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M : inertia matrix of Lagrange’s equation of motion

me : trolley mass of inverted pendulum

mp : pendulum mass of inverted pendulum

n : number of states

P : weighting matrix of Lyapunov’s function

) : number of inputs

Q : weighting matrix of Riccati equation

q : state vector of first-order state equations

de : equilibrium state

) : original state

R : input weighting matrix of performance index
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r(to) : real constant number depending on initial time

T (v, qo,to): time depending on v, Zo, to

t : time

to : initial time

u : control input vector
Ug : optimal control law

uy : nonlinear control input

V(q,t) : Lyapunov function

V(g,t) : time rate of Lyapunov function

X : displacement of dynamic equations
z : velocity of dynamic equations
Z : acceleration of dynamic equations
‘—ié;l : differentiation of a variable with respect to time
€ : real positive number
v : real number
) : real positive number
Il o]l : norm
( )T : pseudoinverse
() : matrix inversion
()T : matrix transpose
xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



§Appendices A, B, C, D and E§

A : system matrix in the state equation

B : control input matrix

Cy : output measurement matrix

c : one parameter in envelope of a fa;nily of curves

Cv : gear train viscous drag coefficient

Cp : conversion factor between the output shaft angle and e,

Cs . conversion factor between the strain and eg

ct : conversion factor between the output angular velocity and e;

Co : a point of ¢

cf; : cos(6;)

D : damping matrix of dynamic equations with the motor’s
back-EMF

E, : voltage input vector

El : bending rigidity of the flexible beam

€ : output measurement vector

€a : applied voltage for the armature

€o : strain output voltage

ep : potentiometer output voltage

et : tachometer output voltage

f(q) : nonlinear function of state vector

f(q,t) : nonlinear function of state vector and time

f (& ) E) : nonlinear force vector in the dynamic equations

F : a continuous function of envelope theory

9(q) : nonlinear function of state vector

grad () : gradient with respect to state vector

h : half-thickness of flexible beams

Im : motor inertia

LI : moments of inertia for the first beam and the fore-beam
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I : ny X ny identity matrix

I : ng X ng identity matrix

K : stiffness matrix of the dynamic equations

Ky : back-EMF (Electro-Motive-Force) constant

K; : motor torque constant

Kyij, Kaij : stiffness constants for two articulated flexible beams

L : length of flexible beam

L, : armature inductance

M : inertia matrix of the dynamic equations without motor’s
inertia

M : inertia matrix of the dynamic equations with motor’s inertia

m : total mass of the trolley and the beam driver

N, : overall gear ratio

n . number of mode shapes for the flexible one-beam structure

ny1,N2 : numbers of mode shapes for the flexible two-beam structure

P : symmetric and positive-definite matrix

Q : symmetric and positive-definite matrix

Q; : external forces of Lagrange’s equations of motion

q : state vector

ge : equilibrium state vector

@ : generalized coordinate vector for the flexible one-beam
structure

q1,92 : generalized coordinate vectors for the flexible two-beam
structure

R : symmetric positive-definite matrix

R, : armature resistance

Ry : weighting matrix of Lyapunov-based control input

r : transmission pulley radius

S : skew-symmetric matrix

S{ve} : a family of smooth curves on a surface

xxiv
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86;

V(a,t)
V(q)
X, ¥
TayTh
1,

T2,Y2
Y1,Y2

«,

3! (531)

: sin(6;)

: kinetic energy of the system

: time

: potential energy of the system

: scalar positive-definite function of state vector and time
: scalar positive-definite function of state vector

: fixed inertial coordinates

: positions of strain gages along a flexible beam

: moving relative coordinates for the first flexible beam
: moving relative coordinates for the flexible fore-beam
: translational displacement of the trolley

: bending deflection in the horizontal plane

: nondecreasing scalar functions

: mode shapes diagonal matrix for discretization of bending

deflection of the flexible beams

: mode shapes diagonal matrices for the articulated manipulator
: elements of the stiffness matrix K

: frequencies associated with shape functions w;

: mass density (per unit length) of flexible beams

: continuous scalar function

: angular displacement of inverted pendulum

: root angle and output motor shaft angle for the first flexible

beam

: root angle and output motor shaft angle for the second beam
: motor shaft angular position

: scalar number

: available torque from the motor shaft

: control forces of the dynamic equations of motion

: motor torque

. state variables vector for second-order dynamic equations
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X : vector cross product

%—t-l : differentiation of a variable with respect to time
: d
) %
()T : transpose of the matrix
ol : norm
82
( ),zz) : '5},!2
%;l : partial derivative with respect to time
00 : infinite
()? : matrix inversion
xxvi
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ABSTRACT

CONTROL AND MECHANISM INTERACTION FOR GROUND-BASED
TESTING OF SPACE STRUCTURES

Li-Farn Yang
Old Dominion University, 1990
Director: Dr. Meng-Sang Chew
Co-director: Dr. Jen-Kuang Huang

Rapid maneuvering and ground-based testing of large flexible space structures
can be improved by using ingenious mechanisms. An integrated analysis is thus
conducted to establish a link between the control and the mechanism to achieve
the same desired structural performance. In the ground-based validation testing,
the adverse effect of terrestrial conditions such as a gravitational force interferes
with the dynamic behavior of space structures. A suspension system is developed
to assess the structural characteristics in a simulated zero-gravity environment.
Using a mechanisms approach, the synthesis of a noncircular disk with a torsional
spring at its rotational axis is designed to counteract the gravitational force of test
structures during the testing. A discrete and a continuous parameter models of

test articles are employed for suspension simulations.

The multibody dynamics of a flexible steel beam carried on a rigid trol-
ley has been investigated. The system is constructed in such a way that the
rapid and large-angle slewing maneuver is performed by means of hybrid rota-

tional/translational motions. The intention is to develop a new maneuvering
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testing  which extends the work space of the space structure through a trans-
lational trolley. The strategy of the control is to use a terminal position control
that simultaneously suppresses structural vibration. The comparable simulations

are used to verify the experimental performances.

The inclination of noncircular gears to the joints of the space structures ne-
cessitates an integrated approach to the investigation of control synthesis and
mechanisms design in the slewing maneuvers of flexible space structures. A flex-
ible one-beam structure and a flexible two-beam structure with such noncircular
gears will be investigated. Such a noncircular-gear device consists of two specially
shaped cams, which are wrapped in a proper mesh by two pairs of thin metal
bands. The rolling contact between two noncircular gears is always ensured dur-
ing relative rotation without friction, slipping,' lag or backlash. The varying gear
ratio of noncircular gears is specified to produce varying output speeds so as to tune
the rapid slewing maneuver while suppressing structural vibration. One optimiza-
tion technique based on the Generalized Reduced Gradient Method is employed
to determine the optimal design of the controllers as well as the noncircular gears
for vibrational suppression during the rapid slewing maneuvers. The numerical
simulations are implemented to evaluate the effectiveness of the integrated design
of control and mechanism for the slewing maneuvers of flexible space structures.

1

In the slewing maneuver of flexible space structures an increasing need for
nonlinear controllers for the compensation of kinematic nonlinearities has been
observed. Based on Lyapunov’s stability criterion, the stability analysis of space
structures leads to the design of a Lyapunov-based controller that yields a stable
closed-loop system. Such a controller is developed by combining a linear part
and a nonlinear part for the rotational/translational maneuver. The simulations
of three kinds of nonlinear dynamic systems are performed to verify the useful-
ness of Lyapunov-based nonlinear feedback control. Two types of beam-like flex-

ible space structures, i.e. the flexible one-beam structure on a trolley and the
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flexible articulated two-beam structure on a trolley, are simulated to implement
maneuvering tasks of position control while suppressing the structural vibration
simultaneously. An inverted pendulum is stabilized through its Lyapunov-based
nonlinear controller to confirm the feasibility of such a nonlinear controller for

unstable systems.
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Chapter 1
INTRODUCTION

§ 1.1 General

Satellites have successfully been placed and deployed into the earth’s orbit for
over three decades. Existing satellites have ranged in size from only a few inches,
such as the Explorer, to over 100 feet, like Space Shuttle Orbiter and Probes.
Without any loss of generality, they could be treated dynamically as rigid bod-
ies during their mission operations. However, interest in orbiting very large space
structures has established a need to maneuver and control flexible structures. This
need creates a demand for the state of the art dynamic analysis and experimental
verification of large flexible space structures in a zero-gravity environment. Sev-
eral large flexible space structures that have been under investigation include the
Mobile Satellite, the Large Deployable Reflector, the permanent Freedom Space
Station and SDI weapon systems. These flexible space structures provide the basis
for current investigation into the weightless environment of orbital flight as well

as various forms of preflight testing and analysis.

§ 1.2 A space structure suspension system

Dynamics and control of flexible space structures have been a subject of in-
tense activity at NASA. For validation, much of the simulations have to be contin-
uously verified using ground-based testing. In general, the performance of missions
for the flexible space structures relies mainly on their accurate ground-based val-

idation testing. Hence, a zero-gravity environment must be prepared on ground
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for the dynamic testing of low-frequency flexible space structures. Several sus-
pension devices [1-7] have been utilized to satisfy such a demand towards the
accomplishment of the ground-based testing for decades. Figure 1.1 shows a novel
suspension system [71] which is designed from a mechanisms perspective to simu-
late the weightless environment. The development of this invention is based first
on the study of static equilibrium for the test structures. Then, an analytical
method is derived to determine a disk profile which plays a crucial role in this
suspension system. Using the envelope theory [8], in conjunction with the kine-
matic inversion technique, the polar coordinates of such a disk profile can then
be determined. Such a suspension device will be applied to ground-based testing
of a lumped-parameter model and a flexible beam under initial displacement and

initial impulse conditions.

§ 1.3 Slewing maneuvers of flexible space structures

In the investigation of slewing maneuvers of flexible space structures, these
structures may be modeled as a multi-body dynamic system which is composed
of a rigid member connected to a flexible or compliant member. The coupled
interaction between the rigid and the flexible members in conjunction with the
dynamic nonlinearities causes immense difficulties in vibrational control during
rapid maneuvers or large motions. Since the dynamics of the space structures
is characterized by their huge size and flexibility, the resulting vibrations of the
flexible member is likely to influence the system dynamic behavior and therefore
degrades the effectiveness of the feedback control. Therefore, the control perfor-
mance of flexible structures must be improved to some extent to counteract the
effects of flexibility. An experimental setup [72,73] (see Fig. 1.2) consisting of
a flexible steel beam carried on a translational trolley is developed to carry out
the position control mission. Flexibility feedback from the strain gages can be
applied to both the beam motor and the trolley motor. The beam slewing maneu-

ver with the translational motion of trolley is then performed through numerical
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simulation as well as experimental setup according to the strain-gage feedback
control. The simulation and experimental results demonstrate the effectiveness of

the strain-gage feedback for suppressing flexural vibrations of the beam.

§ 1.4 Non-circular gearing for vibrational suppression

A noncircular gear system (see Fig. 1.3) consisting of two convex cylinder-type
cams is investigated to modify the slewing characteristics of the large flexible space
structures. The two specially shaped gears that are implemented as convex cams
in Fig. 1.3 are properly meshed and well balanced through the use of two pairs of
thin metal bands, that wrap the two noncircular cams in opposite directions, and
are then tightly clamped by two holders at the two ends. In a rotation of one beam
relative to another, such noncircular gears rolling on each other would minimize
friction, slipping, lag and jam. The noncircular cams, synthesized through the
use of appropriate hyperbolic gear ratio, are installed in the junctions of motors
and structures in two kinds of flexible space structures. The hyperbolic gear
ratio, specified as a two-parameter function of output angle, produces varying and
cyclical output speeds to transfer the initial rapid slewing characteristic, thereby
suppressing structural vibration. Two 90-degree slewing tasks of a single-beam
flexible structure and a double-beam flexible structure are implemented by using
output feedback controllers in conjunction with these noncircular gears at their
rotational joints. Optimal designs of the noncircular gears associated with the
gear ratio are also conducted to improve the suppression of the vibrational motion
during rapid slewing maneuvers. For the design optimization of noncircular gear
ratio, the Generalized Reduced Gradient Method (GRG) [9-12], which is derived
from a finite difference approach, utilizes the line search technique to minimize a
quadratic cost function. This cost function has been specified as the sum of the
square of the vibrational-mode magnitudes. Furthermore, the output feedback
gains of both flexible beam-like structures can be included into the optimization

of the noncircular gear designs within the same cost function. In this way, an
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integrated approach to controller design and mechanism design is realized using
an optimization technique. Improvements in maneuvering performances with less

vibration are achieved for rapid and large-scale slewing maneuvers.

§ 1.5 Lyapunov feedback controller

From the results of the rotational/translational maneuvering experiments of a
flexible steel beam, the significant kinematic nonlinearities are encountered during
the rapid and large angle slewing of the beam, thereby complicating the controller
design. Under such rapid and complicated maneuvers of the flexible beam, the
requirement for a nonlinear controller to provide for the good control performance
of the space flexible structures is essential. An approach based on a Lyapunov
stability criterion is developed for a feedback controller to provide a stable closed-
loop system [74,75]. This Lyapunov-based design strategy consists of two parts.
A feedback control law is first generated for the linear portion of the system
equation by using linear control theory. Then, a feedback controller is designed
for the nonlinear portion of the system equation by making the time derivative of
a positive definite Lyapunov function, to be negative. The combination of these
two parts thus provides a stable feedback control design for nonlinear systems in

a Lyapunov sense.

Therefore, in this dissertation four mutually related topics are included to

deal with the control analysis and testing of flexible space structures. They are

(1) A space structure suspension system
(2) Maneuvering experiments and simulations of flexible structures
(3) Noncircular gear design for vibrational reduction in
flexible structures
(4) Lyapunov-based nonlinear controller designs for flexible space

structures



In topic (1), the design of a suspension system is developed and the suspension
simulations are performed to verify its feasibility. In topic (2), the investigation is
conducted to implement the numerical simulations and control experiments for the
rapid maneuver of a multi-body structure. In topic (3), the slewing maneuvers
of a flexible one-beum structure and a flexible articulated two-beam structure
are simulated to verify the integrated design of noncircular gears and feedback
gain. In topic (4), the analytical derivations of Lyapunov-based nonlinear controls
are applied to three different dynamic systems to perform the nonlinear control

simulations.
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Chapter 2
OBJECTIVES

§ 2.1 Objective, motivation and scope of a space structure
suspension system

The objective of this suspension system (see Fig. 1.1) is to simulate the space
environment and suspend low-frequency structures for ground-based validation
testing. Flexible space structures, in general, experience free-free boundary con-
ditions that are not readily replicable on the ground. Yet, to conduct the testing
of such space structures, special devices must be introduced to support the weight
of the structure without introducing any constraint forces which in turn impose
boundary conditions that do not simulate the desired free-free boundary condi-
tions in space. Several existing approaches and devices [1-7] have been used or
proposed for suspending space structures for dynamic testing. Some of these are

illustrated below:

(1) Long Cables :

The structure is suspended from a high ceiling through several long
cables. Testing of the dynamic of the structure is conducted on the hori-
zontal plane so as to reduce the gravitation contribution on the dynamic
of the structure. The overhead suspension system of Langley Lunar Land-
ing Research Facility is a typical long-cables system to support five-sixths
of the weight of the Apollo Lunar Lander Training Module.
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(2) Air Pads :

Various designs based on the principle of reducing or eliminating
friction on the horizontal plane have been proposed. The most common
is the use of air pads that act as hydrostatic air bearings on which the
structure is suspended. Again, in such a design, the dynamic testing of

the structure is conducted on a horizontal plane.

(3) Pneumatic/Electric Device :

An external air tank under pressure drives a piston which is sus-
pended on the test structure. Since the pneumatic system incurs a pos-
itive spring stiffness, a linear DC motor is incorporated to introduce a
negative spring stiffness to the pneumatic system so that from the per-
spective of the test article, the system has very low stiffness. However,
such an approach necessitates a very complex control system to insure
the proper operation of the suspension device. This device has been de-
veloped under the NASA/LaRC Pathfinder Dynamic Scale Technology
Program [2].

(4) Springs :

Different combinations of springs in different configurations have
been proposed to introduce a near- zero stiffness of the suspension system.
However, all such configurations always result in a very small domain of
operation (stroke) under which the test structure could move and yet see

no constraining force.

In Chapter 3, a novel band mechanism [71] (see Fig. 1.1) is designed to provide
a simulated zero-gravity environment (3] for ground-based dynamic testing of the

space structures. The dynamic interaction between this system and the test article

10
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forms the basis of investigation that is reported in Chapter 3. The system features
a noncircular disk, around which a cable winds and unwinds as the disk rotates.
The envelope theory and kinematic inversion [8] are employed to derive coordinate
equations of disk profile. This disk has a special profile designed in conjunction
with the load it is to suspend, as well as the spring stiffness of the torsional spring.
The torsional spring loads the disk as the lé.tter rotates so that the torque exerted
by the spring about the disk axis of rotation is exactly counterbalanced by the
force exerted by the weight of the test article on the cable that winds around the
disk. In this way, the suspension system is capable of keeping the test structure in
static equilibrium at any vertical location so that, on a static basis, the weightless
effect of a test structure in space can be simulated on earth through this suspension
system. The cable which connects the disk and test structure is always in tension
during dynamic testing, The noncircular disk within the suspension system can be
configured to remain unchanged for test articles with the different weights as long
as the torsional spring is replaced to maintain the originally designed frequency
ratio of % A constraint on the system is that the profile of the disk must be

convex to allow the cable to wind around its edge.

The comparsion between the above-mentioned suspension systems illustrates
the advantages of this noncircular disk suspension system over the four prior ap-
proaches. The experimental performances of the prior four suspension systems
have revealed some inadequacies in their usage. In the case of long cables, the
testing is constrained within the horizontal plane while the gravitational effect of
the structure is compensated through several long cables. Thus, the entire sus-
pension system must occupy a large space with tall ceilings. Nevertheless, the
test model of this invention may be reducible to an appropriate scale within the
work region. In the case of air pads, friction on the horizontal plane may influence
the performance of the testing. The inertia of air pads may also change the sys-
tem dynamics particularly when a large number of air pads are used for the large

space structure. Moreover, the planar design of air pads constrains the feasibility

11
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of testing in the vertical direction. In the case of pneumatic/electric device [2],
a complicated control system is employed to produce a negative spring stiffness.
A piston with an external air tank is a cumbersome way when compared to the
single cable in this proposed suspension. Furthermore, the controller design must
be involved with a linear DC motor to provide the appropriate feedback for the
negative stiffness rate. No matter how accurately the output is mea.suréd for feed-
back, the influence of noise upon the dynamic performance cannot be ignored. In
the case of springs, the working domain of operation with zero stiffness rate, is

strictly limited so that the test structure can move only within a small stroke.

Two test articles have been selected for the investigation of this disk suspen-
sion device. The first test article, which consists of two masses and one linear
connecting spring, is suspended from an equilibrium position. Such a lumped-
parameter system is thus treated as a simple two-degree-of-freedom discrete system
whose flexibility is characterized by the connecting spring. Another test article
is a flexible steel beam which is hung at its two ends in equilibrium through two
identical band drive suspension mechanisms. Simulation of the suspension system
with the test articles originally at rest are carried out with excitations such as an
initial displacement and an initial velocity (impulse) on the masses. The charac-
teristics of the flexible space structures are then analyzed in conjunction with this

band drive suspension system.

In Chapter 3, the concept of the suspension system is deduced by investigating
the static equilibrium of the test structure at two different positions in section 3.1.
In section 3.2, the envelope theory, in conjunction with the kinematic inversion
technique, is applied to determine the rectangular coordinates of the noncircular
disk. The disk profile is developed by tracing the tangent points on a family of
string trajectories observed from a viewer fixed at the rotational center. Section
3.3.1 displays dynamic equations for testing space structures which are modeled as

the spring-mass elements (lumped-parameter model) hung by this disk suspension
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device. Section 3.3.2 is conducted to derive dynamic equations of a testing flexible
steel beam hung by two disk suspension systems at its two ends. The simulation
results of the lumped-parameter model are shown in section 3.4.1. Section 3.4.2
demonstrates the simulation results of the flexible steel beam. Both simulation
results in sections 3.4.1 and 3.4.2 involve the dynamic responses for the excitations
of the initial displacement and the initial impulse. Finally, a brief summary is made

in section 3.5.

§ 2.2 Objective, motivation and scope of maneuvering experiments
and simulations of flexible structures

Research and experiments on the control of large flexible structures have
gained much attention in the past decade. For several years, NASA has conducted
research in the area of control and structure interaction and reviews of progress
have been presented in references [13-21]. Future space manipulators may need
translational base motion to expand the access region of a manipulator. The
objective of this maneuvering experiment is to present experimental results for
the slewing of a flexible structure with coupled rotational and translational axes
while simultaneously suppressing vibrational motion during the maneuver. In
Chapter 4, a flexible steel beam, carried by a translational trolley, is maneuvered
by an active controller to perform position control tasks [72,73]. The experimental
setup consists of a rigid translational trolley with one flexible steel beam attached
to a motor at the root end. One translational motion and one rotational motion
for this system are thus introduced. The difference between this experiment and
many others [22] lies in the translational motion which couples with the flexible-
body motion in such a nonlinear fashion that the mathematical model is more
complicated and the controller design more difficult. However, simple output
feedback control methods are applied in this chapter to the position control of the

flexible steel beam with translational and rotational motions.

13
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In Chapter 4, the dynamic system of a flexible steel beam carried on a rigid
and translational trolley is described in section 4.1. The experimental setup in
section 4.2 includes several tables of equipment which have been employed to per-
form four different cases of rotational/translational maneuvering experiments. An
output feedback control loop is constructed by using EAI-2000 Analog Computer
as a controller in section 4.3. Four cases of simulation and experimental results are
shown in section 4.4 to illustrate the influence of the structural flexibility of the
steel beam to the active feedback controller. On the other hand, both simulation
and experimental results fairly resemble each other in the four cases so that the
validation of such maneuvering experiments can be verified through the analytical
simulations developed herein. The discussion concerning system nonlinearity and
the damping effect is demonstrated in section 4.5, which forms the motivation for

the investigation that will be reported in thenext two chapters.

§ 2.3 Objective, motivation and scope of noncircular gear design for
vibrational reduction in flexible structures

The experimental results in Chapter 4 have shown the significant importance
of measurement feedback due to strain gages upon the rotational/translational
maneuvers of a flexible steel beam on a trolley. Apparently, the suppression of the
structural vibration has been enhanced through the active feedback controllers,
including the flexibility feedback. It has been noted that rapid and large an-
gle slewing may excite the huge amplitudes of vibrational modes during control
process. Herein, a noncircular gear mechanism will be investigated to tune the
kinematic characteristics of the slewing maneuvers so that the structural vibra-
tion can be suppressed more effectively than through the conventional feedback
control approach. To further suppress these vibrations, an integrated application
of control feedback and noncircular gears is introduced in conjunction with an
optimization technique to simultaneously determine the optimal noncircular gear

profiles as well as the output feedback gains.
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This particular choice for noncircular gears over the linkages, cams and band
mechanisms, is primarily due to the compactness in size, well-balanced construc-
tion and high- speed operation. The profiles of the noncircular gears have been
seen in many special shapes, such as logarithmic spiral gears, elliptical gears and
square gears [23-27]. These specially shaped gears can always be constructed as
long as their center distance remains constant during the rotation. Reference
[24] demonstrates several industrial applications of noncircular gears such as the
variable frequency oscillator for space vehicles, quick-return drives, intermittent
mechanisms, automated-feed machines, etc. This study also validates the feasi-
bility of several noncircular gears which are designed to roll with special racks.
Moreover, an eccentric circular gear can be shown to be in proper mesh with four
different kinds of mating gears, including elliptical-shaped gears, as well as an in-
ternal gear. Reference [24] displays several combinations of basic and high-order
elliptical gears which can produce several speed cycles per revolution. More de-
tailed analysis of elliptical gears has been implemented by S. Rappaport [28] to
provide cyclic output speed variations. A cigaret machine is shown to demon-
strate the usefulness of elliptical gears in that same article. A single pair of twin
eccentric gears have been investigated by S.V Miano [29] to meet the prescribed
variable output speeds. This paper provides the analytical derivation to evaluate
the nonlinearities, i.e. backlash, lag, jam and critical contact ratio, due to the
eccentricity. Based on the design equations shown in reference [24], the param-
eters of twin eccentric gears must be carefully specified to avoid much of such

difficulties.

Figure 1.3 illustrates a pair of noncircular gears composed of two convex
cylinder-type cams which are wrapped by using two pairs of thin metal bands
to maintain a proper mesh. Rolling contact is always guaranteed in the rotation
of the noncircular gears in addition to reduced friction levels, slipping, lag, jam,
and backlash. Two such noncircular cams, running on a collinear center-to-center

line, will produce the varying and cyclical output speeds needed to tune the rapid
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slewing of the beam in a way that will suppress vibrations. Their gear ratio,
which is determined by equating the reverse pitch radii of input/output gears,
has initially been specified as a hyperbolic function of the slewing angle. Instead
of using an established pitch profile for the gears or cams, the two pitch profiles
of the noncircular gears will be synthesized by employing some mechanism syn-
' thesis techniques. The noncircular gears are installed with an idler gear box in
junction with an actuator and a flexible beam. A simulation of the 90-degree slew-
ing maneuvers of two kinds of flexible space structures, i.e. a flexible one-beam
structure and a flexible articulated two-beam structure, will be conducted with the
noncircular gears present at the joints of the articulated structures. The regulator-
type output feedback control gains are first solved using optimal control theory
as a means for understanding the dynamic characteristics of this highly nonlinear
system. Subsequently, an optimization technique based on Generalized Reduced
Gradient Method [9-12] is then employed to determine the optimal parameters of
such noncircular gears as well as the feedback gains so as to minimize the vibra-
tional amplitudes present in the flexible beams. This integration of the design
of the control and mechanism parameters represents a powerful and systematic

approach to the design for rapid slewing maneuvers of flexible space structures.

In Chapter 5, the general concept of noncircular gears is addressed to illus-
trate their widespread applications in section 5.1. In section 5.2, three common
design equations based on the given gearing relationships [24] offer three different
approaches to obtain pitch curves of noncircular gears. The formulation in case
1 will be the approach employed for designing the desired noncircular gears. In
section 5.3, the desired noncircular gears for slewing maneuvers of space structures
are characterized by having an appropriate hyperbolic gear ratio which is specified
as a function of the slewing angle. The construction of such noncircular gears is
also illustrated. The advantages of this new device over the conventional ones
[23-29] are also discussed. Some simulation results illustrate the output charac-

teristics of these noncircular gears. In section 5.4, the actuator dynamics which
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generates the available torque due to the applied voltage, is developed. Instead
of a conventional actuator, this actuator with the desired noncircular gears in-
troduces varying gear ratios and varying torque outputs. The dynamic equations
of a flexible one-beam structure and a flexible articulated two-beam structure in
the presence of actuator dynamics are derived using Lagrange’s functions. These
are shown in Appendix B in sections 5.5.1 and 5.5.2. Section 5.6 discusses the
numerical simulations that verify the feasibility of noncircular gears for two kinds
of slewing maneuvers of flexible structures. To further suppress structural vibra-
tion of the beams, a Generalized Reduced Gradient Method is employed in section
5.6 to determine the optimal designs of noncircular gears. Simulations in section
5.7 demonstrate the lower vibrational amplitudes for the previous two kinds of
slewing maneuvers while the optimal designs of noncircular gears are applied. As
an even further step, the integrated optimization of both control feedback gains
and mechanism parameters are performed in section 5.8. Both feedback gains and
parameters of noncircular gears are optimized in this section to minimize vibra-
tional amplitudes at the beam. In section 5.9, the simulations associated with the
integrated optimal design of control and mechanism are implemented. Finally, the

discussion of this chapter is concluded in section 5.10.

§ 2.4 Objective, motivation and scope of Lyapunov-based nonlinear
controller design for flexible space structures

In the area of control of flexible structures, there are many existing meth-
ods available today for designing feedback controllers for the nonlinear systems
[30-51]. For example, the feedback linearization method is developed in reference
[35], and modified and extended in references [37] and (38] for active control of
flexible structures. This method is applied in reference [38] to actively control an
articulated flexible manipulator carried on a translational cart. The nonlinear dy-
namic equations for the manipulator are derived. The time-variant inertia matrix

is linearized without approximation by using the feedback linearization approach.
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Linear feedback control theory is then employed to design a controller to move the
manipulator in an attainable workspace while suppressing the bending vibration

of the flexible arms simultaneously.

On the other hand, the Lyapunov stability criterion is often used for the
development of nonlinear control methods. For example, the deployment and
retrieval of a subsatellite is studied in Ref. [47) using a mission function (Lyapunov
function). The required mission function must be selected corresponding to system
nonlinearity. With the special mission function, a freely assignable part of control
is adjusted to make the time derivative of the mission function negative during the

control process. This would ensure the system stability in the Lyapunov sense.

