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ABSTRACT

Detection and analysis of volatile organic compounds’ (VOCs) biomarkers lead to improvement in healthcare diagnosis and other
applications such as chemical threat detection and food quality control. Here, we report on tri-molybdenum phosphide (Mo3P) and multi-
walled carbon nanotube (MWCNT) junction-based vapor quantum resistive sensors (vQRSs), which exhibit more than one order of magni-
tude higher sensitivity and superior selectivity for biomarkers in comparison to pristine MWCNT junctions based vQRSs. Transmission
electron microscope/scanning tunneling electron microscope with energy dispersive x-ray spectroscopy, x-ray diffraction, and x-ray photo-
electron spectroscopy studies reveal the crystallinity and the presence of Mo and P elements in the network. The presence of Mo3P clearly
enhanced the performance of vQRS as evidenced in sensitivity and selectivity studies. The vQRSs are stable over extended periods of time
and are reproducible, making them a potential candidate for sensing related applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059378

The rapid spread of the novel coronavirus outbreak, which
occurred at the end of 2019, has changed the perspective and living
style of mankind across the globe. Remote and non-contact diagnosis
has become an essential part of medical care. Real-time monitoring of
medical conditions will be vital in the healthcare system to detect and
diagnose diseases at an early-stage. Detection of volatile organic com-
pounds (VOCs) is a new frontier in the rapid, sensitive, selective, and
non-invasive analysis and medical diagnosis of human diseases.
VOCs, generated in the human body, could provide reliable and valu-
able indications of human health. Hundreds of different biologically
generated VOC molecules that are released from exhaled breath could
serve as biomarkers for early-stage detection of diseases (e.g.,

cancer).1–4 For instance, VOCs’ profile of exhaled breath, characterized
by the use of an electronic nose (e-nose) designed by combining multi-
ple individual sensors together, has attracted immediate attention for
the early-stage detection of lung cancer and other diseases (e.g., tuber-
culosis, diabetes).5–11 However, e-nose performance is highly depen-
dent on the use of individual sensors assembled in an array.11–13 The
key challenges in designing individual sensors include their unique
sensing patterns, high sensitivity, and superior stability with repeatable
performance, among others. Different sensing platforms, such as a
p–n junction diode,14 quantum resistive sensors via spraying layer-by-
layer (sLbL)15 or drop-casting,16 random networks,17 and field effect
transistors (FETs),18 have been utilized for VOCs’ sensing. Vapor
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quantum resistive sensors (vQRSs) based on carbon nanotube (CNT)
random networks with facile fabrication methodologies have advan-
tages over others due to high rate of reproducibility, easy fabrication
methodologies, and simple working principles over FETs and diode-
based sensors.15,17,19

It should be noted that selectivity, sensitivity, and stability are
important figures of merit while characterizing the VOC sensors. In
the ideal case, VOC sensors must have a wide selectivity of analytes,
high sensitivity for good detection, and should be stable upon exposure
to VOCs for an extended period of time under atmospheric pressure
at room temperature. Carbon nanotubes (CNTs) are potential candi-
dates as active materials for VOC/gas sensors due to their high surface
area and their ability to change electrical properties at room tempera-
ture upon exposure to different VOCs/gases.20–23 Individual CNT-
based sensors suffer from poor selectivity and low sensitivity due to
the lack of surface functionality, resulting in a poor interaction with
analytes. However, creating a CNT junction via the fabrication of the
CNT network is the easiest way to originate sites for analyte accumula-
tion and, thus, improve sensitivity and selectivity. These interaction
points could be within the nanotubes, leading to an intra-CNT interac-
tion, or interactions among different CNTs leading to inter-CNT
interactions, or effects due to contact between the tubes and the metal
electrodes. It is unlikely that the intra-CNT interaction is the cause of
the change in the charge transport in multi-walled CNTs, as the inner
walls can provide a conductive path even when the analyte interacts
with the outer walls.24 In the case of MWCNT vQRSs, inter-CNT
interactions and CNT-metal electrode junctions dominate the charge
transport behavior when exposed to the analyte gas molecules. The
CNT–CNT junctions can be modified to improve the sensitivity and
selectivity of the sensor by introducing the host molecule at or within
the junctions. In fact, CNT–CNT junctions embedded within poly-
meric matrices exhibit superior selectivity with a unique VOC sensing
pattern.15,17,19,24–28 Aside from polymeric molecules that degrade with
time and, thus, vQRSs performance, metal-based nanostructures (e.g.,
SnO2) were also deposited on the CNTs surface to further improve the
sensitivity of the CNT network, presumably without compromising
the stability.25 Herein, we developed vQRSs based on the modified
CNTs and Mo3P nanoparticle junctions to detect VOCs with
improved sensitivity and unique sensing patterns. The Mo3P nanopar-
ticles were selected due to their different electronic and chemical
nature, which was utilized for the hydrogen evolution reaction due to
the appropriate binding of the hydrogen ions on the Mo3P surface.
Considering the unique electro-chemical properties of Mo3P nanopar-
ticles, we believe that the nano-junctions formed between CNTs and
adsorbed Mo3P nanoparticles would exhibit a unique sensing pattern
with improved sensitivity. The focus of the present work is to show
that Mo3P nanoparticles and MWCNT junctions could be used for
VOC biomarkers detection such as methanol, isopropanol, water, tolu-
ene, ethanol, acetone, and chloroform under ambient conditions.
These VOCs are selected as they are the key elements present in higher
concentrations (e.g., methanol �461 ppb, ethanol �112 ppb, acetone
�477 ppb, and isopropanol �18 ppb) in everybody’s exhaled breath.29

