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In fish that are not bilaterally symmetrical, the left and right sagittae are often not symmetrical, exhibiting divergent growth patterns and
mass, and may have differences in chemical composition. We investigated this in the asymmetrical summer flounder Paralichthys dentatus,
collected from different nursery habitats along the US east coast. Significant differences were detected in otolith mass, 3'C, 820, Li:Ca,
Mg:Ca, and Sr:Ca, and overall chemical signatures. These results refute the hypothesis of left - right equivalence that is prevalent for bilat-
erally symmetrical fishes. We tested whether a specific side was better suited for classification. The best models differed between sagittae
and resulted in different classification accuracies. The left otolith produced better classification accuracies. Simulated samples of rando-
mized sets of left or right otoliths produced mean accuracies intermediate to classification and were often highly variable. We recommend
that future otolith chemistry studies involving bilaterally asymmetrical species test the hypothesis of equivalence within the sagittae before

randomly choosing an otolith for chemical analyses.
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Introduction

Otolith chemistry is an expanding field of research that has been
used to evaluate stock structure (Thresher, 1999; Thresher and
Proctor, 2007), migratory patterns (Hamer et al., 2006; Fairclough
et al., 2011), temperature and salinity histories (Secor et al., 1995;
Townsend et al., 1995), and physiology (Wurster et al., 2005;
Solomon et al., 2006), based on the use of the otolith as a natural
tag (Campana, 1999). Because the otolith is metabolically
inert, all incorporated environmental signatures are preserved
(Campana, 1999). Thus, different elemental signatures may be
used as markers to discern different environments, both spatially
and temporally (Chesney et al., 1998; Campana, 1999; Schaffler
et al., 2009).

In teleosts, there are three pairs of otoliths, with the sagittae being
the most commonly used for otolith chemistry due to their larger
size, with the notable exception of some Ostariophyseans, where
sagittae are not used because the lapilli are larger (Long and

Stewart, 2010). Sagittae, lapillae, and asteriscae do not carry match-
ing elemental signatures (Meyer-Rochow et al., 1992; Chesney et al.,
1998; Chittaro et al., 2006; Smith and Jones, 2006), so the hypothesis
of interest should dictate which pair of otoliths should be targeted
(Smith and Jones, 2006). When otoliths grow at different rates,
they emphasize different portions of the life history, albeit with
sagittae reflecting lifetime habitat most closely (Smith and Jones,
2006). However, the researcher must still choose which otolith to
use from the pair, and often randomly chooses with the assumption
of equivalent chemistry between the paired otoliths (Thorrold et al.,
1997; Walther and Thorrold, 2006). This has been the case for both
stable oxygen and carbon isotopes (Iacumin et al., 1992; Thorrold
et al., 1997; Hoie et al., 2004) and trace element concentrations
(Gauldie, 1996; Rooker et al., 2001). These analysed species were bi-
laterally symmetrical with no differences in otolith mass and,
perhaps as a consequence, no differences in elemental signatures
between pairs. The generality of this phenomenon was further

©2013 International Council for the Exploration of the Sea. Published by Oxford University Press. All rights reserved.

For Permissions, please email: journals.permissions@oup.com

Downl oaded from https://academ c. oup. conlicesjns/article-abstract/71/2/ 356/ 785793
by O d Dominion University user

on 02 July 2018


mailto:akajajia@odu.edu
mailto:akajajia@odu.edu
mailto:anto.k@live.com
mailto:anto.k@live.com
mailto:anto.k@live.com

Isotope chemistry within the sagittal otolith pair of the summer flounder

investigated and confirmed in Atlantic cod (Campana et al., 2000),
striped bass (Secor et al., 2001) and blackfin tuna (Arslan and Secor,
2008). However, there are instances where significant variation has
been detected between the left and right otoliths of symmetrical
fishes (Kalish, 1991; Outridge et al., 2002). The question is further
compounded if the species displays marked asymmetry, such as in
many flatfishes (Nelson, 2006). Therefore, some researchers have
chosen to systematically sample one member of the pair (Schaffler
and Winkelman, 2008; Tanner et al,, 2012) and substitute the
other member of the pair only in instances of loss or destruction
of the targeted otolith (Campana, 1999; Loher et al., 2008).