In Chapter 6, a Lyapunov-based control system [74,75] for rapid large an-
gle maneuvers of a flexible-link structure is proposed in a way different from the
mission function control. Basically, the equations of motion for a typical kine-
matically nonlinear system consist of two parts, namely, the linear or linearized
part and the nonlinear part. The linear control law can easily be designed for
the linear part. Feedback control obtained for the linear part may actually sat-
isfy the stability criteria for the original nonlinear dynamic equation as long as
the nonlinear part is insignificant. However, for rapid large angle maneuvers in
which the system nonlinearity becomes significant, there is no guarantee for sys-
tem stability through the use of the linear control law. In such cases, an additional
feedback control input is required to compensate for any nonlinear dynamic be-
havior. Consequently, the Lyapunov-based control law derived herein consists of
a linear control and a nonlinear control to provide a stable closed-loop control
design for nonlinear systems. The nonlinear control of Lyapunov-based control
law is based on the sufficient requirements of the Lyapunov’s second method for
system asymptotical stability {52-64]. To generate a standard performance index
of system energy, a quadratic form of Lyapunov function is chosen with a weight-

ing matrix derived from the Riccati equation associated with the optimal control
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design for the linearized  system equation. The nonlinear control law based on
the weighting matrix is thus derived making the time derivative of the Lyapunov
function negative. The nonlinear control law thus derived is directly related to
the states and the nonlinear portion of the system dynamic equation. The entire
closed-loop feedback control is accomplished by combining the nonlinear control

with the linear control law.

Several types of stability are discussed in section 6.1. The concept of asymp-
totical stability is employed herein to find the Lyapunov-based nonlinear con-
trol design. The general derivation of Lyapunov-based nonlinear control design is
demonstrated in section 6.2. Three nonlinear dynamic models, namely a flexible
one-arm structure, a flexible two-arm structure (38] and an inverted rigid pen-
dulum, are selected to illustrate the Lyapunov-based design concept. In section
6.3, these three kinds of dynamic equations are derived based on the information
as shown in appendices B, C and E. Numerical simulations are given in sections
6.3.1-6.3.3 for comparing the system responses with and without the nonlinear

control law.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

A SPACE STRUCTURE SUSPENSION SYSTEM

The suspension system is a practical research tool for assessing characteristics
of flexible space structures proposed for operation in zero-gravity environments.
The ground-based validation testing of the flexible space structures has been im-
plemented for decades by using the existing suspension devices, such as long ca-
ble, air pads, pneumatic/electric device, spings, etc. Instead of the conventional
approaches to the design existing suspension devices, a mechanisms approach is
employed to construct a novel suspension. The dynamics of low-frequency space
structures can thus be tested in simulated weightless surroundings which are pro-
vided by this suspension device. This novel suspension system is characterized by
a noncircular disk as shown in Fig. 1.1. This disk has a special profile designed in
conjunction with a frequency ratio of %, which indicates the suspended load over
the spring stiffness of the torsional spring. This torsional spring loads the disk as
the latter rotates so that the torque exerted by the spring about the disk axis of
rotation is exactly counterbalanced by the force exerted by the weight of the test
article on the cable that winds around the disk. In such a way, this suspension
system, associated with a specially profiled disk, is capable of keeping the test
structure in static equilibrium at any vertical location. Based on the equilibrium
at any vertical position, a special profile of the noncircular disk is synthesized by
using the envelope theory in conjunction with the kinematic inversion technique
[8]. The profile of the disk must be convex so as to allow the cable winding and
unwinding around its edge. The concept of this novel suspension system indi-

cates thet the weightless phenomenon in space can be simulated for the structural
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testing on earth. The state of the art design of this suspension system allows no
change of the disk profile for the test articles with different weights. Two test ar-
ticles are selected for the suspension simulations, including a lumped- parameter
model and a flexible steel beam, in conjunction with the suspension system. The
first test article is composed of two masses connected by one connecting spring
so that it can be treated as a simple two-degree-of-freedom discrete system whose
flexibility is characterized by a connecting spring. Another test article is a flexible
steel beam which is hung at its two ends through two identical suspension systems.
The simulations of the ground-based dynamic testing are performed by providing
the test articles, originally at rest, with the proper excitations, such as the initial
displacement and the initial velocity (impulse). The characteristics of the flexible

space structures are thus investigated by using this band drive suspension system.

§ 3.1 Concept of the band drive suspension system

The problem of simulating space environments on earth inspires the devel-
opment of many suspension systems that can counteract the gravitational effect
on test structures in the vertical direction. The attention of this investigation is
focused primarily on the vertical direction of the suspension problem. The weight-
less effect during the ground-based testing of structures provides the concept of a
mechanical device to act as a suspension system. This concept has been designed
to produce a torque in a torsional spring at any instant considered to counteract
the loading torque due to the weight of the test structure moving in the gravita-
tional direction. The loading torque is generated by multiplying the weight of the
test structure and a moment arm about the rotational axis of the noncircular disk.
The torsional spring, which is located at the rotational axis of the noncircular disk,
is preloaded according to the initial position of the test article. In this way, the
weight of the test structure is thus counterbalanced during the entire period of the

ground-based dynamic testing.

To begin, in the design of the suspension device, the statics of a suspension
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system must be analyzed to determine the force equilibrium of the ground-based
test article at any vertical location. Figures 3.1(a) and (b) show two arbitrary
positions of a test article in static equilibrium suspended under this suspension
device. The consequential two locations shown in Fig. 3.1(a) and (b) are displaced

by a distance #;. The suspension device consists of:

(1) a noncircular and specially profiled disk (D),
(2) a torsional spring (S),

(3) a thin cable (C),

(4) a smooth ring (R),

(5) a test article (W).

Assume that a test article is originally suspended and kept in static equilib-
rium at the position shown in Fig. 3.1(a) with the thin cable C wrapped around
the edge of the noncircular disk D. This cable passes through the smooth ring R,
and extends downward to suspend the test article W. This smooth ring R may
be assumed frictionless. To prevent the cable from driving the disk D and hence
unwinding, a torsional spring S is attached to the axis of rotation of the disk D
such that the torque exerted on the disk D, due to the load imposed by the test
article W, is balanced by the torque Ts; in the torsional spring S, i.e.,

Wr = Ty (3.1)

where r; is the moment arm which is the perpendicular distance from the disk
rotational center to the cable. Assume that 6; denotes the corresponding rotation
of the noncircular disk D and k,, the torsional spring stiffness in Fig. 3.1 (a).
Then the equilibrium equation of Eq. (3.1) can be further written as

ks (050 + 61) = Wry (3.2)

where 85, is the angle of preload in the torsional spring S. Note that this equation
provides an explicit relationship between the angle of rotation 6,, of noncircular

disk D, and the moment arm r;. Suppose the test article W is displaced downward
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Figure 3.1: Static equilibrium of a test article at two different
positions under disk suspension system
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a distance of #; from its original equilibrium position, as shown in Fig. 3.1(a). To
enable the test article W to remain in equilibrium at this new position, illustrated
in Fig. 3.1(b), the moment arm r; subtended at the axis of rotation of the disk D
has to be larger than r;. This is because to balance the increased torsional spring
torqtfe, while the cable is at the same tension W, an increase in the moment arm

on the noncircular disk is needed, so that:

W7'2 = ng (3.3)

In this new equilibrium position:
ks (00 + 02) = Wre (3.4)

where 8, is new rotational displacement of disk D, as illustrated in Fig. 3.1(b).
Note that the moment arms ry, 75 are not the radial distances to the points
of tangency of the cable at the disk profile, but are the perpendicular distances
from the disk rotational axis to the cable. Since the moment arm r is different
from ry , it is then possible to determine the profile of the noncircular disk D such
that a continuous change in the moment arm is obtained for any given position of
the test article W, in such a way that when displaced from one position of static
equilibrium to other position, the test article will remain in static equilibrium in
its new position. That causes a weightless situation which simulates that in a
space environment. This device will also simulate the behavior of the test article
subjected to an impulse. The body will accordingly translate at a constant velocity.
This is what is observed in the test article W. When the latter is imposed with an
initial velocity v, such as a short-period impulse, the test article will continue
to travel at that same velocity vo over a considerable range of travel. This is
because the tension in the cable is constant and is exactly equal to the weight of
the test article, so that there is no net driving force on the article during its entire
range of motion. With that observation, it therefore leads to a constant velocity

of the test article and in so doing, exactly simulates the motion of an object in
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space. Likewise, the impulse response of a flexible structure is performed in this
suspension device. The entire test structure will travel at a constant velocity as a
rigid-body motion, while the traveling beam is oscilating due to its flexible modes

within the moving coordinates.

The static characteristic of the suspension system is thus governed by equa-
tions (3.1)-(3.4). Compared with prior suspension systems discussed in the sec-
tion 2.1, where complicated electrical devices or the huge facilities are needed, this
band drive suspension system is a rather simple mechanical system. Obviously,
the noncircular disk plays a very crucial role in such a suspension system. The
profile coordinates of the noncircular disk will be derived by using envelope theory
[8] in conjunction with the equilibrium equations given by Eqgs. (3.1)-(3.4). This

will be the subject of discussion in the following section.

§ 3.2 Design of the disk profile

The envelope theory will be applied to generate the coordinates of the disk
profile given in Fig. 3.2. Using kinematic inversion, an observer fixed to the
disk would view the sequential positions of the cable, which tracks a sequence of
straight trajectories P, Ty, PT;, oL, -+, P.T. as shown in Fig. 3.2, as the
disk rotates. The swinging point P; (i = 1,2,---,n) is observed to lie on a circular
path with a radius r,, which is the distance from the rotational center O to the
ring R. These straight trajectories, together when taken infinitesimally apart, give
the envelope which forms the disk profile. In Fig. 3.1, the normal distance from
the rotational center of the disk to the cable provides the moment arms of r; and
ry in equations (3.1)-(3.4), such that the loading torques of Ty; and T,y are
counteracted to maintain the equilibrium of the test article no matter where the
test article is located. Instead of the circular disk, the contact point where the
cable is tangent to the noncircular disk does not have to coincide with the end

point of moment arm except for the starting point Fp in Fig. 3.2. Since the
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Figure 3.2: Development of noncircular disk profile
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change of the disk angle in Eqs. (3.2) and (3.4) is continuous, the circumference
of the disk must be continuously smooth. Due to the increasing moment arm of
ro > 7, insection 3.1, the disk will be inclined toward a convex profile which meets

the convexity for the thin cable C in Fig. 3.1 winding around the noncircular disk.

The process to determine the disk profile coordinates is demonstrated in Fig,
3.2. A family S{v.} (see Appendix A) in the envelope theory is composed of
the trajectories of a swinging straight string. And the corresponding envelope
v is associated with the desired disk profile. To derive equations for disk profile
coordinates, the relative geometry of the disk and the swinging string must be
described at both the lowest string position and at some displaced string position
consistent with the rotational direction of the disk. A base circle is specified and
located at a center O with a radius r;. The point O indicates the rotational center
of the noncircular disk. In fact, the radius r, indicates the initial moment arm
of the test article at the starting position, which means that the tangent point of
the cable coincides with the vertex of the moment arm. The kinematic inversion
method is applied to assume an observer fixed with the disk at its center. From the
observer, the centric swinging string tracks the envelope of a family of sequential
straight trajectories PoTo, PiTh, P T;, -+, PaT, while the disk rotates. The
swinging point P; (i = 1,2,-++,n) is observed to lie on a circular path with a
radius of r,, which indicates the distance between the rotational center O and the
ring R. The points T} (i = 1,2,:-,n), at which the string is tangent to the disk,
track the envelope of a family of swinging strings P;T;. Assuming that the initial
swinging point P, is tangent to both the base circle O and the disk profile, the
angle ¢o, which denotes the starting rotational position of the string, is given by:

go = sin™! (r—”) (3.5)

Ta

Suppose that the string is viewed by the observer at center O, while the disk rotates
through an angle . Then the thin cable will subtend an angle of ¢¢ +¢ with

the vertical at the ring. The increment angle ¢ is the rotational displacement
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of the string trajectory PT from its initial orientation. There therefore exists a
relationship between disk rotation @ and the string angular displacement ¢. This
relationship will be derived using the equilibrium equations (3.2) and (3.4). From
theorem A.1 in Appendix A, a general equation of the family of lines forming the

envelope is governed by a straight line which is:
y=mz + b (3.6)
where the slope of the swinging string at the disk angular position 6 is given by
m = tan(¢ + ¢o — 9) (3.7
and y-intercept of the string PT, based on the Cartesian system in Fig. 3, is
b = rocosf tan(@+ ¢o — 6) + rgsiné (3.8)

This general equation of the cable PT in Eq. (3.7) gives a one-parameter family
of strings as a function of the disk angle of rotation . From the theory of envelope,

an envelope of the family of the straight lines is governed by an equation:
F(z,y,8) = y — mz - b
= y—tan(d+¢o—0) [z +racos0 | —r,sinfd = 0 (3.9)

Equation (3.9) is continuous and is a continuously differentiable function in the
coordinates x and y as well as in the variable . Differentiating the equation (3.9)
with respect to the disk angle 6 provides:

OF

50 = tanB (resind) — [z + 74 cosd |sec? B (2?- - 1)

06
—rgcosf = 0 (3.10)

where 3 equals to ¢+ @9 —0. The rate of % can be determined, while the static
equilibrium equations such as Egs. (3.2) and (3.4) are claimed as the functions of
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9 and 4. According to [8], the coordinates of disk profile at a given angle 6 may
be obtained by solving equations (3.9) and (3.10), i.e.:

¢ = —rg[Asing + cosf] (3.11)
where
_ cos(6 +B)
A= 26 (3.12)

Substituting Eq. (3.11) into Eq. (3.9) provides
y = ro[-Asinf + sind] (3.13)

The disk profile coordinates are thus obtained by evaluating Eqs. (3.11) and (3.13)
in terms of the angular parameters 6 and ¢. Initially, the angles 6 and ¢ equal

zero so that the starting coordinate of the noncircular disk becomes:

z = —2rgsin (%), (3.14)
y = Sin§¢° (3.15)

which coincides with the point at which the starting string FPpTp is tangent to

the base circle in Fig. 3.
The rate of change as a function of disk rotation %% in orientation of the
string can be determined by investigating the relationship between the angles

9 and ¢. Based on Eq. (3.2) and illustrated in Fig. 3.1, the equation of the

initial equilibrium is governed by:
Wrasings = ksbo (3.16)

For the incremental angles of § and ¢, from the initial orientation angles 6 and

do, the new equilibrium state becomes:

Wr,sin (¢0 + ¢) = k, (90 + 3) (317)
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Subtracting Eq. (3.16) from Eq. (3.17) provides:
Wr, [sin(¢o + ¢) — sindo | = k.0 (3.18)
which can be rewritten as
. 1| ks .
¢ = 8sin 1 [-VW‘: + SlD.(ﬁo] —¢o (319)
Differentiating Eq. (3.19) with respect to the angle § yields

0¢ ks

30 = Wracos(do + 6) (3:20)

Then, the profile of the noncircular disk is determined by substituting ¢ and
%% in Eqs. (3.19) and (3.20) into the equations for the disk coordinates given by

equations (3.11) and (3.13). Note that the profile of the disk must be convex.

Several parameters are needed to generate the profile of the noncircular disk,
and they include rq, 3, ks, and W. It can readily be shown that each disk profile
can be specified according a parameter which is the ratio of the weight of the test
article to the stiffness of the torsional spring, i.e. :—‘_’- This means that if testing
is to be conducted for another test article twice its original, the torsional spring
stiffness must be increased by the same factor so that the same disk can again be
used. Such a design, therefore, permits tremendous flexibility since different loads
can be used on this device, without the need to fabricate a new disk every time a

new test article with a different mass is used.

With the disk profile design, the dynamics of the test articles can then be
suspended on this band mechanism. The dynamics of these test articles in the

presence of a suspension mechanism will be presented in the next gsection.
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§ 3.3 Dynamics of test articles and suspension system

In simulating the test experiments of flexible space structures, the test ar-
ticle may be modeled as a discrete or a continuous system. Two models of test
articles will be considered: a lumped-parameter model and a continuous param-
eter flexible steel beam. In the lumped-parameter model, the test article will be
modelled as two masses and a connecting linear spring suspended in equilibrium
as shown in Fig. 3.3(b). Such a lumped-parameter system is thus treated as a
simple two-degree-of-freedom discrete system whose flexibility is characterized by
the connecting spring. In the continuous parameter model, a flexible steel beam
is hung at its two ends and is suspended through two identical disk suspension
systems, as shown in Fig. 3.4. The profile of the noncircular disk in each case
is developed through Egs. (3.11) and (3.13) to maintain the static equilibrium of
the test article at any vertical position. Simulation of the ground-based validation
testing will be implemented by providing the test article, originally in equilibrium,
with the excitations such as an initial displacement or an initial velocity (impulse).
The characteristics of flexible space structures are then analyzed together with the

band mechanism suspension system.

§5 3.3.1 A lumped-parameter model of a test article

The flexible space structures can be discretized into a series of lumped-
parameter elements. The first test structure in Fig. 3.3(Db) illustrates a discrete
lumped-parameter system which approximates a flexible structure through the use
of two masses and one connecting spring, Table 3.1 shows the model parameters of
such a lumped-parameter system. The band drive suspension system is connected
to one of the masses, mass }1. Notice that the mass in Egs. (3.16)-(3.20) stands
for the sum of the two masses, so that care is needed while developing the profile of
the noncircular disk for this test article. Since this band drive mechanism contains
a very nonlinear function within Eqs. (3.11) and (3.13), the total system will be
a nonlinear two degree-of-freedom dynamic system, even though the test article
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may be a linear system. A derivation of the dynamic equations will be discussed

below.

Assume that m; and mg are the masses of the two rigid bodies, k2 the
spring stiffness between the two bodies, I. the moment inertia of the disk, k, the
torsional spring rate and, r, the distance between rotational center O and the
ring R. Furthermore, the displacements of the two masses are denoted by ¢ and
¢y respectively, while 6 and 6 denote the angular displacement and angular
velocity of the noncircular disk, and ¢ is the displacement angle of the cable.
Then from Fig. 3.3(b), the static equilibrium of the test article at any position is
governed by

W = (mg + mz)g
- ks (0 + )
rosin(¢ + ¢o)
ks6o

T rasindg

(3.21)

and
meg = kolyy (3.22)

where £,; indicates the static elongation of the spring, 6 is the preloaded
angle of torsional spring, and ¢, denotes the initial angular position of the cable.
Note that the linear displacement ¢; of mass m; must be consistent with disk
angle # since the suspension cable is directly connected to mass m;. Due to
the convexity of disk profile, the displacement £, in Fig. 3.3(b), can be equated
by integrating along the curvilinear path of the disk profile through the rotation
6 so that: .
4 = /(; resin(¢ + ¢o) df
ks [£ + 800
nft

Note that the position £; of mass m; is a parabolic function of the disk angle

9. In fact, equation (3.23) shows a function generator which generates a parabolic
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curve of the displacement ¢; in terms of §. Moreover, differentiating Eq. (3.23)
with respect to time yields

b = [ﬁ’-(—ow*'—@] é (3.24)

which indicates the velocity relation between #; and 6. Therefore, the position
and velocity of mass m; can be replaced by the disk angle and angular velocity

through Eqs. (3.23) and (3.24).

Applying Lagrange’s equation of motion [69], the Lagrangian function for this
system is given by

L=T-YV (3.25)
where the kinetic energy T and the potential energy V are:

ks (6 + 6o)

2
= ] 2 + mall}, (3.26)

T = %{Icé!2 + ml[

V =

2
B0+ 0 | R h(F+00)

mlgk, (9?2 + 909)
- W - ngeg (3.27)

Based on the Lagrangian from Eq. (3.25), the dynamic equation of motion in

matrix form may be written in the following form:

ME + Re = F (3.28)

where ¢ denotes the state vector [¢ Eg]T. The inertia, stiffness matrices, and

nonlinear force vector become

_ k(0 + 80) ]2

it = (T4 m MR o), (329)
0 may
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k.63
R = (k’ + b (B - ) b ) (3.30)
_kyky00 ks
w
F=1ha £I% (3.31)
where
k(0 + 8 k,6°
fo= Tk ) _ kb + k{6l + b — o
3k, 8,62 AW
- 2su°, -~ mi(6 + 6) (—W-) 62}
and
k, k62
f2 - 2W

Note that the nonlinearities occur in both the inertia matrix M and the
nonlinear forcing function vector f, due to the kinematic nonlinearity arising
from the noncircular disk profile. The displacement and velocity of mass 11 may
be determined from Eqs. (3.23) and (3.24) during the simulation process, even
though they do not appear explicitly in Eq. (3.28).

The characteristics of such a lumped-parameter model may then be observed
with different initial conditions placed on the lumped masses. For comparison
purposes, the dynamic responses of the same test article will be re-simulated using
the soft spring suspension system shown in Fig. 3.3(a). The stiffness of the soft
spring has been chosen to be equivalent to the torsional spring rate in the disk
suspension system, i.e. k; = és The governing linear dynamic equation for the
suspension system in Fig. 3.3(a) can be found in [65,67] and will not be included in
this chapter. A second model of the test article is based on a continuous parameter

system. The second model will be the subject of investigation in the section below.
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§§ 3.3.2 A flexible steel beams of a test article

The band mechanism suspension system may be applied for the dynamic
testing of continuous parameter models of flexible structures as well. Figure 3.4
demonstrates a uniform rectangular cross-section steel beam hung on two identical
disk suspension systems at its two ends. Testing of such a flexible beam is aimed
at flexural vibrational behavior. The model parameters of the flexible steel beam
are given in Table 3.2. Assume that the total weight of the flexible beam in static
equilibrium is evenly suspended by two identical disk suspension systems. Then,
the profile of the noncircular disk is developed using half the weight of the flexible
beam when Egs. (3.18) and (3.20) are applied.

Assume that the rigidity of the flexible beam is given by EI product, its density
p, the length L, and the displacement of the beam at the left end is denoted by
P. The local coordinates z; —y; are located at the left end of the flexible beam
for determining the local deflection of the beam. The technique of the modal
analysis [65,66,67) will be applied to discretize the beam deflection into a series
of flexural modes. The flexible beam deflects during bending vibration about its
deformed static equilibrium shape, which is caused by gravity. As will be seen in
the simulation of the beam behavior, only odd modes will be excited so that the
flexxural deflection of this floating hinged-hinged beam in the coordinates z;—y; is
symmetrical about its center of this floating gravity. A setup of such a system is
shown in Fig. 3.4.

The flexible beam can be maintained in static equilibrium as long as equa-
tions (3.16) and (3.17) are satisfied for half the weight of the flexible beam. The
displacements and velocities of the flexible beam at two ends can be substituted
by the disk angle r and angular velocity r in Eqs. (3.23) and (3.24) derived in the
lumped-parameter system. For the flexible beam, as shown in Fig. 3.4, the kinetic

energy T and the potential energy V can be expressed as:
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oT = 2I6° + /o ! plb = ghie [l - AR (3.32)

L g
_ 2 Y1 42
5 = 2, [0 + o]° + /o Bl{p e} don (3.33)

where Z; is a vector at the root end, and is tangent to the longitudinal
z; axis of the flexible beam. Moreover, the distributed coordinates are expanded

in an orthogonal basis of assumed mode shapes so that:
1 (z1,t) = ¥7 (21) (t),

TZ’-T = [@bl""ﬂbn] and ‘jT = [‘Il:"',Qn] (334)

where 9 (z;) is a vector of assumed mode shapes relative to a spatial coordinates
derived from the hinged- hinged boundary condition problem, §(t) isa generalized

coordinate vector [65,66,67], and n is the number of assumed modes.

Inserting Eq. (3.34) into Egs. (3.32) and (3.33) yields

n n n
oT = 2L6% + pL& + ) ) mijéid; — 2 higibs, (3.35)
i=1 j=1 i=1
n n
2V = 2k, [0 + ol + DY Kijidj (3.36)
i=1 j=1

where

L
mi; = /o pi (21) ¥ (z1) dea,

L
hi = /0 obi (1) dar,

L
O 0 .
Kij = /; EIaz13z1 52,00, dzy for i,j = 1,2,-:+,n

Therefore, the Lagrangian for the system, as given by Eq. (3.25), can then be
obtained. From Egs. (3.35) and (3.36), the displacement and velocity at the beam
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ends are converted into the angular displacement and angular velocity of the disk.
To simplify the state variables in the above equations, denote & =0, & =g, for
i = 1,2,---,n. Using the Lagrange’s equations of motion [9], the equation of

motion of the system may be written as:
ME+ ReE=f (3.37)

where the state vector €7 = [6,41,42,,qn). The inertia matrix M, the stiffness

matrix K, and the nonlinear force vector f are given by:

M = 2I, + 4PE('§V")2[0 + 00]2 ~2k 0:‘(00 & (3.38)
symmetric pLI
K = Diag|0, plt]; @ = Diag[wy, +*,wn ], (3.39)
- 2 .
F= ("4PL ('ISW) {9_'*‘ 90]92) (3.40)
2k,8%h

where [ is an nxn identity matrix and w; (i =1,--+,n) is the modal frequencies
associated with the hinged-hinged shape functions ; (z1) used in discretizing the
deflection of the fexible beam. The nonlinearities of the system all reside within
the inertia matrix and the nonlinear force vector. The displacement and velocity
at the ends of the beam can be computed directly from Eqgs. (3.23) and (3.24)
during the simulation. In this way, symmetric motions of the flexible beam may

then be tested using two identical disk suspension systems.
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§ 3.4 Simulation resuilts

The dynamics of test articles have been derived in the previous section, and
they include a lumped-parameter system as well as a continuous-parameter system.
One disk suspension system is required for the lumped-parameter system, while
two identical disk suspension systems are needed to suspend the flexible beam at
its two ends. For each test article, two different excitations to the system will
be implemented. The first is with an initial displacement and the second with
an initial velocity, with a total of four simulations to verify the feasibility of this
disk suspension system. A soft spring will be employed as a suspension system
(see Fig. 3.3(a)) for the lumped-parameter system, and its simulations are then

compared to those on the disk suspension system.

The parameters of the disk suspension system, which will be used for simula-
tions, are shown in Tables 3.1 and 3.2. A convex profile of the noncircular disk is
then drawn by evaluating Eqs. (3.11) and (3.13). Figure 3.5 shows the resulting
profile of the noncircular disk, with several spokes which can eliminate its moment
of inertia. The disk radius varies from 3 inches to 9.5 inches. In the middle of
the disk thickness, a curvilinear groove is cut along the edge of the disk for the
winding cable. The range along the disk edge allows the disk to rotate about 200
degrees. Such a noncircular disk, as shown in Fig. 3.5, will be used to implement

the following dynamic simulations.
§§ 3.4.1 Simulation resuits of a lumped- parameter model

Table 3.1 summarizes the model parameters of a lumped-parameter system.
Two kinds of suspension systems, a band mechanism and spring suspension system,
will be used. In both types of suspension systems, the test article is hung in static
equilibrium by connecting mass {1 to the suspension system through a thin cable.
In the first simulation, -0.2 inch and 0.2 inch of initial displacements are specified
to masses §1 and §2 respectively, but with no initial velocity. Figures 3.6-3.11
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Table 3.1: Parameters of a lumped-parameter model with disk
suspension system

(a) Disk suspension system:
6 in
0.01 b — in?

= 12 in Tp

Ta
b = 0.5 Ib/rad L.

(b) Test article: (A lumped-parameter model)

k, =1 Ib/in

Table 3.2: Parameters of a flexible steel beam with disk
suspension systems

(a) Disk suspension systems:

re = 12 in , =6 In

ks = 0.5 lb/rad I, = 0.011b—in?
(b) Test article: (A flexible steel beam)

L =6.562 ft

EI = 74.8953 Ib— ft?

p = 0.30480 Ib/in

h = 1.614x1072 in
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Figure 3.5: Profile of noncircular disk
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are the simulation results of the two suspension systems. The results associated
with the disk suspension system are indicated by a solid line, while those of the
spring suspension system are indicated by a dotted line. Figures 3.6 and 3.7 show
the angular displacement and angular velocity of the disk respectively of the disk
suspension system. Both angular displacement and angular velocity oscillate with
the natural frequency of the test article. The displacement and velocity of mass
§1 are respectively shown in Figs. 3.8 and 3.9, while the displacement and velocity
of mass §2 are given in Figs. 3.10 and 3.11 respectively. All the trajectories
of masses 1 and }2 represent pure oscillatory motions about their equilibrium
positions. The cable which connects the test article and the disk is found always in
tension. It can be seen that there is no difference between disk suspension system
and the simple spring system under specifications of initial displacements. The
spring in the spring system may be too soft due to the equivalent relationship,
ky = %, so that it may not be able to suspend heavy test articles. The spring
stiffness for this spring suspension system cannot be arbitrarily increased because
that will distort the natural frequency of the test article. The initial-displacement
results provide an insight in verifying the validity of disk suspension system when
compared to the conventional spring suspension system. It also shows that the
results correspond to the anticipated vibrational characteristics of mass 1 and

42 in space.

