fig. 5.26 Maximum deflection vs. dynamic pressure for a simply 
supported square panel at various A7’(.r,y )/A 7 ’cr
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Fig. 5.27 Deflections of a simply supported square panel at 
uniform temperature A7'/A7|.r = 3.0 and dynamic 
pressures A = 0 , 100 and 200
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Fig. 5.28 Limit-cycle deflections of a simply supported square panel at 
uniform temperature A7’/A 7 ’f.r = 1.5 and A; = 342.1 and 582.5
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Fig. 5.29 Deflections of a simply supported rectangular panel with 
aspect ratio a/b = 2 . 0  at uniform temperature AT/ATcr = 
3.0 and dynamic pressures A = 0 , 100 and 200
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Fig. 5.30 Limit-cycle deflections of a simply supported panel with aspect 
ratio a/b = 2.0 at uniform temperature £kT/&Tcr = 1.5 
and dynamic pressures A/ = 536.25 and 1108.37
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5.2.7 Panel Stress Distribution

The principal stresses at the top surface ( ; = 7 ) and limit-cycle amplitude of a 

square panel are plotted in Fig. 5.31. The panel is simply supported, subjected to a 

uniform temperature A T /& T cr = 2.0 and a dynamic pressure A/ = 399.24. The maximum 

principal stress is located where the largest curvature exists.
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Fig. 5.31 Deflection shape and stress distribution of a simply supported square panel 
at X -  399.24 and AT/ATcr -  2.0
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Chapter 6  

FATIGUE LIFE ANALYSIS

In common fatigue analyses, the relation between stresses and failure cycles is often 

presented by S-N curves or Goodman diagrams. For a general nonlinear structural 

vibration, the deflection and the frequency are related to each other, thus the stress level 

and failure time are coupled. They are determined by initial conditions for free vibrations 

and dominated by input forces for steady-state forced vibrations. In panel flutter limit- 

cycle motions, the dynamic equation of motion, Eq. (3.13), is similar to those for a free 

vibration problems, but the response is independent from the initial conditions. From the 

flutter analyses, it has been found that for a given temperature A T /A T ct and dynamic 

pressure A there is a unique limit-cycle motion with a certain amplitude and frequency. 

Since the panel stress is related to the panel amplitude and the stress cycle is related 

to the frequency, for a given temperature A'r /A ' j 'cr and aerodynamic pressure A the 

cyclic stress can be obtained. This implies that a relation between the temperature ratio, 

dynamic pressure and fatigue life time can be established.

6.1 Stress Representation

The stress expression, Eq. (2.20), can be rewritten in terms of panel displacements as

{a }  =  +e[C t ]{«»4} )  -  {aA r } (6 .1 )

According to Eq. (3.3), the displacement vector can be separated as

{ wllt} -  { <r„,}, + {u'm} „ (6 .2 a)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

and

{wb} =  {wb} ( +{wb}^  (6 .2 b)

Substituting Eq. (6.2) into Eq. (6.1), the stress vector becomes

{ct} = [e \{c „, ]((»„,}, + +![/;]([«], + [«],)((«}, + (»),)

+  *(£][£*]( {Wi}f +  {«•’(,} J  -

+ [£](.-[al{1W}, + (9|,(»},)

+  |£ |( |G .H » t o } .  +  J M .W .  + -K'i H "'*),) -  W  (6-3)

where [0]i{0 } 3 =  according to their definitions. The system inplane dynamic

displacement vector {W,,,}, can be expressed in terms of the lateral dynamic displacement 

vector {W j}, by Eq. (3.29) as

(VK,„), =  -[A ',,,] -1 A a'1,,,4], +  W ) ,

Using Eqs. (3.47) and (3.48) the system {IT ,„}/ can be expressed as

{W ^ h  =  -[A%«]_ 1 [-'Vllll£>L{^}cus^../ -  ~ [ K „ r l [M,,,b\t M cosi u t

=  { ^ / } s coswi +  {(p,\/}( cosJu.’t (6.4a)

The corresponding element inplane dynamic displacement vector {■«>,„} can be obtained 

from the system vector {IF,,,} as

{ w , „  } I  =  { <?m } c o s  ^ ' t  T  {pm}, COS* u,’/ (6.4b)

The slope vector {0}, and matrix [0], can be expressed as

{ 0 }, =  {fl^cosw /

[0 ]J = (6.4c)
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By substituting Eqs. (3.47), (6.4b) and (6.4c) into Eq. (6.3), the time characteristic of the 

stress vector can be found as

{ a }  =  cos-wJ

+  [- ]̂ ( ]  { ̂ r« } s CO;i

+  [£ l( [c , „]{« ,,„}, +  i [« ] , { 9 ), +  .- [C iK n ) ,)  -  W r }

=  { a t }  +  {c r ,}  +  { c j } (6.5)

where {crj} is a stretching stress vector corresponding to the term with cos"(u>£), {ao}

is a bending stress vector with lime factor cas(iW), {<7 3 }  is a static stress vector, and

{ ^ }  is corresponding element mode vector from {<j>} (Eq. 3.47).