The summer flounder Paralichthys dentatus (Linnaeus, 1766) is
an important target of commercial and recreational fisheries along
the US east coast (Gutherz, 1967; Grimes et al., 1989; Terceiro,
2011). The centre of abundance extends from Cape Cod in New
England to Cape Hatteras in North Carolina, i.e. the Mid-Atlantic
Bight (MAB) (Wilk et al., 1980; Packer et al., 1999), though other
studies extend the area of abundance to South Carolina (Kraus
and Musick, 2001). Summer flounder is a migratory species that
moves between coastal and estuarine summer feeding grounds
(Packer et al, 1999) and continental shelf winter spawning
grounds (Wilk et al., 1980; Morse, 1981; Sackett et al, 2007).
Similar to many other offshore winter spawning species (Miller
et al., 1984; Warlen and Burke, 1990; Schaffler et al., 2009), the
larval period is protracted, extending between September and
May; the larvae start to arrive into the coastal or estuarine systems
that comprise their nursery habitats between November and April
(Smith, 1973; Able et al., 1990; Szedlmayer et al., 1992; Kraus and
Musick, 2001). The potential for high rates of mixing at the larval
stage, combined with a lack of genetic differentiation among
hypothesized subpopulations north and south of Cape Hatteras
(Jones and Quattro, 1999), has led managers to consider the
summer flounder as a single unit stock, extending from Cape
Hatteras northwards to New England (Terceiro, 2011).

The species is bilaterally asymmetrical as an adult because of the
migration of the right eye to the left side of the head during meta-
morphosis (Keefe and Able, 1993; Martinez and Bolker, 2003). In
flatfishes, even though the semicircular canals remain in their ori-
ginal symmetrical position and the vestibular systems conserve
their morphology, the otoliths grow on top of each other because
the fish is resting on its blind side (Leech, 1923; Platt, 1973). This
can result in significant differences in mass between the otolith
pairs (Sogard, 1991; Fischer and Thompson, 2004; Helling et al.,
2005), which may translate to differences in the incorporation of
elemental signatures into the carbonate of the otoliths due to onto-
genic shifts (Loher ef al., 2008). Loher et al. (2008) have conducted
the only study ofits kind in investigating the left—right differences in
otolith chemistry in an asymmetrical species, the Pacific halibut,
Hippoglossus stenolepis. They found significant differences in 8'°C,
3'80, and Sr, but no differences in other trace elements (Loher
et al., 2008). This indicates that randomly selecting an otolith for
geochemical analysis, or considering them interchangeable, could
increase the variance observed in element and isotope concentra-
tions, and ultimately reduce classification accuracies. The sampling
plan is an integral part of any study designed to examine habitat-
specific differences in otolith chemical signatures. Therefore, the
question of equivalence in the otoliths with respect to this research
aim takes on added importance.

We test the hypothesis of equivalence between the chemistries of
left and right sagittal otoliths of summer flounder. This will be
addressed by (i) testing for differences in otolith mass between the
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left and right sagittae, (ii) evaluating specific differences in 3¢
and 8'%0 stable isotope ratios, and (iii) evaluation specific differ-
ences in trace elements Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb between
the left and right otoliths, as well as (iv) developing a simulation
model to evaluate the classification success for either left or right
otolith as compared with randomly selecting a left or right otolith.
The results of this study provide important insights into the use of
otolith chemistry as natural tags for species that are asymmetrical.

Material and methods

Field collections and otolith preparation

Scientists from US State natural resource agencies and universities
collected juvenile summer flounder in fall 2011 from estuarine habi-
tats along the US east coast. The areas sampled were Delaware Bay,
Chesapeake Bay, Pamlico Sound, and the coastal inshore waters of
South Carolina and Georgia (Figure 1). Fish were collected with
bottom trawls operated in support of monitoring efforts. After
capture, fish were frozen and transported to our lab (Center for
Quantitative Fisheries Ecology at Old Dominion University),
where total length (L) was measured to the nearest 1 mm and
body mass (M) to the nearest 0.01 g for all individuals using an
Ohaus CS200 balance (Ohaus Corporation, USA).

The sagittal otoliths were removed in a class-100 clean room using
non-metallic acid-washed tools and cleaned on acid-washed glass
slides to guard against contamination. We then placed the otoliths
in Milli-Q (18 Megaohm) water and scraped all visible adhering
tissue from the surface using glass probes, soaked them for 5 min in
ultra-pure 30% hydrogen peroxide (VWR International, West
Chester, Pennsylvania, USA) to dissolve any remaining tissue,
triple-rinsed them with Milli-Q water, transferred them to acid-
washed polycarbonate tubes, and left them to air-dry for 24 h
under a Class 100 laminar-flow hood (Schaffler and Winkelman,
2008; Schaffler et al, 2009). Subsequently, both sagittae were
weighed to the nearest 0.01 mg (My) using a precision balance
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Figure 1. Areas sampled for summer flounder along the US east coast
in 2011.
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(Mettler Toledo AT261 DeltaRange®, Mettler-Toledo International
Inc., Columbus, Ohio, USA).