The second simulation of a lumped-parameter system deals with the dynamic
response subjected to initial velocity specification. An initial velocity of 2 inches
per second acts on mass {2 to excite the whole system to move as if under an
impulse. Figure 3.12 shows the dynamic history of the disk angle. It has an os-
cillatory motion superimposed on the dropping angular displacement trajectory.
Figure 3.13 illustrates this oscillatory motion of the disk but with an average angu-
lar velocity, 9.5 deg/sec, superimposed upon that oscillation. The displacements
and velocities of masses §1 and }2 are shown in Figs. 3.14-3.15. In Figs. 3.16 and

3.17, the solid lines associated with disk suspension system show that the entire
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test article is dropping at a constant velocity, while masses 1 and §2, which model
the test article are oscillating during this downward motion. This shows that with
the use of this disk suspension system the impulse response indeed corresponds
to that in a zero-gravity condition. On the other hand, figures 3.14 and 3.16 also
show that the spring suspension system does not satisfy this anticipated motion
trajectory of the test article (masses). The velocities of masses shown in Fig. 3.15
and 3.17, confirm that the masses in the disk suspension system, on the average,
do not accelerate. The pure oscillations of both the mass velocities indicate an
average constant velocity of 1 in/sec rather than zero, implying that the constant
velocities are indeed due to the impulse response. This implication shows that the
entire test article beneath the disk suspension system is not accelerated due to
the initial impulse. Such a phenomenon is consistent with the behavior deduced
from mass displacements in Fig. 3.14 and 3.16. Note that the masses oscillate at
180 degrees out of phase with each other. These figures also show that the simple
spring suspension system does not result in a correct motion for the masses in

response to an initial impulse.

Figures 3.12-3.17 thus ensure that this disk suspension system is capable of
simulating the dynamic behavior of the test article subjected to an impulse. The
test body, accordingly, translates at a constant velocity. When the mass is imposed
with an initial velocity vg, (equivalent to an impulse) the test article will continue
to travel at that same velocity, vp, over a considerable range of travel. This is
because the tension in the cable is constant and is exactly equal to the weight of
the test article, so that there is no net driving force on the article during its entire
range of motion. With that observation, it therefore leads to a constant velocity
of the test article, and in so doing, exactly simulates the motion of an object in

space.
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§8 3.4.2 Simulation results of a flexible steel beam

In this simulation experiment, two identical disk suspension systems are em-
ployed to suspend a flexible beam that has the same weight as in the lumped-
parameter model of the previous section. The model parameters of a flexible steel
beam are listed in Table 3.2. Three hinged-hinged flexible modes will be assumed
for the flexible steel beam. On the other hand, a free-free flexible beam in space is
simulated under the initial excitations for comparison. In this simulation, the first
and third modes will be specified with initial values. This means that the flexible
beam is originally bent into a symmetric deformed configuration about its static
equilibrium configuration, and then released from rest. Hence, the first and third
modes are excited by this initial deformation. The simulation results are given in
Figs. 3.18-3.23. Solid line denotes the results under the disk suspension system,
and dashed line indicates the results for a free-free flexible beam in space. Figures
3.18 and 3.19 show the angular displacement and angular velocity of the disk, while
figures 3.20 and 3.21 show the deflection and velocity of the beam at its center of
gravity. Figures 3.22 and 3.23, on the other hand, show the deflection and velocity
of the beam at one-fourth length of the beam. The odd modes, as anticipated, are
very active, as can be seen from results of displacement and velocity in the figures.
This is due to the symmetry of the deflection about a plane through the center
of gravity of the beam. In Fig. 3.20, the displacement at the beam’s c.g. implies
that the beam oscillates about its original static equilibrium configuration during
the process. Obviously, two kinds of initial displacement responses superimpose
together. This implies that the disk suspension system can simulate the initial
displacement response of the free-free steel beam in space. Hence, the multi-mode

vibration of a flexible beam can be implemented under the disk suspension system.

Finally, a fourth simulation has been conducted with the flexible beam sub-
jected to an initial impulse. Similarly, the free-free flexible beam is simulated under

the initial impulse response, which is denoted by the dashed line. Simulation

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I ] I
|
L
—_— i
ug =6, -
5 R
~
~ -~
A L
z i
— =10 -
- B
o L
© L
ot R
=l i
< L
_20J:||11L||11111111|1|1
0. 6. 10 16. 20.

Time isec)
Figure 3.18: Disk angle of a flexible steel beam for the initial

displacement

— T T T
\ L
a0
o 20 -
e” i
2 | '
=t 10, | -
-g !
Qe be ‘ |
o ‘ |

o. 1 )
- q! i)
- !
.3 I il & i

' i

S - |
Q |
> |
=
o =20 -
p——y
z —
=

S (R YN SR TN N RN NN TN N JOU [T N Y WU SN SSUON DU N B
< % 6 10 16. 20.

Time ipec)

Figure 3.19: Disk angular velocity of a flexible steel beam for
the initial displaggment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in)
8 g

o

108 | ¢

. digplacement (
I

- 4G 5 10 15 20
Time (gec)

Figure 3.20: Beam c.g. displacement of a flexible steel beam for
the initial displacement

200

—
o
o

|
-l
o
o

Beam c.g. velocity (in/s)
|

[T T N N S W A 2T SN SN N OO0 AN YOO O SN AT SN VO U TN NN SN TN TR TN T O O O O |
—30G 5 10 5 2

Time (pec)

Figure 3.21: Beam c.g. velocity of a flexible steel beam for the
initial displacement
53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

p—
=
o i
S’ i
= 10
= g
E
5] ! ) |
g o ' 1 ¢ ]
2 ' ' ')
1) f i
o pmd |*|
3 -10 ' ml i
N ] l
A \
E—ZO
«
@
_3 PSS N N S N N U TR TN TN VA YA Y TN T W TN (0 VO T NN N T N U S O U O T O BN B O |
% 5 0 15 20

Time isec) |
Figure 3.22: Beam 1-length displacement of a flexible steel beam

for the initial displacement
150

¢ velocity (in/s)

1
4

Beam

PO ST TN S T Y UAN IO W 0 100 U NN U SO U0 N U T W T Y Y U JO AY T T T U0 JOY 2 Y O 0 O O |

—20(‘0
Time (sec)
Figure 3.23: Beam %-length velocity of a flexible steel beam for

the initial displacement
54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-20. -
-40. i
-60. .
-80.- -

-100. -

Angle of digk (deg)

-120- -

_“0.1111J11|1|||11l||||
6. 10 16. 20.

Time isec)
Figure 3.24: Disk angle of a flexible steel beam for the initial

velocity
o ! | T T
SN
)
QO 25 -
=
e L
-
e -
o gl
] -
G - -
= -8.
2 |
ool .a,- -
Q
Q -
£
> =10}~ -
h -
= -r2)
=
0 N
2_“_||||||t|:||||l||||
0. 5. 10. 16. 20.
Time (pec)

Figure 3.25: Disk angular velocity of a flexible steel beam for
the initial velocity

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

| I
N —t
o o o o

Beam c.g. displacement (in)
|
(%]
(o]

- (IS S TN IO TN TR T N T N TN NN TN TN N NS N O VO 0 OO N VO S NN N S N N YO AN N W OO IR Y|
4% 5 70 5 20
Time (gec)

Figure 3.26: Beam c.g. displacement of a flexible steel beam for
the initial velocity

20

10

Beam c.g. velocity (in/s)

__3%IIllIlllIéll'lllIllllllllllll1|5llllLlllI'

20
Time (gec)

Figure 3.27: Beam c.ﬁ. velocity of a flexible steel beam for the
: initial velocity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-—
o

lacement (in)

isp

2 d
|

1
4

Beam

_4%IIIIllllllllllllllllllllllllllllllllllll

20

Time (gec)
Figure 3.28: Beam ;-length displacement of a flexible steel beam
for the initial velocity

15
“@ 10 :
\ i "
S B
.l .
~ 5
)
—
O 0
=]
gy
B
-
W
ret] A
-10 ' \("
E ¥
>
-15
(=e]
_z%llllllllllll!llllllllllllll[Llllllllllll

20
Time (pec)
Figure 3.29: Beam -length velocity of a flexible steel beam the
for the initial velocity
87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



results are shown in Figs. 3.24-3.29, including the disk angle, angular veloc-
ity of disk, beam’s c.g. displacement and velocity, and beam’s one-fourth-length
displacement and velocity. The third mode is more pronounced in the velocity
plots, and the amplitude of the beam’s deflection at the center of gravity is larger
than those at one-fourth length of the beam. The linear slope in the oscillatory
behavior, in Figs. 3.26 and 3.28, indicates a constant-speed motion associated
with a rigid-body mode. The flexible beam is moving upward at a constant speed
while simultaneously vibrating with respect to the local coordinates z; —y;. The
constant speed is approximately 0.7 in/sec. In fact, these impulse results of a
beam implies a compound motion of the flexible space structure that includes a
constant-speed rigid-body motion with a flexible-body vibration superimposed on
it. Apparently, the results of a free-free beam are similar with the ones under
the disk suspension system. The small difference between two kinds of results is

caused by the inertia of noncircular disk.

The impulse response of a flexible structure has shown to be consistent in
the use of this disk suspension device. The entire test structure will travel at a
constant velocity with a rigid-body motion, while the traveling beam oscillates,
with its flexible modes, about the moving local coordinate system. The similarities
of the second and fourth simulation results validate the applicability of this disk

suspension system for both discrete and continuous models.

§ 3.5 Discussion and summary

This chapter has presented a band mechanism that is to be used as a ground-
based suspension system to assess the characteristics of flexible space structures
that operate in a weightless environment. This mechanism is characterized by
a noncircular disk with a convex profile constrained into rotational motion by a
torsional spring. The suspension system is constructed to counteract the weight of

the test article by using a specially shaped disk in conjunction with an appropriate
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torsional spring. The basic principle behind this suspension system is to maintain
static equilibrium of the test article at any given vertical position. The convex
profile of the disk is determined using the envelope theory. It has also been shown
that this suspension system is applicable for test articles with the different weights
without the need to change the disk profile; the torsional spring rate has to be

adjusted to maintain the static equilibrium condition of the new test article.

This mechanism has shown, under numerical simulation, to be applicable
and suitable for ground-based dynamic testing of test articles, be they discrete or
continuous models. Two kinds of test articles have been chosen for the simulation,
a lumped-parameter system and a flexible steel beam. The lumped-parameter
element is composed of two masses and a connecting spring which provides a single-
mode vibration. Simulation results indicate that the characteristics of the flexible
space structures can be precisely tested under this disk suspension system. It has
also shown to be capable of permitting a constant-speed motion superimposed with
flexural vibration in an impulse response. Furthermore, the free-free flexible steel
beam in space can be simulated on the ground by suspending the flexible beam
at its two ends through the use of the disk suspension system. These simulation
results provide very useful insights in building up the experimental equipment at
NASA-Langley.
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Chapter 4

MANEUVERING EXPERIMENTS AND SIMULATIONS OF
FLEXIBLE STRUCTURES

The dynamic equation of a flexible steel beam carried on a rigid and trans-
lational trolley has been derived in reference [38]. The detailed functions and
characteristics of the laboratory equipments are listed into several tables in sec-
tion 4.2. By using the pole-placement technique [42], the output feedback gains
are achieved for four performances of position controls in order to investigate the
influence of the flexibility feedback. The first case demonstrates position control
with no strain feedback. The second case studies position control with the strain
feedbacks only to the beam motor. The third case involves position control with
the strain feedbacks simultaneously to the trolley motor. The fourth case shows
the position control with the strain feedbacks simultaneously to the trolley and
the beam motors. For each case, the corresponding simulation and experiment
are carried out in conjunction with the designated maneuver mission. In four
cases, the measurements from three strain gages will demonstrate suppression of

vibration due to the translational motion of the trolley.

§ 4.1 System dynamics

In this chapter, the dynamic system represents a typical multibody system
with a flexible steel beam carried on the rigid and translational trolley. Lagrange’s
equation of motion, in conjunction with the the modal expansion to discretize the

deflection of the flexible steel beam, is applied to derive the dynamic equation of
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motion [65,66,67] which is illustrated in Appendix A. For the orientation of the
system, an absolute coordinate is selected at a reference position along the track.
And a moving relative coordinate, which translates with the trolley, is referred
at the root end of the beam to indicate the slewing root angle of the beam. The
histories of trolley motion and beam slewing are thus adequately described through
two independent variables, namely, the trolley displacement and beam root angle.
The flexible steel beam is modeled as a cantilever beam [65,66,67] with the fixed
end at the motor and the free end at the tip. The first three modes of the cantilever
beam are assigned to discretize the flexural vibration of the flexible steel beam.
The first mode dominates the magnitude of the vibrational motion, and the third
mode produces high frequency oscillation. Only the bending vibration is allowed
during the motion of the arm. Therefore, ten states of the system are required for

the first-order state equation in the analytical simulation.

Dynamics of actuators and characteristics of sensors are involved in the closed-
loop model of the system for simulation [37,38]. In the second-order dynamic equa-
tion, kinematic nonlinearities take place in the inertia matrix and the nonlinear
forcing term. By performing a rapid and large angle maneuver, the kinematic non-
linearities of this system are excited to behave significantly. And the interaction of
rigid-body motion and flexible-body vibration can be evaluated by looking at the
coupling effect due to the nonlinearities. Without loss of generality, the viscous
damping of air drag and the friction on the trolley wheels are ignored in the sim-
ulation. The damping effect absorbs the system energy because of the back-EMF
of the motor. The system flexibility is associated with the stiffness of the flexible
steel beam in the maneuvers. Two external forces provide the trolley and beam
with active control inputs based on the feedback of output measurements. The
control force to the translational trolley is generated by the trolley motor through
the transmission system of pulley and wire. The output feedback gain, shown
in Fig. 4.1, is based on pole-placement technique [42]. The measurements are

measured by the sensors including trolley potentiometer, beam potentiometer,
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beam'  tachometer, and three strain gages. To be consistent with the units of
experimental results, all of the physical output measurements are converted into

corresponding voltages through the conversion factors shown in section 4.2.

§ 4.2 Experimental setup

A brief description of the laboratory apparatus is given in this section. A
trolley (see Fig. 1.2) is mounted on a 2.5-m-long horizontal aluminum I-beam
track with a cross section of 7.6 cm by 6.4 cm. The trolley is driven by a dc PMI
motor (Table 4.1) through a 7.6 cm diameter driver pulley and a cable transmission
system. The cable used to drive the trolley is a steel wire cable with nylon coating
and is 0.1 cm in diameter with a 534 N breaking strength. A 7.6 cm idler pulley
is located at the free end of the track with a ten-turn potentiometer (Table 4.2)
attached to it to measure the location of the trolley. The trolley consists of eight
railroad-type wheels connected with leaf spring suspension systems. A 1.1-m-long
flexible steel beam with a cross section of 7.6 cm by 0.081 cm (Table 4.3) is clamped
on the axial shaft of a dc gear motor (Table 4.4). The beam motor is mounted
on the top of the trolley. The beam is cantilevered in a vertical plane and rotated
in the horizontal plane by the beam motor so that only the bending vibration is
allowed. A dummy mass is mounted on the other side of the trolley to balance
the beam so that the trolley is not tilted. Three full-bridge strain gages (Table
4.5) are used to measure bending moments induced by bending deformation of
the steel beam. An angular potentiometer and a tachometer in the beam motor
(Table 4.4) are used to measure the angle and speed of rotation, respectively, at
the beam root. The strain gages are located at the root, at 22% of the beam
length from the root, and at the mid-span. Signals from all six sensors (3 strain
gages, 2 potentiometer, and 1 tachometer) are amplified (Table 4.6) and then
monitored by an analog data acquisition system. An analog computer closes the
control loop and generates two voltage signals for the trolley motor and the beam

motor through two pulse width modulation servo amplifiers (Table 4.7). A limit
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switch to stop translational motion is placed at each end of the track to avoid
system damages. All the input and output signals are stored in a data analyzer

for data analysis. Power supply information is presented in Table 4.8.

§ 4.3 Output feedback control loop

The dynamic system of this experiment consists of a translational motion of
the trolley and a rotational maneuver of the flexible steel beam. The trolley and
the beam are moved to a desired location while simultaneously suppressing the
flexural vibration of the beam. In this experiment, both dynamics of the trolley
and the beam are coupled through the inertia reaction. The flexural steel beam
is excited to vibrate due to the rotation of the beam and the translation of the
trolley. Significant kinematic nonlinearities, coupled with vibrational motion, oc-
cur especially when the flexible beam is rapidly maneuvered through large angles.
These nonlinearities must be taken into account in the feedback control design. As
shown in references [20,21,22], the controller should be kept as simple as possible
for easy real time implementation and as insensitive as possible to the kinematic

nonlinearities.

Figure 4.1 shows a simple output feedback controller design, which includes
both a local and a global feedback. The output measurements include the trol-
ley position, the beam root angle and its angular velocity, and three strains of
the flexible beam. The trolley position is locally fed back to the trolley motor.
Similarly, the beam angular displacement and velocity are locally fed back to the
beam motor. The beam motor has a tachometer to measure the angular velocity
of the motor input shaft. In order to effectively suppress the flexural vibration of
the beam, two of the three strain gages are sufficient for the active controller for
feedback to the trolley motor and the beam motor. As a result, the system has
two motors as inputs, two strain gages, two potentiometers, and one tachometer

as outputs. All output signals are multiplied by proper control gains (see EAI
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block In Fig. 4.1) in an analog computer and combined into feedback control
signals for the trolley motor and the beam motor. The flowchart implemented in
the EAI-2000 Analog Computer is also shown in Fig. 4.1. Several simulations are
given in reference [38] to illustrate the feasibility and effectiveness of the active
position control schemes in performing the translational and slewing tasks while

suppressing flexural vibrations of the flexible beam.

Four different control cases are studied in both the experiment and the sim-
ulation. For each case, the trolley translates a certain displacement while the
flexible beam slews an assigned angle. Basically, the control performances show
the typical position controls while suppressing vibrational motion of the flexible
beam. In the first case, the position control is demonstrated with no strain feed-
back. In the second case, the position control is studied by using the first two
strain feedbacks only to the beam motor. In the third case, the position control
involves position control with the first two strain feedbacks simultaneously to the
trolley motor. In the fourth case, the position control is shown by applying the
first two strain feedbacks simultaneously to the trolley and the beam motors. The

corresponding output feedback gains for four control cases are illustrated in Table

4.9.
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Table 4.1: Trolley motor (PMI type U9M2)

Function:

— Drive trolley via cable

Characteristic:
— 12 V-DC, 3600 RPM, 0.16 N-m continuous torque
— 3.2 x 10 kg m? total inertia
— 2.35 N m pulse torque (5 ms @ 1% dutycycle)
— 7.1 Amp rated current
— Torque constant 0.0235 N m/Amp
— Back EMF constant 0.0232 V s/rad

— Armature resistance 0.175 Ohm

— Armature inertia 3.9 x 1072 kg m?

Measured characteristics:

~ Input for measurement 1Volt SQ-wave @ 1Hz
— Resistance 0.42 Ohm @ 1 kHz

— Inductance 25 vh @ 1 kHz

— Capacitance 80 f @ 1 kHz

— Impedence 7.15 Amp

~ Voltage at motor 22.6 Volt

— Pulse repetiticn rate 22.6 kHz
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Table 4.2: Potentiometer (Bourns 3500s-42-103)

Function:
~ Measure angular displacement

— Null potentiometer is in parallel with potentiometer to set zero signal output

Characteristic:
—~ 10k Ohm+3%, 10 turns, linearity 0.1%
— Regulated +5 V-DC applied

Table 4.3: Beam and trolley characteristics

Steel beam:
— Length1.1m
— Rigidity 0.71 N m
— Mass/length 0.47916 kg/m

— Thickness 0.082x10~2 m

Rigid trolley:

— Mass 3.201 kg

Trolley track:

— Length 2.5 m

Conversion factors:

Beam pot. (angle) 72.70 deg./V
Trolley pot. (position) 0.096 m/V
Strain 2.64 V/in/in
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Table 4.4: Beam motor (DC MICROMO MOTORS)
(series 3540-006C)

Function:
— Drive for beam
Characteristics:
— 6 V-DC, 6000 RPM, 210 mA no load current
— Permanent magnet type
— Gear box 210:1 reduction
— 6.82 oz-in stall torque
— Integral tachometer (14 Volt+10%/1000 RPM)
— Torque constant 0.0092 V s/rad
— Armature resistance 1.1 Ohm
— Armature inertia 2.3 X 1075 kg m?

Measured characteristics:
— Input for measurement 300 mV SQ-wave Q 1 Hz
— Resistance 0.40 Ohm @ 1 kHz
— Inductance 110 mh @ 1 kHz
— Capacitance 2.5 mf @ 1 kHz
— Impedence 12.8 Ohm
— Current 1.63 Amp
— Voltage at motor 20.5 Volt
— Pulse repetition rate 22.6 kHz

Tachometer of beam motor: (Built-in MicroMo T9)

— Maximum speed 5000 RPM
— Armature resistance 23 Ohm
— Moment of inertia 1.06 x 10~° kg m?
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Table 4.5: Strain gages (MICRO-MEASUREMENTS INC.)
(type CEA-06-187VW-350)

Function:

— Measure longitudal bending moment of beam

Characteristics:
— 350 Ohm nominal resistance
— 2.075 nominal gage factor
— Full bridge, mounted for bending moment only

Table 4.6: Precision instrument amplifier
(NASA model-83: 7 channels)

Function:

— Amplify and condition strain gage and feedback potentiometer signals

Characteristics:
— Reg. +5 V-DC voltage supplied to gage

— Panel mounted balance control (10 turn), RUN/ZERO switch, calibration
switch

— Internal regulated power suppliers £ 15V, £5V
— Panel mounted gain control: 1, 2, 5, 10, 20, 50, 100 (switchable)

— IC complement: 1 g4 AD524BD, 2 g4 OP-T7 per channel
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Table 4.7: Pulse amplifier (LOPLEY CONTROLS CORP.)
(model 241)

Amplifier:

Type:

High power, high frequency, switching amplifier with bridge type output
Function:

Width-modulated current pulses to drive motors Characteristicss

Inputs: Differential signal input, auxiliary input, tachometer input

Output: 22 kHz variable width current pulses, current monitor 0.1 V/Amp
Failsate circuits: Overload, current limit, temperature, travel limits

Peak power output 150 Volt (at 60 Amp, 9 kW)

Current limit 3 to 60 Amp

Power requirement 30 to 155 Volt (at 60 Amp)

Front — end controller for amplifier:

Type:
Special design and fabrication by NASA

Function:

Control interface to servo-amplifiers

Characteristics:

— 2 channel control-indicator inputs: BNC connectors for reference input, aux-

iliary input and tachometer input terminal boards for limit switches

— Controls: Enable/Disable, over-current reset

Indicators: Enable, over-current, +limit, -limit
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Table 4.8: Power supply (HP 6032A)

Function:

~ Supply high 15 Amp current, low 24 V-DC voltage to servo-amplifiers

Characteristics: (type CV/CC)
~ Output: 0-60 Volt @ 0-50 Amp
— Regulation: Voltage -0.01 %+5 mV
Current -0.01 %+10 mA
~ Accuracy: Voltage -0.035 %+40 mV
Current -0.02 %+85 mA

Table 4.9: Output feedback gains on EAl flowchart

(1) Casel:
K=—_|3 0 0000 O O0O0O
~\0 10 000 0 041 0 0 O
(2) Case2:
k=_(%0 0 0 00 0 00O
T 0 10 1000 1000 0 O 041 0 0 O
(3) Case3:
K=— 5 0 1000 1000 0 0 0 0 0 0
— \0 10 O 0 00 041 0 0 O
(4) Cased:
K=—(9 0 1000 1000 0 0 0 000
- 0 10 1000 1000 0 0 041 0 0 O
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§ 4.4 Experimental and simulation results

In this setup, the maneuvering experiment and a simulation of the experiment
are performed using local and output feedback controls. The architecture of the
system is shown in Fig. 4.1. The simulation is carried out with an aid of DE
nonlinear integration subroutine [70] in FORTRAN language. In the experiment,
two feedback control inputs are provided for the motors of the trolley and beam.
The output measurements involve: (1) Trolley displacement: measured by a po-
tentiometer which is connected with the shaft of the trolley pulley at one end of
the track. (2) Beam root angle and angular velocity: measured respectively by the
built-in potentiometer and tachometer. (3) Three strains of arm: sensed through
three strain gages located in the root, 22% and 50% of the beam length respec-
tively. During the control process, signals of output measurements and two inputs
are processed to the Real Time Gen-Rad Analyzer for data storage. For the sake
of comparison, each experimental result and the corresponding simulation result
are drawn together and denoted by the solid line and dash line respectively in the
same plot. Note that the simulation results are converted into voltages according

to the conversion factors in Table 4.3.

In order to investigate the influence of the flexibility feedback, four different
control cases are studied in both the experiment and the simulation. For each case,
the trolley translates approximately 0.45 m, while the flexible beam slews about
25 deg. Figure 4.2 demonstrates this mission of position control. The first case
demonstrates position control with no strain feedback. The second case studies
position control with the first two strain feedbacks only to the beam motor. The
third case involves position control with the first two strain feedbacks simultane-
ously to the trolley motor. The fourth case shows the position control with the

first two strain feedbacks simultaneously to the trolley and the beam motors.
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Figure 4.2: Maneuvering mission of one flexible steel beam on
a trolley

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| | { i
—
o .“..Jz
= ==
oy
Q
> -
—
| S
Qo
o -
Qo
8.
(4]
(5}
(aa)
1 1 ! 1 ]
0. 2, 4 6 8. 10.

'i'ime (aec).
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feedback

| | ] I

—1i

Beam pot. (volt)

0. 2, 4. 6. 8. 10.
Time (gec)

* #1. Experiment; #2: Simulation
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The first case, shown in Figs. 4.3-4.10, has no strain feedback. In other words,
only the translational motion of the trolley and the slewing of the beam are ma-
nipulated while neglecting beam flexural vibration. Each plot shows sensor and
simulation voltages versus time. The good fitness between the experimental and
simulation results is demonstrated in Figs. 4.3-4.10. Noise occurs fairly signifi-
cantly in the experimental tachometer of Fig. 4.5. The beam control input starts
initially at -3.8 V and reduces to -0.5 V in 6.9 sec. The angle and angular velocity
of the the beam damp out at 6.8 sec and 3.6 sec respectively. The trolley control
input starts initially at -4.4V, increases to a peak value of 2 V in 1.2 sec, and then
decreases to a constant value of -0.4 V within 2.3 sec. The trolley position has
a large overshoot and ends at 2.1 sec. The damping of the trolley translational
motion basically comes from the back-EMF of the trolley motor and the friction
between the trolley and the track. With no strain feedback, figures 4.6-4.8 show
three almost undamped strain measurements with the first mode frequency at 0.44
Hz. The beam vibration is mainly excited by the angular motion of the beam and
the translational motion of the trolley. In both the experiment and simulation,
the vibration is clearly dominated by the first mode. It is a good example of why
the strain information must be applied to control inputs for the active control of

flexural vibration.

The second case adds strain feedback to the beam motor (Figs. 4.11-4.18).
The control input to the beam motor includes the feedbacks of the beam angle and
its angular velocity, and the first two strains. During this experimental maneuver,
the beam motor excites the higher order modes, which are not expected in the
simulation, such that the experimental results are a little bit different from the
simulation results. Figure 4.12 shows that the desired beam angle is reached within
3.8 sec, which is shorter than the first case. The response of the beam angular
velocity (Fig. 4.13) demonstrates a significant difference due to the flexibility
(strain) feedbacks. It is very interesting to see how the beam motor reacts with

the flexural vibration. The beam motor rotates the beam to the desired angle
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Figure 4.11: Beam motor of slewing maneuver with strain feed-
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Figure 4.12: Beam potentiometer of slewing maneuver with
strain feedback to beam motor
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while simultaneously suppressing the beam vibration based on the information of
two strain measurements. With two strain feedbacks to the beam motor, the peak
amplitudes of the three measured strains, in Figs. 4.14-4.16, are decreased by
about 45% as compared to the previous ones in Figs. 4.6-4.8. The high frequency
modes are more active in the third measured strain (Fig. 4.16) because strain }3
is located further away from the root end of the beam. Obviously, the flexural
vibration of the beam diminishes more rapidly than the first case. Note that
residual vibrations from high frequency modes are visible in the root strain (strain
§1). The trolley motor still has local feedback from the trolley position only. Figure
4.17 shows that the trolley control input begins with a -4.2 V and reduces to -0.5
V within 2.1 sec. It takes the trolley about 2 sec to reach the terminal position as
shown in Fig. 4.17. Basically, the trolley input and the trolley position histories
are similar to the ones in the first case because of the absence of strain feedbacks
to the trolley motor in both cases. And all experimental results associated with

the trolley match the corresponding simulation results in Figs. 4.17 and 4.18.

The third case studies the position control with the strain feedback to the
trolley motor only. The results in this case are comparable to those in the second
case, which has flexibility feedback to the beam motor only. The beam control
input, shown in Fig. 4.19, has a smoother critical damping behavior than those
shown in Figs. 4.3 and 4.11. Similarly, the beam angle also shows a smooth critical
damping response and reaches its desired angle within 2.5 sec. No overshoot
appears in the beam angular velocity in this case. Apparently, the previous three
experimental results of the beam are fitted by the simulation results. The control
input, shown in Fig. 4.25, for the trolley motor is more irregular than that in
the two previous cases. The trolley motor in this case takes full responsibility for
the flexural vibration of the beam. The unexpected high modes which are fed
back into the trolley motor input perhaps cause the difference of the experimental
results from simulation results in Figs. 4.25-4.26. The trolley takes approximately
6 sec to reach the desired position. It is obvious that the beam flexibility does
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Figure 4.21: Beam tachometer of slewing maneuver with strain
feedback to trolley motor
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Figure 4.23: Strain #2 of slewing maneuver with strain feed-
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Figure 4.25: Trolley motor of slewing maneuver with strain
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Figure 4.26: Trolley potentiometer of slewing maneuver with
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influence the response of the trolley position. The peak magnitudes of the three
measured strains are reduced by 21% to 26% as compared to the first case. The
time history of the root strain (strain {1) is somewhat smoother than that for
the second case in both experiment and simulation. This is because the higher
modes are more difficult to excite indirectly by the trolley motor than by the beam
motor. The significant behaviors of high frequency modes are observed through
the measured strains gages §2 and #3 in Figs. 4.23 and 4.24. Both the second and

third cases provide some insight into the system responses to different controller

designs.