Another study observed 103 VOCs in exhaled breath of lung cancer
patients, and it was reported that the median concentrations of metha-
nol are lower in lung cancer patients (118.5 ppb) than in healthy sub-
jects (142.0 ppb), and median concentrations of acetone are lower in
lung cancer patients (458.7 ppb) than in healthy subjects (627.5 ppb).

In the same study, it was reported that the appearance of toluene in
the exhaled breath was strongly influenced by smoking habits.30

CNTs-Mo3P junctions were built by fabrication of Mo3P and CNTs’
co-dispersed solution via the drop casting method on interdigitated
electrodes. Transmission electron microscope (TEM)/scanning tunnel-
ing electron microscope (STEM) with energy dispersive x-ray spec-
troscopy (EDS) imaging was used to visualize the morphology of the
conducting network of fabricated sensors. Our results indicated
Mo3P-MWCNTs’ vQRS displayed high sensitivity, selectivity, and sta-
bility displayed at room temperature clearly demonstrate the good
potential in the detection of VOCs, which could be a promising candi-
date in healthcare diagnosis, for instance, early detection of lung can-
cer. The sensing experiments suggest significantly enhanced sensitivity
(in the order of �7–42 times higher than pristine CNTs) of the devel-
oped sensors with a unique discrimination ability.

Multi-walled carbon nanotubes (MWCNTs, outer diameter:
20–30nm, inside diameter: 5–10nm, ash: <1.5wt. %, purity: >95wt.
%, length: 10–30lm, specific surface area: 110 m2/g, electrical
conductivity: >100 S/cm, bulk density: 0.28 g/cm3, and true density:
�2.1 g/cm3) were purchased from Cheap Tubes, Inc. (Brattleboro,
Vermont) and used without any further purification process.
Tri-molybdenum phosphide (Mo3P) nanoparticles were synthesized
using a colloidal chemistry technique followed by the two-steps
thermal sintering method.31–33 Ammonium molybdate tetrahydrate
[ðNH4Þ6Mo7O24�4H2O, Sigma-Aldrich, Bioultra, > 99.0%], diammo-
nium phosphate dibasic [ðNH4Þ2HPO4, Sigma-Aldrich, ACS reagent,
>98.0%], and citric acid (C6H8O7, Sigma-Aldrich, ACS reagent,
>99.5%) were used in molar ratios of 1:3:6, respectively. First, ammo-
nium molybdate tetrahydrate and diammonium phosphate dibasic
were mixed in sufficient amount of DI water in a flat-bottom flask. A
hotplate magnetic stirrer was used to dissolve the powders in DI water.
Once the powder was completely dissolved, citric acid was added to
the solution. Thereafter, the solution was heated up to 90 �C and held
at 90 �C overnight. The final milky-white solution was then cooled
down to the room temperature for few more hours until the reaction
products precipitate. The excess DI water was extracted from the flask
using a pipette, and the precipitates were transferred and held in an
oven at a temperature of 120 �C to completely dry out the water con-
tents. Next, an agate mortar and a pestle were used to grind the dried
precipitates into a fine white powder. The powder was then transferred
into an alumina crucible and moved into a dual-zone tubular furnace
for further heat treatments. First, temperatures were ramped (i) from
25 to 500 �C over 60min with a dwell time of 6 h under a controlled
flow of nitrogen (N2) and (ii) from 500 to 850 �C over 60min with a
dwell time of 2 h under a controlled flow of hydrogen–argon (8%H2/
Ar). The sample was then cooled down to the room temperature.

