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gains are applied to the system. Furthermore, an optimization technique based
on the Generalized Reduced Gradient Method [9-12] is employed to determine
the optimal hyperbolic gear ratios as well as the optimal control gains to further
suppress vibrational motions of the flexible beams. The simulation results associ-
ated with such optimal designs and parameters are then compared to the original

noncircular gears.

§ 5.1 Concept of the noncircular gearing

The noncircular gears have gained much attention in their application of me-
chanical devices because they offer distinct advantages over linkages, band mech-
anisms, and cams. Generally, the noncircular gears are employed based on the

following reasons [24]:

(1) Cyclically varying angular velocity of the driven gear is de-
manded: quick-return drives, intermittent mechanisms as in printing

presses, planers, shears, winding machines, automatic-feed machines.

(2) Precise nonlinear functions must be generated: computing ma-
chines for extracting roots of numbers and raising numbers to any power,
barometric instruments for reading pressure as a function of altitude, po-
tentiometers and synchros to vary the output as a function of angular
displacement, output shafts of limited-travel gear trains to compensate
for the accumulated eccentricities of the intermediate gears and produc-

ing trigonometric, hyperbolic and logarithmic functions.

(3) Jointed integration of mechanism and control techniques is con-
ducted: suppressing vibration during the rapid and large-scale slewing
maneuvers of large flexible space structures.

Normally, the cyclically varying output speed can also be achieved by means
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of cams, four-bar linkages and band mechanisms. Compared to four-bar linkages,
noncircular gears are more compact, accurate, and easier to balance in operation.
Also, noncircular gears considerably surpass the cams and band systems while
operating in high-speed mechanisms or non-reciprocating motions. Noncircular
gears have previously cost more than competitive devices such as linkages, cams,
and band mechanisms. Yet the cost of manufacture is reduced for noncircular

gears via modern production methods.

For the noncircular gears to be properly in mesh, so that their centers of
rotation are a fixed distance apart, the varying torque and speed are transmitted
without slipping from driving gear to driven gear. That shear force, normally taken
by the gear teeth, is taken by the bands. Noncircular pitch curves are designed to
generate the variant gear ratio. Rolling contact, without slipping between driving
to driven gears, must always hold in the rotation. Figure 5.1 shows two noncircular
gears centered at O; and O with the pitch radii r; and r; respectively. Their
angular displacements are indicated by 6; and 6, angular velocities 6, and 6,
and angular acceleration 91 and ég respectively. The center distance 0.0, is
denoted by C and the pressure angle by ¢. The necessary conditions for rolling

contact between two gears O; and O; as shown in Fig. 5.1 are

(1) Contact point is aligned along their center-to-center line 0,0,

(2) The equivalent tracking arc length must satisfy
™ d01 =T d02 (51)

where df; and df, the small angles of gears O; and O respectively.

To ensure the contact point aligned between the centers of two gears, the sum
of two pitch radii of gears at the contact point must always equal to the center

distance C, as shown in Fig. 5.1. Moreover, dividing Eq. (5.1) by dt yields the
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Common Tangent

'el..

Figure 5.1: Configuration of noncircular gears
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velocity equation between gears O; and O; such as

=2 (5.2)

which implies that the instantaneous velocity ratio equals to the inverse ratio

of instantaneous radii. In fact, equation (5.2) indicates the gear ratio defined as

by assuming the driving gear O; and the driven gear O;. Note that the gear
ratio defined in Eq. (5.3) varies according to the reverse ratio of the pitch radii
of the driving to driven gears. Also, the input torque 71 is related to the output

torque 7 by
Ty = NgT 1 (5.4)

through the noncircular gears as shown in Fig. 5.1. Rewriting Eq. (5.3) provides
that i
i = 22 (5.5)
1 = Ng *
The angular acceleration equation can be achieved by differentiating Eq. (5.5)

with respect to time. Rewriting Eq. (5.5) and the angular acceleration equation

(- (% +) &)

Equation (5.6) implies a transformation matrix to transmit the driving states

. 11T . 1T
[91 01] to driven states [02 92] . Such a transformation of Eq. (5.6) will be

in matrix form yields

employed to derive a closed-loop system consisting of the noncircular gears with

variant gear ratio NN, in section 5.4.