In the absence of {IK.,} which refers to the limit-cycle area DAEG in Fig. 5.14. 

Equation (6.5) reduces to

{ a j }  -  -(C'ilUw,} cosu.>/

M  =  ~{<7A7'} (6.6)

A  total cyclic stress and its components oq, a-, and a3 of a simply supported 2-D plate 

(at x -  11 L/12 and z = h/2) are plotted in Fig. 6.1 where oa denotes the total alternating 

stress and am is the total mean stress. The alternating and mean stresses, ua and a,n, 

are basic parameters in fatigue analysis.

6.2 Heywood’s Fatigue Approach

The fatigue life analysis of various aircraft materials has been studied in Ref. [57] 

and Heywood’s engineering approach was applied to aluminum alloys. This approach is 

based on testing data and can be expressed as

cra -  ±cr,[l -  a-,„/<7(][/l0 +  7(1 -  (A-.sj) (6.7)
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Fig. 6.1 Stress components of a simply supported 2-D panel 
(at x = 1 1 L / 1 2 , A '/’(xJ/A'/Vr = 3.0 and A = 1043.6)
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where
A 0 =  [ l  +  0 . 0 0 3 1 1  +  U.U15ct,)/(1 +  U.OQtihf1)]

7 =  (<7rn!a l ) t  [ l  +  (cr<u/32l})1 

n =  log (N)

In Eq. (6.7), ca (ksi) is the alternating stress, cr< {ksi) is the temperature-dependent 

ultimate tensile strength of the materials, am (ksi) is the mean stress and N is the 

number of cycles to failure. Equation (6.7) is used to estimate the fatigue characteristics 

of an aluminum alloy panel by knowing any three of the parameters <r„, cr,„, N or and 

solving for the fourth parameter. In the common fatigue analysis, Eq. (6.7) is plotted as 

a (Ta -log  N (S-N) or <7 „-cr„, (Goodman diagram) curve. For example, Fig. 6.2 shows 

the aa -log N  curves with a t — ‘IQksi  at a,,, =  7.83 and 10.8 k s i  and Fig. 6.3 shows the 

Va-0m curve at at = 40 ksi (same as Fig. 3.5 of Ref. [56]).

6.3 Limit-Cycle Dynamic Pressure vs. Fatigue Life

In panel flutter fatigue analysis, it is inconvenient to use a„ -log (N) or cra-crm curves, 

because aa and crm are related to frequency for a certain panel, and also because they 

are determined uniquely at a given temperature and dynamic pressure. That is, a panel 

under different dynamic pressure A/ would have different an -log (A/) curves, and on 

each curve only one point (a„, crm, N) suits the panel behavior (see Fig. 6.2). Besides 

the failure cycle number N may not be a clear measure of service life, for the same N the 

related different frequencies might give different life quantities. By applying Heywood’s 

approach and transferring life cycles N to life time H (hours) for the stresses associated 

with various limit-cycle dynamic pressures A/, a A-H curve (limit-cycle dynamic pressure 

vs. failure hours) can be plotted for a certain panel at a given temperature. An endurance 

and a failure dynamic pressure can also be determined. These are important information 

for panel design.
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6.4 Examples of Fatigue Life Analysis

In fatigue life analyses, a 2-D simply supported panel is investigated for demonstra

tion. The material ultimate tensile stress is chosen to be 40 Avu. The deflections and total 

stress distributions for the case of A 7 '( j - ) / A 7 ,cr = 3.0 and A/ = 1045.59 are plotted in 

Figs. 6.4 and 6.5, it can be seen that the nonlinear stretching stress plays a significant role. 

Some of the stresses, frequencies, dynamic pressures and panel life are listed in Table

6.1 for reference. The A-H curves are plotted in Figs. 6.6 and 6.7 with different scales. 

It can be seen that when the dynamic pressure Â  is less than 1350 for A T ( . r ) / A 7 ’cr =  0, 

the panel has “ infinite”  hours of life time. This dynamic pressure is called the endurance 

dynamic pressure Ac. For the case of A 7 '( . r ) /A 7 'cr = 2.0, A,. = 1240; A T(x ) /ATcr = 

3.0, Ac =  1170, and A T (x ) jA T cr = 4.0, Ac = 1100. Recall the critical dynamic pres-

much lower than the endurance dynamic pressures. This implies that the design based on 

the linear theory is conservative, and the nonlinear panel flutter and fatigue analyses can 

increase the design dynamic pressure. In addition, the A-H curves can be used with the 

well-known Miner’s linear cumulative damage theory [79] in estimating panel fatigue life. 

The percentage of damage D due to dynamic pressure A; with /»,• hours is accumulated as

where /,■ is frequency in cycles/hour.

