
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Bioelectrics Publications Frank Reidy Research Center for Bioelectrics 

2020 

Bone Morphogenic Proteins are Immunoregulatory Cytokines Bone Morphogenic Proteins are Immunoregulatory Cytokines 

Controlling FOXP3+ TControlling FOXP3+ Tregreg  Cells Cells 

Lauren M. Browning 
Old Dominion University 

Caroline Miller 
Old Dominion University, cmill012@odu.edu 

Michal Kuczma 

Maciej Pietrzak 

Yu Jing 
Old Dominion University, yjing@odu.edu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/bioelectrics_pubs 

 Part of the Biology Commons, and the Cell Anatomy Commons 

Original Publication Citation Original Publication Citation 
Browning, L. M., Miller, C., Kuczma, M., Pietrzak, M., Jing, Y., Rempala, G., Muranski, P., Ignatowicz, L., & 
Kraj, P. (2020). Bone morphogenic proteins are immunoregulatory cytokines controlling FOXP3+ Treg 

Cells. Cell reports, 33(1), 24 pp., Article 108219. https://doi.org/10.1016/j.celrep.2020.108219 

This Article is brought to you for free and open access by the Frank Reidy Research Center for Bioelectrics at ODU 
Digital Commons. It has been accepted for inclusion in Bioelectrics Publications by an authorized administrator of 
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/bioelectrics_pubs
https://digitalcommons.odu.edu/bioelectrics
https://digitalcommons.odu.edu/bioelectrics_pubs?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/9?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.celrep.2020.108219
mailto:digitalcommons@odu.edu


Authors Authors 
Lauren M. Browning, Caroline Miller, Michal Kuczma, Maciej Pietrzak, Yu Jing, Grzegorz Rempala, Pawel 
Muranski, Leszek Ignatowicz, and Piotr Kraj 

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/bioelectrics_pubs/296 

https://digitalcommons.odu.edu/bioelectrics_pubs/296


Article

Bone Morphogenic Proteins Are Immunoregulatory
Cytokines Controlling FOXP3+ Treg Cells

Graphical Abstract

Highlights

d BMPR1a mediates immunomodulatory functions of bone

morphogenic proteins

d BMPR1a signaling controls the phenotype and stability of

peripheral Treg cells

d Chromatinmodificationsmediated by KDM6B are associated

with BMPR1a signaling

Authors

Lauren M. Browning, Caroline Miller,

Michal Kuczma, ..., Pawel Muranski,

Leszek Ignatowicz, Piotr Kraj

Correspondence
pkraj@odu.edu

In Brief

Browning et al. find that bone

morphogenic proteins, cytokines

controlling tissue differentiation and

homeostasis, have an immunoregulatory

function when signaling through BMPR1a

expressed by Th and Treg cells. BMPR1a

sustains the phenotype and stability of

Treg cells and controls the generation of

effector Th cells modulating the activity of

chromatin modifier KDM6B demethylase.

Browning et al., 2020, Cell Reports 33, 108219
October 6, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.108219 ll

Cell Reports 

BMPR1a 

~ 
T,., 

signaling BMP l 

t Homeostatic 
BMPs expansion, maturation 

signaling and proliferation, T,., 
fitness 

ffi 
t t Rare 

IL-17 

Unstable T,., 
phenotype 

BMPR1a 

I Th17 
t differentiation 

BMPR1a 

IL-17 t 
Rorc 

Cell proliferation 

c'Ce =>ress 

mailto:pkraj@odu.edu
https://doi.org/10.1016/j.celrep.2020.108219
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108219&domain=pdf


Article

Bone Morphogenic Proteins
Are Immunoregulatory Cytokines
Controlling FOXP3+ Treg Cells
LaurenM. Browning,1 CarolineMiller,1 Michal Kuczma,2Maciej Pietrzak,3 Yu Jing,4 Grzegorz Rempala,5 PawelMuranski,6

Leszek Ignatowicz,2 and Piotr Kraj1,7,*
1Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
2Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
3Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
4Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA
5College of Public Health, Ohio State University, Columbus, OH 43210, USA
6Columbia University Medical Center, New York, NY 10032, USA
7Lead Contact
*Correspondence: pkraj@odu.edu

https://doi.org/10.1016/j.celrep.2020.108219

SUMMARY

Bonemorphogenic proteins (BMPs) aremembers of the transforming growth factor b (TGF-b) cytokine family
promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through
the bonemorphogenic protein receptor 1a (BMPR1a) sustains expression of FOXP3 in Treg cells in peripheral
lymphoid tissues. BMPR1a signaling promotes molecular circuits supporting acquisition and preservation of
Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mecha-
nistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb
repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation
of BMPR1a signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation
and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus,
we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adap-
tive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.

INTRODUCTION

Regulatory T cells (Treg) expressing transcription factor FOXP3

are essential for maintaining immune system homeostasis (Jose-

fowicz et al., 2012; Sakaguchi et al., 2010). A decreased propor-

tion or dysregulation of Treg cells precipitates uncontrolled im-

mune activation and is a cause of autoimmune diseases.

However, compromised homeostatic function of Treg cells is

not always associated with their reduced frequency or altered

phenotype (Kuchroo et al., 2012; Long and Buckner, 2011).

Abrogating cytokine signaling, altered function of molecules im-

pacting FOXP3 protein stability or modifications of chromatin

proteins associated with the FOXP3 gene locus, which define

its epigenetic status, often underlie Treg cell deficiency and

inability to control inflammation in specific anatomic locations

(Bettini et al., 2012; Do et al., 2017; Konkel et al., 2017; Min,

2017; Wan and Flavell, 2007; Wing et al., 2019). Heterogeneity

of the Treg cell population may account for differential stability

of FOXP3 expression (Sawant and Vignali, 2014; Weinmann,

2014). In peripheral lymphoid organs, thymus-derived Treg (tTreg)

cells are complemented by peripherally induced Treg cells (pTreg)

generated fromCD4+ Th cells in response to stimulation with self

or non-self antigens (Abbas et al., 2013; Kendal et al., 2011; Lath-

rop et al., 2011; Martin et al., 2013). tTreg and pTreg cells have

some nonoverlapping suppressor functions, and both are

necessary to control inflammation (Bilate and Lafaille, 2012;

Cobbold et al., 2004; Curotto de Lafaille et al., 2008; Haribhai

et al., 2011).Moreover, peripherally induced Foxp3+ cells consist

of a cell subset continuously expressing FOXP3 and a subset of

activated CD4+ T cells only transiently expressing FOXP3, which

did not acquire suppressor function (Hori, 2011; Kuczma et al.,

2009a; Miyao et al., 2012). Activation of naive CD4+ T cells

in vitro in the presence of interleukin-2 (IL-2) and transforming

growth factor b (TGF-b) generates induced Treg (iTreg) cells able

to restore immune homeostasis in scurfy mice (Abbas et al.,

2013; Chen et al., 2003; Huter et al., 2008; Thornton et al.,

2004). Transcriptome analyses of Treg gene signature of activa-

tion-induced, iTreg, and activated Treg cells demonstrated that

iTreg cells could present a model to study molecular signaling

of pTreg cell generation (Hill et al., 2007; Kuczma et al., 2014;

Miyao et al., 2012).

Genetic cell-fate mapping suggested that not only heteroge-

neity but also phenotypic plasticity of the Treg cell lineage, espe-

cially in inflammatory environment, results in the presence of
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different proportions of CD4+ T cells that downregulate FOXP3

expression (Rubtsov et al., 2010; Zhou et al., 2009b). Uncovering

how the sustained phenotype of Treg cells is controlled become

even more important when it was realized that Treg cells that

downregulate FOXP3 expression (exTreg cells) produce inflam-

matory cytokines, interferon (IFN)-g and IL-17 (Guo and Zhou,

2015). While downregulation of FOXP3 is required to alleviate

the suppressive effect of Treg cells, Treg cell instability exacer-

bated tissue damage and immune pathology (Belkaid et al.,

2002; Sawant and Vignali, 2014). exTreg cells promoted destruc-

tion of pancreatic islets and accelerated the onset of diabetes

(Zhou et al., 2009b). In rheumatoid arthritis and autoimmune

encephalomyelitis (EAE), pathogenic Th17 cells were shown to

arise from Treg cells (Bailey-Bucktrout et al., 2013; Komatsu

et al., 2014). In contrast, resolution of inflammation may depend

on the opposite process of trans-differentiation of Th17 cells into

Treg cells (Gagliani et al., 2015). Despite its importance, long-

term Treg cell maturation, phenotype stability, and programming

of Treg and effector Th cell generation remain little understood

(Dominguez-Villar and Hafler, 2018; Shevach, 2018).

Bone morphogenic proteins (BMPs), members of the TGF-b

family of cytokines, include activins, growth and differentiation

factors, and TGF-bs (Wu and Hill, 2009). They consist of approx-

imately 20 cytokines that control fundamental biological pro-

cesses including cell migration, apoptosis, adhesion, and differ-

entiation (Bragdon et al., 2011; Carreira et al., 2014). Their

activities are highly pleiotropic, often context dependent, and

limited to the close vicinity of secreting cells, predisposing

them to regulate local tissue homeostasis. In contrast to TGF-

b, only a few studieswere conducted on immunoregulatory func-

tions of BMPs (Chen and Ten Dijke, 2016; Li and Flavell, 2008).

Activin A and BMP2/4 are not able to induce FOXP3 expression

in activated CD4+ T cells but synergized with the TGF-b to

generate iTreg cells (Huber et al., 2009; Lu et al., 2010). In vitro

studies of signaling inhibitors have shown that BMPs regulate

proliferation and activation of CD4+ T cells, but the role of

BMPs in controlling peripheral Treg cells was not addressed

(Martı́nez et al., 2015; Yoshioka et al., 2012). Recently, we re-

ported that deletion of bone morphogenic protein receptor 1a

(BMPR1a, Alk-3) in conventional CD4+ T cells promotes Th17

cell differentiation, emphasizing the importance of BMPR1a for

Th cell-lineage specification (Browning et al., 2018).