The specially shaped gears are thus able to be designed to roll and mesh
properly during gear operation. Table 5.1 demonstrates five types of existing

noncircular gearing systems [24]. They are
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Tabel 5.1: Characteristics of five noncircular gear systems [24]
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(1) Two ellipses pivoted at foci,

(2) Second-order ellipses rotated about their geometric centers,
(3) Eccentric circular gear meshing with its conjugate,

(4) Logarithmic spirals and

(5) Sine-function gears.

Except for the standard circular spur gear in type (3), the pitch curves of
gears are noncircular. To ensure rolling contact, the point of rolling contact must
always be located along the center- to-center line and the center distance has to
remain a constant in rotation. For type (1), true elliptical gears can only be allowed
to roll and mesh properly if they are twins, and if they are rotated about their
focal centers [29]. For type (3), an eccentric spur gear, rotating about point A,
can roll properly only with specially developed pitch curves, as shown in Fig. 5.2
[24]. One of pitch curves, however, resembles an ellipse which has twice as many
gear teeth as that standard spur gear. With the given radius r and eccentricity e,
the major semi-axis of the elliptically profiled gear becomes 2r+e and the minor
9r-e. Furthermore, an internal noncircular gear is permissible to roll well with an
assigned eccentric spur gear. In each type, the pitch radii of driving to driven
gears indicate the design parameters, i.e. the gear ratio, to determine the velocity
equation. The velocity equations shown in Table 5.1 are based on the design

equations of noncircular gears in the next section.

§ 5.2 Design equations for the noncircular gearing

To begin with the design of the noncircular gears, equations (5.1), (5.2) and
(5.4) must always hold no matter what type of noncircular gears are constructed.
Three common design requirements are studied to illustrate three different ap-
proaches to the design of pitch curves for the noncircular gears. Generally, they

are valid for any noncircular gear pair.
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Elliptical-Shaped Gear

Internal Gear

Special-Shaped
Eccentrically "Mounted Gear
Spur Gear
b=2r-e

Figure 5.2: One standard spur gear and four kinds of mating
conjugate gears
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Casel: Suppose that the noncircular pitch profile of gear O; in Fig. 5.1 s

a polar equation of angle #; which is specified by

ri(61) = £(61) (5.7)

with the center distance €. For proper mesh between gears O; and O,

equation (5.1) must be satisfied such as

do, = [%3] dy, (5.8)
ra(8:) = C — f(61) (5.9)

where r(62) stands for the noncircular pitch profile of mating gear O;. Rewriting

Eq. (5.8) provides that

d8, = [—C——] d8, — dby (5.10)
C - f(6)

Equation (5.10) implies that a differential output angle df, can be determined

for a small angle df; at any instant input angle 6; as long as the function

F(8y) is specified beforehand. To determine the output angle 65, equation (5.10)

is integrated from 0 to 6; as follows.

- - A [t d
b, = —0; + c/o [é - }(01)] (5.11)

Equations (5.9) and (5.11) thus provide the parametric functions of
8, and 5 (6;) in terms of input angle 6;. The variant gear ratio can be evaluated
by Eq. (5.3) while the r1(61) and ry(;) are determined numerically. Types
1-4 in Table 5.1. are the examples of this case. The pitch radius of each type is
catalogued in the column of basic equations based on Eq. (5.7). And the corre-
sponding velocity equation in Table 5.1 can be derived by using Eq. (5.2). The
approach of case 1 will be employed to conduct the analytical derivation of two
kinds of noncircular gears, namely, a pair of eccentric gears and Tandem eccentric

gears in the next section.
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Case2: If the input to output relationship is governed by a differentiable
function such as

62 = §(61) (5.12)

with their center distance C. The following equations must be satisfied for the

noncircular gears in Fig. 5.1.

T 4+ rp = C (513)
. db, Ty
6,) = =2 = 1o 5.14
§o) = 2 =2 (5.14)
Substitution of Eq. (5.14) into Eq. (5.12) yields
Cj(61)
- L9l 5.15
S Y (519
ry o= —O (5.16)

[T+ §(61)]
Compared to case 1, this case displays a straight-forward approach without nu-

merical integration, such as the function in Eq. (5.10), to solve the output angle
8,. Namely, the parameters ,, r1,and r; can be found to be analytical func-
tions of the input angle ;. Since input to output pitch radii are obtained from
Egs. (5.15) and (5.16), the gear ratio at any instant can be computed by using Eq.
(5.3). Type 5 in Table 5.1, i.e. the sine-function gears, is an example of the case
where the output angle is specified as a sine function of the input angle. Based
on Eq. (5.2), the velocity equation of -3% = kcos(8;) in Table 5.1 can thus be

determined.