Another interesting result noticed from Fig. 6 . 6  is when the dynamic pressure reaches 

a certain level (for example, A7'(.r)/A7<T = 3.0 and \ t =  1800), the panel would fail

sures, A,

(6.8)

This equation can be easily proved from Miner’s theory as
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immediately, although at that time, the total stress is much less titan the ultimate strength 

of 40  ksi. (see Table 6.1). This dynamic pressure is called failure dynamic pressure 

Ay. For the case of A T {x ) jA T cr = 0.0, Ay =  2000; A 'J '( : r ) /A 7 'rr =  2.0, Ay =  1900; 

and A T {x ) /A T cr -  4.0, Ay =  1750. Tite endurance and failure dynamic pressures, Ac 

and A /,  are useful information for panel design and are listed in Table 6.2 for a simply 

supported square plate.
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Fig. 6.4 Limit-cycle deflection of a simply supported 2-D panel 
at A T ( x ) /ATct = 3.0 and \ t = 1045.6
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Fig. 6.5 Stress distributions of a simply supported 2-D panel 
at A T [x ) f  &Tcr = 3.0 and A, = 1045.6
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Fig. 6 . 6  Limit-cycle dynamic pressure vs. fatigue life for a simply 
supported 2 -D  panel at various A T [x ) /A T cr (o'/ =  4Qksi)
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Fig. 6.7 Limit-cycle dynamic pressure vs. fatigue life for a simply 
supported 2 -D  panel at various A T (x ) /A T cr (<rt =  AQksi)
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Table 6.2 Critical, endurance and failure dynamic pressures of a 
simply supported 2-D panel (at =  40A’sz)

A

A7-(.r)/A7;,.

0 . 0 2 . 0 3.0 4.0

ACr 350 191 129 114*

Ae 1350 1240 1170 1 1 0 0

A/ 2 0 0 0 1900 1800 1750

*The dynamic pressure on the chaotic boundary
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Chapter 7

CONCLUDING REMARKS

A consistent finite element formulation and frequency domain solution procedure 

for solving thermally affected nonlinear panel flutter has been studied. The panel is 

subjected to aerodynamic pressure and temperature effects simultaneously. The finite 

element differential equation of motion contains a time independent load vector. The 

total solution consists of two parts: the time independent particular solution and the time 

dependent homogeneous solution. The particular solution refers to static equilibrium 

and the homogeneous solution refers to a self-excited dynamic oscillation. The system 

equation of motion thus is separated into two sets of equations which are solved in 

sequence. The two sets of equations are aerodynamically-thennally coupled. The 

aerodynamic-thermal postbuckling static equilibrium is obtained from the solution of 

a set of nonlinear algebraic equations using Newton-Raphson iteration and the dynamic 

oscillation is solved from a set of nonlinear ordinary differential equations using an 

updated linearized eigen-solution procedure in the frequency domain.

The static equilibrium determines the characteristic of the dynamic oscillation and 

plays a significant role in panel stability. There are two kinds of instabilities in thermally 

affected panel flutter problems: a flutter instability which leads to limit-cycle motion 

and a snap-through instability which leads to chaotic motion. A flat equilibrium leads 

to a harmonic limit-cycle motion and an aerodynamically-thermally buckled equilibrium 

leads to a non-harmonic periodic limit-cycle motion.

139
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The limit-cycle motion is a stable solution obtained from the nonlinear dynamic 

equations, the flutter boundary is referred to the stable solution with a trivial amplitude 

(or a linear solution). The snap-through boundary can be obtained by using the adjacent 

equilibrium criterion or checking that the static equations have no convergent solution. 

According to the consistent solution procedure, an instability from the static equation 

actually is the instability of the dynamic system since the two equations are coupled.

The limit-cycle motion of nonlinear panel flutter has been observed in experiments 

[18] and obtained in time numerical integration [2 2 ], but has not been demonstrated 

in frequency domain finite element solutions. In the present study, a demonstration of 

limit-cycle motion (Fig. 5.5a,b) is for the first time provided in the frequency domain for 

nonlinear panel flutter. It aids in understanding the nonlinear panel flutter phenomenon.

The temperature effects on nonlinear panel flutter result from thermally induced 

inplane forces and bending moments. The thermal inplane force causes a bifurcation 

problem in panel flutter and thermal bending moments reduce the panel unstable area. 

For a 2-D panel with arbitrary temperature inplane variations A7',(a*), i f  their temperature 

ratios A7J/A7'crj are the same, their effects on nonlinear panel flutter responses are the 

same. Therefore an equivalent mechanical load can be applied for thermal effects. This 

conclusion, however, does not apply to 3-D rectangular plates (ujb ^  1). The equivalent 

mechanical load is hard to be formulated, the thermal analysis is necessary in temperature 

affected nonlinear panel flutter.

