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Spatially nonlocal matrix elements are useful lattice-QCD observables in a variety of contexts, for
example in determining hadron structure. To quote credible estimates of the systematic uncertainties in
these calculations, one must understand, among other things, the size of the finite-volume effects when
such matrix elements are extracted from numerical lattice calculations. In this work, we estimate finite-
volume effects for matrix elements of nonlocal operators, composed of two currents displaced in a spatial
direction by a distance ξ. We find that the finite-volume corrections depend on the details of the matrix
element. If the external state is the lightest degree of freedom in the theory, e.g., the pion in QCD, then the
volume corrections scale as e−mπðL−ξÞ, where mπ is the mass of the light state. For heavier external states,
the usual e−mπL form is recovered, but with a polynomial prefactor of the form Lm=jL − ξjn that can lead to
enhanced volume effects. These observations are potentially relevant to a wide variety of observables being
studied using lattice QCD, including parton distribution functions, double-beta-decay and Compton-
scattering matrix elements, and long-range weak matrix elements.

DOI: 10.1103/PhysRevD.98.014511

I. INTRODUCTION

One of the fundamental goals in theoretical nuclear
physics is the prediction of hadron structure from first-
principles calculations based on the underlying gauge
theory of the strong nuclear force, QCD. Quarks and
gluons, the degrees of freedom (d.o.f.) of QCD, are
confined into color-singlet bound states that are observed
experimentally. The internal structure of these hadrons,
encoded in the spatial, momentum, and angular-momentum
distributions of the constituent quarks and gluons, is
inherently nonperturbative and poorly understood.
Forthcoming data from the 12 GeV upgrade at JLab [1]
and a future electron-ion collider [2] will provide exper-
imental insight into hadron structure, but a complete
understanding of the experimental data requires a con-
comitant improvement in our theoretical understanding.

Observables related to hadronic structure are most
naturally formulated using light-cone quantization, and
this provides a serious challenge for lattice QCD, which
is necessarily restricted to Euclidean-signature correlation
functions. As a specific example, parton distribution
functions (PDFs), which capture the distribution of the
longitudinal momentum of a hadron among its constituent
quarks and gluons, are defined via lightlike separated fields
and thus cannot be directly accessed in a Euclidean
spacetime, where x2 ¼ 0 defines a single point rather than
a cone. In the past two decades, various ideas have been
proposed to overcome this challenge, and thereby calculate
PDFs and similar observables from lattice QCD [3–11].
Although the details differ, these methods generally

require the evaluation of matrix elements of nonlocal
operators, frequently using hadronic states with high
momentum. Preliminary results for several of these ideas
have now appeared [10,12–21] (see Ref. [22] for a recent
review), but an understanding of all systematic uncertain-
ties is not yet feasible. In general, the systematic uncer-
tainties associated with such calculations include
discretization effects, which may be significant for high-
momentum states, uncertainties associated with the
momentum of the hadron [23,24], truncation errors arising
from perturbative renormalization or matching [25–27],
and finite-volume effects.
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In addition to systematically reducing computational
uncertainties, it is crucial to shore up the theoretical
foundations of the approach. Here, significant progress
has been made in understanding issues associated with the
renormalization of the Wilson-line operator [17,28–34], the
existence of factorization theorems [35,36], and the role of
the Euclidean signature in lattice calculations [37].
In this work, we study the finite-volume artifacts

associated with spatially displaced currents. We do so by
perturbatively studying a matrix element of a product of
two currents in a toy theory with one light d.o.f. (corre-
sponding to the pion in QCD) and one heavy (correspond-
ing to a nucleon or heavy meson) d.o.f. Proposals to extract
hadronic structure observables from lattice-QCD calcula-
tions using these types of operators, in place of those
defined with a Wilson line, appeared in Refs. [6,19], with
the first numerical results for pion distribution amplitudes
presented in Ref. [20].
To perform this type of finite-volume analysis for

Wilson-line-based operators would require a low-energy
representation for these, more complicated, nonlocal
objects [38–41]. One possible avenue is to build an
effective field theory based on the method of Ref. [32],
in which an auxiliary heavy-quark field enables one to write
gauge-invariant extended operators in terms of products of
quark bilinears. However, this goes beyond the scope of the
present work, and we focus our attention on composite
bilinear currents, the hadronic representation of which is
more straightforward.
For lattice calculations of hadronic masses, and other

properties defined through local operators, finite-volume
effects lead to corrections of the form Oðe−mπLÞ [42–48],
where L is the linear extent of the cubic spatial volume.1

Numerical data are expected to be described by this leading
exponential form, with a power-law prefactor, provided one
performs the calculation with asymptotically large vol-
umes, mπL ≫ 1. (In practice, mπL≳ 4 is generally suffi-
cient.) However, in the presence of a second IR length
scale, such as the current separation in a spatially extended
operator, one naturally expects the finite-volume effects to
be modified.
For matrix elements of composite currents, we show that

finite-volume effects take the form

hMjJ ð0; ξÞJ ð0ÞjMiL − hMjJ ð0; ξÞJ ð0ÞjMi∞
¼ Paðξ; LÞe−MðL−ξÞ þ Pbðξ; LÞe−mπL þ � � � ; ð1Þ

where the left-hand side represents the difference between
the finite-volume matrix element (obtained via lattice
QCD) and its infinite-volume limit. The external states

here are zero-momentum, single-particle states, labeled by
their physical mass, M; ξ is the displacement vector within
the composite current, and ξ ¼ jξj is its magnitude. To
derive this result, we assume mπL ≫ mπξ≳ 1.
The right-hand side of Eq. (1) gives the leading finite-