Case3: Assume that the angular velocity ratio is specified by

Z—: = h(6) (5.17)

in conjunction with the center distance C. From Eq. (5.2) we obtain

92 T1 7
3 = (61) (5.18)
104
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Also, equation (5.13) must hold for the contact point in Fig. 5.1, always lying

along center-to-center line 0;0;. The following equations are thus achieved for

the pitch radii of two gears.
n o= —CRE) (519)
1+ heo)]
Te = C (520)

[1 + R (01)]
And the output angle 6, can be numerically determined by integrating Eq. (5.17)

as follows.
A

8, = k(6,) db, (5.21)
0
In fact, this case unveils a useful technique for dealing with the design equations
of noncircular gears, while the varying gear ratio is specified by Eq. (5.18).

Cased: Similarly, the angular velocity ratio is given as a function of the

output angle 6, such as )
62

= p(62) (5.22)
61
Then, the pitch radii of two noncircular gears are derived to be
Cp(62)
= P72 5.23
i+ 560 (5:29)
C

Ty = (5'24)

(1 + 5(62)]
And the input angle 6; of the driving gear can be computed by integrating Eq.

(5.22) as follows. ' 1
. =/0 [;(TZ)] a6, (5.25)

The pitch curves of two noncircular gears in this case can thus be determined

through Egs. (5.23)-(5.25).

Besides the criteria expressed in Eq. (5.1), the arc lengths tracked by input

to output pitch profiles must equal each other for the construction of noncircular
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gears. From Fig. 5.1, the cumulative arc lengths da and db due to small angular

displacements df; and 6, provide

- Y
— 2 —_—
da = \ r? 4+ (dol) | dé, (5.26)
db = | 2 dry : do
= \ r2 + ) 2, (5.27)

The tracking arc lengths a and b shown in Fig. 5.1 are thus numerically calculated
by integrating Eqgs. (5.26) and (5.27) as follows.

6, ] 2]

a = / r? 4 (@) dé,, (5.28)
0 \ I db,) |
N [ 2]

b = / 2+ (%;-}2-) d6,, (5.29)
o\ 2) |

Therefore, no matter what case of gearing derivation is used, the arc lengths
tracked by input to output gears must satisfy a=b, derived in Egs. (5.28) and
(5.29). Namely, both tracking arc lengths are equivalent at any instant of oper-
ation. Numerical method can calculate the tracking arc lengths in Eqs. (5.28)
and (5.29) to verify the feasibility of the designed noncircular gears based on the

derivations herein.

§ 5.3 Mechanism synthesis of the noncircular gears

The advantages of noncircular gears over the other competitive mechanisms,
such as four-bar linkages and cams, have been discussed in section 5.1. Neverthe-
less, conventional noncircular gears still can not overcome some nonlinear problems
such as backlash and slipping, as expressed in section 5.1. A new design of a set
of noncircular gears is developed such that pure rolling contact between the driv-
ing and driven gears is always present. As shown in Fig. 1.3, such a device of

noncircular gears consists of
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(1) Two cylinder-type and specially shaped cams,
(2) Two pairs of thin metal bands and
(3) Two holders.

The noncircular gears are constructed by a single pair of convex cylinder-type
cams which are wrapped in a mesh arrangement by two pairs of thin metal bands.
These thin metal bands are clamped together by two holders at the two ends of
bands where the holders are then attached to either the shaft of the motor or the
end of the structure for the torque transmission. This device has several attributes

when compared to conventional gears. They are

(1) No backlash,

(2) No friction,

(8) No slipping,

(4) No teeth,

(5) No need of lubrication and

(6) Low cost of manufacture.