The fourth case studies the position control with both the beam motor and
the trolley motor using strain feedback to suppress the beam vibration with the
same gains as the ones in the second and third cases. The trolley motor not
only moves the trolley along the track to the desired location but also provides
the damping to the flexible beam. Similarly, the beam motor rotates the beam
while suppressing the flexural vibration of the beam by using the strain feedback.
Hence, the dynamics of the trolley and the beam are related by the coupled inertia
and nonlinear forces, as well as the control input due to strain feedback. The
responsibility of the beam control input for suppressing vibration is reduced, as
shown in Fig. 4.27. The overshoots which took place before the end of beam
rotation in the second case drop significantly due to the flexibility control from
the trolley motor. The beam angle takes 5 sec to reach the desired angle without
an overshoot. The beam angular velocity takes about the same time to settle
down with a very slight overshoot and its peak magnitude is reduced as compared
to that in the second case. The trolley moves to the terminal position in 4.3 sec,
as shown in Fig. 4.34. The strain feedback shows a significant influence on both
the trolley control input and the beam control input, which in turn suppresses
the flexural vibration. The peak magnitudes of the three measured strains are
decreased by 60% to 80% of the amounts in the first case, compared to a reduction

at only 45% when strain feedback was supplied to the beam motor only. The
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Figure 4.27: Beam motor of slewing maneuver with strain feed-
back to beam and trolley motors
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Figure 4.28: Beam potentiometer of slewing maneuver with
strain feedback to bgea.m and trolley motors
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Figure 4.29: Beam tachometer of slewing maneuver with strain
feedback to beam and trolley motors
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Figure 4.30: Strain tﬂ of slewing maneuver with strain feed-
back to beam and trolley motors
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Figure 4.31: Strain #2 of slewing maneuver with strain feed-
back to beam and trolley motors
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Figure 4.32: Strain #3 of slewing maneuver with strain feed-
back to beam and I;rolley motors
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Figure 4.33: Trolley motor of slewing maneuver with strain
feedback to beam and trolley motor
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Figure 4.34: Trolley potentiometer of slewing maneuver with
strain feedback to beam and trolley motors
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vibrational modes which are observed in Fig. 4.32, obtain higher frequencies than
the previous three cases. The residual vibration is considerably reduced. Hence,
the experimental and simulation results imply that the best performance of rapid
position control is achieved by having strain feedback to both the trolley motor

and the beam motor.

§ 4.5 Discussion and summary

In this chapter, simulation and experimental transient responses for slewing
maneuvers of a flexible beam in multiple translational/rotational axes are pre-
gented. Four cases are studied, varying the strain feedback to the beam motor
and trolley motor. Some decrease in flexural amplitude is achieved by adding
feedback to only one motor. Further substantial decrease is achieved by adding
strain feedback to both motors. The consequential results of four simulations and
four experiments highlight the importance of the control feedback associated with

strain gages for the space flexible structures.

For each case, the simulation is implemented to confirm the performance of
the corresponding experiment for the assigned output feedback control. In the
simulation, the flexible beam is modeled as a cantilever, and the deflection of the
beam is characterized by the first three modes. Therefore, the simulation results
can closely match the experimental results as long as the the higher modes of
the beam are not excited. With the feedback of the flexibility, the behavior of
higher modes has been easily observed through the measured strains i2 and #3
from case 2 to case 4. Without loss of generality, the simulation results still show
their fitness toward the experimental results even though the higher modes are
discarded in those simulations. On the other hand, the simulation herein ignores
some negligible nonlinear effects such as the viscous air drag, the backlash of the
gear box, the friction on the trolley wheels, and the wire slippery on pulleys.
Such factors may cause the bias of the experimental results compared with the

simulation results.
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Several important issues related to slewing experiments with flexible struc-
tures include system nonlinearities, calibration of actuators and sensors. Nonlin-
ear effects due to kinematic nonlinearities and large bending deflections during the
large angle maneuver did not cause significant problems in this experiment. Spe-
cial attention should be given to evaluating the back-EMF (Electro-Motive-Force)
in an electrical motor which may provide significant passive damping for active
control designs. In the simulation and experiment, there is no angular velocity
feedback to the trolley motor. Significant damping because the trolley comes from
the motor back-EMF and the friction between the trolley and the track. Appro-
priate use of the back-EMF may yield highly robust controller designs and reduce
dependence on active suppression of the vibrational motion of flexible structures.
Accurate measurements of the back-EMF may require significant efforts since it is
usually a nonlinear variable. On the other hand, back-EMF induces damping for
the beam motor basically comes from the angular velocity feedback. Experience
has also shown that extension of many instruments will lead to accuracy problems

in this type of laboratory experiment.

Obviously, the nonlinearities of this system behave significantly in the tran-
sient responses of three strains for each case since the rapid maneuvers excite
the significant kinematic nonlinearities which affect the vibrational motion of the
beam. In particular, the figures 4.27 and 4.33 show the influence of system non-
linearity upon the trolley and beam motors while the strain feedback is applied
to both motors. To deal with such quick and nonlinear maneuvers, the analytical
investigation of the nonlinear control design is required in Chapter 6 to compen-
sate for the behavior of the system nonlinearities in the space flexible structures.
And the stability of the nonlinear feedback control will be investigated in the

Lyapunov’s sense by evaluating the time derivative of Lyapunov function.
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Chapter 5

NONCIRCULAR GEAR DESIGN FOR VIBRATIONAL
REDUCTION IN FLEXIBLE STRUCTURES

The experiments of a flexible structure on a trolley in Chapter 4 have illus-
trated the slewing maneuvers performed through the feedback control methods.
Herein, a noncircular gear mechanism (see Fig. 1.3) in conjunction with a control
technique are integrated to enhance the maneuvering performance of large flex-
ible space structures. Two convex cylinder-type carns, meshed by the wrapping
of two pairs of thin metal bands, produce varying output speeds to input speeds.
This speed variation tunes the kinematic characteristics of the flexible space struc-
tures during rapid slewing maneuvers while controlled by a regulator-type feedback
controller. Pure rolling contact, hence, low friction between the noncircular cams,
reduces stiction nonlinearities into the system. The instantaneous gear the ratio,
which is defined as ratio of driven to driving angular velocities, can be determined
by equating the pitch radii of the input to output cams at that moment. Based
on a given desired maneuvering behavior, the gear ratio of the noncircular gears
is specified as a hyperbolic function of the slewing angle. A mechanism synthesis
method is employed to derive the design equations for the convex pitch profiles
of two noncircular gears. The slewing maneuvers of two kinds of flexible space
structures, i.e. a one-beam flexible structure and an articulated two-beam flexible
structure, are investigated by using the designed noncircular gears to perform both
positioning control tasks. The noncircular gears are installed at the junction of
the motor and the flexible structure. Their regulator-type control problems are

first solved using optimal control theory. Then, the resulting regulator feedback
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gains are applied to the system. Furthermore, an optimization technique based
on the Generalized Reduced Gradient Method [9-12] is employed to determine
the optimal hyperbolic gear ratios as well as the optimal control gains to further
suppress vibrational motions of the flexible beams. The simulation results associ-
ated with such optimal designs and parameters are then compared to the original

noncircular gears.

§ 5.1 Concept of the noncircular gearing

The noncircular gears have gained much attention in their application of me-
chanical devices because they offer distinct advantages over linkages, band mech-
anisms, and cams. Generally, the noncircular gears are employed based on the

following reasons [24]:

(1) Cyclically varying angular velocity of the driven gear is de-
manded: quick-return drives, intermittent mechanisms as in printing

presses, planers, shears, winding machines, automatic-feed machines.

(2) Precise nonlinear functions must be generated: computing ma-
chines for extracting roots of numbers and raising numbers to any power,
barometric instruments for reading pressure as a function of altitude, po-
tentiometers and synchros to vary the output as a function of angular
displacement, output shafts of limited-travel gear trains to compensate
for the accumulated eccentricities of the intermediate gears and produc-

ing trigonometric, hyperbolic and logarithmic functions.

(3) Jointed integration of mechanism and control techniques is con-
ducted: suppressing vibration during the rapid and large-scale slewing
maneuvers of large flexible space structures.

Normally, the cyclically varying output speed can also be achieved by means
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of cams, four-bar linkages and band mechanisms. Compared to four-bar linkages,
noncircular gears are more compact, accurate, and easier to balance in operation.
Also, noncircular gears considerably surpass the cams and band systems while
operating in high-speed mechanisms or non-reciprocating motions. Noncircular
gears have previously cost more than competitive devices such as linkages, cams,
and band mechanisms. Yet the cost of manufacture is reduced for noncircular

gears via modern production methods.

For the noncircular gears to be properly in mesh, so that their centers of
rotation are a fixed distance apart, the varying torque and speed are transmitted
without slipping from driving gear to driven gear. That shear force, normally taken
by the gear teeth, is taken by the bands. Noncircular pitch curves are designed to
generate the variant gear ratio. Rolling contact, without slipping between driving
to driven gears, must always hold in the rotation. Figure 5.1 shows two noncircular
gears centered at O; and O with the pitch radii r; and r; respectively. Their
angular displacements are indicated by 6; and 6, angular velocities 6, and 6,
and angular acceleration 91 and ég respectively. The center distance 0.0, is
denoted by C and the pressure angle by ¢. The necessary conditions for rolling

contact between two gears O; and O; as shown in Fig. 5.1 are

(1) Contact point is aligned along their center-to-center line 0,0,

(2) The equivalent tracking arc length must satisfy
™ d01 =T d02 (51)

where df; and df, the small angles of gears O; and O respectively.

To ensure the contact point aligned between the centers of two gears, the sum
of two pitch radii of gears at the contact point must always equal to the center

distance C, as shown in Fig. 5.1. Moreover, dividing Eq. (5.1) by dt yields the
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Figure 5.1: Configuration of noncircular gears
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velocity equation between gears O; and O; such as

=2 (5.2)

which implies that the instantaneous velocity ratio equals to the inverse ratio

of instantaneous radii. In fact, equation (5.2) indicates the gear ratio defined as

by assuming the driving gear O; and the driven gear O;. Note that the gear
ratio defined in Eq. (5.3) varies according to the reverse ratio of the pitch radii
of the driving to driven gears. Also, the input torque 71 is related to the output

torque 7 by
Ty = NgT 1 (5.4)

through the noncircular gears as shown in Fig. 5.1. Rewriting Eq. (5.3) provides
that i
i = 22 (5.5)
1 = Ng *
The angular acceleration equation can be achieved by differentiating Eq. (5.5)

with respect to time. Rewriting Eq. (5.5) and the angular acceleration equation

(- (% +) &)

Equation (5.6) implies a transformation matrix to transmit the driving states

. 11T . 1T
[91 01] to driven states [02 92] . Such a transformation of Eq. (5.6) will be

in matrix form yields

employed to derive a closed-loop system consisting of the noncircular gears with

variant gear ratio NN, in section 5.4.

The specially shaped gears are thus able to be designed to roll and mesh
properly during gear operation. Table 5.1 demonstrates five types of existing

noncircular gearing systems [24]. They are

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tabel 5.1: Characteristics of five noncircular gear systems [24]

Comments
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(1) Two ellipses pivoted at foci,

(2) Second-order ellipses rotated about their geometric centers,
(3) Eccentric circular gear meshing with its conjugate,

(4) Logarithmic spirals and

(5) Sine-function gears.

Except for the standard circular spur gear in type (3), the pitch curves of
gears are noncircular. To ensure rolling contact, the point of rolling contact must
always be located along the center- to-center line and the center distance has to
remain a constant in rotation. For type (1), true elliptical gears can only be allowed
to roll and mesh properly if they are twins, and if they are rotated about their
focal centers [29]. For type (3), an eccentric spur gear, rotating about point A,
can roll properly only with specially developed pitch curves, as shown in Fig. 5.2
[24]. One of pitch curves, however, resembles an ellipse which has twice as many
gear teeth as that standard spur gear. With the given radius r and eccentricity e,
the major semi-axis of the elliptically profiled gear becomes 2r+e and the minor
9r-e. Furthermore, an internal noncircular gear is permissible to roll well with an
assigned eccentric spur gear. In each type, the pitch radii of driving to driven
gears indicate the design parameters, i.e. the gear ratio, to determine the velocity
equation. The velocity equations shown in Table 5.1 are based on the design

equations of noncircular gears in the next section.

§ 5.2 Design equations for the noncircular gearing

To begin with the design of the noncircular gears, equations (5.1), (5.2) and
(5.4) must always hold no matter what type of noncircular gears are constructed.
Three common design requirements are studied to illustrate three different ap-
proaches to the design of pitch curves for the noncircular gears. Generally, they

are valid for any noncircular gear pair.
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Elliptical-Shaped Gear

Internal Gear

Special-Shaped
Eccentrically "Mounted Gear
Spur Gear
b=2r-e

Figure 5.2: One standard spur gear and four kinds of mating
conjugate gears
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Casel: Suppose that the noncircular pitch profile of gear O; in Fig. 5.1 s

a polar equation of angle #; which is specified by

ri(61) = £(61) (5.7)

with the center distance €. For proper mesh between gears O; and O,

equation (5.1) must be satisfied such as

do, = [%3] dy, (5.8)
ra(8:) = C — f(61) (5.9)

where r(62) stands for the noncircular pitch profile of mating gear O;. Rewriting

Eq. (5.8) provides that

d8, = [—C——] d8, — dby (5.10)
C - f(6)

Equation (5.10) implies that a differential output angle df, can be determined

for a small angle df; at any instant input angle 6; as long as the function

F(8y) is specified beforehand. To determine the output angle 65, equation (5.10)

is integrated from 0 to 6; as follows.

- - A [t d
b, = —0; + c/o [é - }(01)] (5.11)

Equations (5.9) and (5.11) thus provide the parametric functions of
8, and 5 (6;) in terms of input angle 6;. The variant gear ratio can be evaluated
by Eq. (5.3) while the r1(61) and ry(;) are determined numerically. Types
1-4 in Table 5.1. are the examples of this case. The pitch radius of each type is
catalogued in the column of basic equations based on Eq. (5.7). And the corre-
sponding velocity equation in Table 5.1 can be derived by using Eq. (5.2). The
approach of case 1 will be employed to conduct the analytical derivation of two
kinds of noncircular gears, namely, a pair of eccentric gears and Tandem eccentric

gears in the next section.
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Case2: If the input to output relationship is governed by a differentiable
function such as

62 = §(61) (5.12)

with their center distance C. The following equations must be satisfied for the

noncircular gears in Fig. 5.1.

T 4+ rp = C (513)
. db, Ty
6,) = =2 = 1o 5.14
§o) = 2 =2 (5.14)
Substitution of Eq. (5.14) into Eq. (5.12) yields
Cj(61)
- L9l 5.15
S Y (519
ry o= —O (5.16)

[T+ §(61)]
Compared to case 1, this case displays a straight-forward approach without nu-

merical integration, such as the function in Eq. (5.10), to solve the output angle
8,. Namely, the parameters ,, r1,and r; can be found to be analytical func-
tions of the input angle ;. Since input to output pitch radii are obtained from
Egs. (5.15) and (5.16), the gear ratio at any instant can be computed by using Eq.
(5.3). Type 5 in Table 5.1, i.e. the sine-function gears, is an example of the case
where the output angle is specified as a sine function of the input angle. Based
on Eq. (5.2), the velocity equation of -3% = kcos(8;) in Table 5.1 can thus be

determined.

Case3: Assume that the angular velocity ratio is specified by

Z—: = h(6) (5.17)

in conjunction with the center distance C. From Eq. (5.2) we obtain

92 T1 7
3 = (61) (5.18)
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Also, equation (5.13) must hold for the contact point in Fig. 5.1, always lying

along center-to-center line 0;0;. The following equations are thus achieved for

the pitch radii of two gears.
n o= —CRE) (519)
1+ heo)]
Te = C (520)

[1 + R (01)]
And the output angle 6, can be numerically determined by integrating Eq. (5.17)

as follows.
A

8, = k(6,) db, (5.21)
0
In fact, this case unveils a useful technique for dealing with the design equations
of noncircular gears, while the varying gear ratio is specified by Eq. (5.18).

Cased: Similarly, the angular velocity ratio is given as a function of the

output angle 6, such as )
62

= p(62) (5.22)
61
Then, the pitch radii of two noncircular gears are derived to be
Cp(62)
= P72 5.23
i+ 560 (5:29)
C

Ty = (5'24)

(1 + 5(62)]
And the input angle 6; of the driving gear can be computed by integrating Eq.

(5.22) as follows. ' 1
. =/0 [;(TZ)] a6, (5.25)

The pitch curves of two noncircular gears in this case can thus be determined

through Egs. (5.23)-(5.25).

Besides the criteria expressed in Eq. (5.1), the arc lengths tracked by input

to output pitch profiles must equal each other for the construction of noncircular
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gears. From Fig. 5.1, the cumulative arc lengths da and db due to small angular

displacements df; and 6, provide

- Y
— 2 —_—
da = \ r? 4+ (dol) | dé, (5.26)
db = | 2 dry : do
= \ r2 + ) 2, (5.27)

The tracking arc lengths a and b shown in Fig. 5.1 are thus numerically calculated
by integrating Eqgs. (5.26) and (5.27) as follows.

6, ] 2]

a = / r? 4 (@) dé,, (5.28)
0 \ I db,) |
N [ 2]

b = / 2+ (%;-}2-) d6,, (5.29)
o\ 2) |

Therefore, no matter what case of gearing derivation is used, the arc lengths
tracked by input to output gears must satisfy a=b, derived in Egs. (5.28) and
(5.29). Namely, both tracking arc lengths are equivalent at any instant of oper-
ation. Numerical method can calculate the tracking arc lengths in Eqs. (5.28)
and (5.29) to verify the feasibility of the designed noncircular gears based on the

derivations herein.

§ 5.3 Mechanism synthesis of the noncircular gears

The advantages of noncircular gears over the other competitive mechanisms,
such as four-bar linkages and cams, have been discussed in section 5.1. Neverthe-
less, conventional noncircular gears still can not overcome some nonlinear problems
such as backlash and slipping, as expressed in section 5.1. A new design of a set
of noncircular gears is developed such that pure rolling contact between the driv-
ing and driven gears is always present. As shown in Fig. 1.3, such a device of

noncircular gears consists of

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1) Two cylinder-type and specially shaped cams,
(2) Two pairs of thin metal bands and
(3) Two holders.

The noncircular gears are constructed by a single pair of convex cylinder-type
cams which are wrapped in a mesh arrangement by two pairs of thin metal bands.
These thin metal bands are clamped together by two holders at the two ends of
bands where the holders are then attached to either the shaft of the motor or the
end of the structure for the torque transmission. This device has several attributes

when compared to conventional gears. They are

(1) No backlash,

(2) No friction,

(8) No slipping,

(4) No teeth,

(5) No need of lubrication and

(6) Low cost of manufacture.

The output characteristics of the noncircular gears are governed by Eq. (5.6)
derived in section 5.2. Pitch curves of two noncircular gears can be determined
through four cases in section 5.2 as long as the various gear ratio is properly
specified. Based on Case 4 in section 5.2, a hyperbolic gear ratio defined as a
function of the driven output angle is used such that

92 C2
N, = =2 = —2 5.30
I 01 [C]_ + 92] ( )

In Eq. (5.30), ¢1 and cp indicate two parameters which can be determined by giv-
ing two points along the hyperbolic curve. During the slewing control process, the
noncircular gears characterized by a hyperbolic gear ratio shown in Eq. (5.30) can
transform the output angular displacement and velocity to behave more smoothly
while simultaneously suppressing the flexural vibration. Figure 5.3 shows a hyper-
bolic gear ratio as a function of the output angle 6; from 0 deg to 90 deg for the
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parameters ¢; = 75, ¢ = 3 and C = 10. The pitch radii of two noncircular

gears can be found by Eqgs. (5.23) and (5.24) as follows.

e,
r = [1 T Ny], (531)
c
- —_— .32
il A (5:52)

where € is the center distance of two noncircular gears. From Eq. (5.25), the
input angle #; of the driving gear can be computed by integrating Eq. (5.22) as

follows.
02
[6192 + —.}] .
6, = —m (5.33)
c2

The plots of (1) and r2(6;) in polar coordinates would directly confirm
whether the requirements of convexity are adhered to. Based on the hyperbolic
gear ratio as shown in Fig. 5.3 and Eqs. (5.31)-(5.33), the pitch curves of the two
noncircular gears are given in Fig. 5.4. The convexity of two profiles ensures the

feasibility of the hyperbolic gear ratio for this design of noncircular gears.

§ 5.4 Actuator dynamics with noncircular gears

The noncircular gears developed in section 5.3 are characterized by several
advantages over those of the conventional gears such as the ones shown in Table 5.1.
In this section, the dynamics of the actuator in the presence of noncircular gears are
investigated. For the slewing control of flexible space structures, the noncircular
gears are installed at the rotating joints to transform the available torque from
the actuator to the flexible beam through a varying mechanical advantage given
by Eq. (5.4). A pair of cylindrically shaped cams (to be used as gears), shown in
Fig. 1.3, are wrapped together such that the noncircular gears can roll on each
other without slipping and friction. In this way, the pitch profiles of noncircular
gears must be convex. A constant step- down gear box is built into the motor so
that the constant gear ratio should also be considered in the actuator dynamics.

The output shaft of the step-down gear box is axially connected to the holder of
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a noncircular gear, while the end of the flexible beam is attached to the other
gear holder (see Fig. 5.5). The motor can be regarded as a standard armature
circuit. Denote the armature resistance by R,, the back-EMF (Electro-Motive-
Force) constant by K}, the motor torque constant by K, the gear train viscous
drag coefficient by C,, the motor inertia by I, the available motor torque by
Ta, and the applied voltage into the armature by e,. Then, the motor dynamics

is governed by

Infm + (€ + %) b + 70 = Tl (5.34)
Ra RG

where 0, denotes the output shaft angle of the motor. Figure 5.5 shows a
motor and a gear train of a gear box and the noncircular gears. The output shaft
of the gear box is attached to the input holder of noncircular gears. Assume one
end of a flexible structure is attached to the output holder of noncircular gears.
Denote the varying (non-constant) gear ratio of noncircular gears by N, and
constant gear ratio of step- down gear box by N,. Based on Eq. (5.4), the
transmission from available torque 7, to the torque 7, associated with structure
input is thus provided by

Ta = NyNpr, (5.35)

Based on Eq. (5.6), the angular velocity and acceleration of motor can be written

by . .
é‘,,,) ( Y ACH) ) (a)
. = N. (8, . (5.36)
("m -y wmiw) \b

where 6; denotes the angular displacement of the structural root end. For the
sake of convenience, the gear ratio N, in Eqs. (5.35) and (5.36) is specified as
a function of 6,, i.e. N,y (6,), because motor characteristics in Eq. (5.34) will
be combined into structrual dynamics to perform a closed-loop system in the next
_section. Due to the dynamic criteria of structural maneuvers, the investigation of
the entire closed-loop system must be conducted to find the appropriate gear ratio

Ny, Substitution of Eqgs. (5.35) and (5.36) into Eq. (5.34) provides the structural
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torque 7, which is expressed by

P AY . _
= Kie, N (Cv + R, ) 0s + Im (NyNP08 - NP‘NQO-’) (5 37)
(RGNQNP) (Nng)2 (NQNP)a

Since the gear ratio of noncircular gears is defined as a function of beam angle
6y in Eq. (5.35), the time rate of change of the gear ratio Ng in Eq. (5.37) can
be computed by

dN,] .

N, = [F:] 65 (5.38)

which means the time-rate gear ratio is equivalent to the multiplication of the
slope of the gear ratio verse the structural root angle and the angular velocity of
the structure. The noncircular gear ratio N,, defined in Eq. (5.35), is associated
with the fourth case in section 5.2. From Egs. (5.23) and (5.24), the pitch radii

of the two gears shown in Fig. 5.1 are then determined by

CN,

r1(0m) = T+ Ny (5.39)
re(6s) = (—I%V:)- (5.40)

where C is the center distance defined in Eq. (5.13). Hence, the profiles of two
noncircular pitch curves can be found by solving Eqs. (5.39) and (5.40) as long as
the varying gear ratio NN, is specified based on the criterion for the maneuvering
performance. Notice the gear ratio N, must be selected to ensure two convex
profiles of pitch curves. Yet the motor angle 6, in Eq. (5.39) must be solved
to determine the pitch curve ry. From Eq. (5.36), the motor angle §, can be

computed by .
¢ db,

N
0 9
for any given structural root angle 6,. The plots of r;(6,) and rz(8,) can
thus be drawn in polar coordinates. The convexity of Eqgs.(5.39) and (5.40) has to

O = (5.41)

hold for the construction of these noncircular gears.
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§ 5.5 Dynamic equations of fiexible space structures with
noncircular gears

In this section, the investigation is conducted to display the dynamic equations
of two kinds of flexible space structures, i.e. the one-beam and the articulated
two-beam structures, in conjunction with the current noncircular gear design.
The cylinder-type noncircular gears are set up to link the actuator and one end
of flexible beam through two holders. Equations (5.36) and (5.37) are employed
to link the actuator characteristics and structural dynamics together in order to
implement the closed-loop control systems. Such two models of flexible structures

will be used for numerical simulations in the next section.
88 5.5.1 Dynamic equation of a flexible one-beam structure

The input to output relationship of the motor with noncircular gears is de-
rived in Eq. (5.37). On the other hand, the detailed structural dynamics has
yet to be presented. In this section, attention will be focused on the derivation
of the structural dynamics of a flexible one-beam structure along with a single
pair of noncircular gears. Figure 5.6 shows a planar flexible beam clamped on a
device consisting of a motor and its gear train. The flexible beam is modeled as
a cantilever beam with the fixed end at the motor and the free end at the tip
z; = L (see Fig. 5.6(a)). Only the bending vibration is allowed during the
motion of the arm. In Fig. 5.6(b), the x-y axes are the fixed inertial coordinate,
whereas the z; —y; axes represent the moving relative coordinate. Lagrange’s
equations of motion [69), in conjuction with the modal expansion to discretize the
deflection of the flexible-link manipulator, are then applied to derive the dynamic

equations of motion. Let the state vector be defined by

T
£ = [98’ qT] ’ qT = [QI’ q2,°° qn] (5‘42)

where 6, indicates the root angle of the flexible beam and ¢; (i=1,....,n) the

general coordinates corresponding to the shape functions %; (i=1,....,n) for
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beam
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discretization | of the bending deflection of the flexible beam. The kinetic
and potential energies of one flexible beam are given by Egs. (B.11) and (B.12)
which result in Lagrange’s function. The control torque needed to perform desired

slewing maneuvers can be expressed by the vector

r=1[10-,0]F (5.43)

where 7, represents the applied torque for the slewing of the flexible beam.
Note that 7 in Eq. (5.43) is identical to 7, derived in Eq. (5.36).

Assume that the damping of the flexible beam is negligible. The Lagrange’s

equations of motion for one-beam structure can thus be governed by
ME + K¢ = 7 (5.44)

where M indicates the inertia matrix, and K the stiffness matrix. Apparently,
equation (5.44) demonstrates linear structural dynamics. Denote p the mass
density of the arm per unit length, L the length of the flexible beam, and I the

total moment of inertia. Hence, the inertia matrix in Eq. (5.44) is expressed by
_ (I symmetric
M = ( _5 oL ) (5.45)

where [ is an n X n identity matrix. The constant vector § is defined in
references [37] and [38]. Furthermore, the constant stiffness matrix in Eq. (5.44)
is specified by

K = Diag[0, pLw®] ; w = Diag[wi, +, wn] (5.46)

where w; (i=l,...,n) is the modal frequencies associated with the cantilevered
shape functions ; (z1), which are used to discretize the deflection of the flexible
beam. The nonlinear forcing terms such as Coriolis and centrifugal forces do not

exist in the Eq. (5.44).
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The actuator dynamics and sensor characteristics must be involved into Eq.
(5.44) to construct a closed-loop system. The actuator for the feedback control is
the dc electric motor. One idler gear box and a pair of noncircular gears are set
up in the same way as in the previous section. Since the relationship including
actuator characteristics and noncircular gearing mechanisms has been established
in Eq. (5.37), the applied beam torque 7 in Eq. (5.43) can be replaced by Eq.
(5.37) such that

Kue (Co + B8 In (NyN,b = NpHiyb)
n = s__ — + (5.47)
(RaN,N,) (N,N,) (NgN)

Obviously, equation (5.47) produces the appropriate torque for beam slewing due
to the applied voltage eq, which is determined through output feedback control.
The motor characteristics, such as back-EMF as well as moment inertia, are in-
cluded in Eq. (5.47), which is represented in terms of beam variables. Instead of
the conventional motor’s back-EMF with a constant gear ratio, the back-EMF in
Eq. (5.47) can be tuned through the varying gear ratio Ng;. The angular velocity
and acceleration of the motor’s shaft can then be obtained by using Eq. (5.36).