We report that signaling through the BMPR1a is necessary to

control maturation, sustain the phenotype of peripheral Treg
cells, and allow for generation of iTreg cells. This last finding sug-

gests that BMPR1a signaling will also promote upregulation of

FOXP3 in CD4+ T cells in vivo and support generation of pTreg
cells. Treg cell-specific deletion of BMPR1a results in the gradual

loss of peripheral Treg cells associated with FOXP3 downregula-

tion, accumulation of mature, senescent Treg cells, and exagger-

ated responses to stimulation with antigen. During antigenic

stimulation, abrogation of BMPR1a signaling enhances downre-

gulation of FOXP3 in Treg cells and increases proportion of

effector Th cells secreting IFN-g and IL-17 generated from puri-

fied Treg cells. This finding underscores the importance of the

BMPR1a in regulating inflammation by controlling Treg cell plas-

ticity and transition between Treg and Th cells. At the molecular

level, BMPR1a deficiency led to upregulation of KDM6B

(JMJD3) demethylase, indicating that chromatin modifications

contributing to proinflammatory reprogramming of CD4+ effector

and Treg cells are regulated by BMPs.

RESULTS

Deletion of the BMPR1a in Treg Cells Disrupts
Homeostasis of the Peripheral T Cell Population
BMPR1a signaling is required at different stages of thymocyte

differentiation, and it is expressed in single positive CD4+ con-

ventional and Treg cells in the thymus (Figure S1A; Hager-Theo-

dorides et al., 2014; Jurberg et al., 2015). BMPR1a is also ex-

pressed by Th and Treg cells directly isolated from lymph

nodes or peripheral organs or activated in vitro and in iTreg cells

(Figures S1B, S1C, and S2C; Browning et al., 2018; Kuczma

et al., 2014). To examine the role of BMPR1a in Treg cells, we

crossed BMPR1a conditional knockout mice to transgenic

mice expressing creGFP fusion protein controlled by the

FOXP3 gene regulatory sequences (Zhou et al., 2008). Treg cells

in wild-typemice expressing solely Foxp3creGFP had low levels of

GFP reporter, making it difficult to identify Treg cells expressing

low and high levels of FOXP3. These two Treg cell subsets have

different functions in wild-typemice, with Foxp3GFPhigh cells hav-

ing stable suppressor function and the Foxp3GFPlow subset

demonstrating phenotype plasticity (Komatsu et al., 2009;

Kuczma et al., 2009a;Miyao et al., 2012). To ensure that Treg cells

expressing low levels of FOXP3 (especially after BMPR1a is

deleted, see below) are readily identified, we introduced another

Foxp3GFP reporter, produced in our laboratory, expressing

higher levels of GFP to generate Foxp3GFPFoxpP3creGFPBM-

PR1a– (BMPR1aTR–) mice (Kuczma et al., 2009b). Co-expression

of both transgenic constructs does not affect T cell develop-

ment, and littermates heterozygous for BMPR1a expressing

only Foxp3GFP or both Foxp3GFP and Foxp3creGFP reporters

have the same total numbers and proportions of thymocyte sub-

sets (Figure S1A). This result is consistent with late expression of

the cre recombinase, following induction of FOXP3 expression,

which does not impair thymocyte recruitment into Treg popula-

tion.When lymph nodes of 2- to 3-week-oldmice were analyzed,

the total number of cells and proportions of conventional CD4+

and Treg cells were the same between two types of littermates

(Figure S1B). However, deletion of one allele of BMPR1a resulted

in increased proportion of Treg cells expressing low levels of

FOXP3 (Figure S1B). This demonstrates that even decreased

BMP signaling affects Treg cells already in youngmice. Complete

abrogation of BMPR1a signaling resulted in moderate reduction

in the total proportion of Treg cells but significantly altered pro-

portions of Treg cells expressing high and low levels of FOXP3

residing in lymph nodes and peripheral organs (Figures 1A and

S2). Loss of Foxp3GFPhigh Treg population was associated with

low expression of FOXP3 in CD4+ T cells (Figure 1B). As

BMPR1aTR– mice aged, we observed loss of Treg cells express-

ing high levels of FOXP3 (Foxp3GFPhigh) and increasing propor-

tion of cells expressing low levels of FOXP3 (Foxp3GFPlow) indi-

cating disruption of peripheral homeostasis of Treg cells

(Figure 1C). In contrast, wild-type mice of various ages continu-

ously had a small population of cells expressing low levels of

FOXP3, most likely conventional CD4+ T cells that transiently
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upregulated FOXP3, and an overwhelming majority of Treg cells

expressed high levels of FOXP3 (Kuczma et al., 2009a; Miyao

et al., 2012). Progressive loss of FOXP3 expression in Treg cells

was accompanied by a continuing increase in the subset of acti-

vated, conventional CD4+ T cells in aging BMPR1aTR– mice

consistent with compromised Treg cell suppressor function (Fig-

ure 1D). In summary, an analysis of CD4+ T cell subsets in

BMPR1aTR– mice underscores an essential role of BMPR1a in

controlling homeostasis and phenotype stability of peripheral

Treg cells.

Decreased Phenotype Stability of BMPR1a-Deficient
Treg Cells
To further compare stability of peripheral Treg cells, we adop-

tively co-transferred equal proportions of Treg cells from wild-

type and BMPR1aTR– mice expressing high levels of Foxp3GFP

into lymphopenic T cell receptor (TCR)-a knockoutmice together

with naive cells fromwild-typemice to provide a source of IL-2 to

sustain Treg cell populations (Figure 2A). Transferred wild-type

Treg cells retained Foxp3GFP expression and expressed higher

levels of CD25, 4-1BB, and KLRG1, markers of effector Treg cells

(Figure 2B). In contrast, BMPR1a-deficient Treg cells downregu-

lated both Foxp3GFP and CD25 expression; however, CD127

expression was higher than on wild-type Treg cells (Figure 2B).

Transferred BMPR1a-deficient Treg cells had low expression of

KLRG1 but high expression of CCR6 and IL-23R. CCR6 and

IL-23R are receptors regulating homing and promoting differen-

tiation of Th17 cells or their precursors. Higher expression of

CCR6 and IL-23R is consistent with increased levels of RORC,

IFN-g, and IL-17 found in donor BMPR1a-deficient cells when

lymph node cells of recipient mice were stimulated with Con A

(Figure 2C). Since donor cells were highly purified Treg cells,

this suggested that impaired BMPR1a signaling increases Treg
plasticity and transition between Treg and effector Th cells

(Zhou et al., 2009b; Bailey-Bucktrout et al., 2013). Loss of Treg
cell phenotype and increased production of inflammatory cyto-

kines were associated with decreased recipient weight when

only one Treg cell type, BMPR1a-deficient but not BMPR1a-suf-

ficient Treg cells, were transferred into lymphopenic mice (Fig-

ures 2D–2F). In summary, analysis of Treg cell recipients demon-

strates that BMPR1a is essential to sustain FOXP3 expression

and Treg cell suppressor function.

To determine how stable the Treg cell phenotype is in an inflam-

matory environment, we activated Treg cells sorted from wild-

type and BMPR1aTR– mice in the presence of bacterial lysate

mimicking bacterial infection in vivo (Figure 3A). While the major-

ity of Treg cells from normal mice preserved high levels of FOXP3

expression, a large proportion of Treg cells from BMPR1aTR–

Figure 1. BMPR1a Signaling Controls Peripheral Treg Cell Homeostasis and Stability

(A) Flow cytometry analysis of Foxp3GFP expression in CD4+ T cells isolated from wild-type (WT) and BMPR1aTR– 1- to 3-month-old mice. The frequency of

Foxp3GFP+ cells are means ± SD pooled from all experiments.

(B) qRT-PCR analysis of FOXP3 mRNA expression in CD4+ cells sorted from WT and BMPR1aTR– mice. Data are means ± SD pooled from three independent

sorts.

(C) Proportions of total Treg cells (Foxp3
GFP) and Treg cells expressing high (Foxp3GFPhigh) and low (Foxp3GFPlow) levels of FOXP3 in the population of lymph node

CD4+ T cells in 1- to 3-, 4- to 7-, and >8-month-old WT and BMPR1aTR– mice.

(D) Proportion of activated (CD44hiCD62Llo) CD4+ T cells in the lymph nodes of WT or BMPR1aTR– 1- to 3-, 4- to 7-, and >8-month-old mice. For (C) and (D), each

dot represents one mouse, the solid black dot represents the average, and vertical lines represent standard deviations. **p < 0.01, ***p < 0.001, ****p < 0.0001 as

determined by Student’s t test.

See also Figures S1 and S2.
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Figure 2. BMPR1a Signaling Is Essential to Sustain FOXP3 Expression and Treg Cell Phenotype

(A) Flow cytometry analysis of wild-type (WT Foxp3GFP+Ly5.1+Ly5.2+) Treg cells, BMPR1a-deficient Treg cells expressing high levels of FOXP3 (BMPR1aTR–

Foxp3GFPhighLy5.2+) and wild-type naive CD4+ T cells (Ly5.1+) before (left panel) and after (right panel) co-transfer into TCRa– recipient mice. Data are repre-

sentative of four independent analyses. The frequency of Treg cell populations are means ± SD pooled from all analyses.

(legend continued on next page)
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mice downregulated FOXP3. The rate of cell divisions of

BMPR1a-sufficient and -deficient Treg cells was similar, as

shown by dilution of cell proliferation dye eFluor670, suggesting

that decreasing expression of FOXP3 and not proliferative

advantage is responsible for accumulation of exTreg cells. We

calculated the probability that a random Treg cell retains

FOXP3 expression to be almost two times higher for a wild-

type Treg cell (0.85 versus 0.45). Loss of FOXP3 expression

was accompanied by increased production of inflammatory cy-

tokines, IFN-g, and IL-17 (Figure 3B). In conclusion, BMPR1a

signaling is essential to sustain Treg cells in inflammatory condi-

tions and inhibit differentiation of Th effector cells producing IFN-

g and IL-17 (Browning et al., 2018).

Enhanced Antigenic Responses in BMPR1aTR– Mice
To test how the lack of BMPR1a expression affects Treg cell

immunoregulatory function, we analyzed antigenic responses

in mice immunized with CFA. CD4+ T cells from BMPR1aTR–

mice displayed a more activated phenotype and produced

more IFN-g and IL-17 than wild-type mice (Figures 3C and 3D).