The output characteristics of the noncircular gears are governed by Eq. (5.6)
derived in section 5.2. Pitch curves of two noncircular gears can be determined
through four cases in section 5.2 as long as the various gear ratio is properly
specified. Based on Case 4 in section 5.2, a hyperbolic gear ratio defined as a
function of the driven output angle is used such that

92 C2
N, = =2 = —2 5.30
I 01 [C]_ + 92] ( )

In Eq. (5.30), ¢1 and cp indicate two parameters which can be determined by giv-
ing two points along the hyperbolic curve. During the slewing control process, the
noncircular gears characterized by a hyperbolic gear ratio shown in Eq. (5.30) can
transform the output angular displacement and velocity to behave more smoothly
while simultaneously suppressing the flexural vibration. Figure 5.3 shows a hyper-
bolic gear ratio as a function of the output angle 6; from 0 deg to 90 deg for the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



parameters ¢; = 75, ¢ = 3 and C = 10. The pitch radii of two noncircular

gears can be found by Eqgs. (5.23) and (5.24) as follows.

e,
r = [1 T Ny], (531)
c
- —_— .32
il A (5:52)

where € is the center distance of two noncircular gears. From Eq. (5.25), the
input angle #; of the driving gear can be computed by integrating Eq. (5.22) as

follows.
02
[6192 + —.}] .
6, = —m (5.33)
c2

The plots of (1) and r2(6;) in polar coordinates would directly confirm
whether the requirements of convexity are adhered to. Based on the hyperbolic
gear ratio as shown in Fig. 5.3 and Eqs. (5.31)-(5.33), the pitch curves of the two
noncircular gears are given in Fig. 5.4. The convexity of two profiles ensures the

feasibility of the hyperbolic gear ratio for this design of noncircular gears.

§ 5.4 Actuator dynamics with noncircular gears

The noncircular gears developed in section 5.3 are characterized by several
advantages over those of the conventional gears such as the ones shown in Table 5.1.
In this section, the dynamics of the actuator in the presence of noncircular gears are
investigated. For the slewing control of flexible space structures, the noncircular
gears are installed at the rotating joints to transform the available torque from
the actuator to the flexible beam through a varying mechanical advantage given
by Eq. (5.4). A pair of cylindrically shaped cams (to be used as gears), shown in
Fig. 1.3, are wrapped together such that the noncircular gears can roll on each
other without slipping and friction. In this way, the pitch profiles of noncircular
gears must be convex. A constant step- down gear box is built into the motor so
that the constant gear ratio should also be considered in the actuator dynamics.

The output shaft of the step-down gear box is axially connected to the holder of
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a noncircular gear, while the end of the flexible beam is attached to the other
gear holder (see Fig. 5.5). The motor can be regarded as a standard armature
circuit. Denote the armature resistance by R,, the back-EMF (Electro-Motive-
Force) constant by K}, the motor torque constant by K, the gear train viscous
drag coefficient by C,, the motor inertia by I, the available motor torque by
Ta, and the applied voltage into the armature by e,. Then, the motor dynamics

is governed by

Infm + (€ + %) b + 70 = Tl (5.34)
Ra RG

where 0, denotes the output shaft angle of the motor. Figure 5.5 shows a
motor and a gear train of a gear box and the noncircular gears. The output shaft
of the gear box is attached to the input holder of noncircular gears. Assume one
end of a flexible structure is attached to the output holder of noncircular gears.
Denote the varying (non-constant) gear ratio of noncircular gears by N, and
constant gear ratio of step- down gear box by N,. Based on Eq. (5.4), the
transmission from available torque 7, to the torque 7, associated with structure
input is thus provided by

Ta = NyNpr, (5.35)

Based on Eq. (5.6), the angular velocity and acceleration of motor can be written

by . .
é‘,,,) ( Y ACH) ) (a)
. = N. (8, . (5.36)
("m -y wmiw) \b

where 6; denotes the angular displacement of the structural root end. For the
sake of convenience, the gear ratio N, in Eqs. (5.35) and (5.36) is specified as
a function of 6,, i.e. N,y (6,), because motor characteristics in Eq. (5.34) will
be combined into structrual dynamics to perform a closed-loop system in the next
_section. Due to the dynamic criteria of structural maneuvers, the investigation of
the entire closed-loop system must be conducted to find the appropriate gear ratio

Ny, Substitution of Eqgs. (5.35) and (5.36) into Eq. (5.34) provides the structural
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Figure 5.5: Motor with a gear box and a pair of noncir-
cular gears :
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torque 7, which is expressed by

P AY . _
= Kie, N (Cv + R, ) 0s + Im (NyNP08 - NP‘NQO-’) (5 37)
(RGNQNP) (Nng)2 (NQNP)a

Since the gear ratio of noncircular gears is defined as a function of beam angle
6y in Eq. (5.35), the time rate of change of the gear ratio Ng in Eq. (5.37) can
be computed by

dN,] .