The output measurement equation is derived to relate the physical measure-
ments, such as angular displacement and velocity, and the output voltages of the
sensors. Referring to the sensors, the rotational angle is measured by the 10-turn
rotary potentiometer, whereas the angular velocity is calibrated by a tachometer.
Strain gages, used to sense the bending moments along the flexible beam are, de-
duced. Denote ¢, as the conversion factor between the beam root angle 65 and
the output voltage e, of the potentiometer; c¢; as the conversion factor between
the beam angular velocity and the output voltage et ¢, as the conversion factor
between the strain and the strain output voltage eg. Suppose three strain gages
are placed along the flexible beam respectively at z,, s, and z.. An output

measurement equation can be written in the following matrix form

& = [en ep € (Ta), €0 (as), eo(ze) T = Cf [és, ST]T
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) , 1T
= Diag[ce, cp, Cc] [0y 0u, o7 | (5.48)

where each element of the matrix C. is a product of the conversion factor c,, the
half thickness of the flexible beam, and the second derivative of the corresponding
mode shape to a generalized coordinate evaluated at the corresponding sensor
location. All the observed measurements in Eq. (5.48) contribute to the output
feedback control input, namely, e, in Eq. (5.47). Apparently, the matrix Cy in
Eq. (5.48) is composed of the conversion factors of the sensors. More detailed
information about the output measurements is provided in references [20,21,38].
Equation (5.48) thus relates the output voltage é to the state variables 6, and
¢ through the coefficients of the matrix Cj.

Substituting Eq. (5.47) into Eq. (5.44) provides
ME + C¢ + K¢ = BE,(t) (5.49)
in which,

_ I
M=M+ Dz'ag[——m—-, 0, 0,0],
(Ng )’

C = Diag

K Im N,
(Ki{ * G- N”) 0,0, 0
(Nng)z y Uy Yy ’

B=Diag[ 0,0,0],

K
(RaNgN)’
and E,(t) = [eq |7 with e, being the applied voltage for the motor of the
flexible beam. Moreover, the signals of output voltages é will be fed back to the
motor through the desired feedback gain matrix so that

E, = G&é = GCyt (5.50)

where G denotes output feedback gain matrix which will be determined for the

slewing maneuvers of the flexible beam. Equation (5.49) thus demonstrates a
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closed-loop system of a flexible one-beam structure in conjunction with a pair of
noncircular gears. Recall that the time rate of change of the gear ratio in damping

matrix C of Eq. (5.49) can be found by using Eq. (5.38).

§§ 5.5.2 Dynamic equation of an articulated flexible two-beam
structure

The noncircular gears can be incorporated into multibody flexible structures.
An articulated two-beam structure is designed to study the feasibility of two pairs
of noncircular gears for two flexible beams. One flexible beam is articulated on the
tip of the previous beam to result in an articulated flexible two-beam structure as
shown in Fig. 5.7(a). Such an additional beam is also treated as a cantilevered
beam. An extra actuator is required, which is concatenated axially with that for
the first beam as shown in Fig. 5.7(a). The fore-beam is manipulated by this
additional motor through a wire or tendon configuration. In Fig. 5.7(b), denote
8, as the root angle of the first flexible beam and 6, as the root angle of the second
beam, measured relative to the previous local coordinates, i.e., 1 —y1 axes. The

state vector similar to Eq. (5.42) becomes
T
£ = [0y, 02 df, 0 | ;
o = [a, qiny] and g = [,y Gang ] (5.51)

where ¢y; (i=1,-++, ny) are the general coordinates corresponding to the shape
functions y; (i=1, -+, m1) for discretization of the bending deflection of the
first flexible beam. The quantities ¢s; and 12; are defined similarly for the

fore-beam. The input vector for the articulated flexible beams is
T = (71, T2y 0yoer, 07 (5.52)

where 73; and T represent the applied torques for the two flexible beams

repectively.

The kinetic and potential energies of an articulated flexible two-beam struc-

ture are specified in Eqs. (A.17) and (A.18). Application of Lagrange’s equations
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of motion in terms of state variables yields a set of equations in matrix form as

follows.

ME + K¢ = 7 + f(&€) (5.53)

where M, K and 7 are defined similarly to Eq. (5.44), and f (E, £) represents
a nonlinear force vector. In Eq. (5.53), there exists the nonlinear terms, such as
cosine functions of the beam angles, due to the interaction of the dynamics of
the two flexible beams. The inertia matrix M in Eq. (5.53) represents a constant

matrix. The symmetry inertia matrix M in Eq. (5.53) becomes

A oLt —pL2pT(L) = PT  —LhIch,
pL3ch; I —pL?y7 (L)cha _pT
= 2 . 2 2 . P
—pLipy(L) - Py ek Deh oy (LT (L) + pLLy  hatp{(L)ch
—Lh2092 —Pg h2¢1(L)602 pLIg

(5.54)

where cf; = cos(6;), cd; = cos(fz) and c(fy +62) = cos(6 +62). Here
I, and I, are my xn; and ny X n, identity matrices respectively with
n; and ng being the numbers of the mode shapes respectively for discretization
of bending deflections of the two beam-like flexible beams. Moreover, the stiffness

matrix becomes
K = Diag[O, 0, pLu?, prg] ;

w; = Diag{wi, -+, Win, ] and w2 = Diag[wa1, ", Wan, | (5.55)

and the nonlinear force vector yields

F(6€) = Lfi, fo fo, £ I (5.56)

where

pL? . o T:\4
fi = ?89292 — Ls6, (h2 ¢I2) 62

fo = =36y (WT(Ddr) (hTd2) + Lsby (hfd2) b1
2 . .
fi = —%zpl(z)sogag + s0291(L) (AL 42) b2
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fo = —Lsbshabi6 + hashy ($7(L)ir) 62

where s6; = sin(f;), s6; = sin(6s), and s(61 +6;) = sin(6r + 62).

There are two motors which produce the torques for the independent slewings
of the two beams. The applied beam torque 7;; for the first beam in Eq. (5.52)
is identical to the one shown in Eq. (5.47). One idler gear box (constant gear
ratio Np2) and a pair of noncircular gears (variant gear ratio Nyz) are set up for
the torque transmission of the second beam. Therefore, the applied beam torque

Tyo is generated by

Kizeq2 (0”2 + R,, ) ; (Ngszzébz - NpZNgZébZ)
952+ Im2

Ty = -
2 T (RazN,2Np2) (Np2Np2)? (Ng2Np2)’

(5.57)

where the motor parameters for fore-beam are defined in the same way as Eq.
(5.47). Equation (5.57) generates the torque 7p2 for the second beam, slewing
through the applied voltage eq2.

Then, the output measurement equation is
o T
& = [es1, €12, €p0, €p1, €2, €01 (Ta) ; €01 (Tb) , €01 (2c) , €02 (Za) , €02 (23) , €02 (zc)]

e [él, ds, qT]T (5.58)

where

Cf = Dwy[ Ct1, Ct1, Cp*yCpi, 0319 Cs2 ]7

a’ﬂi] ’/-’ln
C.;i = ¢sh (3::161:1 (371) . ’31:1321( 1)) fori = 1,2
° 8% ingy y e

02023 (22)’ "1 9z20z; ( 2)

The dynamic equations can thus be developed which yields
ME + C& + K¢ = BE,(t) + f (&, é) (5.59)
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-~ . Iml Im2
M = M + Diag , ,000000]|,
[ (Nale1)2 (NgZNﬂ)Z ’ ]

’

- Diag (K‘R]:fh] + Cyy — Im1,1‘:'¢1) (K‘szghz + Cyp — Imz:‘ip)
(Nglel)z ’ (Ngszg)z

0,00000],

(w0 )

OCOoOO0OOOOO0O
OO OO

\ o
and E,(t) = [ea1, €a2 ]T which can be obtained by using the output feedback
control technique as shown in Eq. (5.50).

§ 5.6 Simulations of slewing controls with noncircular gears

Two dynamic models, namely a flexible one-beam structure and an articulated
flexible two-beam structure, have been developed in the previous section. The
noncircular gears associated with the hyperbolic gear ratio are installed into two
such flexible space structures to perform controlled slewing experiments. For each
beam-like structure, 90-degree slewing maneuvers are simulated to compare two

cases of slewing performances, i.e. with and without noncircular gears.
§§ 5.6.1 Simulation of a flexible one-beam structure

Three cantilevered modes are assigned for the flexible steel beam. Table 5.2

summarizes the model parameters of a flexible one-beam structure. Using the
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optimal control techniques [68], the slewing control of this flexible structure is
investigated to determine an optimal control law so as to minimize the quadratic

performance index such as

J = f ” [¢TQq + uTRu] dt (5.60)
o .

where ¢7 indicates the state vector [ £, ¢ ]T and uT the input vector. The
positive-definite matrices Q and R in Eq. (5.60) stand for the state and input
weighting matrices respectively shown in Table 5.3. A Riccati equation [68] based
on Eq. (5.60) will be solved to obtain the output feedback gain matrix as shown
in Table 5.3. The varying gear ratio for noncircular gears is specified as shown in
section 5.2. The parameters of hyperbolic gear ratio are listed in Table 5.2. Figure
5.8 demonstrates the task of a 90-degree slewing control for this flexible one-beam
structure. Two cases of slewing simulations are performed: one with the regular
circular gears and the other with noncircular gears. The results associated with
noncircular gears are indicated by a solid line (§1) and the results for circular gears

by the dashed line (}2) respectively.

The performance results for such a slewing maneuver are thus summarized in
Figs. 5.9-5.14. The flexible steel beam slews 90 degrees in 6 sec as shown in Fig,.
5.9. Apparently, the noncircular gears slow down the slewing maneuver during
the first 7-degrees of slew, thereby providing a smoother actuation to the desired
final angle than that in the presence of the circular gears. In Fig. 5.10, both re-
sults of the beam angular velocities damp out in 6 seconds. The higher modes are
clearly observed in the result for circular gears while nearly absent in the results for
noncircular gears. That indicates the efficient suppression of structural vibration
in the presence of noncircular gears. The slewing angular velocity of noncircular
gears illustrates a smoother trajectory after 0.8 sec which implies that the beam
slewing and vibrational motion have been tuned through the noncircular gears.
Moreover, the peak angular velocity magnitude is also significantly reduced. Two

control torques which resemble each other start with 1 N-M and dwindle to zero
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Figure 5.8: 90-degree slewing mission of a flexible one-beam
structure
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N-M as shown in Fig. 5.11. Apparently, the control torque in the presence of non-
circular gears damps out faster than that for circular gears. Also, the vibrational
modes behave significantly lower as shown in Fig. 5.11. The behaviors of the
three modes are demonstrated in Figs. 5.12-5.14. The vibrational modes can be
suppressed by output feedback control in the case of circular gears and are further
suppressed through noncircular gears in conjunction with the feedback control. As
can be seen in Fig. 5.12, the noncircular gears suppress the first mode more than
circular gears do. At 0.3 sec, the first mode with circular gears produces a peak
amplitude of 0.1 units compared to 0.06 units with noncircular gears. Figure 5.13
shows two case histories of the second mode. The peak amplitude of each mode is
considerably reduced, with noncircular gears contributing to vibrational suppres-
sion of the second mode even more than with circular gears. A similar situation
happens in the behavior of the third mode. Figure 5.14 shows that smaller am-
plitude of the third mode is achieved by noncircular gears. The simulation results
in Figs. 5.9-5.14 thus provide some insights into the slewing maneuvers of flexible

one-beam structure to the mechanism of the noncircular gears.

Moreover, the hyperbolic gear ratio of noncircular gears can be optimized to
improve the suppression of vibrational motion of the flexible beam. The optimal
parameters of noncircular gears, ie. ¢; and c; in Table 5.2, can be determined
in section 5.7 by employing a optimalization technique. The control gain can
also be taken into account when dealing with such an optimization problem. The
simulations associated with the optimal design of noncircular gears and gain are

comparable to the results obtained in this section.
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Table 5.2: Model parameters of one flexible beam

a. Beam motor:
Ky = 93x1072 Nem/Amp Ky = 92x107% N m/Amp
R, = 1.1 Ohm Ipp = 23%x107%  kg—m?

b. Steel beam:

Length L =10 m
Rigidity El =0.71 N -m?
Density p = 0.47916 kg/m
Thickness h =0.041x10"2 m

c. Parameters of noncircular gear ratio:

—
cl = 10
— 37
Cy = 5

Table 5.3: Weighting and feedback gain matrices of
one flexible beam

a. Weighting matrices:
State weighting matrix:

Q = Diag| 80 0.001 0.001 0.001 100 0.001 0.001 0.001 |;
Input weighting matrix:

= (100 |;

b. Output feedback gain matrix:

G = [ —0.8944 0.0933 0.0153 0.0054 — 1.1315 0.2245 0.0365 0.0130 I
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§8 5.6.2 Simulation of a flexible two-beam structure

A flexible beam is articulated on the tip of another steel beam to create an
articulated flexible structure, as shown in Fig. 5.7. The entire system becomes a
2-body dynamics composed of two identical flexible steel beams. Two cantilevered
modes are assigned to discretize the flexural vibration of each flexible beam. The
model parameters of the flexible two-beam structure are listed in Table 5.4. To
solve the optimal control law, two positive-definite weighting matrices, defined in
Eq. (5.60), are specified and these are shown in Table 5.6. By solving the matrix
Riccati equation, a constant output feedback gain matrix as shown in Table 5.6
is determined for slewing maneuvers of these two articulated flexible beams. The
parameters of two hyperbolic gear ratios are demonstrated for two flexible steel
beams in Table 5.6. Figure 5.15 shows a 90-degree slewing control mission for this
articulated two-beam structure. The 90-degree slewing simulations are performed
through the regular circular gears and the noncircular gears respectively. Two
kinds of simulation results are indicated herein, as is indicated in the previous

section.

The simulation results of this slewing maneuver are demonstrated in Figs.
5.16-5.25. Figure 4.16 shows the angular displacement of the flexible beam §1.
The noncircular gears prevent an overshoot in Fig. 5.16 which takes place in
the result with the circular gears. A similar situation happens for the angular
displacement of the flexible beam §2 in Fig. 5.17. The peak magnitudes of
the angular velocities in Figs. 5.18 and 5.19 are considerably reduced using the
noncircular gears. In Fig. 5.18, an approximately constant angular velocity of 24
deg/sec is maintained for beam {1, slewing from 1.5 sec to 3.0 sec. Apparently, the
higher modes behave significantly negatively in the results for the circular gears.
With the noncircular gears, the smooth trajectory histories of angular velocities in

Figs. 5.18 and 5.19 imply that the structural vibrations of two flexible beams are
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Figure 5.15: 90-degree slewing mission of a flexible two-beam
structure
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Figure 5.20: Beam #1 control torque of a flexible two-beam
structure

Beam #2 control torque (N-M)

JUrY" BN S SO W [ S S N
0. 1. 2. 3. 4. 5. 8. 7. 8.
Time (gec)

* #1: Noncircular ; #2: Circular

Figure 5.21: Beam #2 control torque of a flexible two-beam
structure 134
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efficiently suppressed during 90-degree slewing maneuver. Figures 4.20 and 4.21
show the control torques of beam }1 and beam 2 respectively. The control torque
starts with 0.7 N-M for beam }1 and 0.3 N-M for beam §2. Both control torques
of noncircular gears damp out faster than with circular gears. Two modes of each
beam are demonstrated in Figs. 5.22-5.25. The noncircular gears can further
suppress the vibrational modes which have been damped out to some extent by
output feedback control. Figure 4.22 illustrates that the noncircular gears suppress
the first mode more than the circular gears. At 0.3 sec, the peak amplitude of
0.125 units with the circular gears is reduced by half to 0.063 with noncircular
gears. In Fig. 5.23, the high-frequency second- mode oscillation of beam #1 is
considerably tuned to a smooth trajectory using the noncircular gears. And the
peak amplitude of each oscillation decreases greatly in the result of the noncircular
gears. Hence, the noncircular gears contribute to the suppression of the second
mode of beam {1, more than with just the output feedback control. Similarly, the
suppression of beam 2 first mode is enhanced by the noncircular gears, as shown
in Fig. 5.24. Note the elimination of the high frequency amplitude of the second
mode of beam 2 within the first two seconds, as shown in Fig. 5.25.

The simulation results in Figs. 5.16-5.25 indicate again the feasibility of non-
circular gears in the slewing maneuvers of flexible space structures. Obviously, the
noncircular gears have been successful in improving the angular velocities of two
flexible beams to slew more smoothly, thereby suppressing their vibrational motion
of the beams, especially the high frequency modes. The structural vibration can
be even suppressed in such a way that the hyperbolic parameters of noncircular
gear ratios can be locally optimized to suppress more vibrational motion of two
flexible beams. Also, the control gains can be regarded as the design variables
in such an optimization problem for the suppression of vibration. The next sec-
tion will deal with the optimal designs of noncircular gears and gains by using an

optimization technique for both beam-like flexible space structures.
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Table 5.4: Mcdel parameters of two articulated flexible beams

a. Beam motors:

(1)Beam {1 motor: (2)Beam {2 motor:
K; =0.0346 N em/Amp Ky = 93x1072 Nem/Amp
Kj; = 0.0342  Volt-sec/rad Ky, = 92x107%  Volt-sec/rad
R,; =4 Ohm R, =11 Ohm
In1 = 4.7x107% kg —m? I, = 23%x107%  kg—m?
p1 = Npz =1

b. Steel beam:

Length L =10 m
Rigidity EI = 0.71 N —m?
Density p = 0.47916 kg/m
Thickness h = 0.041x10"2 m
¢. Parameters of noncircular gear ratio:
(1)Beam {1 gears: (2)Beam {2 gears:
a =% s = 31
Cy = -3315 C4 = %

Table 5.5: Welghting and feedback gain matrices of two
articulated flexible beams

a. Weighting matrices:
State weighting matrix:

Q = Diag{ 250 100 10 10 10 10 250 100 10 10 10 10 l;

Input weighting matrix:
R = [500, 500];

b. Output feedback gain matrix:

G = —~0.7018 —0.0547 0.5633 2.4793 —0.2597 1.3766
= \ 0.0864 —0.4439 0.0345 4.9427 -0.2104 —2.9872

-1.1214 -0.2117 0.8029 —0.6719 0.3141 0.0668
—0.0844 —0.5758 0.2477 —0.3145 0.2148 0.0165
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§ 5.7 Optimal design of noncircular gears and control gain
using an optimization technique

For two kinds of beam-like flexible structures, the Generalized Reduced Gra-
dient (GRG) method is employed to determine the optimal designs of noncircular
gear ratios and control gain in terms of suppression of vibration. Generally, the
GRG method is implemented to find the optimal solution to the constrained non-
linear programming problem. The constrained nonlinear programming problem

can be expressed as follows.

Minimize: F(Z); & = [1,%2,%3, " ,a:N]T € RN (5.61)

Subject to $x(2) = 0; k= 1,2,3,---,K (5.62)
ve(z) =0, £ = 1,23,---,L (5.63)
where

z : a column vector of design variables,
N : total number of design variables,
F(z) : the design criteria or objective function,
ox(Z) : K inequality constraint functions,
VT : L equality constraint functions.

Basically, the GRG subroutine is used to seek the optimal solution of the
design variable vector Z to minimize a cost function F(Z) in alocal domain which
is bounded through the given upper and lower bounds of the design variables.
First, a starting point Z° of design variables must be provided for GRG to
search a feasible point. The reduced gradient is then evaluated by equating a
projected reduced gradient formed through Egs. (5.61) to (5.63). The Lz norm
of the projected reduced gradient is then checked to determine if it is within some
tolerance for convergence. If so, a constrained relative minimum of cost function

has been obtained. If not, a line search provides a search direction to locate a
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local minimum of F(Z). The line search is performed by initially taking a step in
the direction calculated for the design variables. The design variables are adjusted
by using Newton’s method until the constraint functions given by Eqgs. (5.62)
and (5.63) are satisified. The cost function is thus minimized according to such a

reduced gradient algorithm.

From the simulation results in section 4.6, the noncircular gears with hyper-
bolic gear ratios have improved the slewing performances of two kinds of beam-like
flexible structures, especially the vibrational motion of the flexible beams. In or-
der to further suppress vibrational motion, two kinds of optimization problems are
implemented for each beam-like flexible structure. First, the mechanism design of
noncircular gears is investigated to determine optimal hyperbolic parameters to
suppress the magnitude of the beam vibrations. Second, an integrated approach
to the optimal design of the control and mechanism is conducted via the GRG
method. The hyperbolic parameters of noncircular gears along with control gains
are optimally found to minimize the specified cost function. The states with severe
vibration are chosen from the simulation results associated with the noncircular
gears to form a constrained optimization problem. The quadratic cost function is
developed to provide a criterion for the minimization of amplitudes of vibrational
modes through the design variables. Furthermore, the slewing angles and angular
velocity are specified at the particular values through the cost function in order
to achieve a feasible point for the GRG subroutine. The second-order dynamic
equations of two kinds of flexible beam-like structures, as shown in Eqs. (5.49)
and (5.59), are transformed into first-order state equations. These first-order state
equations thus indicate the equality constraint functions which must be satisified
in terms of dynamic response. The inequality constraint functions are specified
to bound the gear ratios or control torques. The upper and lower bounds of each
variable are carefully assigned to obtain a bounded domain for seeking a minimum
of the cost function. The designs of the noncircular gears and control gains used in

section 4.6 are optimized in terms of minimizing amplitudes of vibrational modes.
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Four optimization problems are listed in Tables 5.6 through 5.9 for slewing

maneuvers of two kinds of beam-like flexible structures. They are

(1) Optimization problem of noncircular gears for one flexible beam [Table

5.6],

(2) Optimization problem of noncircular gears and control gain for one flex-

ible beam [Table 5.7],

(3) thimization problem of noncircular gears for two articulated flexible

beams [Table 5.8] and

(4) Optimization problem of noncircular gears and control gain for two ar-

ticulated flexible beams [Table 5.9].

Based on Egs. (5.61) to (5.63), Table 5.6 displays the optimization problem
of noncircular gears for the 90-degree slewing maneuver of a flexible one-beam
structure. The state vector u and time-rate state vector ¢ at 0.6 sec are selected as
the design variables along with the two parameters ¢; and c; of noncircular gears.
Obviously, there exists eighteen design variables in this optimization problem. The
output feedback gain, as shown in Table 5.3, is maintained constant during this
optimization process. The cost function is developed to suppress vibrational modes
while simultaneously keeping the slewing angle 8 and the angular velocity 6 at
0.18279 rad and 0.4529 rad/sec respectively. The equality constraint functions are
provided by eight first-order state equations which must always be satisfied during
optimization process. An inequality constraint function is assigned to force the
gear ratio to be greater than 0.1. Two hyperbolic parameters are bounded from
0.1 to 6, and the sixteen states from -10 to 10. The starting value of cost function,
ie. F(3%), equals 44.0442 with the optimal cost function yielding 0.0227078 as
the local minimum of F(Z). The final solution of parameters of noncircular gears

to locate the minimum of F(Z) yields ciopt = 0.153083 and czop: = 1.81478.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e

The optimal design of noncircular gears is thus generated by the ciop¢ and czopt.
A 90-degree slewing simulation based on such an optimal design of noncircular

gears will be performed in section 5.8.1.

The control gain can also be included in fhe optimization problem for the
flexible one-beam structure. Table 5.7 demonstrates the optimization problem
of noncircular gears and control gain for the slewing maneuver of the one-beam
structure. Instead of the constant feedback gain, the control gain in the first-
order state equations undergoes the optimization process along with the design of
noncircular gears to locate the local minimum of cost function. Herein, eight more
design variables are included due to the control gain. Therefore, this optimization
problem has 26 design variables. The cost function still keeps the angle and angular
velocity of the beam, as in the previous case, while minimizing the amplitudes of
three modes. Two more inequality constraint functions are specified to bound
the control torque between 0.5 and 1 N-M. The starting point and upper/lower
bounds of the design variables are demonstrated in this table. The starting value
of cost function, i.e. F(z°), equals 42.6998 while the final cost is 0.0068555 at
the minimum of F(Z). The optimal design of noncircular gears is obtained by
ciopt = 0.14 and coopr = 1.81692 which produce a hyperbolic gear ratio. The

final solution of control gains that minimizes the cost function F(Z) is
Gopt = [—0.8942, —25, ~349.8, ~1413.7, —1.4153, —7.79999,

—0.799995, 1.69999] (5.64)

which, in conjunction with optimally designed noncircular gears, could suppress
the beam vibration to a higher degree. A 90-degree slewing simulation based
on such an integrated optimal design of noncircular gears and control gain will
be implemented in section 5.8.2 which is then compared to the results in section

5.8.1.
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Four optimal parameters associated with the two noncircular gears are found
by GRG algorithm to minimize the cost function. Similarly, the optimal design
of noncircular gears for the flexible two-beam structure can be determined in the
same way as shown in Table 5.6. Table 5.8 illustrates the optimization problem of
noncircular gears for the slewing maneuver of a flexible two-beam structure. The
control gain as shown in Table 5.5 is kept constant in this problem. Four param-
eters of two noncircular gears, i.e. ¢1, 2, ¢c3 and ¢4, are the design variables
which generate two hyperbolic gear ratios. Since the previous results have shown
the severe oscillations of the two beams in 0.64 second, the state vector u and time-
rate state vector ¢ at that time are selected to provide an additional 24 design
variables. Hence, the overall design variables are 28 for this optimization prob-
lem. The quadratic cost function is derived to suppress vibrational modes of two
flexible beams while simultaneously keeping two slewing angle 6,, 62 at 0.18117
rad and 0.090778 rad respectively, and two angular velocities 6., b, at 0.19956
rad/sec and 0.20797 rad/sec respectively. Twelve first-order state equations pro-
duce the equality constraint functions. Two inequality constraint functions are
given to make two gear ratios greater than 0.1. The four hyperbolic parameters
are bounded by £ ~ 8%, ¥~ L R~ X and 3% ~ L% respectively, while
the 24 states are bounded by 10~-10. The starting value of cost function, i.e.
F(z°), equals 23.3353, yielding 0.224246 when the minimum of F(Z) is reached.
The local minimum of f(Z) is located by the final solution of four hyperbolic
parameters, yielding that the noncircular gears of the first beam are governed by
C1opt = 0.285599 and cgop = 1.82741, and the noncircular gears of the fore-beam
czopt = 0.136591 and cq0pr = 1.64468. A 90-degree slewing simulation based on

this optimization problem will be performed in section 5.8.3.

Similarly, the output feedback gain of this articulated two-beam structure
can be treated as the design variables to further suppress vibrations of the one-
beam structure. Table 5.9 provides a statement of the optimization problem of

noncircular gears and control gain for the slewing maneuver of the articulated
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two-beam structure. In this case, 24 more design variables are included due to the
control gains. The total number of design variables becomes 52 in this optimization
problem. Besides the previous inequality constraint functions in Table 5.8, four
more inequality constraint functions are specified to bound the two control torques
between 0.5 and 1 N-M. The starting value of cost function, i.e. F(&°), equals
21.772, yielding 0.0157333 when the minimum of F(Z) is reached. The final
solution to locate the minimum of F(Z) results in the parameters for noncircular
gears of the first beam being ¢jopt =0.29 and czjopt = 1.9, and that for the
noncircular gears of the second beam as: 3,5 = 0.134177 and ¢40p¢ = 1.69386.
For two motors, the final solution of control gain through GRG subroutine yields

G.. = -0.694 -0.08¢ -76 -132.3 -0.288 -26.2 -1.533
ot = \ 0.1332 -0.439 4.70607 -18.799 ~17.875 —236.191 —0.043

-0.355 —1.999 -1.899 0.3 —0.399) (5.65)

-0.741 0.01 —0.606 -3.4 -0.399
A 90-degree slewing simulation based on such an integrated optimal design of

noncircular gears and control gain will be performed in section 5.8.4.
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Table 5.6: Optimization problem of noncircular gears
for one fiexible beam

Minimize:
F(e) = @x {wx (8(k) ~ 0182791 + (1-w) x [d(k) - 0.4520]" +
3

Y [wx g2(k) + (1 -w) x g (B)] ;

i=1

where the weighting numbers @ = 10000 and w = 0.55.

Design variables:

5 = e e &), &h41)]

where integers k, k+1 indicate time sequences and
6k) = (608, (k). ga(k), 0s(8), 6CR), k), o), s (8]
E(k+1) = [6(k+1),di(k+ 1), da(k +1),da(k + 1), 6(k +1),
i1k + 1), G2(k + 1), Ga(k + D).

Subject to:

(1) Equality constraint functions:

E(k+1) = At(k) + Bu(k);

{?:(5) = E(k+1) - Egk'i'l)a i=1,2,3,..-,8
u(k) = G{(k)

where
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§ Continued §

(2) Inequality constraint functions:

10.404137r]

2 0
180 20

$1(8) = 2 — 0.1x [c1 +

Starting point:

o
22’ 11
-0.016697, —0.0044417, 0.00049086, 0.53376, ~0.017172, ~0.0039833,
0.00098626, 0.84918, —0.43872, 0.42355,0.45771)7

P = | ,0.18159,0.050333, —0.00047771, —0.000077764, 0.53284,

Bounds on design variables:

(1) Upper bounds:

Fmaz = [6,6,10,10,10,10,10, 10,10, 10,10, 10, 10, 10, 10, 10,10, 10)" ;

(2) Lower bounds:
Fmin = [0.1,0.1,-10,~10,-10, —10, 10, 10, =10, ~10, —10, —10,

-10, -10, -10, —10, —10, —10]7.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.7: Optimization problem of nonclrcular gears and
control gain for one flexible beam

Minimize:

F(s) = @ x {wx [6(k) = 018270 + (1-w) x [6(k) - 04520] +

3
Y [wx )]k

i=1

where the weighting numbers @ = 10000 and w = 0.55.