We randomly selected a sample of 30 otolith pairs from all
sampled areas. This broad range was selected to encompass as
much variability in chemical signatures as possible. After cleaning,
each sagitta was mounted on a glass slide using thermoplastic
cement (CRYSTALBOND® 509) and a 0.7 mm transverse section
was cut using a low-speed saw (Buehler®, Lake Bluff, Illinois,
USA). The transverse section was then attached to a clean glass
slide with thermoplastic cement and ~ 20 wum was ground from
the surface of each otolith thin-section with 30 wm lapping film
with an Aluminium oxide abrasive (Mark V Laboratory, East
Granby, Connecticut, USA) to remove any contamination
induced by the saw blades. Subsequently, each section was polished
with 0.3 pm lapping film with an Aluminium oxide abrasive
(Buehler®, Lake Bluff, Illinois, USA) until the surface was free
from pits and scratches. After all sections had been prepared, the
otolith thin-sections were attached to acid-washed petrographic
slides in randomized order, sonicated in ultra-pure water
(Milli-Q), and allowed to dry under a laminar-flow bench before
chemical analysis.

Otolith chemical analyses

The otolith thin-sections were analysed for trace element signatures
with a thermo Finnegan Element 2 (Thermo-Fisher Scientific,
Bremen, Germany) inductively-coupled plasma mass spectrometer
(ICP-MS) coupled to a New Wave 193 nm excimer laser ablation
system (Tanner et al., 2012). The laser ablated material along a tran-
sect extending from the core to the dorsal edge of the otolith with a
25 wm spot diameter moving at a rate of 5 um s~ '. The resulting
trench depth was 30 wm (Jones and Chen, 2003). The ablated ma-
terial was transported via a He-gas stream, mixed with a 5%
HNO; aerosol, and the analyte transported to the ICP-MS via an
Ar-carrier gas (Tanner et al., 2012). For every sequence (i.e. block
or petrographic slide containing 20 randomized samples) we mea-
sured four calibration standards prepared from stock single and
multi-element standards to mimic concentrations typically
observed in otoliths (Schaffler and Winkelman, 2008) at the begin-
ning and end of each sequence as well as two certified otolith refer-
ence materials (Yoshinaga et al., 2000; Sturgeon et al., 2005) three
times each and eight instrumental blanks of 5% HNOj interspersed
throughout the block of 20 otoliths.

L4, 25Mg, 48Ca, >>Mn, 8°Rb, 28Sr, 87y, 1*®Ba, and 2°®Pb were mea-
sured and the resultant counts per second converted to molar ratios
by subtracting the blank value from each sample and then interpol-
ating the data with the known-concentration calibration standards
(Taylor, 2001). The concentrations were then converted into
element to calcium molar ratios. Dissolved otolith certified refer-
ence materials (CRMs) (Yoshinaga et al., 2000; Sturgeon et al.,
2005) were used to assess external precision as relative standard
deviations (RSDs). Limits of detection (LODs) were calculated as
the mean blank value plus 3 s.d. (n = 56), and presented as a per-
centage of the average sample intensity. If an excessive number of
samples fell below the LOD for a certain element, that element
was excluded from further analyses (Brazner et al., 2004).

For stable isotope analyses, we used the two pieces of the otolith
that remained after removing the thin-section that was used for trace
element analysis. The thermoplastic cement was removed from the
otolith pieces with dilute 1% HNO; and Milli-Q water. The otolith
pieces were then dried overnight and crushed manually with a
marble mortar and pestle into a homogeneous powder that was
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subsequently analysed with an automated Isoprime Micromass car-
bonate analyser at the University of Washington Stable Isotope
Laboratory. Sagittal powder and limestone standards were both
spiked with 100% phosphoric acid at 90°C with five standards
every ten samples (Dorval et al., 2007), and isotopic concentrations
measured using the dual inlet method and coldfinger mode (Dorval
et al., 2005). The data produced were amended and reported in
Peedee Belemnite (PDB). We also calculated the long-term preci-
sion of the machine by averaging the precisions of each sample.