BMPR1a continues to be expressed in effector Th and Treg cells

in the draining lymph nodes of immunized mice indicating that

BMPR1a signaling modulates ongoing inflammatory response

(Figure 3E). Treg cells in the draining lymph nodes had lower

FOXP3 expression in BMPR1aTR– than wild-type mice (Fig-

ure 3F). However, despite compromised suppressor function,

BMPR1a-deficient Treg cells were able to inhibit proliferation of

CD4+ T cells in an in vitro assay (Figure S3). This is consistent

with previous reports that Treg cells present in mouse strains

prone to autoimmune diseases had normal suppressor function

in vitro (Konkel et al., 2017; Shevach, 2018). BMPR1a-deficient

Treg cells expressed lower levels of CD39, 4-1BB, ICOS, and

KLRG1 (Figure 3G). CD39 is an ectonuclease directly involved

in Treg suppressor function and 4-1BB binding of galectin-9 aug-

ments Treg function (Deaglio et al., 2007; Fletcher et al., 2009;

Madireddi et al., 2014; So et al., 2008). KLRG1 is upregulated

on antigen-activated, highly suppressive Treg cells, so its low

expression likely indicates defective terminal differentiation of

BMPR1a-deficient Treg cells (Cheng et al., 2012). Loss of ICOS

by Treg cells was associated with instability of FOXP3 expression

(Landuyt et al., 2019). BMPR1a-deficient Treg expressed

elevated levels of IL-10 compared to wild-type mice in steady

state, but both types of activated Treg cells had similar expres-

sion of IL-10 (Figures 3H and 5B).

To further examine how deletion of BMPR1a impacts immune

responses to natural mouse pathogen, we infected wild-type

and BMPR1aTR– mice with Citrobacter rodentium (Crepin et al.,

2016). InfectionwithC. rodentium is widely used tomodel human

infections with enteropathogenic E. coli (Collins et al., 2014). We

observed a significant loss of Treg cells expressing high levels of

FOXP3 associated with increased proportions of proinflamma-

tory cytokine-producing cells in the colon of BMPR1aTR– mice

demonstrating decreased ability of BMPR1a-deficient Treg cells

to control inflammation in vivo (Figure S4). In summary, current

data and our earlier report point to the importance of BMPR1a

ligands to target Treg and effector CD4+ T cells to constrain

inflammation (Browning et al., 2018).

Altered Ontogenesis of BMPR1a-Deficient Treg Cells
While in 2-month-old wild-type and BMPR1aTR– mice conven-

tional CD4+ T cells have similar proportions of naive

(CD44lowCD62Lhigh) and activated (CD44highCD62Llow) T cells,

expression of maturationmarkers was different on Treg cells (Fig-

ures 4A and 4B). We examined whether loss of BMPR1a expres-

sion is associated with changes in the ontogeny of Treg cell pop-

ulation. Recent evidence supports amodel of Treg cell maturation

whereby effector Treg cells with an activated phenotype originate

from a pool of naive Treg cells expressing high levels of CD62L

and lower levels of CD44 (Cheng et al., 2012; Levine et al.,

2014; Rosenblum et al., 2011; Toomer et al., 2016). Transition

of naive to mature (activated) effector Treg cells is promoted by

IL-2, and terminally differentiated Treg cells are sustained by IL-

7 (Gratz et al., 2014; Malek et al., 2002; Toomer et al., 2016).

When expression of activation markers was examined on Treg
cells in wild-type and BMPR1aTR– mice, the overall proportion of

Treg cells with activated phenotype was much higher in age-

matched BMPR1aTR– than in wild-type mice, while the propor-

tion of naive Treg cells was smaller (Figure 4B). In addition,

Foxp3GFPlow Treg cells predominantly expressed the activated

phenotype and Foxp3GFPhigh Treg cells expressed the naive

phenotype (Figure 4C). To compare mature Treg cells in wild-

type and BMPR1aTR– age-matched mice, we analyzed the

expression of CD25, CD39, CD127, and maturation marker

KLRG1 (Cheng et al., 2012: Figure 4D). Expression of IL-2 recep-

tor a chain, CD25, was similar on BMPR1a-deficient and -suffi-

cient Treg cells and did not decrease in aging mice. Thus, altered

proportions of naive and mature Treg cells were not caused by

decreased sensitivity to IL-2 (Yu et al., 2009). Mature Treg cells

in BMPR1aTR– mice express higher levels of CD127, a receptor

for IL-7, which maintains memory Treg cells in peripheral tissues

(Gratz et al., 2013). However, they express low levels of KLRG1

and CD39, demonstrating that terminal maturation and the

immunosuppressive function of these cells are impaired, and

(B) Flow cytometry analysis of the indicated molecules expressed by donor WT and BMPR1aTR– Treg cells. Histograms are representative of four independent

analyses. Expression of respective molecules by wild-type (filled gray histograms) or BMPR1a-deficient (open red histograms) donor Treg cells and summary of

expression data showing mean fluorescence intensity (MFI) of at least three mice analyzed (bar graphs).

(C) Flow cytometry analysis of cytokine production by transferred WT (left panel) and BMPR1aTR– (right panel) Treg cells restimulated in vitro. Contour plots are

representative of four independent analyses. The frequency of cytokine-producing cells are means ± SD pooled from all experiments.

(D) Weight of TCRa– mice receiving transfer of WT naive CD4+ T cells and WT (open black circles) or BMPR1a-deficient (filled gray circles) Treg cells. Data are

representative of three mice per group.

(E) Flow cytometry analysis of molecules expressed by donor WT (open black histograms) and BMPR1a-deficient (filled gray histograms) Treg cells isolated from

TCRa– recipient mice and summary of expression data showing MFI of three mice analyzed (bar graphs).

(F) Production of IL-17 and IFN-g by transferred WT (left panel) or BMPR1aTR– (right panel) Treg cells restimulated in vitro. Plots show representative data of three

mice analyzed. MFI data are means ± SD from all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by Student’s t test.
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they may not generate robust effector Treg cells (Cheng et al.,

2012).

To determine the cause of altered proportions of Foxp3GFPhigh

and Foxp3GFPlow Treg cells in BMPR1aTR– mice, we examined

fractions of proliferating cells in these populations. Bromodeox-

yuridine (BrdU) incorporation revealed significant difference in a

steady-state proliferation between Treg cells in wild-type and

BMPR1aTR– mice (Figure 5A). While Foxp3GFPhigh cells were

more proliferatively active in wild-type mice, Foxp3GFPlow Treg
cells divided more than Foxp3GFPhigh in BMPR1aTR– mice. In

addition, a much lower fraction of all Treg cells incorporated

BrdU in BMPR1aTR– mice. We propose that decreased prolifer-

ation is likely not enough to sustain the size of the Foxp3GFPhigh

Treg subset and results in a low proportion of naive Treg cells as

BMPR1aTR– mice age. Thus, phenotypic and BrdU incorporation

analyses show that Treg cell maturation in BMPR1aTR– mice is

associated with a low proliferative capacity of Foxp3GFPhigh

Treg cells, progressive loss of FOXP3 expression, and accumula-

tion of Foxp3GFPlow Treg cells with mature phenotype. Decreased

cell proliferation also reduced the expansion of BMPR1a-defi-

cient iTreg cells in vitro (Kuczma et al., 2014).

Signaling Modules Controlled by BMPR1a
To determine how BMPR1a signaling affects molecular circuits

controlling Treg cell lineage, we examined genes expressed in

BMPR1a-deficient Foxp3GFPhigh and Foxp3GFPlow and wild-

type Foxp3GFP+ Treg cells using the NanoString inflammation

panel (Figure 5B). This analysis identified 196 and 230 genes

differentially expressed between Foxp3GFPhigh or Foxp3GFPlow

and wild-type Foxp3GFP+ Treg cells (145 genes differentially ex-

pressed between Foxp3GFPhigh and Foxp3GFPlow and wild-type

Foxp3GFP+ Treg cells) (Table S1).

Gene set enrichment analysis defined cytokine activity,

secretion, receptor binding, and signal transduction as major

molecular functions and immune and inflammatory responses

as biological processes regulated by differentially expressed

genes. Transcript levels of proinflammatory cytokines and tran-

scription factors, including IFN-g, IL-17, IL-6, RORC, and IRF4

were higher in BMPR1a-deficient Treg cells (Figure 5B). Expres-

sion of RORC in Treg cells is considered evidence of phenotypic

plasticity and functional adaptation that underlies transition into

Th17 cells (Ivanov et al., 2006; Komatsu et al., 2014). This im-

plies a less stable phenotype of BMPR1a-deficient Treg cells,

more so resembling Treg cells co-expressing Th-lineage-spe-

cific transcription factors with a decreased ability to control

inflammation and susceptible to lineage dedifferentiation (Blat-

ner et al., 2012; Saito et al., 2016; Zhou et al., 2009b). This inter-

pretation is consistent with observed downregulation of FOXP3

and enhanced production of Th1/Th17 cells in inflammatory

conditions (Gao et al., 2015; Komatsu et al., 2014; Yang et al.,

2008a).

A set of differentially expressed genes included CDKN1A

(p21Cip1), a cell-cycle inhibitor associated with cell maturation

and senescence, which was expressed at much higher levels

in Treg cells in BMPR1aTR– mice (Figure 5B; Muñoz-Espı́n et al.,

2013). CDKN1A controls CD4+ T cell responses to antigen and

generation of memory or anergic cells (Arias et al., 2007). We

postulate that in BMPR1a-deficient Treg cells overexpression of

CDKN1A inhibits proliferation and renewal of immature Treg sub-

set while promoting maturation and senescence.

Current analyses of Treg cell stability and our previous report

demonstrated that BMPR1a regulates signaling circuits pro-

moting generation of proinflammatory cells affecting both

Treg and conventional CD4+ T cells (Browning et al., 2018).