Design variables:
. T
2 = [, o2 Gaxey £(F), (b +1)]
where integers k, k+1 indicate time sequences and
. T
Ek) = [00k),a1(k), (k) as k), B(K), i (B), da(k),ds(B)]
£(k + 1) = [9(k + 1)7q.1(k + 1)74.2(13 + 1),43(]6 + 1)aé(k + 1)’
G1(k +1),G2(k + 1), ds(k + 1)

Subject to:

(1) Equality constraint functions:

£k + At(k) + Bu(k);

{«g.-(f) T Ek+1) - §(k+1); i=1,2,3,-,8
1) =
u(k) = Guxs)é(k)

where
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§ Continued §

(2) Inequality constraint functions:

dh(fg =0 - 0.1><[;1 + 458s] > 0.
z) = > 0;

) = u(k) — 05 2> 0.

Starting point:

70 = [0.153083,1.81478, —0.8944, —10.0884, —160.9831, —449.1275, —1.5449,

—-4.7363,0.2093, 0.5421, 0.18159, 0.050333, —0.00047771, —0.000077764,
0.53284,—0.016697, —0.0044417, 0.00049086, 0.53376, —0.017172, —0.0039833,

0.00098626, 0.84918, —0.43872, 0.42355, 0.45771]T

Bounds on design variables:

(1) Upper bounds:

Tmaz = [0.16,1.82,—0.8942, —25,-349.2, —-1413.1,-1.4,

~7.2,-0.2,1.7,16 x [10] ];

(2) Lower bounds:
Zmin = [0.14,1.8,—0.8946, —25.6, —349.8, —1413.7,

-2,-7.8,-0.8,1.1,16 x [~10]7 ].
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Table 5.8: Optimization problem of noncircular gears for
two articulated flexible beams

Minimize:
F(z) = Q x {w: x [61(k) — 0.18117)% + (1 —w;) x [6;(k) — 0.090778]° +

. 2 . 2
wy x [B1(K) = 0.19956] + (1—ws) x [da(k) - 0.20792]

+ Y [wr x gh(k)+ (1 —wi) x gh(k) +w x ¢ (k)

=1
+(1 —w1) x §(k)};
where the weighting numbers @ = 10000, w; = 0.55 and w; = 0.5.

Design variables:

. T
z = [Cla C2, C3y C4, €(k)’ §(k+1)}
where integers k, k41 indicate time sequences and
E(k) = [91(’0),92(’3):1111(’“)’Q12(k),¢121(k),Q22(k),él(k),92(k),

‘1'11("’),9'12(’“);dzl(k),q'zle;
§(k + 1) = [81(1‘7 + 1)19.2(’6 + 1)v q'll(k + 1)7412("7 + 1)’421(19 + 1)’q.22(k + 1)>
b1(k + 1), 85(k + 1), gua(k + 1), G2k + 1), da (k + 1), Goa(k + 1)]7.

Subject to:

(1) Equality constraint functions:

£k +1) = Aé(k) + Bu(k) + f;

{19.-(5) = §(k+1) — {(k+1); i=1,2,3,-.+,12
u(k) = GE(k)
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§ Continued §

where
i = (cin —iime)s 2= (a0s) 7= (07(ee)):

(2) Inequality constraint functions:

{¢1(§:) ¢z — 0.1x [e + 10380d4r
$2(Z) = co — 0.1x [c3 + 520727

vV v

Starting point:

2T T 2T 0.18117, 0.090778,0.062614, —0.0012435, 0.015561,

0.00026398, 0.19956,0.20797, —0.0062241, 0.0038742, —0.0050753,
0.0015751,0.19952, 0.20839, —0.0063547,0.0038599, —0.0049356,

0.0015419, —0.087725, 0.91447, —0.28073, —0.030462, 0.30025, —0.071396]7

Bounds on design variables:

(1) Upper bounds:

- T 3r © 3w
Tmar = -8-, —4—, 55’ -E;, 10,10, 10, 10, 10,10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,10}

(2) Lower bounds:

Zmin = |y —)y 3y —, 10, -10, -10, -10, -10, -10, —10, —-10,

-10,-10, -10,-10, —10, 10, —10, —10, —10, —10,
-10,-10, -10, -10, -10, —10]7.
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Table 5.9: Optimization problem of nonclircular gears and
control gain for two articulated flexible beams

Minimize:
F(z) = O x {w1 x [f2(k) - 0.18117 + (1 —wy) x [62(k) — 0.090778]> +

. 2 . 2
we X [91(k) - 0.19956] + (1—wp) x [Gg(k) - 0.20792]

+ 3 [w1 x gA(k) + (1 —wi) x gh(B)] )

i=1

where the weighting numbers @ = 10000, w; = 0.55 and w2 = 0.5.

Design variables:

. T
g = [, @ e, o Geamanyy €(R), &k +1)]
where integers k, k+1 indicate time sequences and
E(K) = [61(k), 8a(k), q11(k), qra(k), gaa(R), o), Bs k), b (F),

d11(k), Gra(k), G21(k), da2] s
Ek+1) = [Bi(k+1),0:(k+1),dua(k +1), dua(k + 1), daa(k +1),
doa(k + 1), 61(k + 1), 02k + 1), ua (k + 1), Gaa(k + 1),
g (k + 1), Goa(k + 1)]7.

Subject to:

(1) Equality constraint functions:

{'«és(i) = fk+1) — Ek+1); i=1,23,,12
£k +1) = At(k) + Bu(k) + f;
u(k) = Gexiz2)é(k)
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§ Continued §

where

i = (-MO-IK —MI-IC'); 5= (ME‘B) ;= (M'lfo(f’é))'

(2) Inequality constraint functions:

1) = @ = 01x [ + Wmx] > g
¢2(2_7) = ¢ — 01x [C3 + ———5'2(;.181072" > 0.
¢3(5) = —ul(k) + 15 > 0 ¢4(.’E) = u1(k) -0220
¢5(i") = —uz(k) + 15 2 0 ¢5(5)) = U2(k) -0220

Starting point:

0 T 3r 7 6w

= [1—0" B9 11
-132.5376, —18.6166,—0.1931, —17.8481, —26.4775, —236.0504, —1.1214,
—0.0844, —-0.2117,-0.5758, —1.8674,0.2187, —1.7980, —0.8882, 0.5880,
-3.27177,-0.2205, —-0.2175,0.18117,0.090778,0.062614, —0.0012435,
0.015561, 0.00026398, 0.19956, 0.20797, —0.0062241, 0.0038742, —0.0050753,
0.0015751,0.19952, 0.20839, —0.0063547, 0.0038599, —0.0049356, 0.0015419,

—0.087725,0.91447, —0.28073, —0.030462, 0.30025, —0.071396] 7"

0.7018,0.0864, —0.0547, —0.4439, —7.8446,4.9652,

Bounds on design variables:

(1) Upper bounds:
Imaz = [0.33,1.9,0.16,1.73,-0.6943,0.1333, —0.0840, —0.4390, -7.6, 5.1,
-132.3,—18.4,-0.08,-17.6, —26.2, —235.8, —1.5334, —0.0430, —0.3551,
~0.7408, —1.6, 0.4, —1.5, —0.6,0.7, —3.0, —0.02, —0.01, 24 x [10))T

(2) Lower bounds:
Tmin = [0.29,1.86,0.12,1.69, —-0.6947,0.1329, —0.0844, —0.4394, —8.0,4.7,
—132.7, ~18.8, —0.3, —18.0, —26.6, —236.2, —1.5338, —0.0434, —0.3555,
-0.7412,-2.0,0.01, -1.9,—1.0,0.3, —3.4, —0.4, —0.4, 24 x [-10]]7.
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§ 5.8 Simulations of slewing controls with optimal design of
noncircular gears and control gain

The slewing simulations of two kinds of flexible beam-like structures in section
6 lead to the optimization problems of mechanism design and control in section 5.7
for suppression of beam vibration. Four optimization problems, shown in Tables
5.6 through 5.9, have been solved in the previous section. Hence, four kinds of
simulations are performed by employing the optimal solutions obtained in section
5.7. The noncircular gears and control gains in section 5.6 are thus upgraded by
using the in this section. Yet the integrated design of mechanism and control is
investigated in Tables 5.7 and 5.9 for the slewing maneuvers of two kinds of flexible

beam-like structures.

8§ 5.8.1 Simulation of a flexible one-beam structure with optimal
design of noncircular gears

The simulation of a flexible one-beam structure in section 5.6.1 is carried
out again through an optimal design of noncircular gears. Similarly, the control
task of this flexible one-beam structure is conducted to perform 90-degree slewing
maneuver as shown in Fig. 5.8. The noncircular gears are produced by using
the optimal parameters of noncircular gears, i.e. ¢; and cg, which have been
achieved to suppress vibrational motion in section 5.7. The output feedback gain
is equivalent to one in Table 5.3. The model parameters of this flexible structure
are shown in Table. 4.2. The simulation results are demonstrated in Figs. 5.26-
5.31. These results, associated with the optimal design of noncircular gears, are
denoted by the solid line (f1) and the results of the previous noncircular gears in
section 5.6.1 by the dashed line (§2). Figures 5.26 and 5.27 show 6 sec slewing
angle and angular velocity of the single flexible beam respectively. Apparently, the

characteristics of noncircular gears still remain to tune the slewing responses of this
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Figure 5.26: Beam angular displacement of a flexible one-beam
structure for optimal design of noncircular gears
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flexible structure. The noncircular gears associated with the optimal parameters
tune the angular displacement and velocity to behave more smoothly during the
first 3 seconds. Figure 5.28 illustrates the histories of the two control torques
which resemble each other, starting with 1 N-M and concluding with zero N-
M. The noncircular gears with optimal parameters make a different outlook of
the vibrational modes, as shown in Figs. 5.29-5.31. The vibrational modes are
suppressed by the same output feedback gain but by different noncircular gears.
Obviously, the noncircular gears with optimal parameters damp out the amplitudes
of three vibrational modes after 2 sec, better than the regular noncircular gears.
The peak amplitudes of the three modes are reduced by half, via the optimal design
of noncircular gears. In Figs. 5.30 and 5.31, the second and third modes even damp
out to vanish after 1 sec through the optimal design of noncircular gears. And
the residual vibration is considerably improved which can be clearly observed in
Figs. 5.29 and 5.30. Hence, the simulation results herein verify the feasibility of
the optimization method to find the optimal parameters of noncircular gears for

suppression of vibration in Table 5.6.

§¢ 5.8.2 Simulation of a flexible one-beam structure with an
Integrated optimal design of noncircular gears and
control gain

Besides the hyperbolic parameters of noncircular gears, the control gain of a
flexible one-beam structure has been included in the design variables of optimiza-
tion problem, as shown in Table 5.7. The integrated optimization of mechanism
and control has provided the optimal solution of gear parameters, i.e. cj0p¢ and
C20pt, and control gain in section 5.7. The 90-degree slewing simulation in section
5.8.1 is reconsidered in this section based on the cost function in Table 5.7. Note
that the output feedback gain in this simulation is specified by Eq. (5.53). Figures
5.32-5.37 demonstrate two kinds of slewing simulation, including the results, due

to the optimal solution of noncircular gears and control gain from section 5.6.2
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and the results drawn from Table 5.7. The former simulation results are indicated
by the solid line (§1) and the latter ones by the dashed line (§2). The angular dis-
placement and velocity are shown in Figs. 5.32 and 5.33 respectively. Figure 4.34
illustrates that the control torque associated with the optimal mechanism/control
design is smaller than the one due to the optimal design of noncircular gears alone.
The vibrational modes shown in Figs. 5.35-5.37 are suppressed by the integrated
optimal mechanism/control approach instead of the optimal design of noncircular
gears in Table 5.6. In Fig. 5.35, the amplitude of the first mode is reduced by
20oscillation is improved through the optimal mechanism/control approach. Com-
pared with the first mode due to circular gears in Fig. 5.12, the peak amplitude is
reduced by 73% through the integrated mechanism/control approach. Both oscil-
lations (}1) of the second and third modes in Figs. 5.36 and 5.37 are similar with
the previous ones (f2) in section 5.8.1 whose amplitudes have been tuned to be
sufficiently smaller. The feedback gain for the second and third modes can be up-
graded to some extent as long as their weighting coefficients of the cost function in
Table 5.7 are properly adjusted. Hence, the simulation results herein confirm the
effectiveness of the integrated mechanism/control design for the slewing maneuver

of the flexible one-beam structure.

8§ 5.8.3 Simulation of a flexible two-beam structure with optimal
design of noncircular gears

The simulation of the optimal mechanism/control design has been imple-
mented to verify such an integrated mechanism/control method for the flexible
one-beam structure discussed in section 5.8.2. Now the optimal design solution
of the flexible two-beam structure shown in Table 5.8, is employed herein for the
following simulation. Two noncircular gears are generated by using the optimal
hyperbolic parameters, such as c¢;, ¢, ¢ and ¢4, in section 5.7. The model
parameters are given in Table 5.4 and the output feedback gain in Table 5.5. The

90-degree slewing control task of this flexible two-beam structure is illustrated in
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Fig. 5.15. The simulation results herein are compared to the ones obtained in
section 5.6.3. Figures 5.38-5.47 show the simultation results. The slewing angles
of two flexible beams are demonstrated in Figs. 5.38 and 5.39 and their angular
velocities in Figs. 5.40 and 5.41. The range of near-zero angular acceleration
in the history of beam {1 angular velocity is enlarged via the optimal design
of noncircular gears. The behaviors of two angular velocities indicate that the
noncircular gears with optimal parameters slow down the slewings of two flexible
beams. In Figs. 5.42 and 4.43, the histories of two control torques associated
with the optimal design of noncircular gears start with 0.7 N-M and 0.3 N-M for
beam f1 and beam {2 respectively. The first and second modes of beam {1 in
Figs. 5.44 and 5.45 are much further suppressed through the optimal design of
noncircular gears. Obviously, the peak amplitudes of the first and second modes
are reduced by 19% and their residual vibrations are sufficiently suppressed. Sim-
ilarly, the peak amplitudes of the first and second modes associated with beam
2 are reduced by 35% in Figs. 5.46 and 5.47. The residual oscillation of the
highest mode, namely the second mode of beam {2 is improved to some extent by
the optimal design of noncircular gears. The simulation results in Figs. 5.38-5.47
indicate again the feasibility of optimal design of noncircular gears in the slewing

maneuvers of multi-body flexible space structures.

§§ 5.8.4 Simulation of a flexible two-beam structure with an
integrated optimal design of noncircular gears and
control gain

Since the optimization solution in Table 5.8 has been successfully verified in
the previous simulation, the similar simulation for an integrated optimal mecha-
nism/control design in Table 5.9 is performed for further comparison. The inte-
grated optimal design solution of the flexible two-beam structure shown in Table
5.9 is employed herein to implement the following simulation. The optimal hyper-

bolic parameters are specified by the values of ciope (1=1,2,3,4) in section 5.7 and
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3

the control gain by Eq. (5.54). The simulation results are demonstrated in Figs.
5.48-5.57. Figures 5.48 and 5.49 illustrate the slewing angles of beam {1 and beam
{2 respectively. And the angular velocities of two beams are shown in Fig. 5.50
and 5.49. In Fig. 5.51, the optimal mechanism/control design considerably slows
down the slewing of beam 2. Figures 5.52 and 5.53 show two control torques
for beam §1 and beam {2 respectively. The integrated mechanism/control de-
sign reduces the amplitudes of the first and second modes associated with beam
§1 by 21% in Figs. 5.54 and 5.55. Compared with the results associated with the
circular gears in Figs. 5.22 and 5.23, the amplitude of beam {1 first and second
modes are considerably reduced by 64%. In Figs. 5.56 and 5.57, the reduction of
the amplitudes of beam {2 first and second modes yields 38%. And the reduc-
tion becomes 52%, compared with the results associated with the circular gears
in Figs. 5.24 and 5.25. The simulation results in Figs. 5.48-5.57 thus confirm the
feasibility of the integrated mechanism/control design for the multi-body slewing

maneuvers of space structures.

§ 5.9 Summary and discussion

The severe flexural vibration always comes along with the rapid and large
angle slewing maneuvers of the flexible space structures. In Chapter 3, the exper-
imental results indicate the better suppression of vibration via the control tech-
nique, such as the feedback of strain gages. Besides the control method, the special
mechanisms can be developed to achieve the good performance in the rapid slew-
ing maneuvers of the flexible space structures. In this Chapter, an integrated
investigation of mechanism and control is conducted for the slewing maneuvers
of the large flexible space structures, whereby an optimization method is applied
to determine the appropriate mechanism/control design to find the minimum cost
function. A novel mechanism of noncircular gears is constructed to generate the
hyperbolic gear ratio by wrapping two specially shaped cams which are properly
meshed and well balanced through two pairs of thin metal bands. The
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noncircular gears roll on each other along their convex profiles such that
the slipping and backlash are prevented. The design of the noncircular gears is
employed for the slewing maneuvers of two kinds of flexible beam-like structures,
i.e. the one-beam structure and two-beam structure. The slewing response is
tuned well, and the flexural vibration is suppressed while rotating the noncircular
gears during the slewing control. The integrated mechanism/control design for
the slewing control is implemented through the optimization technique. Based on
the suppression of vibration, the optimal design solution of gear parameters and
control gain is found to locate the local minimum of the assigned cost function.
The 90-degree slewing simulations are thus implemented for the optimal design of
noncircular gears and the integrated mechanism/control design respectively. The
simulation iesults indicate the crucial role of the integrated mechanism/control

design for the slewing maneuvers.

The comparison of simulation results with the noncircular gears and the circu-
lar gears implies that the hyperbolic gear ratio can tune the slewing and sufficiently
suppress the vibrational motion. The simulation results associated with the opti-
mal design of noncircular gears demonstrate the reduction of vibrational amplitude
compared with the regular noncircular gears. Furthermore, the slewing response
and flexural vibration are even improved as shown in the simulation results of the
integrated mechanism/control design. Hence, this state of the art investigation
paves the way for integrating the mechanism design and control method for the

rapid and large angle slewing maneuvers of the flexible space structures.
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~ Chapter 6

LYAPUNOV-BASED NONLINEAR CONTROL DESIGNS
FOR FLEXIBLE SPACE STRUCTURES

Lyapunov’s theory of stability of dynamic systems was published in & Russian
journal in 1892, translated into French in 1907, and reprinted in America in 1947
[52). Since then, the so-called “second method” of Lyapunov has been regarded
in the Soviet Union as the principle mathematical tool for linear or nonlinear
stability problems, particularly for the theory of control systems. At present, the
fundamental concepts of this theory are successfully applied to:

(1) stability of linear and nonlinear systems,
(2) estimation of transient behavior,

(3) system control optimization,

(4) design of relay servos,

(5) system robustness analysis,

(6) adaptive control,

(7) robust control.

The objective of the second method of Lyapunov is to answer questions of
stability of differential equations by utilizing the given form of the equations but
without explicit knowledge of the solutions. The principle idea of the second
method is contained in the following physical reasoning: If the rate of change of
the energy of an isolated physical system is negative for every possible state, except
for a single equilibrium state, then the energy will decrease until it finally assumes

its minimum value of energy at the equilibrium state. In other words, a dissipative
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system perturbed from its equilibrium state will always return to it, which is the
intuitive concept of stability. Unlike the energy of a dynamic system, Lyapunov’s
function is not unique; this is precisely the reason why the second method of
Lyapunov is a more powerful tool than conventional energy considerations. In this
chapter, Lyapunov’s second method is employed to design the nonlinear controls
which ensure stability of rapid and large angle slewing maneuvers of the flexible
structures during position control missions. Three nonlinear dynamic models,
namely, a flexible one-beam structure, a flexible two-beam structure [38], and
an inverted rigid pendulum, are selected to illustrate the Lyapunov-based design
concept presented in this chapter. Numerical simulations are given comparing the

system responses with and without the nonlinear control law.

§ 6.1 Concept of stability

A wide variety of principal definitions of system stability are discussed herein.
In this section, the dynamic system is governed by a free (unforced) and first-order
differential equation like:

5L = f(g,1) (61)

where q denotes a 2nx1 state vector of [z,%]”, f(q,t) is a function of state vector
and time, and E indicates a symmetric and positive-definite matrix composed of
an inertia matrix. A detailed description of matrix E in Eq. (6.1) will be given
in section 6.2. The stability is mainly concerned with the deviation from some
fixed motion, i.e. an equilibrium state ¢, of a dynamic system. In the sense of

Lyapunov’s second method, a precise definition of stability is:

Definition 6.1: An equilibrium state g, of a dynamic system in Eq. (6.1) is
stable if for every real number € > 0 there exists a real number 6 (g,%9) > 0 such

that |lgo — ge|| < 6 implies
lg—gel<e  forall 21 (6.2)
The geometric description of stability is shown in Fig. 6.1. The original state go of
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Eq. (6.1) is perturbed slightly from its equilibrium state g., and all subsequent
motions remain in a corresponding small neighborhood ¢ of the equilibrium state
ge. Hence, the region of stability in Eq. (6.2) is locally bounded within a circle of
neighborhood ¢, while the system of Eq. (6.1) is slightly perturbed. The states
may not rebound from the perturbed state into the equilibrium state. The motion
of harmonic oscillation characterizes such a definition of stability in the sense of

Lyapunov.

Instead of definition 6.1, asymptotical stability is based on a more restricted
concept: namely, the states rebound into their equilibrium states after any small

perturbation. The definition of asymptotical stability is expressed as follows:

Definition 6.2: An equilibrium state g, of a free dynamic system is asymp-
totically stable if

(1) it is stable and

(2) every perturbed state starting sufficiently near g, converges to ¢. as
t — oo. Namely, there is some real constant r(Zy) > 0 and to every real
number v > 0 there corresponds a real number T'(v,go,%0) such that

llgo — gell £ v (%) implies
la—gell < v forallt>t+T (6.3)

(see Fig. 6.2)

Generally speaking, asymptotical stability is most useful among the others
in the area of control. From definition 6.2, the boundness of initial perturbation
|lgo —gel|| is dependent of initial time t5. Such a restriction will be further ignored

for asymptotical stability in the large.
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Figure G.2: Configuration of asymptotical stability

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 6.3: An equilibrium state g, of a free dynamic system is asymp-

totically stable in the large if

(1) it is stable and

(2) every state converges to g, [converges to ¢, uniformly in ¢. for

ligo]} £ r where r is fixed but arbitrarily large as ¢ — oo.

In terms of Lyapunov’s function, asymptotical stability in the large can be
defined as:

Definition 6.4: An equilibrium state g. of a free dynamic system is asymp-
totically stable in the large if a Lyapunov’s function V(q,t) exists which has the

following characteristics throughout the entire state space:
(1) V(q,t) is positive definite;

(2) Given any v >0 there exists a § >0 such that V(q,;t)> v whenever
lgll > 6 and ¢ > to;

(3) V(g,t) is negative definite.

If a dynamic system is linear, the definitions 6.2-6.3 are equivalent. Asymp-
totical stability and asymptotical stability in the large are equivalent if they are
uniform in t . Several types of stability in the sense of Lyapunov are included in
Appendix D. Definition 6.4 will be applied to develop a nonlinear control design

for flexible space structures in the next section.
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§ 6.2 Lyapunov-based nonlinear control design

In order to achieve a closed-loop control system, the dynamic equation of the
flexible structures has included the the dynamics of motors and the characteristics
of sensors in the following derivation. Rapid large angle maneuvering for flexible-

link structures is generally governed by
M(z,z,t)% + Di + Kz = Bu + f (6.4)

where x is an nx 1 state vector, u a px1 input vector, M(x,t) an nxn positive def-
inite time-variant matrix, D an nxn constant damping matrix, K an nxn positive
constant stiffness matrix, B an nXxp constant input matrix and f an nx 1 nonlinear
force vector. Without loss of generality, Eq. (6.4) can be written in the matrix

form as

Ej=Ag + Bu + | (6.5)

where

qT = [2:,:1',‘], BT = [OtBT]’ fT = [OafT]1

I 0 0 I
E—(0 M) and A-(_K —D)

Note that the matrix E in Eq. (6.5) is symmetric and positive-definite. Several
efforts have been made in existing literature to obtain a stable feedback control via
Lyapunov functions for a linear system similar to Eq. (6.5) by inverting the time-
variant matrix E such that the state matrix becomes E~!A and is time-variant.
When the matrix E is considerably large in size, computation of the time-variant
E~! becomes extremely cumbersome and may even be ill-conditioned. In addi-
tion, the simple structure of Eq. (6.5) with symmetric matrices M, D, and K is
destroyed, thereby eliminating any of the associated computational advantages.
Herein, a novel approach is developed using a Lyapunov function to derive a non-

linear stable control law without inverting the time-variant matrix E. A synopsis
of which follows:
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Let a Lyapunov function be defined as
V(g) = ¢"{EPE}q (6.6)

where P denotes an nxn symmetric and positive definite weighting matrix, Note
that the matrix inside the bracket is positive definite since the matrix E is nonsin-
gular. For asymptotical stability in the sense of Lyapunov, the following conditions

shown in definition 6.6 must hold:

(1) V(g) >0 for q#g¢e,
(2) V(ge) = Oand (6.7)
(3) &2 <0 for g# ..

where ¢. denotes the state of equilibrium. In fact, Eq. (6.7) explicitly illus-
trates the mathematical description of the second method of Lyapunov’s theory

of asymptotical stability.

The objective of defining the Lyapunov function in Eq. (6.6) is to seek a
feedback control u in Eq. (6.4) that moves every initial state to an arbitrary small
neighborhood of the equilibrium state. Differentiating Eq. (6.6) with respect to
time and substituting Eq. (6.4) into the resulting equation yield

V() = " [ETPE + (47 + ET)PE + ETP (4 + E)|q
+ [uTBT + fT|PEy + ¢TET [Bu + f] (6.8)
Now let
A+ E =4 and u = uo+u = ~(R'BTPEg) + w (6.9)

where u; represents a nonlinear control which will be derived later. Substitution

of Eq. (6.9) into Eq. (6.8) yields
V) = ¢F [ETPE + ATPE + ETPA — 2ETPBR-11§TPE] q
+ [« BT + fT|PEq + ¢TETP [Bu, + f] (6.10)
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The question arises whether there exists a positive definite matrix P such that
V(g) < 0. Let the time-variant matrix P satisfy the following matrix Riccati

equation
ETPE + ATPE + ETPA - 2ETPBR'BTPE = -Q (6.11)

where Q is a positive semi-definite matrix. It is known that the matrix Riccati
equation (6.11) produces a positive definite matrix P for a given positive semi-
definite matrix Q and a positive definite matrix R if the system is controllable.
Through the linear optimal control theory, the matrices P and Q stand for the
weighting matrices for state and control input respectively such that the corre-

sponding quadratic performance index yields
o0
J = / {¢"ETQEq + ulTETREu,} dt (6.12)
0

where up indicates the optimal control law defined in Eq. (6.9). In general, the
matrix P is time variant, if any one of the matrices A, B, and E in Eq. (6.11) is
time variant. Computation of the time-variant matrix P is very time consuming,
particularly for large dimensional systems. It is wise to seek a constant positive
definite matrix P which satisfies Eq. (6.11) and also produces a positive definite
matrix R and a positive semi-definite matrix Q for a certain specified time period
of interest. If there exists such a constant matrix P, then Eq. (6.11) can be by-
passed or the computation of P is only used for checking positive definiteness of
the matrices R and Q. In the following section for numerical examples, it will be

shown that such a matrix P exists in many cases.

In view of Eq. (6.11), Eq. (6.10) becomes
V(e) = —¢"Qq + 2¢"ETP [Bu, + f] (6.13)

Now, search a minimum |[u;]| such that V(g) < 0. Note that —gTQ@g < 0 for
a positive semi- definite matrix Q. To assure that V(q) < 0, the control part
u; in Eq. (6.13) may be chosen such that

gTETP [Buyy + f] = —qTETPRNPEq (6.14)
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where Ry is a positive semi-definite matrix. Equation (6.14) can be solved for

u; and is given by
u = [uoTR]T [¢(TETP) (RNPE + f) + {I - [ug‘R]f [uT R]}e (6.15)

where the superscript t means the general pseudo-inverse; c is a px1 arbitrary
vector; I is an identity matrix of order p; and wug is given by Eq. (6.9). The
matrix {I — [ugR]T [uTR]} contains the column vectors which are orthogonal
to the vector Rug since [uj R|{I - [uoTR]T [uTR]} = 0. When the nonlinear

force u; with minimum norm is desired, ¢ = 0 should be used in Eq. (6.15).

Substitution of Eq. (6.14) into Eq. (6.13) yields
V(g) = —¢" [Q + ETPRyPE]q (6.16)

Obviously, V(q) < 0 holds for given positive semi-definite matrices Q and Ry.
As a result, the conditions of Lyapunov stability given by Eq. (6.7) are all satisfied.
In other words, the nonlinear feedback control u shown in Eq. (6.9) provides a
maneuvering with Lyapunov stability, which will bring the system from an initial
state to the equilibrium state. In order to minimize the nonlinear control force
u; from Eq. (6.15), the positive semi-definite matrix Ry should be chosen such
that the norm ||[RyPEq + f| is minimum.