N, = [F:] 65 (5.38)

which means the time-rate gear ratio is equivalent to the multiplication of the
slope of the gear ratio verse the structural root angle and the angular velocity of
the structure. The noncircular gear ratio N,, defined in Eq. (5.35), is associated
with the fourth case in section 5.2. From Egs. (5.23) and (5.24), the pitch radii

of the two gears shown in Fig. 5.1 are then determined by

CN,

r1(0m) = T+ Ny (5.39)
re(6s) = (—I%V:)- (5.40)

where C is the center distance defined in Eq. (5.13). Hence, the profiles of two
noncircular pitch curves can be found by solving Eqs. (5.39) and (5.40) as long as
the varying gear ratio NN, is specified based on the criterion for the maneuvering
performance. Notice the gear ratio N, must be selected to ensure two convex
profiles of pitch curves. Yet the motor angle 6, in Eq. (5.39) must be solved
to determine the pitch curve ry. From Eq. (5.36), the motor angle §, can be

computed by .
¢ db,

N
0 9
for any given structural root angle 6,. The plots of r;(6,) and rz(8,) can
thus be drawn in polar coordinates. The convexity of Eqgs.(5.39) and (5.40) has to

O = (5.41)

hold for the construction of these noncircular gears.
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§ 5.5 Dynamic equations of fiexible space structures with
noncircular gears

In this section, the investigation is conducted to display the dynamic equations
of two kinds of flexible space structures, i.e. the one-beam and the articulated
two-beam structures, in conjunction with the current noncircular gear design.
The cylinder-type noncircular gears are set up to link the actuator and one end
of flexible beam through two holders. Equations (5.36) and (5.37) are employed
to link the actuator characteristics and structural dynamics together in order to
implement the closed-loop control systems. Such two models of flexible structures

will be used for numerical simulations in the next section.
88 5.5.1 Dynamic equation of a flexible one-beam structure

The input to output relationship of the motor with noncircular gears is de-
rived in Eq. (5.37). On the other hand, the detailed structural dynamics has
yet to be presented. In this section, attention will be focused on the derivation
of the structural dynamics of a flexible one-beam structure along with a single
pair of noncircular gears. Figure 5.6 shows a planar flexible beam clamped on a
device consisting of a motor and its gear train. The flexible beam is modeled as
a cantilever beam with the fixed end at the motor and the free end at the tip
z; = L (see Fig. 5.6(a)). Only the bending vibration is allowed during the
motion of the arm. In Fig. 5.6(b), the x-y axes are the fixed inertial coordinate,
whereas the z; —y; axes represent the moving relative coordinate. Lagrange’s
equations of motion [69), in conjuction with the modal expansion to discretize the
deflection of the flexible-link manipulator, are then applied to derive the dynamic

equations of motion. Let the state vector be defined by

T
£ = [98’ qT] ’ qT = [QI’ q2,°° qn] (5‘42)

where 6, indicates the root angle of the flexible beam and ¢; (i=1,....,n) the

general coordinates corresponding to the shape functions %; (i=1,....,n) for
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Figure 5.6: Configuration and coordinates of one flexible steel
beam
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discretization | of the bending deflection of the flexible beam. The kinetic
and potential energies of one flexible beam are given by Egs. (B.11) and (B.12)
which result in Lagrange’s function. The control torque needed to perform desired

slewing maneuvers can be expressed by the vector

r=1[10-,0]F (5.43)

where 7, represents the applied torque for the slewing of the flexible beam.
Note that 7 in Eq. (5.43) is identical to 7, derived in Eq. (5.36).