We have also previously shown that upregulation of Foxp3

and generation of iTreg cells is impaired by BMPR1a defi-

ciency (Figure S1C; Kuczma et al., 2014). Thus, gene-expres-

sion analysis of sorted Treg cells was accompanied by RNA

sequencing (RNA-seq) analysis of iTreg cells, generated from

BMPR1a-sufficient and -deficient CD4+ cells, which found

804 genes differentially expressed (Figure 6A; Table S2). Prin-

cipal-component analysis (PCA) demonstrated substantially

different transcriptome landscape of BMPR1a-deficient and

-sufficient iTreg cells (Figure 6B). BMPR1a-deficient iTreg cells

expressed elevated levels of transcripts associated with

proinflammatory Th cell lineages, including Th17 cells, like

RORC, RORA, MAF, IKZF4 (EOS), CCR6, and signaling mole-

cules like SOCS13 and CISH (Figure 6C; Ciofani et al., 2012;

Yosef et al., 2013). At the same time, genes associated with

iTreg cell-lineage specification like FOXP3, HOPX, PDE3B,

and CREM were downregulated (Figures 6C and S1C). Gene

ontogeny analysis defined cytokine activity, receptor binding,

and signaling as top molecular functions of differentially ex-

pressed iTreg genes.

Figure 3. Deletion of the BMPR1a Gene Regulates Treg Cell Stability and Enhances Antigenic Responses of Effector CD4+ T Cells in

Immunized Mice

(A) Flow cytometry analysis of cell division and Foxp3GFP expression by Treg cells sorted fromWT and BMPR1aTR–mice and activated in the presence of bacterial

lysate for 3.5 days. Left panels show the percentage of dividing cells and right panels and graphs show the percentage of Treg cells after each cell division that

retained (dark pattern) or lost (dotted pattern) Foxp3GFP expression. Representative data of one of three experiments are shown.

(B) Flow cytometry analysis of cytokine production by the Treg cells activated in the presence of bacterial lysate.

(C) Flow cytometry analysis of proportions of naive (CD44loCD62Lhi) and activated (CD44hiCD62Llo) CD4+ T cells inWT andBMPR1aTR–mice injected with CFA in

the footpad and analyzed after 2 weeks.

(D) Flow cytometry analysis of cytokine production by effector CD4+ T cells.

(E) qRT-PCR analysis of BMPR1a transcript levels in Th (CD4+Foxp3GFP–) and Treg (CD4+Foxp3GFP+) cells sorted from draining lymph nodes of control and

immunized WT mice.

(F and G) Expression of Foxp3GFP (F) and indicated surfacemarkers (G) in Treg cells in the draining lymph nodes ofWT andBMPR1aTR–mice immunized with CFA.

(H) qRT-PCR analysis of IL-10 transcript levels in Treg cells sorted directly from WT and BMPR1aTR– mice (left plot) or activated in vitro (right plot). Histograms,

contour plots, and qRT-PCR are representative of three independent analyses. The frequency of naive, activated, IFN-g+ and IL-17+ cells, and surfacemarkerMFI

are means ± SD from all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by Student’s t test.

See also Figure S4.
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Network Analysis of Gene Expression
Differential gene-expression analysis established that the same

set of effector Th cell-associated genes is overexpressed in

BMPR1a-deficient CD4+ cells stimulated to become iTreg cells

and in activated, effector CD4+ cells (Browning et al., 2018). To

understand mechanistically how the same set of genes pro-

motes Th17 cell bias and prevents iTreg cell generation, we

used a system approach and generated weighted gene co-

expression networks (WGCNA) (Chou et al., 2014; Langfelder

and Horvath, 2008; Zhang and Horvath, 2005). This approach

looks at correlations of gene-expression levels and connects

genes with the same pattern of expression profiles. Comparison

of network topology identifies genes (nodes) and their interac-

tions (edges) specific for, or different between, cell populations

and provides insight into how similar signaling circuits (network

modules) in analyzed cell populations are. We reasoned that

functional changes observed in BMPR1a-deficient and -suffi-

cient iTreg cells are directed by differential expression of tran-

scription factors. Thus, using the WGCNA approach, we have

generated networks such that at least one node of each edge

is a transcription factor or a DNA modifying enzyme differentially

expressed (fold change R1.5 and statistically significant differ-

ence) between activated wild-type and BMPR1a-deficient

CD4+ T cells (611 genes) or wild-type and BMPR1a-deficient

iTreg cells (805 genes, 217 genes were common between acti-

vated and iTreg cells). Networks generated for activated wild-

type and BMPR1a-deficient CD4+ T cells included 1,408 and

1,844 edges, respectively, and networks generated for wild-

type and BMPR1a-deficient iTreg cells contained 1,307 and

2,757 edges (Table S3A–D).

To further examine how similar are network topologies, we

looked at what interactions are common or different between

examined cell subsets (Figure 6D). We found that the proportion

of edges shared by BMPR1a-deficient and -sufficient iTreg cells

(10.1%) is similar to the proportion of edges shared between

BMPR1a-deficient iTreg cells and activated BMPR1a-deficient

or -sufficient effector CD4+ cells (10.1 and 9.7%, respectively).

In contrast, lower proportions of network edges are shared by

wild-type iTreg cells and BMPR1a-deficient and -sufficient

effector CD4+ cells (5.0 and 7.0%, respectively). Thus, compar-

ison of network topologies suggests higher similarities of

BMPR1a-deficient iTreg cells to effector CD4+ T cells than to iTreg
cells generated from wild-type CD4+ T cells.

To examine how transcription factors associated with T cell

activation or generation of iTreg cells define phenotype of respec-

tive cells, we analyzed transcription factors constituting network

nodes in each cell subset (Figure 6D). We found that of 25 tran-

scription factors engaged in four networks only three (MYCN,

SOX13, and TFAP2A) are specific for an individual subset, and

the rest are expressed in more than one subset. This contrasts

with network edges, where almost all interactions are specific

for individual subsets (Figure 6D). This result indicates that Th

specification is defined mainly by differences in interactions be-

tween transcription factors and network molecules with only mi-

nor contribution of transcription factors specific for individual Th

subsets. Thus, our analysis corroborates earlier observations

that the limited number of transcriptional regulators confer a

diverse array of individual and context-dependent functions

and that Th specification is determined by combinatorial involve-

ment of a limited number of core transcription factors (Fu et al.,

2012; Hill et al., 2007; Shih et al., 2014; Yosef et al., 2013). This

interpretation is further illustrated by analysis of RORC subnet,

which contributes to networks of activated BMPR1a-deficient

and -sufficient Th cells and BMPR1a-deficient but not wild-

type iTreg cells (Figures 6D and 6E). Genes regulated by RORC

in BMPR1a-deficient iTreg cells include transcription factors

FOXP3, IKZF4 (EOS), EOMES, cytokines IL-6, IL-17, signaling

molecules SHIP, NOD1, and activation molecules 4-1BB

(TNFRSF9), RANKL (TNFSF11) known to regulate both Treg and

Th cell generation and stability (Curran et al., 2013; Kara et al.,

2015; Morikawa and Sakaguchi, 2014; Sharma et al., 2013).

Network analysis suggests that impaired generation of

BMPR1a-deficient iTreg cells is explained by the presence of reg-

ulatory circuits characteristic for activated effector Th cells and

suggests that BMPR1a signaling is important to silence tran-

scriptional modules shared with these cells.

Epigenetic Changes Are Associated with BMPR1a
Deficiency in Treg and iTreg Cells
Network analyses showed a broad impact of BMPR1a signaling

on transcriptional regulation of CD4+ T cells, affecting gene

expression controlling various cell functions. To identify a com-

monmechanism thatmay explain a significant range of observed

phenotypic changes in examined cells, we analyzed a set of

genes differentially expressed in both BMPR1a-sufficient and

-deficient Treg and iTreg cell types. KDM6B demethylase, an

antagonist of polycomb repressive complex 2 (PRC2), which

sustains repressive trimethylation of H3K27, was found to be ex-

pressed higher in activated but lower in iTreg cells generated from

wild-type CD4+ T cells compared to BMPR1a-deficient cells

(Figure 7A). In wild-type CD4+ T cells, iTreg cell generation is

accompanied by downregulation of KDM6B, while in BMPR1a--

deficient cells expression of KDM6B remains high. High expres-

sion of KDM6B was also found in Treg cells directly isolated from

BMPR1aTR– mice (Figure 7B). CDKN1A, a target of KDM6B, was

found upregulated in BMPR1a-deficient cells in NanoString and

RNA-seq analyses (Figures 5B and 6C). In CD4+ T cells, KDM6B

promotes proinflammatory immune responses and enhances

cellular senescence consistent with the observed elevated pro-

portion of mature Treg cells and increased antigenic response

Figure 4. BMPR1a Controls Maturation of Peripheral Treg Cells

(A and B) Flow cytometry analysis of naive (CD44loCD62Lhi) and activated (CD44hiCD62Llo) conventional Foxp3– CD4+ (A) and in Treg (B) cells.

(C) Expression of maturation markers on Foxp3GFPhigh and Foxp3GFPlow Treg cells from 2-month-old BMPR1aTR– mice. Data are representative of three mice per

genotype. The frequency of cells are means ± SD pooled from all experiments.

(D) Flow cytometry histograms of indicated surface markers on activated CD4+ Treg cells from 1- to 3-, 4- to 7-, and >8-month-old WT and BMPR1aTR– mice. At

least three mice per genotype per age group were analyzed. MFI data are means ± SD from all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as

determined by Student’s t test.
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in BMPR1aT– mice (Salminen et al., 2014). Previous reports

showed that KDM6B-controlled upregulation of CDKN1A and

CDKN2A (p16Ink4) not only regulated the cell cycle but also in-

hibited reprogramming into self-renewing pluripotent stem cells

(Zhao et al., 2013). This KDM6B activity promotes cell maturation

and opposes BMPs, which, through BMPR1a signaling, main-

tains cell stemness (Li et al., 2012; Ying et al., 2003). Consistent

with these reports, CDKN1A expression in T cells was found to

depend on the epigenetic status of DNA and was upregulated

by histone deacetylase inhibitors (Selma Dagtas and Gilbert,

2010).

To examine how KDM6B impacts Treg cells, sorted Treg cells

from wild-type and BMPR1aTR– mice were stimulated in vitro in

the presence of IL-2 and KDM6B inhibitor, GSK-J4 (Ntziachris-

tos et al., 2014). We found that, in the presence of the inhibitor,

FOXP3 expression was increased (Figure 7C). Inhibition of

KDM6B in naive BMPR1a-deficient and wild-type CD4+ T cells

stimulated in vitro with IL-2 and TGF-b in the presence of the

KDM6B inhibitor also upregulatedFOXP3expression (Figure 7D).