§ 6.3 Numerical simulations

Three control models are given, namely the flexible one-beam structure, the
articulated flexible two-beam structure, and an inverted rigid pendulum, to illus-
trate the ideas developed in this chapter. The model of flexible one-beam structure
resembles the experimental setup in chapter 4 which has performed slewing exper-
iments of a flexible steel beam carried on a translational trolley (Fig. 1.2). One
articulated flexible two-beam structure is constructed in a way that one flexible

steel beam is articulated on the tip of the previous flexible beam on a trolley as

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shown in Fig. 6.3. Instead of constant output feedback gains, two Lyapunov-based
nonlinear controllers based on Eq. (6.15) are developed to generate the regulator-
type maneuvers of two kinds of nonlinear flexible structures. Furthermore, the
case of an inverted pendulum (see Fig. 6.4) is investigated to stabilize an unstable

rigid system by applying the developed Lyapunov-based nonlinear controller.
§§ 6.3.1 The flexible one-beam structure

The dynamics of a flexible steel beam on a rigid and translational trolley has
been described in section 4.2. The closed-loop dynamic equation is governed by
Lagrange’s equation of motion, consisting of dynamics of actuators and character-
istics of sensors in Eq. (C.9). Due to the construction of this multi-body dynamics,
the kinematic nonlinearities exist in two parts such as the cosine terms of inertia
matrix in Eq. (C.4) and the Coriolis forces of the forcing term in Eq. (C.6). The
first two cantilevered modes are assigned to discretize the flexural vibration of the
flexible steel beam. Lagrange’s equation of motion in Eq. (C.9) is rearranged in

first order form as Eq. (6.4) where

E = (g AQJ) and E = (_‘}{ _ID). (6.17)

where M, K, and D indicate the inertia, stiffness, and damping matrices which

are defined in Egs. (C.5) and (C.9). The state vector of Eq. (6.4) is defined by

qT = [y’ 91 q, 492, /A éa q.la q.2] (6'18)

where y is the translational displacement of the trolley, 6 the root angle of the
flexible beam, and ¢; (i=1,2) the general coordinates corresponding to the shape
functions 1; (i=1,2) for discretization of the bending deflection of the flexible
beam (see Fig. C.1). The control input u in Eq. (6.4) is equal to E, in Eq.
(C.9). Table 6.1 summarizes the parameters used to model the flexible one-beam
structure on a trolley. Note that the symbols in Table 6.1 are associated with

the dynamic equation of Eq. (C.3) shown in Appendix C. Instead of sensors in
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Figure 6.4: Inverted pendulum
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Chapter 4, one tachometer is built into the trolley motor to measure the trolley

velocity for its output feedback.

A positive definite weighting matrix P, shown in Table 6.2, will be decided to
generate a quadratic Lyapunov’s function (V(q,t)>0) based on Eq. (6.6). In the
time rate of Lyapunov’s function of Eq, (6.8), the matrix A becomes nonlinear

due to the following time derivative of the inertia matrix which appears in E.

m + pL —eLn®  RTgn9)g

M = | _pEldn@d I —5T (6.19)
hsin(9)0 -p pLi

In Table 6.2, the input weighting matrix R(>0) of Eq. (6.12) is chosen such
that the matrix @Q(> 0) satisfies the Riccati equation (6.11). To calculate the
constant matrix P (see Table 6.2), three steps are involved. First, linearize the
time-variant matrices A and B to obtain a dominant constant part. Second,
determine the positive definite matrix P by solving the Riccati equation (6.11)
with the constant parts of the matrices A and B and two pre-assigned positive
definite matrices R and Q (see Table 6.2). Third, check the positive definiteness
of ¢TQq (V(q,t)>0) and negative definiteness of 24T Qq (V(q,t) < 0) with Q
determined from the Riccati equation (6.11) for the time period of interest with
the original time variant matrix B, the above-computed constant matrix P and

the pre-assigned matrix R.
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Table 6.1: Model parameters of one flexible beam on a trolley

a. Motors:
(1)Trolley motor: (2)Beam motor:
Ky =0.0346 N em/Amp Ky = 93x1072 Nem/Amp
Kpo = 0.0342  Volt- sec/rad Ky = 9.2 x 1073 Volt-sec/rad]
—47x10 kg — m? —23x10" g — m?
n o ¥ =20
my = 0.92 ke
b. Steel beam:
Length L =10 m
Rigidity El=0.71 N -m?
Density p = 0.47916 kg/m
Thickness h =0.041x10"2 m
¢. Rigid trolley:
Mass m, = 0.588 kg

Table 6.2: Weighting matrices of one flexible beam on a trolley

@ = Diag[ 100 1000 0.05 0.05 1 1 1 1]x100;
_ (01627 0.3978 _
k= (0.3978 9.0235) x 1000;
(18740 9220 250 60 2000 1030 -1280 380
109910  —6980  —1160 7150 7440 —7680 —1310
5540 80 160 -220 200  —10
o 44860 150 -20 90  —40
= 970 680 —810 —130
symmetric 630 -720 -100
\ 870 100
80 /
x10°,
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The nonlinear control force u;, with minimum norm, is thus computed using
Eq. (6.15) with Ry =0 and ¢ = 0. Figure 6.5 demonstrates the mission of the
regulator-type maneuver of this flexible one-beam structure which slews about 30
deg., while the trolley is moving to -0.8 m from the original position. Herein,
two cases of maneuvering simulations are performed through the Lyapunov-based
control up+u; and linear feedbéck control up shownin Eq, (6.19). For the sake
of comparison, the Lyapunov-based control result and the corresponding linear
control result are drawn together and denoted by the solid line and dashed line
respectively in the same plot. The performance of such a slewing maneuver is thus
demonstrated in Figs. 6.6-6.11. The trolley moves to the terminal position in 7
sec, as shown in Fig. 6.6. Obviously, the Lyapunov-based control, i.e. ug + uj,
implements the trolley translational motion faster than linear feedback control
ug. Since the trolley transient response is associated with rigid-body motion,
the influence of the nonlinear feedback control, due to higher modes, is hardly
observed in its behavior. Nevertheless, the higher-mode feedback effect is visible
in the trolley velocity as shown in Fig. 6.7. That is because there exists the highly
coupling terms between the trolley velocity and higher modes in the nonlinear
force f ( ,E) of Eq. (C.6). Hence, from Figs. 6.6 and 6.7, the asymptotical
stability of trolley motion is achieved through the Lyapunov-based control. For
both Lyapunov-based control and linear feedback control, the beam angle takes 4
seconds to reach the desired angle, as shown in Fig. 6.8. The nonlinear control
%o + u; speeds up the beam, slewing to about 27 deg in the first second then
slows down its motion in the following three seconds. The higher modes have
influence upon the beam slewing in Fig. 6.8 due to excitation of higher modes
through the Lyapunov-based control ug 4 u;. The slewing angle of linear control
feedback demonstrates a smooth history which indicates no feedback of kinematic
nonlinearity is involved. In Fig. 6.9, the beam angular velocity of Lyapunov-

based control response takes about the same time, i.e. 4 sec, to settle down
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Figure 6.5: Maneuvering mission of a flexible one-beam struc-
ture
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with a very slight overshoot between 1 sec and 2.5 sec. Without a significant
overshoot in the transient response of angular velocity, the linear feedback control
up slews the flexible beam more smoothly than wug +u;. Two vibrational modes
are observed in two time histories of angular velocities. In Fig. 6.9, the first mode
dominates the feedback of the Lyapunov-based control such that ug <+ u; rotates
rapidly flexible beam in the first second to produce one peak magnitude of angular
velocity 47 deg/s which does not exist in the case of linear feedback control. And
the second mode becomes significant during the residual vibration in the case of
Lyapunov-based control which is similar with the experimental results in Chapter

4. Figure 6.10 shows that two kinds of trolley control inputs, i.e. up +u; and

" ug, begin with a -10 N-M and reduce to 0 N-M within 7 sec. They resemble each

other because of the small influence upon the trolley motion from the feedback
control u;. Two beam control inputs, which are demonstrated in Fig. 6.11, start
with 1.7 N-M and end up with 0 N-M in 4 sec. Apparently, the time history of
beam Lyapunov-based control input resembles its corresponding angular velocity
in Fig. 6.9. The vibrational modes react very significantly in the Lyapunov-
based control input because of the complicated feedback of kinematic nonlinearity
associated with higher modes in Eq. (C.6). Notice that both control inputs,
up +u; and wug, start with the same magnitudes in the Figs. 6.9 and 6.10. That
is because the component u; of Lyapunov-based control is conducted for feedback
of kinematic nonlinearity so that ug+wu; must equal to ug in the initial time t=0.
Hence, figures 6.10 and 6.11 indicate an active and stable feedback control which
is developed based on the Lyapunov’s criterion of asymptotical stability. The time
rate of Lyapunov’s function is provided in Fig. 6.12 to insure the negative rate of
the assigned quadratic function for the sake of stability. The simulation results,
in Fig. 6.6-6.12, thus provide some insights into the nonlinear slewing maneuvers

of large flexible space structures to the Lyapunov-based control.
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8§ 6.3.2 The flexible two-beam structure

The previous example of the flexible one-beam structure is a typically slewing
maneuver of the large flexible space structure. Normally, the huge size of flexible
structures may result in several difficulties such as construction, vibration, stability
and controller design. Therefore, a flexible two-beam structure is constructed to
extend the maneuvering span of an original flexible one-beam structure with one
more flexible beam and one more motor. One flexible beam is articulated on the tip
of the previous steel beam to construct an articulated flexible structure as shown
in Fig. 6.3. One more actuator is required, which is concatenated axially with
the former motor on the rigid trolley. This motor thus manipulates the fore-beam
through a wire-and-pulley system. Therefore, the entire system becomes & 3-body
dynamics which is composed of one rigid trolley and two identical flexible steel
beams. Lagrange’s function and equation of motion are provided in Appendix E.
The symbolic parameters and three sets of coordinates are shown in Fig. E.l.
Note that the zo — yo coordinates are related to the z; —y; coordinates.
Namely, the transient response of fore-beam is observed from the tip of the first
flexible beam. The additional beam is also treated as a cantilever beam with the
same specifications as the former one. Two cantilevered modes are assigned to
discretize the flexural vibration of the fore-beam. The inertia matrix M, shown
in Eq. (E.7), becomes very complicated due to several cosine functions of two
angles 6, and 0;. And the centrifugal forces and Coriolis forces are included
in the nonlinear force vector in Eq. (E.7). The stiffness matrix K and damping
matrix D are defined in Eqgs. (E.4) and (E.7). The state vector similar to Eq.
(6.18) becomes

. . T
q = [y:91’92aQ?aqgsg:el>92,‘j}1)q'g‘] H

qg‘ = [‘]11, e aQIm] and q’ZT = [q211 te 1%112] (6'20)

where y is the translational displacement of the trolley and ¢;; (i=1,2) the general

coordinates corresponding to the shape functions 3;; (i=1,2) for discretization of
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the bending deflection of the first flexible beam. The quantities g2; and i are
defined similarly for the fore-beam. The model parameters of this flexible two-
beam structure are specified in Table 6.3. The specifications of the fore-beam and
its motor are equivalent to those for the flexible steel beam in Table 6.2. The

overall length of fully expanded flexible beams is thus 2 meters long.

The same three-step procedure as mentioned in section 6.3.2 is used to com-
pute a positive definite weighting matrix accompanied with a constant positive
definite matrix R and a time-variant matrix Q, which satisfies the Riccati equa-
tion (6.11). The specified Q and R, as well as computed P matrices, are listed in
Table 6.4.

In Eq. (6.15), Ry and c are assigned to be zero in order to compute the
nonlinear control force u; with minimum norm. Figure 6.13 shows the mission
of the multi-body slewing maneuver of this flexible two-beam structure. The task
is to move the trolley 0.5 meters from an original position while rotating the
first flexible beam -35 deg and the fore-beam 35 deg simultaneously. Two cases
of maneuvering simulations are performed through the Lyapunov-based control
up + u; and linear feedback control up shown in Eq. (6.19). This multi-
body slewing maneuver is thus performed and demonstrated in Figs. 6.14- 6.22.
Figure 6.14 shows that the trolley moves to the terminal position in 4 sec. The
trolley almost tracks out the same trajectory within the first second for both
Lyapunov-based control and linear feedback control. The smooth history of trolley
displacement implies that the Lyapunov-based control does not affect the rigid-
body motion very much, which has happened in the case of flexible one-beam
structure. Both trolley velocities behave similarly in the first second and reach a
peak magnitude 0.51 m/s in 0.3 sec as shown in Fig. 6.15. For the first flexible
beam, the beam |1 takes 4 sec to reach the desired angle as shown in Fig. 6.16.
The irregular time history of beam {1 angular velocity in Fig. 6.17 implies that

beam 1 slewing is mutually interacted by the trolley motion and beam 2 slewing,
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And such a phenomenon in Fig. 6.17 is more significant in the solid curve due
to excitation of higher modes of beams 1 and }§2 through the Lyapunov-based
control up+u;. In Fig. 6.18, beam }2 takes about 4.5 sec to implement the slewing
maneuver. Compared to Fig. 6.16, beam [2 gains have a greater vibrational
influence than beam {1, especially the angular displacement due to Lyapunov-
based control input. Figure 6.19 shows the angular velocity of beam 2. Compared
to Fig. 6.17, two vibrational modes are observed in two time histories of angular
velocities. The first mode dominates during the first 4 seconds, and the second
mode becomes significant during the residual vibration. A big jump of angular
velocity, in the solid line, at 0.5 sec implies an abrupt change of the Lyapunov-
based control input to beam §2. Such a big jump can still be absorbed afterward
through the control input wug + u;. Figure 6.20 demonstrates that two kinds of
trolley control inputs, i.e. up+u; and wup, begin with a 7.5 N-M and damp out
to 0 N-M within 4 sec. A small ripple of the Lyapunov-based trolley input, which
happens at 1 sec results in a slight change of angular velocity and displacement
at the same time in Figs. 6.14 and 6.15. Both beam {1 control inputs, i.e.
ug +u; and wup in Fig. 6.21, start with -0.5 N-M and continue oscillating for
7 sec to compensate the residual vibration. Obviously, the time history of beam
Lyapunov-based control input resembles its corresponding angular velocity in Fig.
6.17. That implies that the Lyapunov-based control input fairly depends on the
feedback of kinematic nonlinearity such as centrifugal and Coriolis forces. The
beam }2 control inputs are shown in Fig. 6.22. Two control torques start with 1.0
N-M and damp out to the slight oscillation within 4.5 sec. Similarly, the behavior
of Lyapunov-based beam {2 control input is similar with its angular velocity shown
in Fig. 6.19. Hence, figures 6.20 and 6.22 indicate an active and stable Lyapunov-
based control design for the slewing maneuver of a flexible two-beam structure.
The negative time rate of the assigned Lyapunov’s function is demonstrated in Fig,.
6.23 to insure the asymptotical stability. Besides the previous simulation results
in Figs. 6.6-6.12, the simulation results in this section enhance the feasibility of

Lyapunov-based control design for the slewing maneuvers of large flexible space

struétures.
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Table 6.3: Model parameters of two articulated flexible beams

on a trolley

a. Motors:
(1)TIrolley motor:
Ky =0.0346 Nem/Amp
Kyo = 0.0342  Volt- sec/rad
T tx10 g m?
=4,{ X - -m
Moo = 210 I
b. Steel beam:
Length L =10
Rigidity El = 0.71
Density p = 0.47916
Thickness h =0.041x10"2

c. Rigid trolley:
Mass m. = 0.588 kg._m “

(2)Beam motor:
Ky = 93%1072 Nem/Amp
Ky = 9.2x10™3 Volt-sec/rad

R,; =11 ] Ohm .
I.i = 23x107°% kg—m
Ny; =210
my = 0.92 ke
i=12)

m

N-m?

kg/m

m
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Table 6.4: Weighting matrices of two articulated flexible beams

on a trolley
Q = Diag[ 100 1000 1000 0.05 0.05 0.05 0.05 1 1
11111]x100;
R = Diag[1000 1000 1000} ;
_ (Pu P\,
F= (Pflz' Pzz) ’
where
[ 18740 9220 9220 -250 -60 —-250 —60 \
109910 0 -6980 -1160 0 0
109910 0 0 —6980 -1160
Py = 5640 80 0 0
Symmetric 44860 0 0
5540 80
\ 44860
2000 1030 1030 -1280 -—-380 -—1280 -—380
7150 7440 0 —-7680 -1310 0 0
7150 0 7440 0 0 -7680 -1310
Po = | 160 -220 O 200 -10 0 0
150 -20 0 90 —40 0 0
160 0 -220 0 0 200 -10
150 0 -20 0 0 90 —40 /
970 680 680 —810 -130 -810 —-130\
630 0 -720 -100 O 0
630 0 0 -720 -100
Py = 870 100 O 0
Symmetric 80 0 0
\ 870 100
80
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§§ 6.3.3 The Inverted pendulum

Figure 6.4 shows an inverted rigid pendulum driven by a frictionless trans-
lational trolley. With a nonzero initial angle of the pendulum, a controller is
designed to move the trolley back and forth while keeping the pendulum standing
straight up on the trolley. The kinetic energy and potential energy of the system
are

OT = mes? + L + m, (L2é2 + & — Lés cos(9)) (6.21)

2V = mypgL cos(f) (6.22)

where x denotes the displacement of the trolley moving along x-axis, r the angle of
the pendulum relative to y-axis, m. the mass of the trolley, mp the total mass of
the uniform pendulum with length L, g the gravity constant and I, = -"—'-%L'{ the
inertia of the rectangular pendulum. Then, from the Lagrange function T-V ap-

plies Lagrange’s equations of motion to yield following the dynamic equations of

motion
(me+mp)s — Tk mple@p (6.23)
_myLcos(8).,  mpL?;  mygLsin(6) _
ol 4 Teg - TSR < o (6.24)

where u represents the control force horizontally applied on the trolley. For con-
venience, Eqs. (23)-(24) can be rearranged into the first-order state equation in

matrix form as follows

g = Ag + Bu + f (6.25)

where

o0 OO
OO
(e e i e
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_ (me+my)  mycos®(6)
- b

3 4

g Smeg o B(metmy)g
(4mc + myp)’ L(4m; +myp) '’

_myLsin(6) g 4 M sin(f)cos(d) ~_ 3Impg
6m 4m (4mc+mp) '
_ myLsin(6) cos(6) @ 4 (m. + m,) gsin(6)
4mL 2mL
—6(m. +mp) gb
L(4m + mp)

fs =

fo =

aT
and q represents the state vector [a: 0z 0] . Equation (6.25) is thus identical to
Eq. (6.5) when E is an identity matrix.

Table 6.5 shows the model parameters of the inverted pendulum. The positive
definite weighting matrices P and R, shown in Egs. (6.6) and (6.9), are chosen
so that the matrix Q satisfies the Riccati equation (6.11) and also is a positive
semi-definite matrix. The same three-step procedure as mentioned in section 6.3.1
is employed again to evaluate a constant positive definite matrix P, accompanied
with a constant positive definite matrix R, and a time-variant matrix Q. The
weighting matrix Ry and vector c are specified to be zero in Eq. (6.15). Let
the initial angle of the pendulum be 30 deg from the vertical axis. The closed-
loop system responses of the inverted pendulum are shown in Figs. 6.24-6.28.
The system responses include trolley displacement and velocity, pendulum angu-
lar displacement and velocity, and the control force required for the trolley. In
order to satisfy the stability criterion shown in Eq. (6.16), Fig. 6.29 demonstrates
that the time rate of the Lyapunov function during the control process is nega-
tive. If the initial angle of the pendulum is larger than 36 degrees, the time rate
of the Lyapunov function will be positive at a given time. In other words, the
asymptotical stability of the inverted pendulum cannot be maintained through
Lyapunov-based control input unless its initial angle is less than 36 degrees. This
is because the gravitational force in Eq. (6.25) generates too much nonlinearity so

that the Lyapunov-based control cannot counteract. From Figs. 6.24-6.28, it takes

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L T T | T |
= oL
3 —
T i
E
-
o -
:
0 -
Q
(3]
- -t
B
L2}
ot
. -
>
2
— \
3-60- ‘\\’[’ -J
h N -
E-‘_7||||I||||I|l|||||||l||||I||||

0. 6. 10. 16. 20. 26. %0.

Time (sec)
Figure 6.24: Trolley displacement of an inverted pendulum

Lr | l | | |
—_ C
o -
et C
m o
\o.:’
g -
~— C
>
® pd L
O 4k -
() N
pm— 5
o -
B -
=Y B
e !
— =2fF -
o f
Fout &
B~ ]
i
i
_3..'|||||||||I||||l||||l||||l||||
0. 6. 10. 16. 20, 26. 30.

Time (pec)
*H wotuy #2: u,

Figure 6.25: Trolley velocity szalltll inverted pendulum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40.

] l ! | {
= | | . —
5] " ——— -
3 . f2
N’

2 af -

po |

w a

=

L

Q¢ 10H -

Gy

o -

5]

w0 O

< \/

< |\,

_10.IIIIllllllll!!llllIllllllllll

0. 6. 10. 16. 20. 26. 30.

Figure 6.26: Pendulum angular displacement of an inverted

Time (gec)

pendulum

ity of pendulum (deg/s)

g
S
>

( 2

" =70.

'S WA UK S NN TN TN RN OO O TN VA N I O S N TN TN Y TN N TN T AN O OO |

ar veloc
£

Angul

>

6. 10. 16. 20. 26. 30.

Time (sec)

*H1 wtug #2: w,

lum 211

igure 6.27: Pendulum angular velocity of an inverted pendu-



5 | | | | I
— I~ _#1
4 L
S 7
Q
[ 9
(=)
‘K-‘o -
oy
(=]
| 1
- [
= 3
o ~10.4- -
R §
> [
-
© -6} -
b -
fomt -
_zo-llll|lIllllllllllll'lllllllll
0. . 10. 16. 20. 26. 30.

Time (gec)
* I1: uo+u,; #2: uo
Figure .28: Trolley control force of an inverted pendulum

o (0 T T j T

Q

:

3}

d -

o

“m

s 9 ]

g‘ M

© -1.5

P

(] -

L]

o

o

H ' -

)

™

o

-—E-l.‘—a TS IIE W X WO TN TN TN N YO VO TN TN N OO T Y Y N IO O I O

B o 5. 10. 16. 20. 26. 20.

Time (gec)

Figure 6.29: Time rate of Lyapunov’s function of an inverted

pendulum 219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



about the same time to implement the assigned tasks for both control schemes.
However, the first peak of the trolley displacement and the pendulum angle is im-
proved by including the nonlinear control force u;. The required control torques

for both control algorithms are comparable.

Table 6.5: Model parameters and weighting matrices for Inverted
pendulum

a. Model parameters: 0.02truein

me=1 kg
my =04 kg
L=1 m

g =98 <y

[+]

b. Weighting matrices:

00001 00004  —0.0001 0.0001
24162  —0.0018 0.5563 _
Q= symmetric —0.0006 —0.0003 | % 10000

0.1287

R = 100;

0.0006 —0.0070  0.0017 —0.0018
10445  —0.0303 0.2465
P = symmetric 0.0090 —0.0103 | X 10000

0.0584
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§ 6.4 Discussion and summary

A hybrid controller design has been developed, including a linear control law
for the linear part of the system and a nonlinear control law to compensate for the
nonlinear dynamic behavior. The method is based on the sufficient conditions of
Lyapunov’s second method for system stability. The approach starts with selecting
a quadratic Lyapunov function with a weighting matrix, which is derived from the
Riccati equation of optimal control theory for the linearized system equations.
With the weighting matrix, the nonlinear control part is derived by making the
derivative of Lyapunov’s function to be negative. The nonlinear control part thus
derived is directly related to the states and the nonlinear portion of the system
dynamic equation. The overall controller design provides a stable closed-loop
system in the Lyapunov sense even when the nonlinear behavior in the system is
significant. Three numerical simulations are given to demonstrate the feasibility

of these approaches.

If there is an efficient way to solve the time-variant Riccati equation (6.11)
recursively, the approach developed in this chapter will be very attractive for real
time implementation for control of nonlinear systems with kinematic nonlineari-
ties. However, such an efficient way does not exist, particularly for large dynamic
systems. Therefore, a systematic way is required to compute a constant positive
definite matrix P such that the corresponding Riccati equation holds and produces
a positive definite matrix Q and a positive definite matrix R. The open issue exists
regarding the existence of a constant positive definite matrix P such that Q is a
positive definite matrix which could be time-variant. This is a challenging issue
to resolve. As long as a positive definite matrix P is found such that Q is positive
definite, a stable closed-loop system in the Lyapunov sense is then obtained. Note
that the feedback control design through the Lyapunov approach may be very
conservative, since the Lyapunov stability criterion provides only the sufficient

conditions for system stability.
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The numerical evaluation of Eq. (6.15) should be carefully studied. Past
experiences show that the nonlinear control force u; can be erroneously large if
it is not properly computed. Sensitivity analysis of the nonlinear control force,
with respect to the state vector q, may be required. Further studies are needed
to solve the Lyapunov-based control designs directly from the second-order model

[50] without converting to the first order model.

Reference 75 shows an investigation which is conducted to integrate the sin-
gular perturbation technique [76-79] and the Lyapunov-based nonlinear control
algorithm to compensate the kinematic nonlinearity for the large flexible space
structures. The singular perturbation method simplifies the controller design by
designing two separate control inputs in two reduced-order subsystems, such as
slow-model subsystem and fast-model subsystem. Such an integrated approach
yields a nonlinear feedback controller which provides a stable closed-loop system

in two separate time scales.

Intensive efforts have been made in this chapter for system stability of non-
linear dynamic systems with active feedback controllers. System stability must be
studied in the front end of the robustness issue for practical problems. Robustness
does not have any meaning if the system is not stable in the first place. The method
developed in this chapter is believed to provide a useful tool for control engineers
to address the robustness issue for control of nonlinear systems, particularly when

linear models are used for controller designs.
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Chapter 7

CONCLUDING REMARKS

This dissertation has covered four different yet inter-related topics for the
ground-based experiments in the control of large flexible space structures. Chap-
ter 3 has presented a mechanism device for a suspension system to provide a
zero-gravity environment for the dynamic testing of the flexible space structures.
In Chapter 4, the rotational/ translational maneuvering experiments and simula-
tions of a multibody structure have been implemented to verify the importance of
strain feedback for flexural vibration. Chapter 5 has dealt with an integrated mech-
anism/control design for the slewing maneuvers of flexible structures, whereby a
novel application of noncircular gears is developed in conjunction with control
techniques for the suppression of vibrational motion. The kinematic nonlinear-
ity, which takes place in the results of Chapter 4 and Chapter 5, has led to a
Lyapunov-based nonlinear control design in Chapter 6 for the rapid and large
angle maneuvers of flexible space structures. A more detailed conclusion of each

chapter is expressed as follows.

§ 7.1 Conclusions for Chapter 3

Chapter 3 has dealt with a novel mechanical design of the suspension sys-
tem which provides a practical research tool to assess characteristics of the low-
frequency space structures proposed for operation in the weightless environment.
Compared to the existing suspension devices, this suspension system is compact,

simple, and easy to manipulate. The mechanism of this suspension system is
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characterized by a noncircular disk with a convex profile, The suspension sys-
tem is constructed to counteract the weight of test structures by using a specially
shaped disk in conjunction with a torsional spring. The basic principle behind this
suspension system is to maintain the static equilibrium of the test structure at any
vertical position. The convex profile of the disk is determined through the kine-
matic inversion technique and envelope theory. The design of this disk suspension
system is applicable for the different weights of the test structures without the
change of the disk profile. Via the same noncircular disk, the torsional spring rate
can be adjusted to achieve the static equilibrium for any test structure at rest.
Two kinds of test structures have been chosen for the suspension simulations, such
as a lumped-parameter element and a flexible steel beam. The simulation results
have indicated that the characteristics of the flexible space structures can be pre-
cisely tested under this suspension system. The suspension system has shown its
capability of performing a constant-speed motion along with the flexural vibration
during the impulse response. The simulation results have provided the necessary
insights to build up the experimental equipment. The experimental hardware has

been set up in NASA-Langley for the experiments.

§ 7.2 Conclusions for Chapter 4

In Chapter 4, the experimental setup of a scale multi-body model has
been constructed to verify an active output feedback control for the rapid rota-
tional /translational maneuver. The dynamic system consists of one flexible steel
beam which is carried on a translational and rigid trolley, whereby two motors
are demanded to generate two control inputs for the flexible beam and trolley
respectively. The primary functions and characteristics of control equipments are
listed in several tables, including the motors of trolley and beam, potentiometer,
strain gages, instrument amplifier, pulse amplifier and power supply. The EAI-
2000 Analog Computer is used as an active controller which deals with the output

feedback gain. A real-time closed-loop system is thus generated by connecting
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the dynamic system and control equipments. The mission of position control is
assigned to move the rigid trolley and rotate the flexible beam until their termi-
nal positions are reached while simultaneously suppressing the flexural vibration.
Four different control cases have been implemented, such as no strain feedback,
the strain feedback to the beam motor, the strain feedback to the trolley motor,
and the strain feedback to both trolley and beam motors. The comparisons are
made with the experimental and simulation results on such four control cases.
The undamped vibration is significantly observed in the first control case with no
strain feedback. The second control case improves the beam controller such that
the flexural vibration is sufficiently suppressed during the control process. The
vibrational motion of the flexible beam also damps out through the translational
motion of the trolley, while the strain feedback is applied to the trolley motor in
the third control case. Furthermore, the fourth control case, where strain feed-
back is applied to both trolley and beam motors, yields the best maneuvering
performance such that both the flexural vibration and the residual oscillation are

considerably suppressed.