Assume that the damping of the flexible beam is negligible. The Lagrange’s

equations of motion for one-beam structure can thus be governed by
ME + K¢ = 7 (5.44)

where M indicates the inertia matrix, and K the stiffness matrix. Apparently,
equation (5.44) demonstrates linear structural dynamics. Denote p the mass
density of the arm per unit length, L the length of the flexible beam, and I the

total moment of inertia. Hence, the inertia matrix in Eq. (5.44) is expressed by
_ (I symmetric
M = ( _5 oL ) (5.45)

where [ is an n X n identity matrix. The constant vector § is defined in
references [37] and [38]. Furthermore, the constant stiffness matrix in Eq. (5.44)
is specified by

K = Diag[0, pLw®] ; w = Diag[wi, +, wn] (5.46)

where w; (i=l,...,n) is the modal frequencies associated with the cantilevered
shape functions ; (z1), which are used to discretize the deflection of the flexible
beam. The nonlinear forcing terms such as Coriolis and centrifugal forces do not

exist in the Eq. (5.44).
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The actuator dynamics and sensor characteristics must be involved into Eq.
(5.44) to construct a closed-loop system. The actuator for the feedback control is
the dc electric motor. One idler gear box and a pair of noncircular gears are set
up in the same way as in the previous section. Since the relationship including
actuator characteristics and noncircular gearing mechanisms has been established
in Eq. (5.37), the applied beam torque 7 in Eq. (5.43) can be replaced by Eq.
(5.37) such that

Kue (Co + B8 In (NyN,b = NpHiyb)
n = s__ — + (5.47)
(RaN,N,) (N,N,) (NgN)

Obviously, equation (5.47) produces the appropriate torque for beam slewing due
to the applied voltage eq, which is determined through output feedback control.
The motor characteristics, such as back-EMF as well as moment inertia, are in-
cluded in Eq. (5.47), which is represented in terms of beam variables. Instead of
the conventional motor’s back-EMF with a constant gear ratio, the back-EMF in
Eq. (5.47) can be tuned through the varying gear ratio Ng;. The angular velocity
and acceleration of the motor’s shaft can then be obtained by using Eq. (5.36).

The output measurement equation is derived to relate the physical measure-
ments, such as angular displacement and velocity, and the output voltages of the
sensors. Referring to the sensors, the rotational angle is measured by the 10-turn
rotary potentiometer, whereas the angular velocity is calibrated by a tachometer.
Strain gages, used to sense the bending moments along the flexible beam are, de-
duced. Denote ¢, as the conversion factor between the beam root angle 65 and
the output voltage e, of the potentiometer; c¢; as the conversion factor between
the beam angular velocity and the output voltage et ¢, as the conversion factor
between the strain and the strain output voltage eg. Suppose three strain gages
are placed along the flexible beam respectively at z,, s, and z.. An output

measurement equation can be written in the following matrix form

& = [en ep € (Ta), €0 (as), eo(ze) T = Cf [és, ST]T
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) , 1T
= Diag[ce, cp, Cc] [0y 0u, o7 | (5.48)

where each element of the matrix C. is a product of the conversion factor c,, the
half thickness of the flexible beam, and the second derivative of the corresponding
mode shape to a generalized coordinate evaluated at the corresponding sensor
location. All the observed measurements in Eq. (5.48) contribute to the output
feedback control input, namely, e, in Eq. (5.47). Apparently, the matrix Cy in
Eq. (5.48) is composed of the conversion factors of the sensors. More detailed
information about the output measurements is provided in references [20,21,38].
Equation (5.48) thus relates the output voltage é to the state variables 6, and
¢ through the coefficients of the matrix Cj.

Substituting Eq. (5.47) into Eq. (5.44) provides
ME + C¢ + K¢ = BE,(t) (5.49)
in which,

_ I
M=M+ Dz'ag[——m—-, 0, 0,0],
(Ng )’

C = Diag

K Im N,
(Ki{ * G- N”) 0,0, 0
(Nng)z y Uy Yy ’

B=Diag[ 0,0,0],

K
(RaNgN)’
and E,(t) = [eq |7 with e, being the applied voltage for the motor of the
flexible beam. Moreover, the signals of output voltages é will be fed back to the
motor through the desired feedback gain matrix so that

E, = G&é = GCyt (5.50)

where G denotes output feedback gain matrix which will be determined for the

slewing maneuvers of the flexible beam. Equation (5.49) thus demonstrates a
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closed-loop system of a flexible one-beam structure in conjunction with a pair of
noncircular gears. Recall that the time rate of change of the gear ratio in damping

matrix C of Eq. (5.49) can be found by using Eq. (5.38).

