Feb 3rd, 9:00 AM - 10:00 AM

Digging Out the Devils: Molecular Examination of Amoeba-like Cells from Cranial Tissue of the Endangered Rio Grande Silvery Minnow

Brandon Hamel
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/undergradsymposium

Part of the Biology Commons

https://digitalcommons.odu.edu/undergradsymposium/2018/biology/8

This Oral Presentation is brought to you for free and open access by the Student Works at ODU Digital Commons. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Molecular Examination of Amoeba-like Cells from Cranial Tissue of the Endangered Rio Grande Silvery Minnow

Brandon Hamel & Dr. David T. Gauthier
Department of Biological Sciences
Old Dominion University, Norfolk, VA
The Plight of the Rio Grande Silvery Minnow
(*Hybognathus amarus*)

- Fish species endemic to southwestern United States
- Critically Endangered
 - Human alteration of Rio Grande
- Now occupies ~5% of its original range.
- Aquaculture efforts started in 2000 through U.S. Fish and Wildlife Service
Trouble in Paradise

- Unusual symptoms in the summer of 2012
 - Spinning behavior
 - Chronic low-level mortalities
- Viability of restocking efforts questioned
- Investigation undertaken by VIMS at the College of William and Mary
 - Water and habitat quality
 - Pathogenic microbe screens
 - Gross necropsies of affected specimens
- All came back negative, leaving the cause a mystery
The Plot Thickens

- A second investigation in 2013 discovered an unusual cell in the connective tissue of the cranial floor
 - Amoeba-like cell
 - Possible infectious organism
 - Identification a priority

Photo Credit:
Dr. Wolfgang K. Vogelbein, The Virginia Institute of Marine Science, College of William and Mary
Amoebic Infectious Agents – The Suspects

- Pathogenic Amoebae
 - *Acanthamoeba, Balmuthia, Neoparamoeba* spp.
 - Amoebic Gill Disease

- Parasites with Amoeboid Life Stages
 - Myxosoans
 - *Myxobolus cerebralis* – causative agent of whirling disease
 - Infection causing whirling behavior similar to observed symptoms
 - *Henneguya, Kudoa, Buddenbrockia, Tetrascapuloides* spp.
 - Many infect gills or other organs, but new or related species a possibility
Preliminary Investigation

- PCR – Polymerase Chain Reaction
 - Molecular technique used to amplify and visualize a target DNA sequence in a sample
 - General, nonspecific primers designed to amplify a wide range of myxosoan and amoebic species
 - Testing performed on digested samples from affected fish

- No amplification of DNA targets

- Identity of amoebic organism still a mystery
Going Deeper With Illumina Sequencing

- Taking a DNA ‘snapshot’
- Generic Eukaryotic primer sets would amplify all 18S sequences present in sample
- Sequences would be analyzed using Illumina MiSeq platform
 - Uses NGS to collect up to 8 Gb of sequencing data
 - For reference, older sequencing methods collect up to 10 Kb/day
 - Allows sequencing of multiple loci at once
 - Two loci examined
~450,000 sequences retrieved from each of the two eukaryotic 18S loci amplified

- A program known as cdhit was used to cluster similar sequences together
- Reduced number of different sequences to ~1000 per loci

Clusters representing more than 0.01% of the total number of sequences were analyzed using BLAST in Geneious® software
Results - 1st Locus (EUK 1136)

Distribution of BLAST Results from Illumina Sequencing of EUK 1136 Locus

- Fish: 98.9356%
- Bacteria: 0.74416%
- Unknown: 0.1293%
- Plants: 0.0708%
- Reptile: 0.05%
- Mammal: 0.02162%
- Fungus: 0.012%

Percentage of Total Sequences Recovered
Results – 1st Locus (EUK 1136)

BLAST Results from Illumina Sequencing of EUK F_R Locus with Background Removed (no fish)

- **Bacteria**: 3500 sequences
- **Unknown**: 500 sequences
- **Plants**: 1000 sequences
- **Reptile**: 1500 sequences
- **Mammal**: 2000 sequences
- **Fungus**: 2500 sequences

Malassezia spp.
Results – 2nd Locus (EUK F_R)

Distribution of BLAST Results from Illumina Sequencing of EUK F_R Locus

- Fish spp.: 95.773%
- Plant: 1.1088%
- Bacteria: 0.9032%
- Unknown: 0.5576%
- Fungi: 0.501851%
- Nematode: 0.3513%
- Algae: 0.282066%
- Crustacean: 0.184437%
- Human: 0.0870485%

Percentage of Total Sequences Recovered
Results - 2nd Locus (EUK F_R)

BLAST Results from Illumina Sequencing of EUK F_R Locus with Background Removed (no fish)

Total Number of Sequences

- Plant: 4500
- Bacteria: 3600
- Unknown: 2400
- Fungi: 2200
- Nematode: 1800
- Algae: 1200
- Crustacean: 800
- Human: 500

Groupings:
- Candida spp.
- Malassezia spp.
- Z. bailii
Discussion/Conclusion

- No Amoeba or related species detected from either locus
 - Unknown Sequences?

- Possible alternatives
 - Pathological host cell
 - Primer sets not specific for organism
 - Detection threshold of Illumina not tested

- Results of this study unable to provide identification for mysterious cell.

Questions?