Statistical analyses

Prior to all analyses, the data were Box—Cox transformed to normal-
ize them and homogenize the variances (Box and Cox, 1964). Prior to
hypothesis testing, normality was assessed using the Shapiro—Wilk
test. The null hypothesis of no difference in mass between the left
and right otolith was tested with a paired #-test. Subsequently, the hy-
pothesis of no difference in the chemistry (both trace element and
stable isotope) was tested using Hotelling’s T test for pairwise multi-
variate data, followed by paired-sample t-tests to determine where dif-
ferences occurred between the left and right otolith pairs.

If significant differences in the chemistries occurred between left
and right otoliths, the possibility exists that one otolith from the pair
would provide better discrimination among areas. Homogeneity of
variances was tested using O’Brien’s test, and Mardia’s test was used
to test for multivariate normality based on skewness and kurtosis
(Khattree and Naik, 2000; Schaffler et al., 2009). A multivariate analysis
of variance (MANOVA) was performed to detect differences in the left
or right otoliths between areas. Pillai’s trace statistic was used because it
is robust to small and unequal sample sizes (Scheiner, 2001), followed
by univariate analyses of variance (ANOVA) to determine which ele-
ments showed differences. Discriminant function analysis (DFA)
was used to examine differences in classification performance
between the left and right otoliths by examining all possible combina-
tions of the transformed data. Equality of variance—covariance matri-
ces was tested using Bartlett’s test (Schaffler et al., 2009) to determine
which type of discriminant function (linear or quadratic) to
use (Khattree and Naik, 2000). Classification success and error
rates on all the trials were determined by cross-validation using the
jackknife (leave-one-out) technique, with equal prior probabilities
(White and Ruttenberg, 2007; Schaffler and Winkelman, 2008;
Schaffler et al., 2009).

Simulations

Due to any inherent asymmetry in the sagittal pair, it is possible that
the choice of left, right, or randomly chosen otolith can impact
studies that aim to use the unique chemical signatures to distinguish
between habitats. To illustrate the impacts of selecting a random
otolith on our ability to discriminate nursery regions of summer
flounder, a simulation model in R (R development core team) was
developed to randomly select either a left or right otolith from the
30 paired observations and run all possible combinations on this
randomized data set. We repeated this 10 000 times and built a clas-
sification function for these randomized datasets to compare with
the best models based upon the left or right otolith datasets.
Statistical analyses were conducted in either R or SAS® software
(SAS Institute Inc., Cary, North Carolina, USA), and all hypothesis
tests were performed based on the criterion o = 0.05.

Results

Juvenile summer flounder Lyranged between 177 and 234 mm, with
a mean of 202.7 (+18.32) mm, and weighed between 49.7 and
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Table 1. Biological characteristics of summer flounder from five estuarine nursery areas.

Area n Ly (mean + sd) M (mean + sd) Left M, (mean + sd) Right M, (mean + sd)
Delaware Bay 5 209.2 + 13.27 96.1 + 21.03 879 + 2.20 9.12 +2.28
Chesapeake Bay 4 221.0 + 4.65 939 + 10.34 8.76 + 0.84 9.01 + 0.96
Pamlico Sound 12 193.2 + 12.48 678 + 11.16 8.01 + 0.95 829 + 0.99
South Carolina 5 211.8 £+ 21.16 90.2 + 29.30 1011 + 1.59 1017 + 1.57
Georgia 4 193.5 + 20.01 75.6 + 29.67 922 4+ 1.48 9.53 + 1.52
Total 30 202.7 + 1832 80.4 + 23.48 8.75 + 1.59 9.00 + 1.61

n = sample size, Ly = total length in mm, M = total body mass in g, Mo = otolith mass in mg.

Table 2. Results of Box— Cox transformations, normality tests, and paired t-tests for different physical and chemical attributes of left and right

sagittae.