volume effects. We focus on two terms, one scaling with
the mass of the external state and the other with the mass of
the lightest d.o.f. In the case where these two coincide, the
first term scales as e−mπðL−ξÞ and is expected to dominate
the volume effects once ξ becomes a non-negligible
fraction of L. By contrast, if M ≫ mπ , as in the case of
a nucleon or heavy meson, then the second term dominates.
Both terms have polynomial prefactors, denoted Pa and Pb,
with terms scaling as Lm=jL − ξjn. Such factors can also
have a significant impact on the size of finite-volume
corrections if ξ is non-negligible compared to the box size.
Finally, the ellipsis in Eq. (1) represents subleading
exponentials.
To better understand these volume effects, we note

that, while the infinite-volume matrix element generally
decays as a function of ξ, its finite-volume counterpart must
be periodic, with periodicity L. Thus, as we illustrate in
Fig. 1(a), the differences between the finite- and infinite-
volume objects become arbitrarily large as ξ approaches L.
We are interested in the onset of this effect for ξ ≪ L. As
we show in Fig. 1(b), in the case where the external state is
light, the finite-volume effects grow exponentially with ξ,
exhibiting ∼10% deviations for ξ ∼ L=4 when mπL ¼ 4.
For this same volume, Fig. 1(c) shows that these volume
effects can be removed by fitting to a decaying exponential
in L at fixed ξ. We stress that the details of these features
hold only for matrix elements built from products of local
currents.
The origin of periodicity for matrix elements built from

products of local operators is straightforward: Given that
the quark fields and the gauge links are periodic in all
spatial directions, the same must be true for any local
current J constructed from these fields and links. The
periodicity property J ðt;xÞ ¼ J ðt;xþ LeiÞ, with ei a
unit vector in the x, y, or z direction, is then directly
inherited by matrix elements constructed from products of
such currents at different locations.
However, this argument does not hold for nonlocal quark

bilinears connected by Wilson lines, i.e., the type of
nonlocal operator used to extract quasi- and pseudo-
PDFs. Defining W½xþ ξei; x� as the straight Wilson line
connecting the points xþ ξei and x, given by

W½xþ ξei; x�≡Uiðxþ ðξ − aÞeiÞUiðxþ ðξ − 2aÞeiÞ
× � � � ×UiðxÞ; ð2Þ

one can construct a gauge-invariant nonlocal operator by
contracting this with quark and antiquark fields at x and
xþ ξei, respectively. The quark fields and the gauge fields
are periodic in the spatial directions, but for fixed x, there is

1More precisely, Ref. [42] found that the leading exponential
correcting a stable particle mass is e−

ffiffi
3

p
mπL=2 in the case of odd-

legged interaction vertices and e−mπL for theories with a Z2

symmetry.
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no periodicity in the coordinate ξ. In particular, wrapping
around the torus n times gives

q̄ðxþ ðξþ nLÞeiÞW½xþ ðξþ nLÞei; x�qðxÞ
¼ q̄ðxþ ξeiÞW½xþ ξei; x�ðW½xþ Lei; x�nÞqðxÞ; ð3Þ

where the factor in parentheses on the right-hand side
breaks the naive periodicity relation, Oðξþ LÞ ¼ OðξÞ.
On the one hand, this additional factor may lead to

matrix elements of this operator being closer to their
infinite-volume counterparts than in the case of products
of currents that satisfy ξ-periodicity. On the other hand, the
fact that the boundary conditions are felt by both the quark
fields and individual links leads us to expect that large
values of ξ may generate enhanced volume effects in this
case as well.
As we describe in detail in Sec. II below, we derive

Eq. (1) and Fig. 1 using a toy theory with two relativistic
scalar particles. A rigorous demonstration that the scaling
also holds in QCD would require first defining a specific
matrix element, then developing a low-energy effective-
field-theory description (based in chiral perturbation
theory) and finally calculating finite-volume corrections.
However, since our result only relies on the appearance of
scalar propagators with the light particle mass, together
with the scale ξ that characterizes the operator nonlocality,
we expect that a more realistic description would change
only the detailed form of Paðξ; LÞ and Pbðξ; LÞ, and not the
overall exponential behavior.
To close the Introduction, we comment on a number

of other examples in which finite-volume effects on non-
local matrix elements have already been discussed in the
literature.

The authors of Ref. [49] describe formalism for remov-
ing finite-volume effects in neutral kaon mixing. The
starting point is a matrix element reminiscent of that
considered here, defined with external kaon states and
two insertions of the weak Hamiltonian. In contrast to the
matrix elements in this study, however, the currents are also
separated in Euclidean time. By summing over time slices,
the authors demonstrate how to identify a finite-volume
version ofΔMK . In a second step, the leading finite-volume
effects are removed using a generalization of the Lellouch-
Lüscher formalism [50]. The step of identifying the finite-
volume version of ΔMK relies on picking out a single term
in the temporally summed correlator. This term in isolation
has power-law volume effects associated with on-shell
intermediate states, i.e., effects parametrically larger than
those identified in the present study. It is these volume
artifacts that are corrected via the extended Lellouch-
Lüscher formalism.
In a different application, in Ref. [11], one of us

considered an approach for extracting total decay and
transition rates from temporally displaced currents with
single-particle external states. The method requires esti-
mating a smeared-out inversion of the Laplace transform,
for example by using the Backus-Gilbert method [51–53].
As discussed in detail in Ref. [11], this smearing suppresses
finite-volume effects in the target observable. The infinite-
volume observable must then be extracted by identifying an
optimal trajectory in the two-coordinate plane of box size,
L, and smearing width Δ. The enhanced volume effects
identified here will likely influence this optimal trajectory,
but the detailed consequences are not clear and are the
subject of future work.
The remainder of this article is organized as follows. In

Sec. II, we explain the setup of our calculation, including the
detailed definition of the toy theory and the external currents.