For the temperature distributions A7’(.r, r) or AT(x,y ,z),  the thermal bending 

moment has a local property which will affect the global behavior of the panel. The 

increasing temperature through the panel thickness from midplane to top surface will 

stabilize the panel by increasing the critical dynamic pressure and reducing the unstable 

area.
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Fatigue life for temperature affected panel ilutter lias been investigated by applying 

Heywood’s formula for aluminum alloy plates. According to the unique feature of limit- 

cycle motion in nonlinear panel flutter that the dynamic pressure A uniquely relates to 

cyclic stresses of the panel, a relation of dynamic pressure vs. panel life time (A-H curve) 

can be established for a given temperature ratio A T /A T cr and an endurance dynamic 

pressure Ac and a failure dynamic pressure Aj  can be obtained from the A-H curve. In a 

common fatigue analysis, the S-N curve represents the property of a material. The A-H 

curve, however, represents the properly of a structural configuration. Thus, it gives the 

panel designer more straightforward fatigue life information for the panel.

The ‘D K T  triangular element, without using a modification factor, has been applied 

in the present research. It was shown that this element is an accurate and efficient 

triangular element for thermal structural and nonlinear flutter analyses.

The above conclusions are considered to be the major contributions of this disser

tation. The two-step solution procedure is applicable not only to the present research, 

but also to general nonlinear dynamic problems with combined loading effects. It is the 

first time that this two-step solution procedure was applied to a nonlinear static (post- 

buckling) and nonlinear dynamic system and introduced into finite element solutions. 

Similar solution procedures were adopted in Galerkin solution procedures by Houbolt 

[45] for solving postbuckling and linear panel flutter and by Bisplinghoff and Pian [80] 

for solving a thermal postbuckling and linear vibration system. In their classical analyt

ical solutions, the two deflections are assumed based on physical considerations without 

introducing mathematical meaning: particular and homogeneous solutions, since in the 

analytical equation of motion there is no time independent term. In the absence of aero

dynamic effects, the two-step solution procedure can be applied to a thermal postbuckling 

and nonlinear vibration system. In Appendix E, an analytical solution has been studied
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and compared to Eisley’s solution 181J. It can be found that the two-step solution is a 

complete solution which covers Eisley’s solution. The study in Appendix E also implies 

that in solving aero-thermal postbuckling problem several possible solutions exist and the 

Newton-Raphson iteration gives a stable solution.

In the present study, the Linearized Updated Mode with Nonlinear Time Function 

(LUM/NTF) approximation solution procedure [41) is used in solving nonlinear ordinary 

differential equations. In Appendix E, the LUM/NTF approximation is applied to classical 

and finite element equations and is compared with other classical solutions for thermally 

affected nonlinear vibration problems. It was found that for the case of an equation 

without quadratic nonlinear time function this method agrees well with classical solutions; 

for the case of an equation with quadratic nonlinearity the LUM/NTF approximation gives 

harder spring results and the perturbation method gives softer spring results. This is 

because a nonlinear system with only cubic nonliuearity has an oscillation which is close 

to harmonic motion; whereas with a quadratic nonlinearity, the system has a nonharmonic 

motion and the LUM/NTF approximation is based on harmonic assumptions. In the 

present study of thermally affected nonlinear panel flutter most of the oscillations are 

close to harmonic motion, thus results agree well with time integration results.

The analyses and solution procedure provided in the present research is a powerful 

practical tool for studying nonlinear panel flutter. It opened the doors for future work. For 

example, the solution procedure can be extended to solving flutter of panels with static 

pressure differentials, random excitations, composite materials, arbitrary boundaries and 

other interacting loading as well as complex configurations. By eliminating or replacing 

the aerodynamic loading, the solution procedure can also be applied to solve other 

thermally affected dynamic problems. On the other hand, the nonlinear finite element 

solver also needs to be extended so that it is able to solve nonharmonic motion accurately.
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A complete study of thermally affected nonlinear panel flutter should also include the 

study of panel chaotic motion, only a classical time numerical integration method has 

been applied to this study. To use the advantages of the finite element scheme to obtain 

this chaotic motion is an open topic for future research.
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APPENDIX A

CONVERGENCE CRITERIA

The displacement convergence criteria (norms) used for the present study are due 

to Bergan and Clough [82]. For the thermal postbuckling formulation, two norms are 

considered: the modified absolute norm and the modified Euclidean norm. These two 

norms, respectively, are defined as

where N  is the number of system degrees-of-freedom. Convergence is considered to be 

achieved when either of these two norms satisfy the postbuckling convergence criteria. 

The quantity A vj is the change in the jth displacement component for a given iterative 

cycle, and vj>ref  is the largest displacement component of the proper “ type” . For example, 

i f  j  corresponds to a rotation wz or wy then vjircj  is the largest rotation; whereas, 

i f  j  corresponds to an inplane displacement n or v then vj%rcf  is the largest inplane 

displacement.