§§ 5.5.2 Dynamic equation of an articulated flexible two-beam
structure

The noncircular gears can be incorporated into multibody flexible structures.
An articulated two-beam structure is designed to study the feasibility of two pairs
of noncircular gears for two flexible beams. One flexible beam is articulated on the
tip of the previous beam to result in an articulated flexible two-beam structure as
shown in Fig. 5.7(a). Such an additional beam is also treated as a cantilevered
beam. An extra actuator is required, which is concatenated axially with that for
the first beam as shown in Fig. 5.7(a). The fore-beam is manipulated by this
additional motor through a wire or tendon configuration. In Fig. 5.7(b), denote
8, as the root angle of the first flexible beam and 6, as the root angle of the second
beam, measured relative to the previous local coordinates, i.e., 1 —y1 axes. The

state vector similar to Eq. (5.42) becomes
T
£ = [0y, 02 df, 0 | ;
o = [a, qiny] and g = [,y Gang ] (5.51)

where ¢y; (i=1,-++, ny) are the general coordinates corresponding to the shape
functions y; (i=1, -+, m1) for discretization of the bending deflection of the
first flexible beam. The quantities ¢s; and 12; are defined similarly for the

fore-beam. The input vector for the articulated flexible beams is
T = (71, T2y 0yoer, 07 (5.52)

where 73; and T represent the applied torques for the two flexible beams

repectively.

The kinetic and potential energies of an articulated flexible two-beam struc-

ture are specified in Eqs. (A.17) and (A.18). Application of Lagrange’s equations
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Noncircular Gears
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Figure 5.7: Configuration and coordinates of two articulated
flexible steel beams
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of motion in terms of state variables yields a set of equations in matrix form as

follows.

ME + K¢ = 7 + f(&€) (5.53)

where M, K and 7 are defined similarly to Eq. (5.44), and f (E, £) represents
a nonlinear force vector. In Eq. (5.53), there exists the nonlinear terms, such as
cosine functions of the beam angles, due to the interaction of the dynamics of
the two flexible beams. The inertia matrix M in Eq. (5.53) represents a constant

matrix. The symmetry inertia matrix M in Eq. (5.53) becomes

A oLt —pL2pT(L) = PT  —LhIch,
pL3ch; I —pL?y7 (L)cha _pT
= 2 . 2 2 . P
—pLipy(L) - Py ek Deh oy (LT (L) + pLLy  hatp{(L)ch
—Lh2092 —Pg h2¢1(L)602 pLIg

(5.54)

where cf; = cos(6;), cd; = cos(fz) and c(fy +62) = cos(6 +62). Here
I, and I, are my xn; and ny X n, identity matrices respectively with
n; and ng being the numbers of the mode shapes respectively for discretization
of bending deflections of the two beam-like flexible beams. Moreover, the stiffness

matrix becomes
K = Diag[O, 0, pLu?, prg] ;

w; = Diag{wi, -+, Win, ] and w2 = Diag[wa1, ", Wan, | (5.55)

and the nonlinear force vector yields

F(6€) = Lfi, fo fo, £ I (5.56)

where

pL? . o T:\4
fi = ?89292 — Ls6, (h2 ¢I2) 62

fo = =36y (WT(Ddr) (hTd2) + Lsby (hfd2) b1
2 . .
fi = —%zpl(z)sogag + s0291(L) (AL 42) b2
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fo = —Lsbshabi6 + hashy ($7(L)ir) 62

where s6; = sin(f;), s6; = sin(6s), and s(61 +6;) = sin(6r + 62).

There are two motors which produce the torques for the independent slewings
of the two beams. The applied beam torque 7;; for the first beam in Eq. (5.52)
is identical to the one shown in Eq. (5.47). One idler gear box (constant gear
ratio Np2) and a pair of noncircular gears (variant gear ratio Nyz) are set up for
the torque transmission of the second beam. Therefore, the applied beam torque

Tyo is generated by

Kizeq2 (0”2 + R,, ) ; (Ngszzébz - NpZNgZébZ)
952+ Im2

Ty = -
2 T (RazN,2Np2) (Np2Np2)? (Ng2Np2)’

(5.57)

where the motor parameters for fore-beam are defined in the same way as Eq.
(5.47). Equation (5.57) generates the torque 7p2 for the second beam, slewing
through the applied voltage eq2.