Mo3P and MWCNT solutions were prepared via sonication
methods. MWCNTs (2mg) were dispersed in methanol at a concen-
tration of 0.2mg/ml, using ultra-sonication (40 kHz, 120V) bath for
30min under controlled condition (temperature �25 �C). Mo3P
nanoparticles, synthesized by a colloidal chemistry technique followed
by the two-steps thermal sintering method, were dispersed in metha-
nol at a concentration of 0.2mg/ml using ultra-sonication. The sensors
were fabricated using commercially available inter-digitated electrodes
by drop-casting 10ll Mo3P, and MWCNT solutions were carefully
deposited on the electrodes and the samples were then dried overnight
in ambient condition. The fabricated vQRSs were exposed to saturated
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VOCs in the dynamic-mode with 100 sccm flow rate, which con-
tained 50% of N2 gas and 50% of saturated analyte vapors using an
indigenously build sensing device. A schematic diagram depicting the
experimental setup is provided in the supplementary material (Fig.
S2). The sensitivity of the sensors was analyzed by measuring the
changes in the electrical current/resistance upon exposure to alternate
cycles (5min) of dry N2 and pure analyte vapor. The current vs time
(i–t) signals were recorded using the potentiostat by applying 100mV
constant potential between source and drain terminals of the sensor. It
should be noted that the testing experiments have been conducted at
atmospheric pressure, at 25 �C, and with the relative humidity (RH)
levels of 40%, to mimic realistic application conditions of the sensor.
The relative amplitude is obtained by taking % change of resistance
according to

Ar ¼
ðR� R0Þ

R0
� 100%; (1)

where R0 is the initial resistance of sensors under N2 gas flow and R is
the resistance in the presence of VOCs. Furthermore, to remove the
ambiguity of the number of molecules being different for saturated
vapor pressure of each analyte and improve the accuracy, the relative
amplitude is normalized with the number of analyte molecules and
the normalized relative amplitude (N–Ar) is calculated using Eq. (1)

N � Ar ¼
Ar

VOC½ �T;Psat

� 105; (2)

where ½VOC�T;Psat is the concentration of vapor in saturated conditions
calculated by ANTOINE’s equation.34 The seven VOCs (methanol,
ethanol, chloroform, acetone, toluene, isopropanol, and water) were
selected consisting diverse chemical (e.g., chemical nature) and physi-
cal properties (e.g., polarity, atomic sizes, dipole moments) as provided
in the supplementary material (Tables S1 and S2).17,19,35 Here, it
should be noted that all reported sensing curves represent measured
data without any treatment such as baseline correction or alignment of
the gas switching. They have been collected by performing experi-
ments in realistic environmental conditions (environmental tempera-
ture, pressure, and humidity).

TEM/STEM with EDS analysis evidence the formation of a ran-
dom conducting network of Mo3P-MWCNTs [Figs. 1(a)–1(c)]. The
morphology of Mo3P-MWCNT network displays physical adsorption
of Mo3P nanoparticles onto the surface of MWCNTs, and thus creat-
ing Mo3P-MWCNT junctions [Fig. 1(a)]. A small amount of cobalt
was also observed, which could be appeared due to metal catalyst
impurity during MWCNT growth. Individual elements mapped as
Mo [Fig. 1(b)] and P [Fig. 1(c)] further confirm the presence of Mo3P
nanoparticles onMWCNTs. Extended EDS spectrum further confirms
the absence of other impurities (except Co), which is displayed in Fig.
S1. Used Mo3P nanoparticles were also analyzed using characteriza-
tion techniques such as x-ray diffraction (XRD) and x-ray photoelec-
tron spectroscopy (XPS). The XRD results shown in Fig. 1(d) are
obtained by a Bruker D2 PHASER diffractometer Bragg–Brentano
geometry employing Ni filtered Cu Ka radiation. Diffraction patterns