.v
(A.I)

(A.2)
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APPENDIX B

2-D PLATE ELEMENT MATRICES

Matrices [//„,] and [//„] in Eqs. (4.1) and (4.2) are

[ / / , ]  = [Hu\ = [l * a] (B.l)

Matrices [T&] and [T,„] in Eqs. (4.1) and (4.2) are

0

mi = [ r , „ ]  =

0 0 
0 1 0  0 

- 2 / /  wfl' - l / /
•2//;! l / f J -2 / /*  1//-

(B.2)

where / is element length. Matrices [£■„,], [(.’/J and [C'yj in Eqs. (2.41-2.52) for 2-D 

(eight d.o.f. element) plate are:

[Gm] =  K ’o] = [0 1 2r 3 .r ]rn ] (B.3)

[Cj] =  [o u - 2  -a r ][v y (B.4)
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APPENDIX C 

TRIANGULAR ELEMENT MATRICES

Shape functions in Eq. (4.7) are

A ' i = 2 ( l

N2 =  m ~  1)

N:i = -  1)

Af.l =  -1̂ 7/

.V, =  ■!//( 1 - ( “ '/)

No =-kf d  -  (C.1)

where f  and t) are the area coordinates Is> and of Ref. [75J.

The derivatives of the [Hz] and [Ms] functions with respect to £  and j/  which are 

needed in Eq. (4.11) are
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m T< =

PG( l - 2 0  +  ( h - P c ) > l

4 -  G(£ +  7/) -  r c( l  -  2 0  +  7/(r5 +  rG) 

7c(l ~  2 0  -  («/s + 9c)'/

_ P G( 1 _  2 0  +  9 ( 0  +  ^ )

+  2 -  -  r c( 1 -  2 0  -  ?/(r.t -  j*g)

</c(l ~  2 0  ~  V(<1G -  9-1)

-7 /(P S +  A )

9(7*5 -  r 'i)

. v[<li -  f/0

[ « / . « =

M 1 - 2 0  +  9 U 5 -M  

9o(l -  2 0  -  9(95 +  9e)

1 + J’g( 1 -~-0 ~ '/(r5 + rfi) 

• /<; ( !  - 2 0  +  ' / ( / i  +  /( i)

</<;(! ~ 20  + 9 ( 9 1  “  </o)

■ 1 +  n>(l -  2 0  +  '/(ni ~  »'<>)

■ viU  +  *s)

»/(9-i “  95)

//('■•l -  '-.0
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- P 5( l - 27, ) - f l P 6 - P 5)

•1 -  6(( + ?/) -  M l  -  ‘2'i) +  £{n  +  n») 

r /5 ( l  -  +  % )

w  +  m

£(rG - » m)

£(f/-l -  96)

/J5(l -  -2/y) -  a/^1 +  n )

2 -  (»/ -  ;>(• -  2</) -  £(r.t -  r5)

95(1 ~ 2 q )  +  £(9-1 “  95)

[P j/f ■>'/—

- M l  - W - W c - t a )

95(1 — ^'/) — €(95 +  9c) 

i +  M i  — - 9 ) — £(r -r> +  ro)

a u  +  m

£(94 -  9«i)

£(?-i -  'V»)

M l  ~ *9 ) -  £(*-i + M

9sU -  - '/ )  +  s (<7-i -  95)

-  1 +  r 5( l  -  2 ti) +  £(r. i  -  /-5)

where
Pi- =  -n x ij / l j j ' ,  ti- = -  fojijJl

<lk ~  'teijiiijlljj: r k. -  •lyfjllfj

v
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k = 4, 5, 6 for i j  = 23, 31, 12 respectively

X jJ  =  X , - X j \  I J j j  =  IJ i -  IJ j

. ) / •) ■> \ 
l i j  =  [ * l j  +  U ijl

The derivative matrix for triangular element which is needed in Eq. (2.61) is

d

3/>x +  L a )  +  -:('JijI'iI's  +  </:si I - i l ' j  +  ’J i iL i I ' i )A /I

L \  :̂ ~ (-r:ii I '.i ~  J'I"J/-■.’ ) +  /-I H— I '. i +  ,'/:u /-i f-3 +  ' J u l ' i  I ' l )

I ' l  1 ' J  -  ; /]2  /-•_') +  ( ! ! t . i  1- 2 / • ; i +  i / 3 l  / - I  /• : !  +  U \ - ‘ L \  l ' i )/I -I.-I

3L j ^ - ( L 3 +  L j)  +  —( i/a iL a ii  +1/13/-3Z-1 +

[Cm] — < li2—7-(x n i l  — Xn̂ L-j,) + Z>2 +9x
x i a  —

■l.'l (t/31̂ 3̂ 1 +l/12 '̂3^1 + 2/23̂ 2̂ 3)

£  2 ^ T " (  2/12^1 “  1/23 f - 3 )  +  * (l/31  / - 3 ^ 1  +  ! l f l l ' l l - i  +  U?.\k-‘ L - i)A -1 .-1