Quantity A S-W t p Diff (mean + se)
Mo, left vs. right otolith 0.762 4 0.0888 —2.667 0.008 6* —0.0917 + 00360
3"3C left vs. right otolith 0.945 4 0.1258 8816 <0.000 1* 03042 4 00343
330 left vs. right otolith 1.098 4 0.080 1 2515 0.017 7* 0.0587 4+ 00227
7Li:*Ca left vs. right otolith 11026 03440 3670 0.000 9* 04719 4+ 0.127 4
*>Mg:*®Ca left vs. right otolith —0.6934 0.634 4 2.769 0.009 7* 219992 + 9370 4
>>Mn:*®Ca left vs. right otolith 0.126 9 0.966 7 0.471 0.640 9 1.400 5 4 0.900 3
8Rb:*Ca left vs. right otolith —05218 0.704 8 2.020 0.0527 0.0109 + 0.006 3
8551:48Ca left vs. right otolith 1366 6 0.770 7 2.075 0.046 9* 0.056 9 + 0.026 9
8y:%8Ca left vs. right otolith —0.3807 03179 0.881 0.3858 0.000 5 + 0.000 6
138Ba:%%Ca left vs. right otolith 0.1167 04723 1241 0.224 4 0.507 1 + 0.468 4

Mo = otolith mass in mg, A = lambda of Box—Cox transformation, S-W = p-value of Shapiro — Wilk’s normality tests, t = pairwise t-test statistic, p = p-value of
the t-test (* = significant difference at o = 0.05), Diff = differences in raw elemental ratios between the left and right otoliths, se = standard error.

131.5 g, with a mean of 80.4 ( + 23.48) g (Table 1). Otoliths chosen
for ICP-MS ranged between 6.48 and 12.34 mg, with an overall
mean of 8.88 ( + 1.62) mg. Using all otoliths, there was a significant
difference in otolith mass (M) between the left and right sagittal
otoliths (p = 0.0087; Table 2). The right otolith is heavier than
the left otolith in summer flounder.

Differences in otolith chemistry

Relative standard deviations for both otolith certified reference
materials were generally <5% (Table 3). In two cases the RSDs
were slightly higher, but both were <<10%, indicating very precise
and repeatable measurements across all analyses. Likewise, blanks
were very low for all measured elemental concentrations (<10%
of the average sample intensity) except for Pb, and consequently
> 75% of all sample Pb measurements were below the detection
limit. Therefore Pb was removed from further analyses. Average
precision for the stable isotopes was 0.13%o for 3'°C and 0.10%
for 3'%0.

After the application of Box—Cox transformations to the raw
data, all elemental differences were normally distributed (Table 2).
Hotelling’s T7 applied on the differences between the left—right
chemical signatures showed a significant overall difference within
the sagittal pair (Hotelling’s T° = 131.494, d.f. = 9, p < 0.0001).
Pairwise t-tests performed on each of the analysed chemical signa-
tures showed significant differences in the Li:Ca, Mg:Ca, and
Sr:Ca molar ratios, as well as 8'>C and 820 stable isotope ratios
(Table 2). The mean difference for 8'°C was almost 10 s.e.
between left and right, while that of Li was almost 4 s.d. No signifi-
cant differences were detected in Mn, Rb, Y, and Ba.

Discriminant function analyses
The decision to use a linear or quadratic discriminant function to
classify members of each dataset was based on the results of
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Table 3. Relative standard deviations (RSD) of the two certified
reference materials (JPN: Yoshinaga et al., 2000; NRC: Sturgeon et al.,
2005), limits of detection (LODs) as percentage mean intensities, and
percentage of samples with elemental concentrations greater than
the respective LOD:s for the left and right otoliths.

RSD % > LOD
Element JPN NRC % intensity Left Right
Li 3.52 6.41 2.59 100.0 100.0
Mg 3.05 333 1.38 100.0 100.0
Ca 339 3.49 0.05 100.0 100.0
Mn 433 8.82 7.32 100.0 100.0
Rb 3.18 3.60 4.52 100.0 100.0
Sr 3.46 3.56 0.05 100.0 100.0
Y 451 4.31 2.25 100.0 100.0
Ba 3.49 3.83 0.20 100.0 100.0
Pb 3.07 3.35 66.34 16.7 233

Bartlett’s test. We successfully transformed all available data and
tested for the necessary assumptions that were mostly satisfied with
Box—Cox transformations for both left and right otoliths across
areas (Table 4). Estimated lambda values for the variables in the left
and right otoliths were similar, indicating a similar initial distribu-
tion. Despite transformation, homogeneity of variances was not
met for 3'0 with either the left or right otolith. All other variances
were homogeneous. Mardia’s test showed that the assumptions of
multivariate normality were not met by both the left (skewness =
174.9, p = 0.2843; kurtosis = —2.09, p = 0.0364) and right otoliths
(skewness = 153.7, p = 0.7257; kurtosis = —2.10, p = 0.0359) due
to slight deviations in kurtosis. A linear discriminant function was
used because Bartlett’s test showed no deviation from homogeneity
of the variance—covariance matrix in both the left (yiso = 59.68,
P > 0.9999) and the right sagittae (Xiso = 59.62, p > 0.9999).
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Unique elemental signatures within both left and right sagittae
were found between the areas sampled. There were significant differ-
ences in the multivariate elemental signatures between sampled areas
in both left (Pillai’s trace = 2.89, Fss g0 = 5.76, p = <<0.0001) and