FIG. 1. Structural and morphological characterization of the Mo3P-MWCNT samples performed by TEM/STEM techniques equipped with EDS: (a) elemental mapping of
Mo3P-MWCNTs indicating a junction between Mo3P and MWCNTs, (b) Mo element mapping, (c) P element mapping, (d) XRD pattern, and (e) and (f) XPS spectrum of the
Mo3P sample.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 119, 113101 (2021); doi: 10.1063/5.0059378 119, 113101-3

Published under an exclusive license by AIP Publishing

:::s 

~ 
~ 
'iii 
C: 0 
.! 
C: 

10 

(d) N 

:::i 
0 ~ C') 
r--

~ 
;;; 'iii 

C') C: 
N co .! C') 

-= 

30 50 70 90 
20 degree 

(e) 
Mo3d 512 ~ Mo 3+ 

Mo ' 

Mo 3d 312 

240 236 232 228 224 
Binding Energy (eV) 

:::i 
~ 
~ 
'iii 
C: 

.! 
-= 

(f) 
: -------p 2pm 

P2p,0 \ j 

144 140 136 132 128 
Binding Energy (eV) 

https://www.scitation.org/doi/suppl/10.1063/5.0059378
https://www.scitation.org/doi/suppl/10.1063/5.0059378
https://scitation.org/journal/apl


were collected from 0 to 100� 2h� with a step width of 0.2 and a count-
ing time of 1s/step. All other parameters were chosen to enhance the
signal to noise in the spectra. Figure 1(d) shows the XRD peaks of the
Mo3P sample corresponding to a tetragonal system with SPGR of I
�42m that also matches with ICDD (04–004-3005) database, confirm-
ing its crystalline structure with an average crystallite size of 20 nm,
which is estimated using the Scherrer equation [d ¼ Kk

b cos h, where
K¼ 0.98 for spheres (dimensionless), the x-ray wavelength of
k¼ 0.158 nm for the Cu x-ray tube, b is the line broadening at half of
the maximum intensity in radians, and h is the Bragg angle in radi-
ans].36–39 Figures 1(e) and 1(f) show the XPS spectra of the Mo 3d and
P 2p of Mo3P obtained by a Thermo-Scientific ESCALAB 250Xi
instrument. All the spectra are calibrated to the C 1s C–C bond bind-
ing energy at 284.8 eV. Figure 1(e) shows the Mo 3d XPS spectrum
with peaks at 228.6, 229.6, 231.8, and 233.4 eV, confirming the pres-
ence of standard Mo3þ and Mo4þ, where the XPS spectrum of P 2p
shown in Fig. 1(f) indicates doublet peaks at 129.6 and 130.4 eV that
are attributed to the low valence of P.31,32

Figure 2 displays the normalized relative amplitude (N–Ar) vs
time of MWCNTs and Mo3P-MWCNT vQRSs exposed to all exam-
ined VOCs. As expected, an increase in the N–Ar magnitude has been
observed when the sensors were subjected to the VOCs flow, followed
by a return to the initial value, when the sensors were swept by the
inert carrier gas (N2). For all seven VOCs, Mo3P-MWCNT vQRSs
exhibit significantly higher sensitivity in comparison to the MWCNTs
based vQRSs. In the case of methanol, Mo3P-MWCNT sensors show
�12 times higher sensitivity than that of MWCNT vQRSs [Fig. 2(a)].
Similarly,�16,�12,�7,�15,�42, and�10 times higher sensitivities
were observed for methanol, ethanol, isopropanol acetone, chloro-
form, toluene, and water, respectively (Fig. 2). With the exception of
acetone and water molecules, we did not observe any drift in the vQRS
baseline, indicating superior sensor reversibility for the VOCs

examined. This can be attributed to the complete desorption of the
analytes during N2 cycles. In the case of acetone and water, the
observed baseline behavior can be explained based on the non-
reversible sorption–adsorption phenomenon within the vapor and N2

exposure duration. A comparison N–Ar magnitude of MWCNTs and
Mo3P-MWCNT vQRSs exposed to all examined VOCs is provided in
the supplementary material (Fig. S3).