(a) (b)

FIG. 1. Finite- versus infinite-volume behavior of nonlocal matrix elements. These plots were made using the tree-level result derived
in the next section with pions as the external states. Subfigure (a) shows how, as ξ is varied, the finite-volume matrix element develops
large deviations from its infinite-volume counterpart. Formπξ ≲ 1, indicated by the shaded region, high-energy scales are sample so that
the effective field theory is expected to break down. Subfigure (b) shows the fractional difference between finite- and infinite-volume
matrix elements, jML −M∞j=jM∞j. Finally, (c) shows the finite-volume matrix element, ML, as a function of L, together with its
infinite-volume limit. For fixed ξ, finite-volume effects forML decay with L as e−mπL. These are enhanced by a emπξ prefactor relative to
the typical, Oð1Þ × e−mπL, finite-volume effects for local operators.
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We then summarize the general framework for calculating
finite-volume effects in nonlocal matrix elements and apply
this to the tree-level diagram of Fig. 2(b). In Sec. III, we
provide a detailed study of the finite-volume effects in one-
loop diagrams, focusing on the case where the external state
in the matrix element is a heavy particle, for example a
nucleon. We then extract the large-volume scaling of these
diagrams in Sec. IV and deduce the result summarized by
Eq. (1). In Sec. V, we briefly conclude and outline possible
futurework. Technical details of certain functions used in the
analysis are discussed in the Appendix.

II. SETUP AND SIMPLE EXAMPLE

To determine finite-volume corrections to field-theoretic
observables analytically, it is often useful to work with a
low-energy effective theory (EFT), e.g., chiral-perturbation
theory (χPT) for QCD. This is natural because quarks are
confined, and only the hadrons (the d.o.f. in χPT) can
propagate long distances and feel the finite-volume boun-
dary conditions.
As a first step, in this work, we study a toy theory that is

expected to capture the basic scaling of the finite-volume
corrections. We present a formal expression [Eq. (14)
below] that gives the finite-volume effects of spatially
nonlocal currents from an arbitrary Feynman diagram.
Using this result, we determine the finite-volume correc-
tions from the tree-level diagram shown in Fig. 2(b) and, in
the following two sections, consider the role of one-loop
corrections in volume effects.
We consider a theory with two scalar particles, φ and χ,

with physical pole masses satisfying mφ < mχ . Here, φ
plays the role of the pion in QCD and χ that of the nucleon
or a heavy meson. Using baryon and heavy meson χPT
[54–56] as an inspiration, these states couple via a φχ2

vertex of which the Feynman rule is given in Fig. 2(a). In
QCD, pions are pseudo-Goldstone bosons and thus have
derivative couplings to heavier particles. However, the
exact form of these couplings does not change the leading
exponential behavior of the theory, so here we only

consider a momentum-independent coupling, labeled g.
Similarly, we restrict attention to scalars, as details asso-
ciated with spin and isospin are not expected to change the
overall scaling of the finite-volume corrections.
The φ and χ states couple to a renormalized external

current, given by

J ðxÞ ¼ 1

2
Zφgφφ2 þ 1

2
Zχgχχ2 þ

1

2
Zχφgχφχ2φ

þ 1

4
Zχφφgχφφχ2φ2 þ � � � ; ð4Þ

that generates the additional Feynman rules shown in
Fig. 2(a).
The renormalization factors Zφ and Zχ are inherited from

the mass terms in the Lagrangian (with the scheme fixed by
L ⊃ ð1=2Þm2

χZχχ
2). The three-point renormalization is

inherited in a similar way from L ⊃ ð1=2ÞgZχφχ
2φ, with

the scheme that the amputated three-point function equals
ig (its tree-level value) when all p2 ¼ 0. A similar scheme
can be used for the χ2φ2 term, although the coupling does
not appear in the Lagrangian.2 Finally, the ellipsis in Eq. (4)
stands for terms with higher orders in φ and χ.
The final step is to define a power-counting scheme for

the theory. We take g ∼ gφ ∼ gχ ∼ gφχ=g. As we consider
matrix elements with two insertions of the local current,
leading-order (LO) contributions scale as g2φ ∼ g2χ , and next-
to-leading-order contributions scale as g2φg2 ∼ g2χg2 ∼ g2φχ .
We are now ready to set up our general approach for

determining finite-volume effects in Feynman diagrams
contributing to matrix elements of spatially nonlocal
operators. We define the infinite-volume matrix element as

M∞ðξ;pÞ≡ hpjJ ð0; ξÞJ ð0Þjpi; ð5Þ

(a)

(b) (c)

FIG. 2. (a) Feynman rules for the EFT described in Sec. II. The dashed lines denote the lighter particle, φ, and the solid lines denote the
heavier particle, χ. (b) The leading-order contribution to the matrix elementMðξ;pÞ with φ external states. (c) Contact interactions that
may arise in EFTs.

2One possible approach is to include such a coupling,
L ⊃ ð1=4ÞλZχφφχ

2φ2; define Zχφφ such that iλ coincides with
the amputated, one-particle irreducible four-point function at
p2 ¼ 0; and then take the λ → 0 limit.