Table 4. Results of Box—Cox transformations, variance and
normality tests, and univariate analyses of variance (ANOVA) for left
and right sagittae separately.

ANOVA
Quantity A O’Brien S-w
Fss P

Left otolith

3"3c 0806 04232 07060 2010  <0.0001*
3'%0 0710  0.0074* 05789 5178  <0.0001*
“Li*8Ca 1109 05974 0.5184 2.74 0.0509
Mg *®Ca —0924 02930 0.6096 1.60 0.2060
SMn:®Ca 0.198  0.7900 0.2990 5.00 0.0042*
8Rb:*Ca —0826 04756 07369 1130  <0.0001*
88r.%8Ca 0248  0.5900 0.9888 1.90 0.1410
89y:%Ca —0425 03991 0.5928 4.72 0.0056*
138Ba2:%8Ca 0.063 06148 0.0752 5.16 0.0036*
Right otolith

d3"3c 0944  0.1010 06375 1475  <0.0001*
3'%0 0761  0.0120* 05350 5066  <0.0001*
7Li*8Ca 1737 03104 0.1532 118 0.3445
Mg *®Ca —0268  0.4860 0.2271 7.48 0.0004*
*Mn:*®Ca 0.036 03337 0.7579 3.18 0.0304*
85Rb:**Ca —0.180  0.6969 02994 1923  <0.0001*
88r.%8Ca 1485 06768 0.6332 3.76 0.0158*
89y:%Ca —0082 04990 0.5466 829 0.0002*
138Ba:*8Ca 0.183 06884 0.5612 545 0.0027*

\ = lambda of Box - Cox transformation, O’Brien = p-value of O'Brien’s test
for homogeneity of variances, S-W = p-value of normality tests, F,,5 =
ANOVA's F-statistic, p = p-value of the test. *denotes any significant
differences in all the tests performed.
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right sagittae (Pillai’s trace = 2.76, F35 50 = 4.97, P = <0.0001). In
the left otolith, 8'>C, '%0, Mn, Rb, Y, and Ba were significantly dif-
ferent between areas, whereas in the right otolith, S1¢, 380, Mg,
Mn, Rb, Sr, Y, and Ba were significantly different (Table 4).

The models that produced the highest classification accuracy for
2-variable through 7-variable combinations were different between
the left and right otoliths (Table 5), and in general indicated that the
left otolith produced slightly higher classification accuracies. The
model with the highest classification and fewest elements was a
4-variable model in the left otolith (highlighted in Table 5). This
4-variable model, based on $*C, 8'®0, Mn, and Ba, presented
the highest classification accuracy at 90%, as opposed to other
models that had lesser accuracies with fewer variables or similar ac-
curacies with more variables. Conversely in the right otolith, the
model with the highest classification and fewest elements was a
5-variable model. This model was based on 8'°C, $'%0, Rb, Sr,
and Ba, resulting in 90% correct classification. Again, other
models produced lower accuracies with fewer variables or similar
accuracy with more variables.

Discussion

The chemistry ofleft and right otoliths cannot be used interchange-
ably in the summer flounder and perhaps other bilaterally asymmet-
rical flatfishes. Numerous studies performed on asymmetrical
species (different flatfishes) have considered the otoliths inter-
changeable (de Pontual et al, 2003; Swearer et al., 2003;
Vasconcelos et al., 2007; Reis-Santos et al., 2008; Vasconcelos
et al., 2008; Leakey et al., 2009), although these studies fail to test
the hypothesis of equivalent chemistries between left and right oto-
liths. In Pacific halibut, left and right otolith chemistries were not
equivalent (Loher et al., 2008). Our results in summer flounder
agree with those in Pacific halibut, finding the same 3¢, 520,
and Sr:Ca differences between otoliths. Taken together, our results

Table 5. Model selection results showing the best classifications produced for left and right otoliths, as compared with the mean accuracies

for the same models using a randomized data set of left—right mixtures.