The response of vQRSs was quick upon exposure to VOCs and
was reversible upon switching off the analyte vapor flow in the cham-
ber and purging with N2 gas. The observed response times are on the
order of seconds, which is better than colorimetric40 or metal oxide
sensors,41 which have response times on the order of minutes. The
response time is obtained from the sensing behavior, as the time taken
to reach 90% of the maximum amplitude upon exposure to the VOCs
is displayed in Fig. 2(h). Response time calculations from the sensing
behavior are provided in the supplementary material (Fig. S4). The
response time varies significantly for the studied VOCs. In the case of
sensing via the Mo3P-MWCNT fabricated sensor, compared to the
other analytes, chloroform apprehended the shortest response time
(�42 s, whereas MWCNTs displayed shorter response times for all
analytes compared to the Mo3P-MWCNT sensor. This indicates that
Mo3P is the “limiting/slow” element in the detection mechanism of
Mo3P-MWCNT sensors, and that it completely masks the intrinsic
sensitivity of the tubes. The recovery time, which is taken as the time
for decay to 90% of the signal from the final amplitude upon turning
off the VOC exposure, was extracted and results were displayed in the
supplementary material (Fig. S5). Similar to response time, the
MWCNT sensor recovered quickly than the Mo3P-MWCNT sensor.
Figure S6 displays N–Ar vs concentration of analytes gas for several
VOCs. Sensitivity of vQRS is increased with the increase in the con-
centration of analyte gas molecules. For instance, the normalized rela-
tive amplitude increased from 2% to 12% when toluene concentration
increased from 10% to 50%.

A sensor’s network stability is the ability of a sensor to provide
reproducible results for a certain period without deviating from the
original performance. Figure 3(a) shows that the normalized response
amplitude of the sensor is stable under continuous exposure to toluene
for 5 h. The vQRS maintained amplitude stable for extended time,
implying good stability for the network build of the Mo3P-MWCNT
junction in the designed sensor. Sensing response of the Mo3P-
MWCNT sensor upon toluene ON/OFF exposure for 5 h is displayed
in Fig. S7. The response and recovery of the sensor was quite stable in
the studied period. It should be noted here that the signal remained
the same for the stability test when exposed to other VOCs.
Figure 3(b) displays the current–voltage (I–V) curve of the sensor
before and after exposure to toluene for 5 h. The equal slope indicates
that conducting properties of the sensor were not altered by exposure
to toluene over 5 h, showing the strong stability of the Mo3P-MWCNT
junctions. Figure 3(c) shows the electrochemical impedance spectros-
copy (EIS) results of the sensor before exposure and after exposure to
the analyte gas. The overlapping of both curves in the EIS spectra
further confirms that the Mo3P-MWCNT network structure and
properties remain identical before and after the long-term exposure.

Mo3P-MWCNT sensors have shown wide range of selectivity,
exhibiting the highest response to toluene among the analytes studied.
The normalized relative amplitude (right y-axis), plotted for studied
analytes is shown in Fig. 4(a), displays the response pattern of sensors

FIG. 2. VOCs sensing characterization of fabricated sensors: normalized relative
amplitude vs time response of pristine MWCNT (black response) and Mo3P-
MWCNT (colored response) sensors (a) methanol, (b) ethanol, (c) isopropanol, (d)
acetone, (e) chloroform, (f) toluene, and (g) water vapor. (h) Response time of pris-
tine MWCNT and Mo3P-MWCNT sensors upon exposure to the VOCs.
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exposed to different VOC molecules. The error bars represent the
standard deviation of the mean values. We have analyzed our results
in light of intrinsic properties (e.g., dipole moment, dielectric constant,
polarizability, bond character, surface tension, vapor pressure, solubil-
ity parameters, and size), which are provided in the supplementary
material (Tables S1 and S2) of the selected VOCs. It is observed that
Mo3P modified CNT junctions or Mo3P-MWCNT junctions led to a
sensor with a high inclination toward nonpolar VOC like toluene, as
shown in Fig. 4(a). The sensing responses of Mo3P-MWCNT vQRSs
can be ascribed to dipole moment. Among the studied solvents, tolu-
ene has the lowest dipole moment of about 0.43 D, which exhibited
highest N–Ar of about 12%, whereas acetone has the highest dipole
moment of about 2.85 D, but it displayed only 2.5% N–Ar. Upon
exposure of the sensor to the different VOCs, the rate of charge trans-
fer varies based on the electronic structure of VOC, and this electronic
structure determines the dipole nature of the VOC. Toluene, which
has the lowest dipole moment, disrupts charge transport pathways,
resulting in high resistance for the conduction carriers. The sensing
response displayed a decreasing behavior with increasing solvent