BRICEÑO, GUERRERO, HANSEN, and MONAHAN PHYS. REV. D 98, 014511 (2018)

014511-4



where jpi is a single-particle state with momentum p, either
a φ or a χ to be specified below. Now, note that any
diagram, d, contributing to this quantity can be written as

MðdÞ
∞ ðξ;pÞ¼

Z
q
eiq·ξ

Z
k1

� � �
Z
kn−1

ð−iÞnDðdÞðp;q;k1;…;knÞ;

ð6Þ
where we have introduced the shorthandZ

q
≡
Z

d4q
ð2πÞ4 : ð7Þ

In Eq. (6), ð−iÞnDð� � �Þ is the standard integrand, con-
structed according to the usual Feynman rules and con-
taining all couplings and symmetry factors. The separation
of the ð−iÞn factor simplifies the relation to Euclidean-
signature quantities. In particular, from the Wick rotation,
we find

MðdÞ
∞ ðξ;pÞ

¼
Z
qE

eiq·ξ
Z
k1;E

� � �
Z
kn−1;E

DðdÞ
E ðpE;qE; k1;E;…; kn;EÞ; ð8Þ

where DðdÞ
E ðpE; qE; k1;E;…; kn;EÞ≡DðdÞðp; q; k1;…; knÞ

is the usual integrand that one would construct with
Euclidean Feynman rules.
As an example, for the leading-order diagram shown in

Fig. 2(b), the Minkowski integrand is

DðLOÞðp; qÞ ¼ 1

ð−iÞ g
2
φ

i
ðqþ pÞ2 −m2

φ þ iϵ

¼ g2φ
−ðpþ qÞ2 þm2

φ − iϵ
; ð9Þ

and Wick rotation gives

DðLOÞ
E ðpE; qEÞ ¼

g2φ
ðpE þ qEÞ2 þm2

φ
; ð10Þ

consistent with the usual Feynman rules. Each loop
introduces a factor of ð−iÞ to the Minkowski integrand,
but in our convention, this is factored out to preserve D as
defined in the two signatures.3

We now give our general expression for the finite-volume
effects from spatially nonlocal currents. From the Poisson
summation formula, it follows that the finite-volume residue
for any given diagram can be written as

δMðdÞ
L ðξ;pÞ≡MðdÞ

L ðξ;pÞ −MðdÞ
∞ ðξ;pÞ; ð11Þ

¼
X

M∈Z3n=f0g

Z
q
eiq·ðξþLnÞ

Z
k1

eik1·Lm1 � � �
Z
kn−1

eikn−1·Lmn−1ð−iÞnDðdÞðp; q; k1;…; knÞ; ð12Þ

¼
X

M∈Z3n=f0g

Z
qE

eiq·ðξþLnÞ
Z
k1;E

eik1·Lm1 � � �
Z
kn−1;E

eikn−1·Lmn−1DðdÞ
E ðpE; qE; k1;E;…; kn;EÞ; ð13Þ

where M ¼ fn;m1;…;mn−1g and the notation under the
sum indicates that the only point omitted is when all three
vectors vanish. Introducing KE ≡ fqE; k1;E;…; kn−1;Eg, we
reach a very compact form for the residue:

δMðdÞ
L ðξ;pÞ ¼

X
M∈Z3n=f0g

Z
KE

eiq·ξþiK·LMDðdÞ
E ðpE; KEÞ:

ð14Þ
Heuristically, M parametrizes the space of images that
enforce the finite-volume boundary conditions, and the
smallest nonzero values (the nearest neighbors) give the
dominant finite-volume effects. These can be in the n
direction, corresponding to effects on the Fourier transform

from q to ξ, as well as the mi directions, corresponding to
finite-volume effects within the diagram.
Returning again to the leading-order diagram, Fig. 2(b),

and using the Euclidean form of Eq. (14), we reach

δMðLOÞ
L ðξ;pÞ ¼ g2φ

X
n≠0

Z
qE

eiq·ðξþiLnÞ 1

ðpE þ qEÞ2 þm2
φ
:

ð15Þ

In Appendix A 1, we review standard tools for writing these
integrals in terms of modified Bessel functions. In particu-
lar, we find it convenient to define

I γ½jξj;m�≡
Z
kE

eik·ξ

½k2Eþm2�γ ¼
1

8π2ΓðγÞ
� jξj
2m

�
γ−2

Kγ−2ðjξjmÞ;

ð16Þ

implying

3Of course, for the final quantity, we have no freedom in the
convention. TheWick rotation preserves thevalue ofMðdÞ

∞ ðξ;pÞ by
construction. But this correspondence is spoiled in the integrands
by factors of i that cancelwithq0 ¼ iq4. Our definition ofD simply
compensates these factors to give D ¼ DE.
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δMðLOÞ
L ðξ;pÞ ¼ g2φ

X
n≠0

e−ip·ðξþLnÞI1½jξ þ Lnj;mφ�; ð17Þ

¼ mφg2φ
4π2

e−ip·ξ
X
n≠0

K1ðmφjξ þ LnjÞ
jξ þ Lnj ; ð18Þ

where in the second step we used that p ¼ ð2π=LÞm and
therefore that expð−ip · LnÞ ¼ 1. We comment that, up to a
proportionality constant, this is just the finite-volume
meson propagator in position space. (See also Ref. [57].)
Keeping only the n ¼ −ξ̂ term, we find that the

dominant finite-volume effect scales as

δMðLOÞ
L ðξ;pÞ ¼ mφg2φ

4π2
e−ip·ξ

K1ðmφjL − ξjÞ
jL − ξj

→
m2

φg2φ
4

ffiffiffi
2

p
π3=2

e−ip·ξ
e−mφðL−ξÞ

½mφðL − ξÞ�3=2 ; ð19Þ

where the arrow indicates the asymptotic limit.4 The key
scaling is given by stripping off the coupling and other
prefactors,

δMðLOÞ
L ðξ;pÞ ∝ e−mφðL−ξÞ

ðL − ξÞ3=2 : ð20Þ

This is the main result of this section and corresponds to the
first term on the right-hand side of Eq. (1).
Note that the infinite-volume prediction of this diagram

can also be read from this expression by replacing jL − ξj
with ξ. This implies, in particular, that the diagram diverges
in the limit jξj → 0, as illustrated in Fig. 1. However, given
that we consider a toy EFT that is necessarily written in
terms of hadrons, one cannot expect to accurately describe
the behavior of physical amplitudes for short distances
of the scale ξ < m−1

φ . We thus require mφξ≳ 1, to ensure
that the finite- and infinite-volume matrix elements are well
described by the EFT.
We close this section by commenting on the diagram

shown in Fig. 2(c). As this is only a contact interaction, it
introduces no finite-volume effects to the matrix element.
To understand this in detail requires including a renorm-
alization factor for the product of currents, to accommodate
divergences when the two overlap. We have studied this to
ensure that no unexpected issues arise.