Randomized dataset

n Elements Accuracy Mean sd
Left otolith

1 O 60 65 5.2
2 0, Mg 87 72 6.0
3 C, 0, Mn 87 81 4.6
4 C, O, Mn, Ba 20 85 0.4
5 G O, Li, Mg, Ba 87 83 0.5
6 C, O, Li, Mg, Y, Ba 90 86 05
7 C O, Li, Mg, Sr, Y, Ba 90 84 0.5
8 G, O, Li, Mg, Rb, Sr, Y, Ba 83 81 0.6
9 ALL 77 82 0.6
Right otolith

1 O 63 65 5.2
2 GO 73 81 4.7
3 C O, Ba 83 84 4.0
4 O, Rb, Sr, Ba 87 80 0.6
5 C, O, Rb, Sr, Ba 90 84 0.5
6 C, O, Li, Rb, Sr, Ba 90 83 0.5
7 O, Li, Mg, Rb, Sr, Y, Ba 90 80 0.6
8 C, O, Li, Mg Rb, Sr, Y, Ba 90 81 0.6
9 ALL 83 82 0.6

The boxed functions show the models that produced the highest accuracy with the fewest variables. n = number of elements used, sd = standard deviation.

Accuracy and mean in percentage (%).
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and those of Loher et al. (2008) indicate that processes acting on the
otoliths of bilaterally asymmetrical fishes invalidate the assumption
of equivalent chemistry between otolith pairs which has been
demonstrated in bilaterally symmetrical fishes (Iacumin et al.,
1992; Gauldie, 1996; Thorrold et al., 1997; Rooker et al., 2001).
Further, it appears that differences in otolith accretion rates
(Helling et al., 2005) may be responsible for differences observed
in otolith chemistries between left and right sagittae.

There were significant mass differences between the left and right
otoliths of the summer flounder. These mass differences likely
reflect differential carbonate accretion rates that directionally skew
the elemental signatures in a way similar to the differences
between sagittae and lapillae (Meyer-Rochow et al., 1992; Chesney
et al., 1998; Chittaro et al., 2006; Smith and Jones, 2006), which
have divergent growth patterns from the time of hatching
onwards (Loher et al., 2008). The Pacific halibut, which shows dif-
ferencesin both stable isotopes and trace elements within the sagittal
pair, demonstrates this trend, where the left otolith is significantly
larger than the right otolith (Loher et al., 2008). In the case of the
summer flounder, the right otolith is significantly heavier than the
left otolith. It is noteworthy in these two flatfishes that the Pacific
halibut is dextral, where the left eye migrates to the right side, as
opposed to the summer flounder, which is sinistral; in both fishes,
the blind-side otolith is the larger one. Loher et al. (2008) suggest
that the smaller right otolith might reflect early life history to a
greater extent than the left one in the Pacific halibut; this might
also apply to the summer flounder, where the smaller left sagitta is
more indicative of earlylife. Further investigations into the morpho-
logical or ontogenic drivers for this trend will likely result in a greater
understanding of what the otolith chemistry of flatfishes tells us
about their ecology.

Specific differences were detected in the concentrations of §'°C,
8'%0, Li:Ca, Mg:Ca, and Sr:Ca. The remaining elemental concentra-
tions did not deviate significantly between sagittae. Summer floun-
der showed more deviations in the signatures than the Pacific
halibut that had differences in 8'°C, 8'%0, and Sr:Ca (Loher et al.,
2008). In this regard, Sr:Ca might be a trace element that could po-
tentially be used routinely in the detection of left—right differences
in the sagittae. 8'°C and 'O also have a similar trend in the Pacific
halibut and the summer flounder, with the potential to be used as
markers. Loher et al. (2008) discussed the possible effect of low
elemental concentration with respect to detection limits, contamin-
ation, or procedural bias as factors that might confound other left—
right differences. In our study, we measured Rb and Y, which do not
have certified values in the CRMs used (Yoshinaga et al., 2000;
Sturgeon ef al., 2005) and are not routinely used. Moreover, Rb
has the potential for isobaric interferences due to the Ar-carrier
gas used in the ICP-MS. However, the RSDs for both Rb and Y dem-
onstrate that these elements are consistently measured with high
precision (RSDs < 5%); the ability to repeatedly obtain the same
value from a CRM, regardless of the accuracy of the value, is of
utility when evaluating a marker stock discriminator, especially
since the obtained ratios are being investigated in relation to one
another and not necessarily for absolute concentrations. However,
excluding Rb and Y from the classification functions, due to the
lack of certified values in CRMs and possible isobaric interferences,
would not affect the left otolith-based functions, as neither element
contributes towards the models with the highest classification
success. In the right otolith, removing Rb and Y from the analyses
resulted in no changes in classification success in the four- and five-
variable models (C, O, Li, Ba: 87% and C, O, Li, Sr, Ba: 90%).
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Loher et al. (2008) also hypothesized that the differences seen in
the chemical signatures were not location specific, as they sampled
from two locations, one for stable isotopes and the other for trace
elements, using solution-based ICP-MS. Our study expanded on
that idea by sampling from five different locations and incorporat-
ing random fish from the entire range in analyses of both stable iso-
topes and trace metals on the same fish. Our results show that thereis
an overarching asymmetry within the sagittal pair independent of
the location sampled.