3L3^-(Li + L->) + l ' i + y-ijl'jl'i + ' /3 1 1-3̂  1)

£3  ̂ “ { 2 2 3 ^ 2  — i '31 L \  ) +  1-3 +
•J'23 ~  ■/•31

•l.t ( l / l 2 ^ l  IJ'l +  2/23 L j L'2 +  1 /3 1 ^ 3 ^ : )

f'3 “ T“ (!/23 '̂2 — 1/31̂ 1 ) +  '/"*1 . ( i/12^1 I ' l  +  'jT jL .il.2 +  IJj] L j L \ )
/ I  •1 /1

(C.3)
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APPENDIX D 

RECTANGULAR ELEMENT MATRICES

The inverse of matrix [2/,] in Eq. (4.17) is expressed as

a  i n 4 0 8

1 0 0 0 0 0 0 0

1 « 0 u~ 0 0 0

1 a b
.. *> 
i r tib I r i r b

1 0 I 0 0 1? 0 0

0 1 0 0 0 0 0 0

0 1 0 25 0 0 3u2 0

0 1 0 25 6 0 352 to Rl CM

0 1 0 0 6 0 0 0

0 0 i 0 0 0 0 0

0 0 1 Q d 0 0 _oa~
0 0 1 0 (1 26 0 a~
0 0 1 0 0 26 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 2a
0 0 0 0 I 0 0 2a
0 0 0 0 1 0 0 0
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q9 a 12 016

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

aP P (irb irP aP a3P U-P a3P
0 P 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
p 0 3« 2& 2aP P 3a" 2aP 3a2 43

p 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0
0 0 a3 0 0 0 0 0

2a b 3 P a3 '21 rb ’■Udr :ia2P 3a3 62
0 \fp 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 3tr 0 0 0 0 0

2b 0 3o2 ‘\n l 3/r (la-1) GaP 9 TrP
2b 0 0 0 3 P 0 0 0

(D l)

where a and I  are the length and width of the rectangular plate element.
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Matrix [7',„] in Eq. (4.19) is expressed as
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[T«] =

U i V.,
1 0 0 0

-a* a* 0 0

-b' 0 0 b*

a*b* -u  *6* u*b* ~u*b*

Vi

where a* =  1/a and b* — 1 /i.

Matrix \Cq\ in Eq. (4.21) is expressed as

[Cm] -  [//».]['/«

1 U 0 0
-«* a* 0 0

0 -6* 0 0 b*
a*b* -« ‘ i ‘ a*b* —a*b*

where
0 1 0 y 0 0 0 0

[//,„] =  0 0 0 0 0 0 1 a-
[o 0 1 a- 0 1 0 </_

Matrix [Cq] in Eq, (2.17) for the rectangular element is expressed as

where

m  =

Q]

0 1
0 0

Q .J

2a-
x 2.V

3ar-
0

08 

2 xy

a<j oig

y2 0 3j ■'// 2.r//" y* 'Ixy2 'ix2y2
2 xy 3 y2 xs 2x2y :ixy2 2x2y 'Sx2y2 3xsy2

Matrix [Cfc] in Eq. (2.19) for the rectangular element is expressed as

[Cb] -  [iibW’i),}
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where

m  =

Q: o.i
•o 0 0 2 I) u Ox 2 y
0 0 0 0 0 2 U 0

.0 0 0 0 2 U 0 4 a

o<j a 12 »16

0 0 6a-y 2 f 0 0.T y- V Oa-7/3
2a 6// 0 2a- (i.r y 2.r:J Gx~y Ca3y
Ay 0 G.c- Sxy 6 r 12.r-r/ 1 ISa 2y

Matrix [CV,] in Eq. (4.17) is expressed as

I Cw] =  [ l lw\[Tb\

where
W u ]  =  [l y a-' xy y-  x A .r-jj x y ‘ //'* x yy x ' y '

xy3 * Y  * V  * V J

Matrix gjlCtu] in Eq. (2.61) for the rectangular element is expressed as

where
— [//„,] =  [o 1 0 2a- y 0 3a-2 'l.vy y~ 0 3x 2y 2xy~
dx

3 .} 2 2 .-> 3 .» 2 31y 3.r y 2xy 3 a y \

(D.6)

(D.7)
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APPENDIX E

CLASSICAL SOLUTIONS FOR NONLINEAR FREE VIBRATION OF A 2-D 
PLATE W ITH EFFECTS OF TEMPERATURE OR INPLANE COMPRESSION

In this appendix, the classical solution using a two-step solution procedure has been 

investigated for nonlinear free vibration of a 2-D plate with uniform temperature or 

inplane compression effects. The purpose of this classical study is to verify the two-step 

solution procedure and compare with the one step solution by using various nonlinear 

differential equation solvers. The nonlinear equation of motion for a 2-D plate with 

immovable inplane edges can be expressed as [80]

where the bending stiffness D =  -pp-, the membrane stiffness A =  - j^ r ,  and N0 is 

the axial force. When N0 is induced by a uniform temperature change AT, it can be 

expressed as

(E.1)

and

and

(E.3)
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ATcr =  k * j?  k =  1 for simply supported plates and k =  4 for clamped 

plates Eq. (5.4). To compare the two solution procedures, a simply supported panel 

is investigated as follows.