III. BEYOND LEADING ORDER

We now turn our attention to the case that the heavy
particle, denoted χ, appears in the external state. The
leading-order contribution to this matrix element is given

by Fig. 2(b), with the dotted φ propagator replaced by a χ
propagator, and the result is Eq. (19) with the substitutions
mφ → mχ and gφ → gχ ,

δMðLOÞ
L ðξ;pÞ ¼ mχg2χ

4π2
e−ip·ξ

K1ðmχ jL − ξjÞ
jL − ξj

→
m2

χg2χ
4

ffiffiffi
2

p
π3=2

e−ip·ξ
e−mχðL−ξÞ

½mχðL − ξÞ�3=2 : ð21Þ

We take mχ ≫ mφ and mφL ≫ 1, implying that effects of
Oðe−mχðL−ξÞÞ can be safely ignored. In particular, as we
show in this section, the leading finite-volume effects the
for the matrix element with a χ external state are generated
by the next-to-leading-order corrections to this result.
In Fig. 3, we show the one-loop corrections to the matrix

element. Here, we omit diagrams that give finite-volume
corrections to the external states. These give corrections of
Oðe−mφLÞ and, since we are interested in volume effects
enhanced by the nonlocality scale ξ, can be safely dropped.
We first derive general integral expressions for the dia-
grams in Fig. 3, restricting attention to the case where the
external particle is at rest in the finite volume and high-
lighting Fig. 3(a) as a specific example. Generally, the
integrals that arise in evaluating these diagrams cannot be
carried out analytically. To study their asymptotic behavior,
in Sec. IV, we separate the expressions into analytic parts
that dominate the volume scaling together with numerically
determined functions that are slowly varying and give only
subleading corrections to the scaling.

A. Figure 3(a)

We illustrate the calculation of the one-loop diagrams in
Fig. 3 by outlining the derivation of finite-volume effects for
Fig. 3(a). The calculation of Figs. 3(b)–3(h) proceeds in a
similar fashion, but Figs. 3(i) and 3(j) require special treat-
ment, as we discuss below and in Appendix A 3. From
Eq. (14),we identify the finite-volume residue forFig. 3(a) as

δMðaÞ
L ðξ;pÞ¼g2g2φ

X
fn;mg≠0

Z
qE;kE

eiq·ðξþLnÞeiLk·m

×
1

½k2Eþm2
φ�2

1

ðkEþqEÞ2þm2
φ

1

ðpE−kEÞ2þm2
χ
;

ð22Þ
where the notation below the summation indicates
that only the n ¼ m ¼ 0 term is omitted from the sum.
We separate the kE and qE dependence by shifting qE →
qE − kE to reach

δMðaÞ
L ðξ;pÞ ¼ g2g2φ

X
fn;mg≠0

Z
qE

eiq·ðξþLnÞ

q2E þm2
φ

×
Z
kE

eik·½Lðm−nÞ−ξ�

½k2E þm2
φ�2½ðpE − kEÞ2 þm2

χ �
: ð23Þ

4For fixed ξ and fixed m in p ¼ ð2π=LÞm, the phase factor
e−ip·ξ oscillates as L is varied. Here, we have in mind estimating a
trajectory of fixed p and ξ so that the infinite-volume observable
is fixed as L varies. We thus do not count the L dependence
within the phase factor.
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Next, we use a Feynman parameter to reduce the second integral. Starting with the identity

xðk2E þm2
φÞ þ ð1 − xÞ½ðpE − kEÞ2 þm2

χ � ¼ ðkE − ð1 − xÞpEÞ2 þ xm2
φ þ ð1 − xÞm2

χ þ xð1 − xÞp2
E; ð24Þ

we shift kE → kE þ ð1 − xÞpE to reach

δMðaÞ
L ðξ;pÞ ¼ 2g2g2φ

Z
1

0

dxx
X

fn;mg≠0
eið1−xÞp·½Lðm−nÞ−ξ�

Z
qE

eiq·ðξþLnÞ

q2E þm2
φ

Z
kE

eik·½Lðm−nÞ−ξ�

½k2E þMðxÞ2�3 ; ð25Þ

where

MðxÞ2 ≡ xm2
φ þ ð1 − xÞm2

χ þ xð1 − xÞp2
E ¼ xm2

φ þ ð1 − xÞ2m2
χ : ð26Þ

In the second step, we have set the Euclidean external momentum on shell, p2
E ¼ −m2

χ .
At this stage, we have written the loop in terms of products of two integrals of the kind given in Eq. (16). Substituting the

definition of I γ then gives

δMðaÞ
L ðξ;pÞ ¼ 2g2g2φ

Z
1

0

dxx
X

fn;mg≠0
eið1−xÞp·½Lm−ξ�I1½jLn − ξj;mφ�I3½jLm − ξj;MðxÞ�; ð27Þ

where we have shifted the summed integer vectors. Taking the external state to be at rest in the finite volume, i.e., setting
p ¼ 0, then gives

δMðaÞ
L ðξ; 0Þ ¼ 2g2g2φ

X
fn;mg≠0

I1½jLn − ξj;mφ�
�Z

1

0

dxxI3½jLm − ξj;MðxÞ�
�
: ð28Þ

B. Figures 3(b)–3(h)
This set of diagrams is amenable to the same approach as Fig. 3(a). In Appendix A 2, we present a simple generalization

of the technique presented above for Fig. 3(a) that allows for a rapid derivation of the finite-volume effects for these
diagrams. The results for p ¼ 0 are