An opposite effect of KDM6B inhibition was observed for Th17

cells, where KDM6B inhibition resulted in lower proportion of

Th17 cells, as evidenced by decreased expression of RORC

and IL-17 (Figure 7E). In summary, inhibition of KDM6B pro-

motes generation of iTreg cells and inhibits generation of Th17

cells.

Thus, our data suggest that, as previously found for other

cell types, upregulation of KDM6B induces epigenetic

changes modulating expression of a number of genes,

including CDKN1A. To further investigate the mechanism of

BMPR1a signaling, we analyzed epigenetic modifications of

chromatin associated with the CDKN1A gene. Chromatin

immunoprecipitation demonstrated a decreased association

of H3K27me3 with CDKN1A gene in BMPR1a-deficient Treg
cells (Figure 7F). Chromatin analysis also showed similar

levels of repressive H3K27me3 modifications in FOXP3 gene

but decreased levels in RORC gene. Loss of repressive epige-

netic marks correlates with elevated transcript levels for

CDKN1A and RORC in BMPR1a-deficient Treg cells (Fig-

ure 5B). Co-expression of RORC and FOXP3 was reported

to regulate the Treg/Th17 cell phenotype and was detected

in subsets of Treg cells in inflammatory conditions and in tu-

mors (Blatner et al., 2012; Ren and Li, 2017; Yang et al.,

2016). In summary, chromatin analysis links epigenetic

changes with overexpression of CDKN1A and RORC and pro-

vides a mechanistic cue for decreased proliferation and stabil-

ity of BMPR1a-deficient Treg cells.

Figure 5. BMPR1a Controls Proliferation of Treg Cells, and

BMPR1a-Deficient Treg Cells Co-express Effector Th-Lineage Genes

(A) Flow cytometry analysis of BrdU incorporation by Treg cells from 3-month-

oldWT and BMPR1aTR–mice. Plots show the percentage of Treg cells fromWT

(open black circles) or BMPR1aTR– (closed gray circles) mice incorporating

BrdU and expressing high and low levels of FOXP3. Each dot represents one

mouse. Solid black dots represent the average, and vertical lines represent

standard deviations. *p < 0.05 as determined by Student’s t test.

(B) NanoString analysis of the fold-change expression of genes differentially

expressed in BMPR1a-deficient Foxp3GFPhigh or Foxp3GFPlow and WT

Foxp3GFP+ Treg cells, related to inflammatory cytokines and chemokines,

signaling and cell-cycle control, and transcription factors.
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DISCUSSION

We report that abrogation of BMPR1a signaling in Treg cells leads

to unstable expression and gradual loss of FOXP3. Mature Treg
cells expressing low levels of FOXP3 dominate aging

BMPR1aTR– mice, while the naive Treg subset, still expressing

high levels of FOXP3, is severely reduced. While upregulation

of activation markers in response to antigenic stimulation is

necessary for suppressor function of Treg cells, loss of BMPR1a

signaling is associated with accelerated aging and decreased

renewal of BMPR1a-deficient Treg cells (Levine et al., 2014;

Toomer et al., 2016). This is shown by their altered phenotype,

lower proportion of proliferating cells, and upregulation of the

cell-cycle inhibitor and senescence marker CDKN1A. The

reduced suppressor function of Treg cells in aging BMPR1aTR–

mice is demonstrated by the accumulation of an increased pro-

portion of activated effector CD4+ Th cells in situ. Phenotypic

and functional changes of Treg cells in BMPR1aTR– mice are

accelerated and amplified in inflammatory or lymphopenic con-

ditions. In immunized mice, an elevated proportion of CD4+ Th

cells responds to immunization and produces IFN-g and IL-17,

while Treg cells expressed low levels of surface molecules known

to promote their suppressor function. These changes were

observed even in young BMPR1aTR– mice, which still have a sig-

nificant population of Treg cells expressing high levels of FOXP3.

We postulate that in the absence of BMPR1a signaling Treg cells

lose their fitness as demonstrated by the loss of FOXP3, acqui-

sition of maturation markers, lower proliferation, and renewal.

Increased expression of maturation markers in a steady state

is an evidence of accelerated senescence and is consistent

with the known role of BMPs to regulate progenitor cell renewal

and differentiation of embryonic and tissue-specific stem cells

including T cell progenitors (Li et al., 2012; Varas et al., 2003;

Ying et al., 2003).

Uncovering the role of BMPR1a in Treg cells complements our

earlier reports on the role of this receptor in T cell ontogeny and in

regulating Th cell differentiation. Deleting BMPR1a in CD4+

T cells impairs generation of iTreg cells and promotes pro-inflam-

matory function of TGF-b by supporting differentiation of Th17

cells (Browning et al., 2018; Kuczma et al., 2014). These data

are consistent with reports demonstrating that inhibition of the

BMP signaling in rheumatoid arthritis patients augmented

inflammation induced by IL-17 and that BMPs ameliorated intes-

tinal and renal inflammation (Maric et al., 2012; Takabayashi

et al., 2014; Varas et al., 2015; Zeisberg et al., 2003). Our report

reveals that BMPR1a is not only an important regulator of embry-

onic development and stem/progenitor cell-fate decisions but

also controls immune homeostasis and inflammation (Bragdon

et al., 2011; Miyazono et al., 2010).

To gain mechanistic insight on the role of BMPR1a in regulato-

ry cells, we analyzed gene-expression profiles and demon-

strated higher expression of canonical transcription factors, cy-

tokines, and cytokine receptors associated with effector Th1/

Th17 lineages in Treg and iTreg cells deficient in BMPR1a. Expres-

sion of lineage specification transcription factors was reported in

Treg cells still expressing FOXP3 but progressing to acquire Th

cell effector phenotype consistent with our results (Beriou

et al., 2009; Radhakrishnan et al., 2008; Ren and Li, 2017; Voo

et al., 2009; Zhou et al., 2009a). Genes overexpressed in

BMPR1a-deficient Treg cells included transcription factors

RORC, BATF3, IRF4, BCL6, and STAT5A, cytokines and cyto-

kine receptors IL-17 and IL-17R, LTF, and IL-10, known to regu-

late balance between Treg and Th1/Th17 cell lineages, identifying

role of BMPR1a in maintaining Treg cells in peripheral tissues.

While PCA confirmed differences between BMPR1a-sufficient

and -deficient iTreg cells, network analysis explained how a

limited set of transcription factors, differentially expressed by

activated and iTreg cells, generated phenotypic plasticity. This

analysis identified RORC as a signaling hub controlling molecu-

lar circuits in the respective populations. In particular, RORC

expression correlated with expression of FOXP3, EOMES,

IKZF4, NOTCH2, and TSC22D1, transcription factors known to

regulate Treg and Th17 cells (Lupar et al., 2015; Qin et al.,

2017; Rong et al., 2016; Sharma et al., 2013; Yang et al.,

2008b). Signaling modules controlled by RORC are absent in

wild-type iTreg cells, which points to the importance of BMPR1a

signaling in iTreg cell generation.

To determine how molecular features of Th cells are estab-

lished in BMPR1a-deficient cells, we examined differentially ex-

pressed genes and found KDM6B and CDKN1A overexpressed

in both BMPR1a-deficient Treg and iTreg cells. CDKN1A controls

the proliferation of activated T cells and sustains T cell anergy

following treatment with histone deacetylase inhibitors (Arias

et al., 2007; Selma Dagtas and Gilbert, 2010). Deacetylase inhib-

itors have the same effect as increased activity of KDM6B to pro-

mote gene transcription, and KDM6B was reported to alter cell

senescence by upregulating CDKN1A (Zhao et al., 2013). Abro-

gation of the BMPR1a signaling in Treg cells leads to upregulation

of CDKN1A, especially decreasing proliferation and renewal of

Treg cells expressing high levels of FOXP3, which need to be acti-

vated to contain T cell activation of effector T cells (Levine et al.,

2014; Vahl et al., 2014). This explains increased accumulation of

activated effector CD4+ T cells in BMPR1aTR– mice in situ and in

response to immunization. This interpretation is consistent with a

Figure 6. Abrogation of BMPR1a Signaling Alters Gene Expression in iTreg Cells

(A) Volcano plot of genes differentially expressed in RNA-seq analysis of iTreg cells from BMPR1a-sufficient and -deficient CD4+ T cells.

(B) Principal-component analysis of genes expressed by BMPR1a-sufficient and -deficient iTreg cells. Small dots indicate component values for individual

samples, and large dots indicate average value for three samples.

(C) Fold-change expression and p values of genes controlling Th-lineage specification and Treg suppressor functions and differentially expressed in RNA-seq

analysis of iTreg cells from WT and BMPR1aT– mice.

(D) Venn diagrams of genes (nodes, top diagram) and interactions (edges, bottom diagram) comparing topologies of gene co-expression networks generated for

WT and BMPR1a-deficient, activated effector CD4+ Th and iTreg cells. All edges were present in networks with p > 0.66. Numbers of edges and nodes are shown

on diagrams.

(E) Co-expression subnet of RORC transcription factor. Network shows genes co-expressed with RORC in BMPR1a-deficient iTreg cells (light gray thin edge and

ellipse border line), wild-type (black thick edge and ellipse border line), and BMPR1a-deficient (dark gray thick edge and ellipse border line) activated CD4+ cells.
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recent report that epigenetic changes promoting CDKN1A upre-

gulation in intestinal Treg cells led to a loss of immune homeosta-

sis and onset of spontaneous colitis (Obata et al., 2014). Thus, as

previously reported, Treg cell senescence may be a factor in the

progression of chronic autoimmune diseases (Fessler et al.,

2017).

KDM6B is expressed at low levels in naive CD4+ T cells and is

upregulated upon T cell activation, reducing the repressive

H3K27 trimethylation mark specifically in the genetic loci of

RORC, IL-17, and IL-22 genes, promoting Th17-lineage specifi-

cation (Liu et al., 2015). Consistent with previous report, overex-

pression of KDM6B in BMPR1a-deficient CD4+ T cells is associ-

ated with enhanced Th17 and impaired iTreg cell differentiation

and reduced stability of peripheral Treg cells (Browning et al.,

2018). Inhibition of KDM6B in Treg and iTreg cells increased

FOXP3 expression and generation of iTreg cells while decreasing

RORC expression and production of IL-17. This result provides a

link between KDM6B overexpression, BMPR1a signaling, and

Th/Treg cell-lineage specification.