dipole moment as shown in Fig. 4(a). Adsorbed analyte gas (VOC)
has impact on the charge transport properties of CNT–CNT junctions.
The electronic structure of VOCs with low dipole moment has signifi-
cant effect on charge conducting pathways, which, in turn, increased
resistance resulting in high sensing response, whereas VOC with high
dipole moment has less influence on the charge transport within the
CNT network of the sensor device resulting in low sensing response. It
has been reported that the dipole moment plays a crucial role in dictat-
ing the charge transport properties of junctions with the structure Ag/
organic functional group/Ga2O3/EGaIn.

42 Molecular dipoles from
simple organic functional groups were introduced into between the Ag
and Ga2O3/EGaIn electrodes and impacted the tunneling junctions,
thus altering the rectification of tunneling current.42 Based on this
hypothesis, when dipoles (polar) aligned with the external field pro-
duce more current resulting in less sensor response, whereas non-
polar analytes with less diploe moment obstruct the current flow
increasing resistance, which, in turn, increases sensor response. This
could be a possible reason for our Mo3P-MWCNT vQRS produces
high sensing response for nonpolar analytes. Our hypothesis is also

FIG. 3. (a) Normalized relative amplitude vs time response of the Mo3P-MWCNT sensor for 5 h displays good stability. (b) I–V characteristics and (c) EIS spectra of the Mo3P-
MWCNT sensor before and after performing measurement (a).

FIG. 4. (a) Normalized relative amplitude and dipole moment comparison of VOCs and (b) schematic diagram of Mo3P-MWCNT sensors.
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supported by another study, where the ligand capped platinum
nanoparticle sensor showed the highest response upon exposure to
nonpolar analytes with very low dipole moment (hexane, octane,
and decane) and low response to the polar analytes with high dipole
moment (ethanol, water) of the same concentration.43 However,
chloroform, with borderline polarity, did not follow the trend for
which the dipole moment is about 1.15 D, which is intermediate
among the selected VOCs and displayed the lowest N–Ar about
2.5%. A schematic displayed in Fig. 4(b) shows a hypothetical pic-
ture of sensors, where Mo3P nanoparticles adsorbed on to the
CNTs interact with the exposed analytes influence the charge trans-
port properties of MWCNTs, resulting responses in the electrical
signal. Considering the high sensitivity, selectivity, and stability dis-
played at room temperature, our vQRS device clearly demonstrates
the good potential in the detection of VOCs, which could be a
promising candidate in healthcare diagnosis, for instance, early
detection of lung cancer. Breath analysis is a promising technique
for lung cancer screening. Early detection of lung cancer through
analysis of VOC biomarkers in exhaled breath would improve
prognosis and enlarge treatment options. Analysis of exhaled
breath would be an ideal diagnostic method, since it is non-invasive
and totally painless.44,45

In summary, we have shown that the Mo3P modified
MWCNT junction in the random network improves the selectivity
and sensitivity of the MWCNT vQRS. Morphological studies by
SEM and high-resolution TEM images reveal that physiosorbed
Mo3P nanoparticles tend to reside at the CNT–CNT junctions,
impacting the electronic transport behavior of the conductive net-
work within the source and drain electrodes. The chemi-resistive
behavior of the Mo3P-MWCNT vQRS exhibits significantly
improved sensitivity for several analyte gas molecules. The Mo3P-
MWCNT vQRS displayed better sensing ability for a nonpolar sol-
vent, e.g., toluene and at the same time, increasing sensitivity was
observed for solvents with decreasing dipole moment. Mo3P-
MWCNT vQRS displayed great stability and reproducibility upon
exposure to the analyte gas molecules for the extended period,
although response time of Mo3P-MWCNT vQRS is slow compared
to the MWCNT device but selectivity for certain analytes has
enhanced remarkably with Mo3P modification to the MWCNT net-
work. A further study is required to reveal the possible mechanism
for the enhanced performance of vQRS for nonpolar solvents. Due
to the unique sensing pattern and higher stability, the Mo3P-
MWCNTs developed vQRS using facile methodology could be use-
ful in advancing electronic nose applications.

See the supplementary material for TEM/STEM with EDS analy-
sis, the experimental setup schematic, and electrical response data
analysis. Physical properties and solubility parameters of VOCs are
presented.
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