δMðbÞ
L ðξ; 0Þ ¼ g2gφgχ

X
fn;mg≠0

�Z
1

0

dxI2½jLn − ξj;MðxÞ�
��Z

1

0

dyI2½jLm − ξj;MðyÞ�
�
; ð29Þ

δMðcÞ
L ðξ; 0Þ ¼ 2g2g2χ

X
fn;mg≠0

I1½jLn − ξj;mχ �
�Z

1

0

dxð1 − xÞI3½jLm − ξj;MðxÞ�
�
; ð30Þ

δMðdÞ
L ðξ; 0Þ ¼ g2χφ

X
fn;mg≠0

I1½jLn − ξj;mχ �I1½jLm − ξj;mφ�; ð31Þ

(a) (b) (c) (e)

(f) (g) (h)

(d)

(j)(i)

FIG. 3. Next-to-leading-order contributions to the matrix elements when the external state is the heavy particle. Corrections to the
wave function renormalization of the external states are not shown.
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δMðeÞ
L ðξ; 0Þ ¼ ggφgχφ

X
fn;mg≠0

I1½jLn − ξj;mφ�
�Z

1

0

dxI2½jLm − ξj;MðxÞ�
�
; ð32Þ

δMðfÞ
L ðξ; 0Þ ¼ ggχgχφ

X
fn;mg≠0

I1½jLn − ξj;mχ �
�Z

1

0

dxI2½jLm − ξj;MðxÞ�
�
; ð33Þ

δMðgÞ
L ðξ; 0Þ ¼ ggχφgχ

X
fn;mg≠0

I1½jLn − ξj;mχ �
�Z

1

0

dxI2½jLmj;MðxÞ�
�
; ð34Þ

δMðhÞ
L ðξ; 0Þ ¼ 1

2
gχgχφφ

X
fn;mg≠0

I1½jLn − ξj;mχ �I1½jLmj;mφ�: ð35Þ

The key feature for these diagrams is that one can factorize
the dependence on the currentmomentum,q, from that on the
internal loop momentum, k. In all cases, this results in two
modified Bessel functions, corresponding to the two
momenta after an appropriate shift has been performed.
Note that the sum of the indices on the two Bessel functions
always corresponds to the number of internal propagators.

C. Figures 3(i) and 3(j)

These two diagrams cannot be factorized into two separate
momentum integrals and must be studied using a different
approach. In Appendix A 3, we evaluate these diagrams and
place upper bounds on their values. We demonstrate that the
finite-volume artifacts associated with these are smaller than
those for Figs. 3(a)–3(h). As we are only interested in the
dominant finite-volume effects, we ignore the contributions
from Figs. 3(i) and 3(j) from here on.

IV. ASYMPTOTIC BEHAVIOR

In this section, we study the asymptotic behavior of
Eqs. (28)–(35). As mentioned above, we assume that
mχ ≫ mφ and ignore corrections that decrease with the
volume as e−mχL or more rapidly. As mentioned above,
the matrix element must be periodic with periodicity L.
Thus, as ξ approaches L, the finite-volume effects become
arbitrarily large [see also Fig. 1 above]. Here, we are not
directly interested in this regime of extreme volume
effects but rather in the region of ξ ¼ cL with c ≪ 1.
This motivates us to take the asymptotic forms of the
Bessel functions, i.e., to take the arguments jLn − ξj
as large.

Combining the asymptotic form of the Bessel functions
with the definition of I γ, Eq. (16), we find

I γ½jzj;m� ¼ 1

8π3=2ΓðγÞ
ð2mÞ3=2−γ
jzj5=2−γ e−mjzj

�
1þO

�
1

mjzj
��

:

ð36Þ
Given this exponential suppression, terms with n chosen to
minimize jLn − ξj will dominate the sum. In addition,
terms scaling as e−mχ jLn−ξj, i.e., with the mass of the heavier
particle, will be highly suppressed, and we drop such
contributions throughout.
In Eqs. (28)–(35), only γ ¼ 1, 2, 3 appear. We thus give

their explicit forms for convenience,

I1½jzj;m� ∼ 1

8π3=2
ð2mÞ1=2
jzj3=2 e−jzjm; ð37Þ

I2½jzj;m� ∼ 1

8π3=2
e−jzjmffiffiffiffiffiffiffiffiffiffiffi
2mjzjp ; ð38Þ

I3½jzj;m� ∼ 1

16π3=2
jzj1=2

ð2mÞ3=2 e
−jzjm; ð39Þ

where we use ∼ to indicate that the two sides agree up to
terms suppressed by additional powers of 1=ðmjzjÞ.
The asymptotic forms of the one-loop diagrams can be

determined using a similar approach to that for the leading-
order diagram, Eq. (21). We identify the dominant terms in
the sums over n and m assuming ξ ¼ cL with c ≪ 1. The
only additional subtlety is that the integrals over Feynman
parameters are found to be numerically dominated by
MðxÞ ∼mφ. Factoring out this dependence, we reach the
following,

δMðaÞ
L ðξ; 0Þ ∼ g2g2φ

128π3mφ

�
ξ1=2

ðL − ξÞ3=2Hx;3=2ðξÞ þ
ðL − ξÞ1=2

ξ3=2
Hx;3=2ðL − ξÞ

�
e−mφL; ð40Þ

δMðbÞ
L ðξ; 0Þ ∼ g2gφgχ

64π3mφ

�
1

ξ1=2ðL − ξÞ1=2H1;1=2ðξÞH1;1=2ðL − ξÞ
�
e−mφL; ð41Þ
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δMðcÞ
L ðξ; 0Þ ¼ g2g2χ