In each control case, the experimental and the simultation results verify each
other very well, All the results offer good insights to conducting the investigation
of the multi-body dynamics and control, especially the mixed rigid-flexible-body
system, in the foreseeable future. Based on the successful experiments in this
chapter, the translational trolley can be further used in the control of the large
space facilities to effectively extend their workable region. The kinematic nonlin-
earity, which appears in the results, provides that motivation for an integrated
approach to mechanism design and control design as well as a Lyapunov-based

nonlinear control design in Chapter 5 and Chapter 6 respectively.
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§ 7.3 Concluslons for Chapter 5

Chapter 5 has provided an integrated mechanism and control design approach
to deal with the rapid and large angle slewing maneuvers of the flexible space
structures. A novel application of noncircular gears is developed to produce the
hyperbolic gear ratio which tunes the dynamic response and suppresses the flex-
ural vibration of a flexible beam. The noncircular gears consist of two specially
shaped cams which are properly meshed and well balanced through the thin metal
bands. Such a design of noncircular gears incorporates the slewing maneuvers of
two kinds of flexible beam-like structures, such as a flexible one-beam structure
and a flexible two-beam structure. Their first simulations of 90-degree slewing ma-
neuvers confirm the validation of noncircular gears in the suppression of vibration
compared with the circular gears. Then, the optimal parameters of noncircular
gears are determined to find the minimum of a cost function through the GRG
optimization method. The simulation results show that the flexural vibration is
sufficiently suppressed while the optimal design of noncircular gears is utilized in
the slewing maneuvers of two flexible beam-like structures. Moreover, an inte-
grated design of noncircular gears and control gain is achieved in a way that the
control gain is also regarded as the design variable in the optimization problem.
Such an integrated optimization results in an output feedback gain accompanied
by the optimal parameters of noncircular gears to locally minimize the cost func-
tion. The simulations, with such an integrated mechanism/control design, yield
the best slewing performances compared with the ones with the optimal design
of the noncircular gears only. The methodology in this chapter thus paves a way
to integrate the mechanism design and control technique for the rapid slewing

maneuvers of the large flexible space structures.

219



§ 7.4 Conclusions for Chapter 6

As we know, Lyapunov’s second method has been successfully applied to vari-
ous control aspects, such as sta.bilit'y, estimation, control optimization, robustness,
adaptive control etc. In Chapter 6, a Lyapunov-based nonlinear control design has
been derived for the rapid maneuvers of flexible space structures in order to fit the
asymptotical stability of Lyapunov’s second method. One hybrid controller design
has been developed so that the linear control law copes with the predominantly
linear part of the system, while the nonlinear control law deals with the nonlinear
dynamic behavior. Namely, the feedback of the nonlinear control law yields the
compensation of the kinematic nonlinearity during the control process. Instead
of the first-order state equations, the analytical formulation in this chapter is de-
rived according to second-order equations due to no inversion of inertia matrix.
A stability index, i.e. the quadratic Lyapunov’s function, is developed that will
result in a positive definite weighting matrix, derived from the Riccati equation
of optimal control theory for the linearized system equations. The asymptotical
stability implies the negative time derivative of Lyapunov’s function during the
control process. Then, the nonlinear control part is generated to ensure the min-
imum norm in the nonlinear part of the time rate of Lyapunov’s function. Three
numerical simulations have been performed to verify the validity of this nonlinear
control design. Since Lyapunov’s stability criterion provides only the sufficient
conditions for system stability, the nonlinear feedback control design through the

Lyapunov approach may be very conservative.

The investigation of stability associated with the nonlinear control will lead
to some insights for the advanced robustness analysis in the nonlinear dynamic

systems,
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APPENDIX A

ENVELOPE OF A ONE-PARAMETER FAMILY OF CURVES

In the area of mechanism, the envelope theory is an analytical method which

has been used to determine a wide variety of cam profiles including

(1) Radial cams with roller followers,

(2) Translating cams with offset roller followers,

(3) Swinging cams with roller followers,

(4) Radial cams with flat-faced followers,

(5) Cams with swinging centric flat-faced followers and

(6) Cams with swinging eccentric flat-faced followers.

In the development of a suspension disk, the disk profile is developed by
observing a trajectory performed through an envelope of a family of the centric
swinging strings depending on an angular parameter. The process to decide disk
profile coordinates will be discussed in the next section. Figure A.l shows the
layout of graphical method associated with the envelope theory [8]. Assume that
S{7c} is a family of smooth curves on a surface, depending on a parameter c. A

smooth curve « is called an envelope of the family S if

(1) For every point of the curve « , it is possible to give a curve 7. of the

family that is tangent to the curve 4 at this point.

(2) For every curve <. of the family, it is possible to give a point on the

curve v at which the curve 4, is tangent to «.
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Figure A.1: Envelope of a one-parameter family of curves
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(3) No curve of the family has a segment in common with the curve v .

Theorem A.1: Suppose the curves v, of a family S are given by the equation
F(z,y,c) =0, where F is continuous and continuously differentiable for all its
arguments in a neighborhood of the point (o, y0,¢c0) . At the point (zq,y0,co) let

the following relations hold:

F(wo,yo,co) = 01 (A'l)

OF(z0, yo, o) _

s 0, (A.2)
8F  8F
( Jo ) 40, (43)
dcdz  Ocdz
O*F
S = (A4)

Then in a certain neighborhood u of the point (z¢,3p) , and for ¢ from a
definite neighborhood V of the point ¢ , there exists an envelope of the family
F(z,y,¢) =0 . In general, the equation of the envelope can be obtained by

F(z,y,¢) =0, (A.5)
OF(z,y,c) _
e - 0 (A.6)

which expresses x and y as a function of the parameter c. Expressing the parameter

¢ as a function of the variables x , y and substituting for ¢ into Eq. (A.4) yield

F(z,9,¢(z,v)) = 0 (4.7)
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APPENDIX B

LAGRANGE’S FUNCTIONS FOR FOUR KINDS OF
FLEXIBLE STRUCTURES

For the one flexible beam on a rigid translational trolley shown in Fig. 1.1,
the kinetic energy T and the potential energy V for small bending amplitude can

be expressed as

L : . . = .
2T = myz + / p[‘_l_j + 6 x% - 'gl] ° [‘g + 6 x3 — '.‘71] dzy, (Bl)
1]

W = j ’ EI{=2y2 4, (B.2)
0 63'1621

where #; is a vector tangent to the longitudinal axis of the base of flexible beam.

The symbols and coordinate systems are displayed in Fig. B.1.

Moreover, the distributed coordinates are expanded in an orthogonal basis of

assumed mode shapes as
yi(zt) = ¥ (z1)a (),

¢;1‘ = [¢11""a¢1n1] and qu' = [‘111a"‘,¢hm] (B'3)

where 9, (z1) is a vector of assumed mode shapes relative to a spatial coordi-
nates derived from the fixed-free cantilever beam’s boundary condition problem,
q1(t) are generalized coordinates [65,66,67], and n; is an appropriate number of

assumed modes.

Inserting Eq. (B.3) into Eqs. (B.1) and (B.2) yields
nET N1
oT = mi® + L6} + pLi® + )Y mujdiid; + pLicbibiy

i=1 j=1

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where

ny n1
—2)" Pigiibr — 2081 ) huidui,

i=1 =1
n1 ny
= ZE K1ijq1iq1j
i=1 j=1

L
I1 = / pmf d:cl,
0
L
miy; = /0 P¢1i($1)¢1j($1) dzy,
L
Py = /0 pe1tyi (1) dey,

L
hy = /0 pai(a1) day,

L , .
Kiij = / EI i DL dzy  for i,j = 1,2,.-
0

6:1:16:1:1 &vl&cl

(B4)

(B.5)

To simplify the state variables in the above equations, denote & =y, {1 =

61, &iv1 = qui, for i = 1,2,
1,2,

for :=0,1,---

d [ oT 3T ov
I ] Q:

%] "% T

y Ny Qo =70, @1 =11, Qiy1 =0, for i =

,n1. Via the Lagrange’s equation of motion [69], we cbtain

(B.6)

,ny. This leads to the equations of motion as shown in Eq. (B.9).

Obviously, the dynamics of one flexible beam shown in Fig. 5.2 is a special case

of the previous dynamic system without the rigid trolley. The system parameters

and coordinates are similar with a previous system shown in Fig. 5.2 by ignoring

the trolley. Similar with Egs.

potential energy V become

2T = /(;Lp[él xfl]o[élxzil] dz,,

/E‘r{aay1 }? doy

a:16 1

(B.1) and (B.2), the kinetic energy T and the

(B.9)

(B.10)



where Z; is a vector tangent to the longitudinal axis of the base of flexible beam.
With the definition of Eq. (B.3), equations (B.9) and (B.10) can be rewritten as

", m
oT = L#? + ZZ miijdiidy; — 22 Piiribs, (B.11)
i=1 j=1 i=1
ny m
2V = ZZ K1ijq1iqh; (B.12)
=1 j=1

where Iy, myij, Py and k33; have been defined in Eqgs. (B.4) and (B.5). Then,
the Lagrange’s equation of motion for one flexible beam shown in Fig. 5.2 can be

derived by inserting Egs. (B.11) and (B.12) into Eq. (B.6).

Similarly, for the articulated two-beam flexible structure on a rigid trolley
shown in Fig. 5.3, the kinetic energy and the potential energy can be derived as

T = my® +/ +§1X51-¥71]°[37+§1X51—171]d$1+

/0 [y+01 x Ly + 8y x L, - 5:(L) - ]

[ 6: % s + 8 x E2 = 1(2) 5] d, (B.13)
ayl 2 / ayZ 2
oV = / BNz o=y doy + [ B2 dey (B.14)

The symbols and coordinate systems are demonstrated in Fig. D.1. Expanding
Egs. (B.13) and (B.14) provides

n, m
2T = mi® + 4h6} + L6} + 20Li® + )Y muijdnidy;
i=1 j=1
ng n2
+ ZZ m2:JQ2:Q2J = 22 Pthlt 1 = 22 P2:92392
i=1 j=1 i=1 i=1

n n2
+3pL%ch:161 — 2¢61 Y huduiy — 2¢(B1 + 62) Y hoidaiy

i=1 1=1
n ny
+pL3°S " Gui@yri(L)dvinj + pL2c(8y + 6) by
i=1 j=1
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ni
= 2pLebr Y | Pri(L)driy + pLicbabrby

i=1

n n2
= 2L ) | $hi(L)hriby — 2Leb; Y haidaiby

i=1 i=1
142} . n1 na
= pL%ch; ), $ri(L)dnibe + 202, > $rilL)hojdriday
i=1 i=1 j=1
L L nz n3
2V = ZZ Kijqiiq; + ZZ K2ij42i92;
i=1 j=1 i=1 j=1

where
L
I = / px2 dzy,
0

L
L, = / pa:g d:L'z,
0
L
my; = /0 i (21) 1 (21) dy,
L
Majj = /0 p2i (x2) hoj (z2) dezo,
L
P = /(; pr11i (21) day,
L
Py = /0 pTae; (z2) dzg,
L
hy;i = ./o P¢’1i(-’v1) dzy,

L
hei = /0. pai (z1) dzz,

L . .
Kiij = / EI o a¢1] dzy  for 4,5 = 1,2,---,m.
0

0z,0z; 02,01,

L . .
K2ij = / EI i a¢2] dz; fO’l' 4 = 1,2,--,na.
0

33:2 63:2 3:32 8:c1

(B.15)

(B.16)

where n; and n; are the numbers of the shape functions for the first arm and

the forearm respectively. Substitution of Egs. (B.15) and (B.16) into Eq. (B.6)
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provides the Lagrange’s equation of motion for two articulated flexible beams on

a rigid and translational trolley.

The dynamics of an articulated flexible two-beam structure carried on a trolley
in Fig. 5.3 can be simplified into the system of two flexible beams as shown in
Fig. 5.3. Based on the parameters and coordinates as shown in Fig. 5.3, the
kinetic energy and the potential energy of such an articulated flexible beam can

be expressed as
L .. . L . _ . : .
2T = / p[91)<51]0[91 Xil]dml -I-/ p[01XL+92X52—'§1(L)—372]
0 0
. [51 x L +8; x 8- (L) - ?72] dzz, (B.17)

oV = / El{—4_ aay‘ )2 dzy + / EI{—2_ awa’j; }? de (B.18)

Expanding Egs. (B.17) and (B.18) provides

ny
oT = 456} + L6 + ZZ myiiq1id1;

i=1 j=1

n2 n2

+ ZZ moijdeide; — 22 Plel: 1 - 22 Pz,qz,og

i=1 j)=1 i=1 i=1

™ n2
+ 3pL%c6,6,y — 26912 hiigiiy — 2¢(61 + ez)zhzidzi!)

i=1 i=1

n n o

+pL ZZ Yri(L)1(L)dridr; + pLPc26:6;
i=1 j=1

ni n2
- 2pL22 ¥1i(L)dribr — 2Lc022 h2i42i6:

i=1 i=1
n n2
— pL*chy Z Yr(L)duby + 2602 )Y Yri(L)hojdrides, (B.19)
i=1 =1 j=1
ny ng n3
= YN mujquq; + Y ), K2ijdzite (B.20)
i=1 j=1 i=1 j=1
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where I, I2, myij, maij, Pii, Pai, hii, hei, k1ij and, Kgi; have been defined
in Egs. (B.15) and (B.16). Finally, substitution of Egs. (B.19) and (B.20) into
Eq. (B.6) provides Lagrange’s equation of motion for two articulated flexible
beams. Note that the closed-loop dynamic equations of one flexible beam and
two articulated flexible beams will be modified by applying the mechanism of

noncircular gears developed in Chapter 5.
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APPENDIX C

DYNAMIC EQUATION OF ONE FLEXIBLE BEAM
ON A TROLLEY

Figure 1.2 shows a planar flexible beam clamped on an axial shaft of a motor
by a hinge. The motor is mounted on a translational trolley which is driven along a
linear track by another motor. The flexible beam is modeled as a cantilever beam
with the fixed end at the motor and the free end at the tip z; = L (see Fig. B.1).
Only the bending vibration is allowed during the motion of the arm. The x-y axes
are the fixed inertial coordinate, whereas the z; —y; axes represent the moving
relative coordinate. Lagrange’s equations of motion, in conjuction with the modal
expansion to discretize the deflection of the flexible-link manipulator, are applied
to derive the dynamic equations of motion. Let the state vector be defined by
] T

§ = [yv 6, qT ) qT = [q, g2+, Gn] (C.1)

where y is the translational displacement of the trolley, r the root angle of the
flexible beam, and ¢; (¢ = 1,2,---,n) the general coordinates corresponding to
the shape functions %; ( = 1,2,-+,n) for discretization of the bending deflection
of the flexible beam. The control torques introduced by the two motors can be

expressed by the vector
T
T = [70, 11, 0,+++, 0] (C2)

where 7o and 7; represent the applied torques for the trolley and the flexible

beam respectively.
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X; -Axis

Trolley Flexible beam

Motor

» X -Axis

Figure C.1: Coordinates of one flexible beam on a trolley
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The equations of motion including actuator dynamics can then be written by

ME + K = f(6€) + 7 (C.3)
Denote p the mass density of the arm per unit length, L the length of the
flexible beam, m the total mass of the trolley and the motor on the trolley, and I

the total moment of inertia. The inertia matrix is expressed by

m -l; pL
M = plet I symmetric (c4)
~hed —p pLi

where I isan n xn identity matrix, and ¢ = cos(6). The constant vectors

h and § are defined in reference [37,38]. The constant stiffness matrix is
K = Diag[0, 0, plw?] ; w = Diag[wi,*++,wn] (C.5)

where w; (i =1,2,-++,n) are the frequencies associated with the shape functions
i (21), which are used to discretize the deflection of the flexible beam. The

nonlinear force yields
f(&8) = 6i7 g (C.6)
where s6 = sin(f).

The actuator dynamics and sensor characteristics play major roles in the
controller design. The two actuators for the feedback control are dc electric motors.
The electric motor can be regarded as a standard armature circuit. Denote the
armature resistance by R,, the back-EMF (Electro-Motive-Force) constant by
K}, the motor torque constant by K, the gear train viscous drag coefficient by
Cy, the motor inertia by I,,, and the overall gear ratio by Ny. Then the torque
t produced by the actuator provides

o [N,K,] . [K,K,,

—R—a— € Ra + Cv] Ng20 - ImNgo (0.7)
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where e, is the voltage applied into the armature and 6 is the output shaft
angle. For the flexible beam, 6 in Eq. (C.7) represents the root angle. For the
translational trolley, it is equivalent to the linear displacement y divided by the
transmission pulley radius r. The passive damping of the whole system results
from the second term in Eq. (C.7).

Referring to the sensors, the rotational angles are measured by the 10-turn
rotary potentiometers, whereas the angular velocities are calibrated by tachome-
ters. Strain gages are used to sense the bending moments along the flexible beam.
Denote ¢, the conversion factor between the output shaft angle ¢ and the output
voltage e, of the potentiometer, c; the conversion factor between the output
angular velocity and the output voltage e;, ¢, the conversion factor between the
strain and the strain output voltage eg. Suppose two strain gages are placed along
the flexible beam respectively at z, and z;. An output measurement equation

can be written in the following matrix form
A T . [} T T
€ = [ €t0, €t1, €poy €p1, €0 (wa)a €0 (xb) " = Cs [ Y, 0, & ]

. c c .o T
= Dzag [ "3'}9': Ct1, _:_9_, Cp1, Ce] [y1 0’ Yy aqT] (0'8)

where each element of the matrix C. is a product of the conversion factor c,.
The reader is directed to reference [37,38] for more detailed information. Note
that the sub-subscripts 0 and 1 indicate the associated quantities corresponding
to the trolley and the flexible beam respectively. Equation (C.8) relates the output

voltage € to the state variablesy, 6, and £ through the coefficients of the matrix

Cy.
Substituting Eq. (C.7) into Eq. (C.3) provides
ié + Cé + K¢ = BE,(t) + f (&) (C.9)
in which,
M = M + Diag I—"'%@- IniNG, o, 0],
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= . KK, N,2 KuK
C = Diag[ (-__—'tRO obo + Cv()) :0’ ( ;; lbl + Cvl) Nﬂg’ 0’ 0]
a a

Nlngor 0
Rao
B _ 0 N,;anr
0 6’
0 0

and E,(t) = [eas0, €a1 ]T with e;0 and e;; being the applied voltages for

the motors of the trolley and the flexible beam respectively.
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APPENDIX D

TYPES OF LYAPUNOV-BASED STABILITY

In this appendix, Lyapunov’s second method is expressed in conjunction with
five sufficient conditions in Theorem D.1. In corollaries D.1 and D.2, various types
of system stability are treated in several ways such that Lyapunov’s function is
restricted through the desired sufficient conditions. One quadratic type of Lya-
punov’s function is assigned in corollary D.3 to perform a so-called Lyapunov’s
matrix equation, which has been applied for control designs to satisfy the crite-
rion of asymptotical stability in Chapter 6. Corollary D.4 demonstrates a modified
Lyapunov’s matrix equation with a given limit value for real parts of system eigen-
values for asymptotical stability. Instead of linear systems, a nonlinear dynamics
with a special function of state is shown in corollary D.5 to satisfy the Lyapunov’s

matrix equation.

Theorem D.1: [48] Consider a free (unforced) dynamic system in first-order

state form such as
dg
E == f(q’ t) | (Dl)

where q is a state vector of [ z,& ]T, f(q,t) is a nonlinear function of state vector
and time, and E indicates a symmetric and positive-definite matrix composed of
the inertia matrix (see Chapter 6). Suppose there exists a scalar function V(q,t)
with continuous first partial derivatives with respect to q and t such that V(0,t)=0

and

(1) V(q,t) is positive definite; i.e., there exists a continuous, nondecreasing
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scalar function a such that «(0)=0 and, for all t and all q#0
0 < afllgll) £ V(g,1); (D.2)

(2) There exists a continuous scalar function q such that 7(0)=0 and the

derivative V of V along the motion at t, q satisfies, for all t and g0,

V(a0 = 5 + @ad V)TiD) < —qldh< 0 (D

(8) There exists a continuous, nondecreasing scalar function such that
B(0)=0 and, for all t,

V(g,t) < B(llall); (D4)

(4) o(llgll) = oo with [lg| - o0

(D.5)

Then the equilibrium state ¢.=0 is uniformly asymptotically stable in the
large; V(q,t) is called a Lyapunov function of the system (D.1). In the following
corollaries, several weaker types of system stability are characterized in terms of
the restrictions of Eqs. (D.2)-(D.5).

Corollary D.1: [48] The following conditions are sufficient for the various

weaker types of stability:
(a) Uniform asymptotic stability: [Egs. (D.2)-(D.4)].
(b) Equiasymptotic stability in the large: [Eqs. (D.2)-(D.3), (D.5)].
(c) Equiasymptotic stability: [Egs. (D.2)-(D.3)].
(d) Uniform stability: [Egs. (D.2)-(D.4) and V(g,t) £ 0 for all [q,t].
() Stability: [Eqs. (D.2)-(D.3) and V(g,t) < 0 for all q,t].
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Corollary D.2: For a continuous-time autonomous dynamic system

dg

E— = f(o) (D-6)

where the initial condition is f(0)=0. Equiasymptotic stability in the large is
assured by the existence of scalar function V(q) with a continuous first partial
derivative with respect to q, such that V(0)=0 and

(1) V(g) > 0 for all q# 0, (D.7)
(2) V(g) <0 forall g#0, (D.8)
(3) V(g) — oo with ||g]| — oo. (D.9)

Lyapunov’s function can be assigned to be a quadratic equation of state q with
a positive-definite matrix P. Differentiation of Lyapunov’s function, with respect
to time, yields a so-called Lyapunov’s matrix equation which provides a negative-
definite and symmetric matrix Q as long as the system is asymptotically stable.
Corollary D.3 shows such a Lyapunov’s matrix equation for a linear dynamic

gystem.

Corollary D.3: [48] The equilibrium state g. = 0 of a continuous-time,

linear, free, and stationary dynamic system

dg
E = Aq (D.].O)

is asymptotically stable if and only if given any symmetric, positive-definite matrix
Q there exists a symmetric, positive- definite matrix P which is the unique solution
of the set of ﬂ%ﬂl linear equations

ATPE + ETPA = -Q (D.11)
and ¢T{ETPE}q is a Lyapunov’s function for Eq. (D.10).

Stability of the linear dynamic system can be evaluated by using the eigen-

value analysis. The locations of eigenvalues associated with system matrix A can
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judge whether the system is stable or not. The stable eigenvalues must always lie
in the left-hand side of pole plot; i.e., real parts of eigenvalues are negative in the
stable system. Based on eigenvalue analysis, corollary D.3 has been modified by
Kalman [48] for some purposes:

Corollary D.4: The real parts of the eigenvalues of a linear matrix A are

less than s if and only if given any symmetric, positive-definite matrix Q there
exists a symmetric, positive-definite matrix P which is the unique solution of the
set of ﬂ'—‘fﬂ linear equations

—20PE + ATPE + ETPA = —¢ (D.12)

Furthermore, Barnett and Storey [53] have extended corollary D.3 for nonlinear

dynamic system such as

d
-ﬁ = Ag + g(g) and g(0) =0 (D.13)

Basically, equation (D.10) is the first approximation (or linear part) of Eq. (D.13)
and is said to be achieved from Eq. (D.10) by linearization. The asymptotical
stability of dynamics in Eq. (D.13) can be achieved as long as the nonlinear term

g(q) is formed to be a special state function shown in the following corollary.

Corollary D.5: [53] The origin of dynamic system (D.13) is asymptotically
stable with Lyapunov’s function V = ¢T{ETPE}q having V = —¢TRq forall
functions of the form g(p) = E-*P-1 [% - £+ S’] g, where P, Q are constant
positive definite matrices, satisfying ATPE + ETPA = —Q, R(q) is an arbitrary

symmetric positive definite matrix and S(q) an arbitrary skew-symmetric matrix.
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APPENDIX E

DYNAMIC EQUATION OF TWO ARTICULATED
FLEXIBLE BEAMS ON A TROLLEY

One flexible beam is articulated on the tip of the previous beam to construct
an articualted flexible structure as shown in Fig. 6.2. This additional beam is also
treated as a fixed-free cantilever beam. This system has three (one translational
and two rotational) degrees of freedom attributed to rigid body motion. One more
actuator is required, which is concatenated axially with the former one on the rigid
trolley. The fore-beam is manipulated by this additional motor through a wire.
In Fig. E.1, the mass M includes the mass of the new motor for the fore-beam.
61 denotes the root angle of the first flexible beam and 6, the root angle of the

fore-beam measured relative to the previous local coordinates, i.e., z; —y; axes.

The state vector similar to Eq. (E.1) becomes

£ = [ya 01, 62, qg‘v q’.”l‘]T

q’ir = [qu, q12,"*, q1n1]
and

¢ = [, G2,y g2n2] (E.1)
where y is the translational displacement of the

trolley and ¢i; (¢ =1,2,+:+,n;) the general coordinates corresponding to the
shape functions #y; (i =1,2,-.+,n;) for discretization of the bending deflection

of the first flexible beam. The quantities ¢»; and 12; are defined similarly for
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Y-Axis
% X2 -Axis
Y; -AXxis

Flexible beam #2

Trolley

Motors #1 and #2

»X-Axis

Figure E.1: ?oi)lrdiuates of two articulated flexible beams on a
rolley
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the fore-beam. The input vector for the articulated flexible beams is
T = [1'0, Tty T2y 0,00, OJT (E‘2)

where 7p represents the applied torque for the trolley, and 7; and 7, for the

two flexible beams.

Application of Lagrange’s equations of motion in terms of state variables
yields a set of equations in matrix form as Eq. (E.3). The symmetry inertia

matrix becomes

m + 2pL -3-’-’;‘—2c01 f-g‘-z-c(el + 82) — pLpT (L)
25&2'091 481'1 'Lg:caz
2
M = ﬂ;’—c (91 -+ 02) %002 . I
—hichy  —pL*$y(L) = pLyps(L)cby =By (L)ch, - Py
—hge (91 + 02) ~Lhycl, -P,
—h?cGl —hg'c (91 + 02)
—pL*yp] (L) - PT —LhTch,
—nl2
=L yTIys  -Pf (83)
oI (IWT(I) +oLh  Bya(L)ehe
hzlp'ir(L)Coz pLIz

where ¢f; = cos(6;), cf; = cos(8;), c(6; +6:) = cos(6; +86;). Here
I, and fz are ny3 X n; and n2 X ng identity matrices respectively with
n1 and ng being the numbers of the mode shapes respectively for discretization
of bending deflections of the two beam-like flexible beams. Moreover, the stiffness

matrix becomes
K = Diag|0, 0, 0, pLw?, pLw}

wy = Diag{wiy,  +,win, ] and wp = Diag{ws,  +,way, ] (E.4)

and the nonlinear force vector is

£(&€) = Lfoy fushar Ss 1" (E.5)

where

3pL2sb,

fo = 5 2 — 36, (hTg1) 61 — s(61+62) (rT ¢2) (él +92)
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pL2 . [ . T LN
+ _2—3 (01 + 92)02 (91 + 92) - pLsBl (’(/)1 (L)ql) 01
_ pL? 3
fi = s (Bldr) 9 + s(6:1 +62) (hTde) v — —2'8(91 + 62) 46,
L6 T JAPAYY f;L_a_ 92 _ T\ 4
+ pLsby (W (L)r) § + S5-9026] — Lab (hda) o
fo = 3(01+62) (hd2) 9 — 82 (WT(L)dr) (hTd2) + Lsb, (hTd2) b1
L2 .
+ 825 (81 +62) 36,
. . L2 . s
fs = —sOih1yb — pLsbith1(L)yoy — pTwh(L)sOgag + 80291(L) (k7 do) B2

fo = —has (8 +02)3 (1 +6) ~ Lobohabily + hosty (W (L)in) b,

where s6; = sin(61), s8; = sin(6;), s(61 +6;) = sin(6; + 62).

Then, the output measurement equation is
é = [ew,en, e, €p0, €p1, €p2, €01 (Za) » €01 (25) , €02 (a) , €02 (z3) ]T

= Cf [?}, éla 921 £T]T (E'G)

where

0
Cf = Diag [ —Ct1,Ct1,—— ’cplacpl»ceucez ]

Fa_z_ﬂn ¢|n
Cei = ( o ) ’31-‘/}821( l)> fori = 1,2,
83381:3 (mZ), ,m{-’%( 2)

The dynamic equations can thus be developed yielding

_ . ImoN,2
M=M+ Dzag[ MO0 [ N,2, ImaN,2, 0, 0, 0, 0] (E.7)
= ) KK N,2 (KK, K
D = Diag [ (—!}%ﬁ' + CvO) :0, ( };1“ + C'ul) Ny, (—%I%Z + Cuz) Ngj
,0,0,0,0]
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{Ng;)tffoeor 0 0 \
0 N1 Ker 0
Ral
0 0 lengr
B = 0 0 s
0 0 0
0 0 0
\ o0 0 0 /

and Ey(t) = [ eq0, €a1, €a2 ]T‘
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