I. One step solution procedure:

One step solution procedure was adopted by Eisley [81J for a classical solution as 

well as by Yang and Han [83] and Kapania and Yang [44] for finite element solutions 

to solve large-amplitude vibrations with compressive inplane forces. The corresponding 

classical solution may be expressed as:

By assuming

ui(x,l) =  a!'(l) sin (E.4)

and substituting Eq. (E.4) to Eq. (E.3), the following results can be obtained as
7T X X

w'z =  z cos ~ c^ L>
 ̂ 7T 7T.T ■> -f 7i~ I (  \  •) ■)

=  7 7 cos" — c“V'‘ ( 0  =  j~i~> ( t os ~ T ~ +  1

I .  O'" ̂ + 0‘/j'
■ r V(i)T

The inplane force becomes

Ebh t t  v A T  x2D
N  =  i— ~ r n c' d' ' ' -  (E-5)\ — V - A k -  A I c r  L -

Substimting Eqs. (E.4) and (E.5) to Eq. (E. 1), the equation of motion can be simplified as

~ f  + jV^'’(0 77 sin ^  + ( iblicii '{L)sm - r  =  0
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where

D ,B7x
Upbh

Equation (E.6) can be solved by many approximation methods, hereinafter a simple 

harmonic linearization is applied as:

By assuming

4'{t) =  C O S !-’ /

and

(/>’* ( / )  =  c o s '*  u ,’ /  =  -j- COS L dl

the solution of Eq. (E.6) can be obtained as

(E8)

The above linearization uses the same assumption discussed in Sec. 3.3.3(b) and the 

solution, Eq. (E.8) is identical to the solutions from perturbation and harmonic balance 

methods. This solution agrees with the solutions from Refs. [811, 183] and [84],

II. Two step solution procedure:

Two step solution procedure was adopted by Bisplinghoff and Pian [80] for a classical 

solution by assuming the total deflection is the sum of a huge static deflection and a small 

linear oscillation. In the present study, both static deflection and dynamic amplitude are 

considered to be large as

. /) = uv' -|- it''1 (E.9)

Substitute Eq. (E.9) into Eq. (E.3) as

rL A /  „ \2  . A T  z - D
N - I  f  ± (  * ±  A 2 1 A T  *  L

L J0 2 \ W'X +  “W  ATcr IT

= j j  7  ( M ^ ) "  +  +  ( H ’ i )
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By using Eqs. (E.9) and (E.10), the equation of motion, Eq. (E.l), becomes

D (u ’fxxxx + wfxxxx)

+  pbh ii)'1 =  0 (E.l 1)

Separating w3 and wd from Eq. (E ll) , the following two equations can be obtained as

Equation (E.12) is a nonlinear static equation and Eq. (E. 13) is a nonlinear dynamic 

equation. The two equations are coupled. Equation (E.12) should be solved first, 

Eq. (E.13) then can be solved,

a) Solution of static equilibrium

Solve the static equation (E.12), by assuming

(E.12)

(E.l 4)

and substituting it into Eq. (E.12) as

A T tt~D 7T“ . 7ra: 
— _ C , F smT  =  0

the following result can be obtained as

(E.l 5)

For a 2-D plate with a rectangular cross section, / = Eq. (E .l5) becomes

a
(E.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

so, the solution of static equation is

Coth = 0
A7' 

A f Z
< 1 (E.17)

and

AT
ATcr

> 1 (E.18)

b) Solution of dynamic responses

For solving the dynamic equation, Eq. (E .l3), first assume

and substitute Eqs. (E. 14) and (E.19) into Eq. (E, 10) as

Jo (*»J) dx = ( y ) ,/j' ' 77 =

j r w%wd,xdx =  C0Cdil'[t)y> J  tos" = CoCjt!r[t)^j-

(E.19)

N = L \ ~  L \ 2
A r  x-D

Ax A x1
4L2C° + '2IT CoCd^  + .[ A T  i : .