128π3
m1=2

χ

m3=2
φ

�ðL − ξÞ1=2
ξ3=2

H1−x;3=2ðL − ξÞ
�
e−ξðmχ−mφÞe−mφL; ð42Þ

δMðdÞ
L ðξ; 0Þ ¼ g2χφm

1=2
χ m1=2

φ

32π3

�
1

ξ3=2ðL − ξÞ3=2
�
e−ξðmχ−mφÞe−mφL; ð43Þ

δMðeÞ
L ðξ; 0Þ ¼ ggφgχφ

64π3

�
1

ξ1=2ðL − ξÞ3=2H1;1=2ðξÞ þ
1

ξ3=2ðL − ξÞ1=2H1;1=2ðL − ξÞ
�
e−mφL; ð44Þ

δMðfÞ
L ðξ; 0Þ ¼ ggχgχφm

1=2
χ

64π3m1=2
φ

�
1

ξ3=2ðL − ξÞ1=2 H1;1=2ðL − ξÞ
�
e−ξðmχ−mφÞe−mφL; ð45Þ

δMðgÞ
L ðξ; 0Þ ¼ ggχφgχm

1=2
χ

64π3m1=2
φ

�
1

ξ3=2L1=2H1;1=2ðLÞ
�
e−ξmχe−mφL; ð46Þ

δMðhÞ
L ðξ; 0Þ ¼ gχgχφφm

1=2
φ m1=2

χ

64π3

�
1

ξ3=2L3=2

�
e−mχξe−mφL; ð47Þ

where

HfðxÞ;αðξÞ ¼
Z

1

0

dxfðxÞ mα
φ

MðxÞα e
−ξðMðxÞ−mφÞ: ð48Þ

As we show in Fig. 4, HfðxÞ;αðξÞ is a slowly varying
function of its argument. Thus, the leading scaling can be
read from the given expressions. We deduce that, in all
cases, the finite-volume effects are suppressed by a factor
of e−mφL. In particular, the dominant finite-volume con-
tributions come from diagrams (a), (b), and (e) with the
leading effect for small ξ driven by the ðL − ξÞ1=2=ξ3=2
factor appearing in diagram (a).

V. SUMMARY

We have presented the first steps toward understanding
the finite-volume artifacts that arise in matrix elements of

spatially nonlocal operators. These operators are relevant
for a wide variety of observables being studied using lattice
QCD, including parton distribution functions, double-beta-
decay and Compton-scattering matrix elements, and long-
range weak matrix elements. In particular, matrix elements
of products of spatially separated currents represent one
approach to determining hadron structure directly from
lattice QCD [6,19,20].
We considered a toy model involving two scalar par-

ticles, one analogous to the pion in QCD and one analogous
to the nucleon or a heavy meson, and determined the finite-
volume matrix elements of these states with two spatially
separated scalar currents at one loop in perturbation theory.
As expected, we found that these matrix elements are
contaminated by larger finite-volume artifacts than is the
case for matrix elements of local operators. The results are
summarized in Eq. (1). There are two terms that potentially
dominate the finite-volume artifacts, one scaling with the
mass of the external state and the other with the mass of the
lightest d.o.f. When these two coincide, the dominant
finite-volume correction scales as e−mπðL−ξÞ, provided ξ
is a non-negligible fraction of L. By contrast, if the external
state is significantly heavier than the lightest particle, as in
the case of a nucleon or heavy meson, then the leading
finite-volume artifacts scale as e−mπL. In both cases, these
exponential factors have polynomial prefactors, including
terms scaling as Lm=jL − ξjn that could have a significant
impact on the size of finite-volume corrections.
Future extensions of this work include implementing the

approach for specific QCD matrix elements using χPT,
including flavor-changing currents, andmore carefully study-
ing the dependence on the external state momenta (especially
at next-to-leading order). A more involved extension would
be to apply the approach to operators involving Wilson
lines, such as those relevant for determining quasi- and

FIG. 4. Plot of the function HfðxÞ;αðξÞ vs mφξ for mχ=mφ set to
the nucleon-pion mass ratio. The figure shows that the H
functions are slowly varying compared to the corresponding
exponentials and powers of ξ appearing in Eqs. (40)–(47). Thus,
the leading scaling is given by treating these functions as
constant.
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pseudo-PDFs. This requires a χPT-based representation of
such operators [38–41], potentially built around the methods
of Ref. [32]. Finally, here, we have only considered periodic
boundary conditions. Previous works [57–59] have shown
that particular choices of twisted boundary conditions [60,61]
can be used to reduce the size of exponentially suppressed
finite-volumeartifacts.Thismay also proveuseful in reducing
volume corrections for matrix elements of spatially nonlocal
operators.
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APPENDIX: INTEGRALS IN TERMS OF
MODIFIED BESSEL FUNCTIONS

In Sec. III, we have shown that complicated diagrams can
be written as integrals of products of modified Bessel
functions. Although these integrals are well documented
and derived in the literature (see, for example, Ref. [48]), we
review the derivation of the necessary functions in this
Appendix.

1. Derivation of Eq. (16)

We begin by deriving Eq. (16), the identity relating the
function I γ ,

I γ½jξj;m�≡
Z
kE

eik·ξ

½k2E þm2�γ ; ðA1Þ

to the modified Bessel function, Kγ−2.
Beginning with the definition of the Γ function

1

Qγ ¼
1

ΓðγÞ
Z

∞

0

dαe−αQαγ−1; ðA2Þ

we observe

I γ½ξ;m� ¼
Z
kE

eik·ξ
1

ΓðγÞ
Z

∞

0

dαe−αðk2þm2Þαγ−1: ðA3Þ

Next, we complete the square in the four-vector, kE, to
write

−αk2E þ ik · ξ ¼ −α
��

kμE − i
ξμ

2α

�
2

þ
�
ξμ

2α

�
2
�
; ðA4Þ

where ξμ ¼ ð0; ξÞ. Performing the integral over kE then
gives

I γ½ξ;m� ¼ 1

ΓðγÞð4πÞ2
Z

∞

0

dαe−αm
2−ξ2

4ααγ−3; ðA5Þ

where we set ξ ¼ jξj from here on.
Finally, we perform the variable substitution α ¼