To further assess epigenetic modifications in BMPR1a-defi-

cient Treg cells, we examined chromatin methylation associated

with gene loci encoding CDKN1A, RORC, and FOXP3. Chro-

matin immunoprecipitation shows lower methylation of histone

H3 at lysine 27 in BMPR1a-deficient than in wild-type Treg cells

at CDKN1A andRORC loci. There was no difference in the extent

of H3K27me3-repressive marks for the FOXP3 gene. This result

suggests that lower and unstable expression of FOXP3 in

BMPR1a-deficient Treg cells may not be directly dependent on

epigenetic modifications at the FOXP3 gene locus but rather

result from permissive chromatin modifications and upregulation

at genes encoding transcription factors like RORC, which pro-

mote effector Th cell generation. Our results are consistent

with reports demonstrating that inhibition of enhancer of zeste

homolog 2, a histone H3K27 methyltransferase of the PRC2,

compromised Treg cell function in tumors and autoimmune dis-

eases (Wang et al., 2018; Xiao et al., 2020). Together, published

reports and our data suggest that BMPR1a and its ligands

modulate Treg cells by controlling KDM6B and modifying repres-

sive chromatin marks imposed by PRC2.

In summary, we have established that BMPR1a controls mo-

lecular circuits differentially present in effector and Treg cells

underscoring the role of this receptor in lineage specification.

We have identified the epigenetic modifier KDM6B and cell-cy-

cle and senescence regulator CDKN1A as molecules that, in

response to BMPR1a, modulate Treg cell fitness and transition

between Treg and Th1/Th17 cells. This indicates that BMPs not

only sustain tissue homeostasis but control essential mecha-

nisms of adaptive immune response.
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Figure 7. BMPR1a Controls Epigenetic Changes Associated with the Maturation and Stability of Treg Cells and Differentiation of iTreg and

Th17 Cells

(A and B) RNA-seq and qRT-PCR analysis ofKDM6BmRNA expression in activated and iTreg cells (A) and sorted Treg cells (B) fromWT andBMPR1aT–mice. Data

are means ± SD pooled from three independent RNA-seq samples or three sorts of Treg cells.

(C) qRT-PCR analysis of FOXP3 mRNA expression in Treg cells sorted from WT (left panel) and BMPR1aTR– (right panel) mice and stimulated with plate-bound

anti-CD3/anti-CD28 antibodies in the presence of IL-2 and in the absence (Ctrl) or presence of KDM6B inhibitor (GSK-J4, 600 nM).

(D) qRT-PCR analysis of FOXP3 mRNA expression and flow cytometry analysis of Foxp3GFP in naive CD4+ T cells sorted from WT and BMPR1aT– mice and

stimulated in iTreg polarizing conditions in the absence or presence of GSK-J4. Data are means ± SD pooled from three independent activations.

(E) qRT-PCR analysis of RORCmRNA expression and flow cytometry analysis of IL-17 in naive CD4+ T cells sorted fromWT and BMPR1aT– mice and stimulated

in Th17 polarizing conditions in the absence or presence of GSK-J4. Data are means ± SD pooled from three independent activations. *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001 as determined by Student’s t test.

(F) Analysis of relative abundance of CDKN1A, FOXP3, and RORC gene regions associated with tri-methylated histone H3. Treg cells were sorted from WT and

BMPR1aTR–mice and methylation of chromatin associated withCDKN1A, FOXP3, and RORC genes was examined by chromatin immunoprecipitation with anti-

H3K27me3 specific antibody and quantitative PCR. Two sets of experimental WT and BMPR1aTR– mice were analyzed.
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M., Föhse, L., Prinz, I., Pezoldt, J., Suerbaum, S., et al. (2016). Foxp3(+) T cells

expressing RORgt represent a stable regulatory T-cell effector lineage with

enhanced suppressive capacity during intestinal inflammation. Mucosal Im-

munol. 9, 444–457.

Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id

proteins suppresses differentiation and sustains embryonic stem cell self-

renewal in collaboration with STAT3. Cell 115, 281–292.

Yosef, N., Shalek, A.K., Gaublomme, J.T., Jin, H., Lee, Y., Awasthi, A., Wu, C.,

Karwacz, K., Xiao, S., Jorgolli, M., et al. (2013). Dynamic regulatory network

controlling TH17 cell differentiation. Nature 496, 461–468.

Yoshioka, Y., Ono, M., Osaki, M., Konishi, I., and Sakaguchi, S. (2012). Differ-

ential effects of inhibition of bone morphogenic protein (BMP) signalling on T-

cell activation and differentiation. Eur. J. Immunol. 42, 749–759.

Yu, A., Zhu, L., Altman, N.H., andMalek, T.R. (2009). A low interleukin-2 recep-

tor signaling threshold supports the development and homeostasis of T regu-

latory cells. Immunity 30, 204–217.

Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F.,

and Kalluri, R. (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-

mesenchymal transition and reverses chronic renal injury. Nat. Med. 9,

964–968.

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-

expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17.

Zhao, W., Li, Q., Ayers, S., Gu, Y., Shi, Z., Zhu, Q., Chen, Y., Wang, H.Y., and

Wang, R.F. (2013). Jmjd3 inhibits reprogramming by upregulating expression

of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152, 1037–1050.

Zhou, X., Jeker, L.T., Fife, B.T., Zhu, S., Anderson, M.S., McManus, M.T., and

Bluestone, J.A. (2008). Selective miRNA disruption in T reg cells leads to un-

controlled autoimmunity. J. Exp. Med. 205, 1983–1991.

Zhou, L., Chong,M.M., and Littman, D.R. (2009a). Plasticity of CD4+ T cell line-

age differentiation. Immunity 30, 646–655.

Zhou, X., Bailey-Bucktrout, S.L., Jeker, L.T., Penaranda, C., Martı́nez-Llor-

della, M., Ashby, M., Nakayama, M., Rosenthal, W., and Bluestone, J.A.

(2009b). Instability of the transcription factor Foxp3 leads to the generation

of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007.

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk,

O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-ori-

ented resource for the analysis of systems-level datasets. Nat. Commun. 10,

1523.

18 Cell Reports 33, 108219, October 6, 2020

Article
ll

OPEN ACCESS
t'Ce =>ress Cell Reports 

http://refhub.elsevier.com/S2211-1247(20)31208-0/sref110
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref110
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref111
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref111
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref111
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref111
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref112
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref112
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref112
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref113
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref113
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref113
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref113
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref113
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref114
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref114
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref114
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref115
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref115
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref115
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref116
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref116
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref116
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref117
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref117
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref117
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref118
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref118
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref118
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref118
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref119
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref119
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref120
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref120
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref120
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref121
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref121
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref121
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref122
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref122
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref123
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref123
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref123
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref123
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref124
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref124
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref124
http://refhub.elsevier.com/S2211-1247(20)31208-0/sref124


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD3e (145-2C11) BD Biosciences Cat# 553058; RRID: AB_394591

Anti-Mouse CD28 (37.51) BD Biosciences Cat# 553295; RRID: AB_394764

Anti-Mouse CD4-PE (GK1.5) BD Biosciences Cat# 553730, RRID:AB_395014

Anti-Mouse CD4-PE-Cy5 (GK1.5) Thermo Fisher Scientific Cat# 15-0041-82, RRID:AB_468695

Anti-Mouse CD4-APC (GK1.5) BD Biosciences Cat# 553051, RRID:AB_398528

Anti-Mouse CD4-PECy7 (GK1.5) Thermo Fisher Scientific Cat# 25-0041-82, RRID:AB_469576

Anti-Mouse CD4-APC-Cy7 (GK1.5) BD Biosciences Cat# 552051, RRID:AB_394331

Anti-Mouse CD44-PE-Cy7 (IM7) BD Biosciences Cat# 560569, RRID:AB_1727484

Anti-Mouse CD44-PE-Cy5 (IM7) BD Biosciences Cat# 553135, RRID:AB_394650

Anti-Mouse CD44-PE (IM7) BioLegend Cat# 103008, RRID:AB_312959

Anti-Mouse CD62L-APC-Cy7 (MEL-14) BD Bioscience Cat# 560514, RRID:AB_10611861

Anti-Mouse CD45.1-BV421 (A20) BD Bioscience Cat# 563983, RRID:AB_2738523

Anti-Mouse CD45.2-APC-Cy7 (104) BD Bioscience Cat# 560694, RRID:AB_1727492

Anti-Mouse CD45.2-V500 (104) BD Bioscience Cat# 562129, RRID:AB_10897142

Anti-Mouse CD25-PE-Cy7 (PC61) BD Bioscience Cat# 561780, RRID:AB_10893596

Anti-Mouse CD25-V450 (PC61) BD Bioscience Cat# 561257, RRID:AB_10611871

Anti-Mouse CD137 (4-1BB)-Biotin (17B5) BioLegend Cat# 106104, RRID:AB_313241

Anti-Mouse CD278 (ICOS)-PE-Cy5 (15F9) BioLegend Cat# 107708, RRID:AB_313337

Anti-Mouse Klrg-1-Biotin (2F1) BD Bioscience Cat# 550863, RRID:AB_393931

Anti-Mouse CD127 (IL-7Ra)-PE-Cy5 (A7R34) BioLegend Cat# 135015, RRID:AB_1937262

Anti-Mouse CD8a-Biotin (53-6.7) BD Bioscience Cat# 553029, RRID:AB_394567

Anti-Mouse CD45R (B220)-Biotin (RA3-6B2) BioLegend Cat# 103204, RRID:AB_312989

Anti-Mouse CD11b-Biotin (M1/70) BioLegend Cat# 101204, RRID:AB_312787

Anti-Mouse CD11c-Biotin (HL3) BD Bioscience Cat# 553800, RRID:AB_395059

Anti-Mouse TER-119-Biotin (TER-119) BioLegend Cat# 116204, RRID:AB_313705

Anti-Mouse CD49b-Biotin (DX5) BioLegend Cat# 108904, RRID:AB_313411

Anti-Mouse CD196 (CCR6)-PE (29-2L17) BioLegend Cat# 129803, RRID:AB_1279139

Anti-Mouse CD45/B220-Biotin (RA3-6B2) BioLegend Cat# 103204, RRID:AB_312988

Anti-Mouse IL-17a-PE (TC11-18H10) BD Bioscience Cat# 559502, RRID:AB_397256

Anti-Mouse RORgt-PE (Q31-378) BD Bioscience Cat# 562607, RRID:AB_11153137

Anti-Mouse IFN-gamma-APC (XMG1.2) BD Bioscience Cat# 554413, RRID:AB_398551

Anti-Mouse IL23R-PE (3C9) BD Bioscience Cat# 562468, RRID:AB_11154593

Anti-Mouse CD39-Biotin (5F2) BioLegend Cat# 135704, RRID:AB_2099920

Anti-Mouse CD279 (PD-1)-PE-Cy7 (29F.1A12) BioLegend Cat# 135215, RRID:AB_10696422