Then, the output measurement equation is
o T
& = [es1, €12, €p0, €p1, €2, €01 (Ta) ; €01 (Tb) , €01 (2c) , €02 (Za) , €02 (23) , €02 (zc)]

e [él, ds, qT]T (5.58)

where

Cf = Dwy[ Ct1, Ct1, Cp*yCpi, 0319 Cs2 ]7

a’ﬂi] ’/-’ln
C.;i = ¢sh (3::161:1 (371) . ’31:1321( 1)) fori = 1,2
° 8% ingy y e

02023 (22)’ "1 9z20z; ( 2)

The dynamic equations can thus be developed which yields
ME + C& + K¢ = BE,(t) + f (&, é) (5.59)
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-~ . Iml Im2
M = M + Diag , ,000000]|,
[ (Nale1)2 (NgZNﬂ)Z ’ ]

’

- Diag (K‘R]:fh] + Cyy — Im1,1‘:'¢1) (K‘szghz + Cyp — Imz:‘ip)
(Nglel)z ’ (Ngszg)z

0,00000],

(w0 )

OCOoOO0OOOOO0O
OO OO

\ o
and E,(t) = [ea1, €a2 ]T which can be obtained by using the output feedback
control technique as shown in Eq. (5.50).

§ 5.6 Simulations of slewing controls with noncircular gears

Two dynamic models, namely a flexible one-beam structure and an articulated
flexible two-beam structure, have been developed in the previous section. The
noncircular gears associated with the hyperbolic gear ratio are installed into two
such flexible space structures to perform controlled slewing experiments. For each
beam-like structure, 90-degree slewing maneuvers are simulated to compare two

cases of slewing performances, i.e. with and without noncircular gears.
§§ 5.6.1 Simulation of a flexible one-beam structure

Three cantilevered modes are assigned for the flexible steel beam. Table 5.2

summarizes the model parameters of a flexible one-beam structure. Using the
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optimal control techniques [68], the slewing control of this flexible structure is
investigated to determine an optimal control law so as to minimize the quadratic

performance index such as

J = f ” [¢TQq + uTRu] dt (5.60)
o .

where ¢7 indicates the state vector [ £, ¢ ]T and uT the input vector. The
positive-definite matrices Q and R in Eq. (5.60) stand for the state and input
weighting matrices respectively shown in Table 5.3. A Riccati equation [68] based
on Eq. (5.60) will be solved to obtain the output feedback gain matrix as shown
in Table 5.3. The varying gear ratio for noncircular gears is specified as shown in
section 5.2. The parameters of hyperbolic gear ratio are listed in Table 5.2. Figure
5.8 demonstrates the task of a 90-degree slewing control for this flexible one-beam
structure. Two cases of slewing simulations are performed: one with the regular
circular gears and the other with noncircular gears. The results associated with
noncircular gears are indicated by a solid line (§1) and the results for circular gears

by the dashed line (}2) respectively.

The performance results for such a slewing maneuver are thus summarized in
Figs. 5.9-5.14. The flexible steel beam slews 90 degrees in 6 sec as shown in Fig,.
5.9. Apparently, the noncircular gears slow down the slewing maneuver during
the first 7-degrees of slew, thereby providing a smoother actuation to the desired
final angle than that in the presence of the circular gears. In Fig. 5.10, both re-
sults of the beam angular velocities damp out in 6 seconds. The higher modes are
clearly observed in the result for circular gears while nearly absent in the results for
noncircular gears. That indicates the efficient suppression of structural vibration
in the presence of noncircular gears. The slewing angular velocity of noncircular
gears illustrates a smoother trajectory after 0.8 sec which implies that the beam
slewing and vibrational motion have been tuned through the noncircular gears.
Moreover, the peak angular velocity magnitude is also significantly reduced. Two

control torques which resemble each other start with 1 N-M and dwindle to zero
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Figure 5.8: 90-degree slewing mission of a flexible one-beam
structure
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