ATcr L2 
A T ir-D

(E.20)

then substitute Eqs. (E.14), (E.19) and (E.20) into Eq. (E .l3) as

X X x2 . x x \  
- G o j x s m  — )

+ NC.IJX sin —  c’(/) 4- (>bh C,/ sin y - (/’(/) = 0

D % m  +  x c ‘i T i m  +  T P ( +  T 7 F c ^ ’ t ‘ >
A x

AT x2D 77-
7^(0 + (>l‘h = 0
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According to the solution of static equation, Eqs. (E.17) and (E.18), Eq. (E.21) can be

further defined as:

when

„  ,, . A '/' A7'
C o J I i  =  0 , lo r <  1 or >  1

* cv

Eq. (E.21) becomes

and when

Eq. (E.21) becomes

(E.23)

Equation (E.22) is identical to Eq. (E.6), thus its solution is Eq. (E.8)

( e - 2 4 )

From this result, it can be concluded that the two-step solution procedure covers the 

one-step solution. When A7’/A7'rr > 1, the real solution of Eq. (E.24) requires the 

following condition

^ > 2 
h 3 V A 7 * f
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This condition can be explained by a dynamic stability analysis. According to Stoker’s 

analysis [84] that if  the coefficient of term </>(/) in Eq. (E.21) or (E.6) is negative, the 

singularity point is a saddle, so the motion with smaller amplitude is locally unstable 

(see page 49 of Ref. [84]).

c) Solution of Equation (E.23)

Rewrite Eq. (E.23) as

Equation (E.23) is a nonlinear ordinary differential equation with a quadratic nonlinearity. 

There is no exact analytical solution available for Eq. (E.23). Several numerical solutions 

are discussed as follows.

(1) Direct numerical integration:

Assume that the motion is periodic,

A]l!’ -}- -f- — 0 (E.25)

with

a i  +  t ) = m (E.26)

and at t =  t\ the motion reaches its maximum deflection

= o
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Multiply ^  to Eq. (E.25) and integrate between /i and t > as 

*h rh
-  il’ij’dl = ( A l H , -f .Tji,:

-  J '  ( '/ '" ) =  ' +  y ' ' ! ' . v;) + y  < V )

-  l ' i - 2 =  - y  ( 1  -  -  f  0  -  -  y  0  -  «")

i?  =  ,1,(1 -  i/r )  + ^ ( 1  -  «'3) + y ( l  -  (E.27)

t//

</</>

The period T  can be obtained by numerical integration as

- r  w"> J / - M l  + I + f ( l -< / ’■>)

According to Eq. (E.27) the phase plane is symmetric with tb axis, thus 

r^o(V'=o) d l i,r
= 2 i

(E.28)

(E.29)
^ 4 ,(1  -  V--) +  2^(1 -  V-3) +  # (1  -  0 4) 

where V’o can be numerically solved from Eq. (E.27) with 0 =  0, the frequency then 

can be obtained as

r

(2) Perturbation solutions

According to the Equation 8-61 of Ref. [85], the perturbation solution corresponding 

to Eq. (E.25) is

1 + ^ - ^ '  
■j -it c U i ,

-l> (E.30)
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and its higher order solution can be found as

u> —
1 +  l i l l _ i ( i h

AA\  GV/li
' i i h  _ i f i h .
•1 /1 | G V / l i

(E.31)

(3) Harmonic solution (LUM/NTF)

In this harmonic solution, the following assumptions made by LUM/NTF are ap

plied:

V’(0  = o>s(u.’0

and

cos3 (u>t) =  -  cos (u.7) +  j  cos (3a.'/) ==- cos (u;/)

CO S' ( u j / )  = —̂ ~  C os (wa1/ )

Substituting these approximations into Eq. (E.25), the solution cun be obtained as

w2 =  Ai + ^ A >  +  -A-i (E.32)

d) Numerical comparison

Three cases of C,t/h =  0.2, 0.4 and 0.6 with temperature ratio s r ;  =  2.0 ™  

compared by using above three solution methods. The results tire shown in Table E.l. 

The direct integration phase plotting of Eq. (E.25) is shown in Fig. E.l. With the help of 

Fig. E.l, it can be found from Table E.l that the two-step procedure provides complete 

solutions. When A T /A 7 ’cr > 1, a smaller vibration is around one buckled position, the 

numerical approximation should be based on Eq. (E.23) and with a larger amplitude the 

vibration is around two buckled positions, the approximated solutions should be based on
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Eq. (E.22). It is also found that for a buckled beam, the motion is no longer harmonic, 

the LUM/NTF approximation which is based on a harmonic assumption is not accurate.
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Table E.l Numerical comparison of direct integration, perturbation 
and harmonic methods for solving free vibration of a 2-D 
simply supported panel with temperature effects using 
the two-step solution procedure

OJ
UJ0

= 0.2
h

£  =  M
It

^  = 0.6
h

Direct integration, Eq. (E.29) 1.1979 1.0008 1.4055

Perturbation (1) Eq. (E.30) 1.2806 0.7483 -

Perturbation (2), Eq. (E.31) 
(Higher Order)

1.3200 0.9051 0.2687

Harmonic, Eq. (E.32) 
(LUM/NTF)

1.6807 1.9569 2.2394

Harmonic or Perturbation 
Eq. (E.24)*

0.5997 1.0720 1.4556

*In Hq. (E.24) %  =  £  + &
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r unsc  p o r t :

v s .  T i n e :

- 2 .000000

Fig. E.l Phase and time history plottings of Eq. (E.25)
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