Anti-Mouse TIGIT-PE (1G9) BioLegend Cat# 142103, RRID:AB_10895760

Anti-BrdU-PE (3D4) BioLegend Cat# 364116, RRID:AB_2814317

Streptavidin-V500 BD Biosciences Cat# 561419, RRID:AB_10611863
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Recombinant Murine IL-2 PeproTech Cat# 212-12

Recombinant Murine IL-6 PeproTech Cat# 216-16

Recombinant Human TGF-b1 PeproTech Cat# 100-21
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eFluor-670 Thermo Fisher Scientific Cat# 50-246-095
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BD Cytofix/Cytoperm Plus Fixation/Permeabilization
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Staining Buffer Set

Thermo Fisher Scientific Cat# 00-5523-00

PureLink� RNA Mini kit Thermo Fisher Scientific Cat# 12183018A

RNeasy Plus Mini Kit QIAGEN Cat# 74136

EZ-CHIP chromatin immunoprecipitation kit Millipore Cat# 17-371

TaqMan� Universal Master Mix II Thermo Fisher Scientific Cat# 4440043

Power Sybr Green PCR Master Mix Thermo Fisher Scientific Cat# 4368577

SuperScript IV First-Strand Synthesis System Thermo Fisher Scientific Cat# 18091050

GoTaq DNA polymerse with buffer Promega Cat# M3008

Deposited Data

RNA-seq This paper GEO: GSE103124

Experimental Models: Organisms/Strains

Mouse: Foxp3GFP+ (wild-type) The Jackson Laboratory JAX, Stock#: 023800

Mouse: Tcratm1Mom The Jackson Laboratory JAX, Stock#: 002116

Mouse: BMPR1a conditional knockout Gift from Dr. P. Thistlethwaite, UCSD NA

Mouse: BMPR1aTR- This paper NA

Mouse: BMPR1aT- This paper NA

Mouse Foxp3creGFP+ The Jackson Laboratory JAX, Stock#: 023161

Mouse CD4-cre Taconic Model#: 4196

Citrobacter rodentium Gift from Dr. T. Denning, GSU NA

Oligonucleotides

Foxp3 (Mm00475157_g1) Thermo Fisher Scientific Cat# 4331182

Rorc (Mm01261022_m1) Thermo Fisher Scientific Cat# 4331182

Kdm6b (Mm01332680_m1) Thermo Fisher Scientific Cat# 4331182

BMPR1a (Mm00477650_m1) Thermo Fisher Scientific Cat# 4331182

IL-10 (Mm00439614_m1) Thermo Fisher Scientific Cat# 4331182

Actb (Mm01205647_g1) Thermo Fisher Scientific Cat# 4331182

Oligonucleotide sequences for ChIP and

conventional PCR analyses are listed in Table S4

Software and Algorithms

FlowJo v10 Tree Star, Inc. https://www.flowjo.com/

nSolver Analysis nanoString, Inc. https://www.nanostring.com/products/

analysis-software/nsolver

Tophat2 Johns Hopkins University Center

for Computational Biology

http://ccb.jhu.edu/software/tophat/

index.shtml

Cufflinks 2.1.1 University of Washington http://cole-trapnell-lab.github.io/cufflinks/

Metascape Metascape web site http://metascape.org

R R https://www.r-project.org/

Cytoscape NIGMS and NRNB https://cytoscape.org/
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RESOURCE AVAILABILITY

Lead Contact
Further information and resource requests should be directed to and will be fulfilled by the Lead Contact, Piotr Kraj (pkraj@odu.edu).

Materials Availability
Mouse lines generated in this study are available from the corresponding author.

Data and Code Availability
The accession number for the sequencing data for RNA-seq reported in this paper and submitted to GEO is GSE103124.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
BMPR1aTR- mice were generated by crossing BMPR1a conditional knockout mice with mice expressing creGFP fusion protein

controlled by FOXP3 gene regulatory sequences and Foxp3GFP reporter mice (Kuczma et al., 2009b; Mishina et al., 1995; Zhou

et al., 2008). BMPR1aT� mice were generated by crossing BMPR1a conditional knockout mice with mice expressing CD4cre and

Foxp3GFP reporter (Lee et al., 2001; Mishina et al., 2002). TCRa chain knockout (TCRa-) mice were purchased from Jackson Labo-

ratory (Mombaerts et al., 1992). All mice were on the C57BL6 genetic background. Mice were bred and housed in specific pathogen-

free conditions in the animal facility of Old Dominion University. Both female and male mice were used in experiments and we have

not observed any difference in T cell development and activation between sexes. Unless indicated, mice were 6 to 12 weeks old. All

experiments were conducted in accordance with NIH guidelines for the use of live animals and were approved by the IACUC and IBC

of the Old Dominion University.

Bacterial strains
Citrobacter rodentium was used to induce mucosal inflammation (Crepin et al., 2016). For inoculations, bacteria were grown over-

night in L broth, diluted with PBS to an optical density of 1.7 at 600 nm and delivered to mice via oral gavage in a 100 mL volume

containing 1.5x107 CFU.

METHOD DETAILS

Adoptive Transfer of T Cells into Lymphopenic Mice
CD4+Foxp3GFPhigh (Ly5.2+) cells from BMPR1aTR- mice, CD4+Foxp3GFP (Ly5.1+Ly5.2+) and naive (CD44lowCD62Lhigh) (Ly5.1+) CD4+

T cells from wild-type mice were flow sorted, mixed, and used for adoptive transfer. Total of 5x105 cells of CD4+Foxp3GFPhigh cells

from BMPR1aTR- mice and CD4+Foxp3GFP and naive T cells from wild-type mice were co-transferred i.v. into TCRa- mice. Cells pro-

portions, mixed at a ratio of 1:0.15:0.15, were analyzed prior to transfer using Ly5.1 (CD45.1) and Ly5.2 (CD45.2) staining. Mice were

monitored for 6weeks at which time they were sacrificed andmesenteric lymph nodeswere isolated and analyzed. For single Treg cell

transfer, CD4+Foxp3GFP+ T cells were flow sorted from wild-type (Ly5.1+) and BMPR1aTR- (Ly5.2+) mice, along with naive

(CD44lowCD62LhighLy5.1+/�) CD4+ T cells from wild-type mice. 105 CD4+Foxp3GFP T cells from either BMPR1aTR- or wild-type

mice were co-transferred along with 1.5x106 naive T cells from wild-type mice into TCRa- mice. Mice were monitored for 12 weeks

at which time they were sacrificed and mesenteric lymph nodes were isolated and analyzed.

In Vivo Activation and Immunization
For in vivo activation, mice were immunized in the footpad with Complete Freud’s Adjuvant (CFA; Sigma). Animals were sacrificed

2 weeks later and popliteal draining lymph nodes were isolated and analyzed.

To examine the impact of inflammation on BMPR1a-sufficient and deficient Treg cells mice were infected with Citrobacter roden-

tium to induce mucosal inflammation (Crepin et al., 2016). Mice were analyzed after 8 days.

T Cell Activation
For in vitro activation of Treg cells, flow cytometry sorted CD4+Foxp3GFP+ cells were labeledwith eFluor 670 (Thermo Fisher Scientific),

stimulated with antibodies against CD3 (5 mg/ml, 2C11; BD Biosciences), with IL-2 (10 ng/ml; PeproTech) and Haemophilus influen-

zae lysate (10 mg/ml) in the presence of antigen presenting cells in aMEM media (HyClone) supplemented with 10% Fetal Bovine

Serum (Atlanta Biologicals), 2 mM L-glutamine, dextrose, essential and non-essential amino acids, sodium pyruvate, sodium bicar-

bonate, antibiotics, and 2-b-mercaptoethanol. Cells were cultured and analyzed after 3.5 days.

For KDM6B inhibitor studies, flow cytometry sorted CD4+Foxp3GFP+ cells were stimulated with plate-bound antibodies against

CD3 (10 mg/ml, 2C11) and CD28 (1 mg/ml, 37.51)(both from BD Biosciences), with IL-2 (10 ng/ml; PeproTech) with or without

KDM6B inhibitor, GSK-J4 (600 nM; Tocris Bioscience). Cells were cultured and analyzed after 4 days.
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To produce polarized effector cells, flow cytometry purified CD4+ T cells were stimulated with plate-bound antibodies against CD3

and CD28. For Th17 differentiation, cells were stimulated in the presence of IL-6 (20 ng/ml; PeproTech) and TGF-b (3 ng/ml; Pepro-

Tech) in the presence or absence of GSK-J4 (400 nM). For iTreg differentiation, cells were stimulated in the presence of IL-2 (5 ng/ml;

PeproTech) and TGF-b (3 ng/ml; PeproTech) in the presence or absence of GSK-J4 (600 nM, Tocris). Cells were cultured and

analyzed after 4 days.

For overnight activation, CD4+ cells isolated from lymph nodes of TCRa- recipients of adoptively transferred cells were stimulated

with Con A (2 mg/ml; Sigma) and analyzed the next day for cytokine production using flow cytometry.

In Vitro Treg Proliferation Inhibition Assay
CD4+Foxp3GFP- cells sorted from wild-type mice used as responder cells (5x104/well) were incubated on a 96-well plate with irradi-

ated splenocytes from TCRa- mice (5x104/well, 3000 rad) and soluble anti-CD3ε Ab (5 mg/ml). Various numbers of Treg
(CD4+Foxp3GFP+) cells (0.5–2.5x104/well) were sorted fromwild-type or BMPR1aTR-mice and added to responder cells. Proliferation

was assessed by measurement of incorporated 3H-thymidine added (1 mCi/well) on the third day of a 4-d culture as described

(Kuczma et al., 2009a).