Moreover, Loher et al. (2008) hypothesize that there might be a
greater asymmetry in the left—right signatures of flatfishes that use
estuaries as nurseries due to larger variability in environmental
and biotic factors, as in the case of the common sole (de Pontual
et al., 2003), English sole (Brown, 2006), and southern flounder
(Loweetal.,2011). Thelife history of summer flounder might advo-
cate a stronger divergence within the sagittae, stemming from the
fact that summer flounder are spawned on the continental shelf
but develop as juveniles in the estuarine nurseries along the US
east coast (Smith, 1973; Able et al., 1990; Szedlmayer et al., 1992;
Kraus and Musick, 2001). It is clear from our study and Loher
et al. (2008) that the left and right sagittae of flatfishes are often
not equivalent.

The discriminant function analyses show that exclusively choos-
ing either the left or right otolith will alter the classification model
used to discriminate populations as well as the observed classifica-
tion success. As such, the model with the highest accuracy and
fewest elements was a four-variable model using the left otolith.
The left otolith produced better classification schemes than the
right otolith, as seen with the optimal DFA. The elements in the
most useful models differed between the left and right sagittae as
well, highlighting the differences in chemical signatures useful for
classification success and further underlining the asymmetry of
this flounder. Thus, introducing an added source of variation
(choice of left or right otolith) can have far-reaching consequences
for studies aiming to discover useful classification functions and to
understand connectivity and population structure in poorly studied
organisms.

There are many examples of otolith chemistry studies performed
on flatfish species; while some have specifically selected an otolith
from the sagittal pair (Brown, 2006; Fodrie and Levin, 2008;
Cuveliers et al., 2010; Lowe et al., 2011; Tanner et al., 2011), others
make no reference to selection, presumably as they have randomly
selected an otolith (Toole et al, 1993; de Pontual et al., 2003;
Swearer et al., 2003; Vasconcelos et al., 2007; Reis-Santos et al.,
2008; Vasconcelos et al., 2008; Leakey et al., 2009). Based upon
our results, the left and right otoliths of flatfish are not interchange-
able, and random selection has the potential to produce greater error
and highly variable results. Not accounting for left—right variability
in these cases could result in increased variability in the elemental
signatures and reduced classification accuracy. Our results also
have practical and logistic implications when applying a classifica-
tion function based on only a left or right otolith. Many labs age rec-
reationally and commercially important species, some of which
have asymmetrical otoliths, in support of stock assessment work.
This potentially means that, if randomly selected, up to half of all
archived otoliths from asymmetrical species may not be available
for chemical analyses. Moreover, if all available otoliths were to be
used disregarding their orientation (i.e. left or right), estimates of
population structure based on otolith chemistry could be strongly
biased. For example, we have demonstrated that the accuracy of
the classification function could be dramatically reduced, and the
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researchers may conclude that little population structure exists
when in fact structure was present but obscured by incorrectly sam-
pling both left and right otoliths due to an inflated variance. Further,
it is possible that incorrectly sampling from both left and right oto-
liths could generate spurious relationships that would lead research-
ers to falsely conclude population structure exists when in fact there
is none. And though it is reasonable to expect otoliths to be inter-
changeable in symmetrical species (e.g. Campana et al., 2000;
Secor et al., 2001; Arslan and Secor, 2008), we recommend testing
the assumption of equivalence in otolith chemistry before sagittae
are used interchangeably in asymmetrical species.
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