Cell Preparation and Flow Cytometry
Single cell suspensions were prepared from lymph nodes, spleen, thymus or cells activated in vitro and stained with antibodies

labeled with FITC, PE, PE-Cy5, PE-Cy7, APC, APC-Cy7, Alexa Fluor 680, Alexa Fluor 780, BV421, BV510 or biotin. Antibodies

were purchased from eBioscience, BD Biosciences or BioLegend. Following antibodies were used: CD4 (GK1.5), CD8 (53-6.7),

CD44 (IM7), CD25 (PC61), CD62L (MEL-14), 4-1BB (17B5), Klrg-1 (2F1), CCR6 (29-2L17), CD127 (A7R34), CD39 (5F2), IL-23R

(3C9), CD45.1 (A20) and CD45.2 (104). For intracellular cytokine staining cells were isolated from lymphoid organs or activated

in vitro. Before staining, cells were incubated for 3 hr. with 10 mg/ml Brefeldin A (BD Biosciences), 50 ng/ml PMA (Sigma) and

1 mg/ml Ionomycin (MP Biomedical) in T cell culture medium. After the 3 hr. incubation period, cells were stained for surface markers

first and then fixed usingCytofix/Cytoperm kit (BDBiosciences) and stainedwith antibodies specific for IFN-g (XMG1.2), IL-17 (TC11-

18H10) labeled with fluorochromes. For intracellular staining for RORC (Q31-378 antibody, BD Biosciences) cells were stained first

for surface markers and then for RORC using Transcription Factor Staining Buffer kit (eBioscience). All flow cytometry samples were

run on a BD FACSCanto II (BD Bioscience) and analyzed using FlowJo software (Tree Star Inc.). Cell sorting was done on a BD Influx

(BD Biosciences). For cell sorting lymph node and spleen cells were enriched by negative selection by staining with biotinylated an-

tibodies specific for CD11b (M1/70), CD11c (HL3), Ter119 (Ter-119), CD49b (DX5) and B220 and magnetic beads (BD IMag, BD Bio-

sciences) selection.

Bromodeoxyuridine Incorporation Assay
For in vivo BrdU labeling of proliferating cells, mice were given 0.8 mg/ml BrdU (Sigma) in the drinking water for 4 days. For detection

of BrdU incorporation, cells were stained with surface markers and PE-conjugated anti-BrdU antibody according to protocol in BrdU

Flow Kit (BDBiosciences). Cells were stained for surfacemarkers first and then fixed using Cytofix/Cytoperm buffer (BDBiosciences)

for 30 min. at 4�C. Cells were washed with Cytoperm/Wash buffer, incubated in BD Cytoperm Plus buffer for 10 min. at 4�C, washed

again with Cytoperm/Wash buffer and fixed again with Cytofix/Cytoperm buffer for 5 min. After washing with Cytoperm/Wash buffer

cells were treated with DNase I (300 mg/ml in PBS, Sigma) for 1 hour at 37�C, washed with Cytoperm/Wash buffer and stained with

anti-BrdU antibody for 30 min. at room temp.

Gene Expression Analysis
RNA was prepared according to manufacturer’s instructions (PureLink� RNA kit, Thermo Fisher Scientific) and reverse-transcribed

with SuperScript IV (Thermo Fisher Scientific) per manufacturer’s instructions. Equal amounts of cDNA were used in triplicates to

detect transcripts of BMPR1a (Mm00477650_m1), FOXP3 (TaqMan probe set Mm00475157_g1), KDM6B (Mm01332680_m1),

RORC (Mm01261022_m1) and IL-10 (Mm00439614_m1) using TaqMan� Universal Master Mix II (Thermo Fisher Scientific) in the

StepOne Real-Time PCR System (Applied Biosystems). The cycle parameters used were: heating 25 to 50�C for 2 min., 95�C for

10 min., then 40 cycles of 95�C for 15 s. and 60�C for 1 min. The transcript abundance of each gene was normalized to b-actin (Taq-

Man probe set Mm01205647_g1). Primers for conventional semiquantitative PCR were for BMPR1a forward 50-GCCCAGATGATGC

TATTAATAACAC, reverse 50-GGATGCTGCCATCAAAGAACGGAC; b-actin forward 50-CTAGGCACCAGGGTGTGATGGT, reverse

50-CTCTTTGATGTCACGCACGATTTC (Table S4) (Kuczma et al., 2014). PCR reaction was done in Mastercycler Plus (Eppendorf)

using GoTaq polymerase (Promega). Cycle parameters were: denaturation for 2 min at 94�C and then 30 cycles of 94�C for 10 s.,

56�C for 30 s. and 72�C for 45 s.

NanoString Analysis
Multiplexgeneexpressionanalysisusingan immunologypanel ofgeneswasperformedbyNanoStringTechnologies.CD4+Foxp3GFPhigh

and CD4+Foxp3GFPlow T cells from BMPR1aTR- mice and CD4+Foxp3GFP from wild-type mice were flow sorted from lymph nodes and

spleens of old (> 7 month) or young (2-3 months) mice. Total RNA was prepared according to manufacturer’s instructions (PureLink�
RNA kit, Thermo Fisher Scientific). RNA concentrations were determined using a NanoDrop 2000 Spectrophotometer (Thermo Fisher
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Scientific).GeneexpressionanalysiswasdoneusingMouse InflammationCodeSetVer. 2byNanoStringTechnologies.Differential gene

expression analysis was performed using nSolver software suit. The list of genes differentially expressed between Foxp3GFPhigh and

Foxp3GFPlow and wild-type Foxp3GFP+ Treg cells is included in Table S1 in Supplemental data.

RNA-Seq and Transcriptome Analysis
Global analysis of gene expression was performed using HiSeq 2500 platform in Georgia Cancer Center Core Facility, Augusta Uni-

versity. Naive CD4+CD44-CD62L+Foxp3GFP- cells were flow sorted from lymph node and spleens of unmanipulated wild-type mice.

Lymph node and spleen cells isolated from wild-type or BMPR1aT- mice were activated with Con A (2 mg/ml, Sigma) in the presence

of IL-2 (5 ng/ml; PeproTech) and TGF-b (3 ng/ml; PeproTech) and activated CD4+Foxp3GFP+ cells were flow cytometry sorted. At least

three different samples were processed for each cell type. Total RNA was prepared using commercial kit (QIAGEN). Sequencing li-

brary was prepared using Illumina kit. RNA-seq data analysis was performed using Tuxedo protocol as described in (Trapnell et al.,

2012). Briefly, sequencing reads were aligned to reference genome (GRCm38) using Tophat2, followed by estimation of RNA using

Cufflinks 2.11. Differential gene expression analysis was performed using Cuffdiff application of Cufflinks. Genes were considered

differentially expressed if absolute fold change was greater than 1.5 and adjusted p value was < 0.05. The list of genes is included

in Table S2. To visualize differences between gene expression profiles of wild-type and BMPR1a-deficient iTreg cells we performed

principal component analysis (PCA). The gene lists subject to PCA analysis included all genes with expression levels above the

threshold allowing for differential expression analysis in Cufflinks suite. Expression profiles of genes differentially expressed between

wild-type and BMPR1a-deficient iTreg cells were visualized as volcano plot. Gene Ontology and gene enrichment analyses were per-

formed using Metascape (http://metascape.org) (Zhou et al., 2019). Weighted gene co-expression networks (WGCNA) were gener-

ated for populations of wild-type and BMPR1a-deficient iTreg cells and activated CD4+ T cells using WGCNA package in R (Lang-

felder and Horvath, 2008). Expression data for BMPR1a-sufficient and deficient naive and activated CD4+ T cells were previously

published (Browning et al., 2018). Bioinformatics analyses were performed in College of Public Health of Ohio State University. Net-

works and network graphs were edited using Cytoscape (Shannon et al., 2003; Tripathi et al., 2015).

Chromatin Immunoprecipitation (ChIP)
Treg (CD4

+Foxp3GFP+) cells were flow sorted from 3-4 month old wild-type or BMPR1aTR- mice. ChIP was performed using reagents

and protocol from EZ-Chip kit (Millipore). Cells were crosslinked in culture media with formaldehyde (1%) for 10 min. at room tem-

perature. After rinsing with ice-cold PBS cells were lysed in lysis buffer in the presence of protease inhibitors. Cell lysate was son-

icated with cup horn sonifier (Branson) on wet ice. An aliquot of lysate was saved as input control at this step. After pre-clearing with

protein G agarose beads cell lysates were incubated with anti-H3K27me3 specific antibody (Cell Signaling) overnight at 4�C and

immunoprecipitated with protein G agarose. After washing and elution, cross-links were reversed at 65�C for 4 hours. The eluted

DNA was purified and samples were analyzed by quantitative-PCR with SYBRGreen using 7900HT real-time PCR cycler (Applied

Biosystems). The Ct value for each immunoprecipitated sample was normalized to the corresponding control input value and ex-

pressed as fold change relative to control. Primers spanning promoter and control regions of CDKN1A, FOXP3 and RORC were

as described (Table S4) (Ghoreschi et al., 2010; Ishimura et al., 2012; Xiong et al., 2012). Primer sequences are: CDKN1A forward

50-GCACTGGATTGAGACCAGAATC, reverse 50-CCAAATAGGTCACTGTGCCG and forward 50-GTTTCAGAGAGGACACTCAGGC,

reverse 50-CTTGATCTCCACGCCCAAAG; FOXP3 forward 50-ATATTGTTCCTGACAGGACTAG, reverse 50-GCAGCTCAGTGCCA

;GAGTGCTTG and forward 50-CTCTGGAGACAGAGCACTAC, reverse 50-ACGTTGGAGGATCGCTGGGTT; RORC forward 50-
AGAAAGAAAAGGGGAACTGG, reverse 50-CTATTGTGGCTGCTGAGTTC. The cycle parameters used were: heating 25 to 50�C
for 2 min., 95�C for 10 min., then 40 cycles of 95�C for 15 s., 70�C for 30 s. and 72�C for 30 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

P values were calculated with the two-tailed Student’s test for two-group comparison, as applicable, with Microsoft Excel Software.

Data are presented as means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, as determined by Student’s t test. Network

analysis was done using WGCNA and R software.
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