ξeθ=ð2mÞ to reach

I γ½ξ;m� ¼ 1

ΓðγÞð4πÞ2
�

ξ

2m

�
γ−2 Z ∞

−∞
dθe−ξm

eθþe−θ
2 eðγ−2Þθ;

ðA6Þ

¼ 1

ΓðγÞð4πÞ2
�

ξ

2m

�
γ−2 Z ∞

−∞
dθe−ξm cosh θ cosh½ðγ − 2Þθ�;

ðA7Þ

¼ 1

8π2ΓðγÞ
�

ξ

2m

�
γ−2

Kγ−2ðξmÞ: ðA8Þ

Here, we have used the fact the cosh and sinh are symmetric
and antisymmetric, respectively, and have introduced the
modified Bessel function, Kγ−2ðzÞ. Note that KaðzÞ ¼
K−aðzÞ.

2. Loops in terms of I γ

Figures 3(a)–3(h) can be written as integrals over
products of I γ defined in Eq. (A1). Here, we show our
general method for doing this for all integrals of the form

Jγγ0 ≡
Z
kE

eik·ξ

½k2E þm2
φ�γ

1

½ðpE − kEÞ2 þm2
χ �γ0

: ðA9Þ

First, one inserts a Feynman parameter integral to combine
the denominators

Jγγ0 ¼
Γðγ þ γ0Þ
ΓðγÞΓðγ0Þ

Z
1

0

dxxγ−1ð1 − xÞγ0−1eið1−xÞp·ξ

×
Z
kE

eik·ξ

½k2E þMðxÞ2�γþγ0 ; ðA10Þ

where we performed the variable transformation kE →
kE þ pEð1 − xÞ, used the on-shell condition for the
external states, p2

E ¼ −m2
χ , and also substituted MðxÞ2 ¼

xm2
φ þm2

χð1 − xÞ2.
Using the functions defined in Eq. (A8), we arrive at

Jγγ0 ¼
Γðγþγ0Þ
ΓðγÞΓðγ0Þ

Z
1

0

dxxγ−1ð1−xÞγ0−1eið1−xÞp·ξI γþγ0 ½ξ;MðxÞ�:

ðA11Þ

From this, it is straightforward to arrive at the expressions
given for Figs. 3(b)–3(h) in Eqs. (29)–(35).
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3. Detailed calculation of Figs. 3(i) and 3(j)

The contribution of Fig. 3(j) is given by

δMðjÞ
L ðξ;pÞ ¼ ggχgχφ

X
fn;mg≠0

Z
qE;kE

eiq·ðξþLnÞeiLk·m
1

k2E þm2
φ

1

ðpE − kE þ qEÞ2 þm2
χ

1

ðqE þ pEÞ2 þm2
χ
; ðA12Þ

¼ ggχgχφ
X

fn;mg≠0

Z
qE

eiðq−pÞ·ðξþLnÞ 1

q2E þm2
χ

Z
kE

eiLk·m
1

k2E þm2
φ

1

ðqE − kEÞ2 þm2
χ
; ðA13Þ

where in the second step we performed the variable transformation qE → qE − pE.
We can rewrite the integral over kE using a Feynman parameter,

xðk2E þm2
φÞ þ ð1 − xÞ½ðkE − qEÞ2 þm2

χ � ¼ ðkE − ð1 − xÞqEÞ2 þ xð1 − xÞðq2E þm2
χÞ þMðxÞ2; ðA14Þ

where MðxÞ2 ≡ xm2
φ þ ð1 − xÞ2m2

χ , as in the main text. After shifting kE → kE þ ð1 − xÞqE, introducing ξmn
ðjÞ ¼

ξþ Lnþ Lð1 − xÞm, and setting p ¼ 0, we arrive at

δMðjÞ
L ðξ; 0Þ ¼ ggχgχφ

Z
1

0

dx
X

fn;mg≠0

Z
qE

eiq·ξmn
ðjÞ 1

q2E þm2
χ

Z
kE

eiLk·m

½k2E þ xð1 − xÞðq2E þm2
χÞ þMðxÞ2�2 : ðA15Þ

We then use the Schwinger parametrization, Eq. (A2), to reach

δMðjÞ
L ðξ; 0Þ ¼ ggχgχφ

Z
1

0

dx
X

fn;mg≠0

Z
qE;kE

eiq·ξmn
ðjÞ
eiLk·m

Z
∞

0

dα
Z

∞

0

dββe−ðαþβxð1−xÞÞ½q2Eþm2
χ �e−β½k2EþMðxÞ2�: ðA16Þ

At this stage, if we perform the change of variables α ¼ ζ − zð1 − zÞβ, then we almost reach the integrated product
of two of the I functions discussed in Appendix A 1. The only difference is that the lower limit on the ζ integral differs
from zero. But since the integrand over ζ is always positive and xð1 − xÞβ ≥ 0, we can easily impose an upper limit for
this contribution:

δMðjÞ
L ðξ; 0Þ ≤ ggχgχφ

Z
1

0

dx
X

fn;mg≠0

�Z
qE

eiq·ξmn
ðjÞ
Z

∞

0

dζe−ζðq2Eþm2
χÞ
��Z

kE

eiLk·m
Z

∞

0

dββe−βðk2EþMðxÞ2Þ
�
; ðA17Þ

≤ ggχgχφ

Z
1

0

dx
X

fn;mg≠0
I1½jξmn

ðjÞðxÞj;mχ �I2½jLmj;MðxÞ�: ðA18Þ

We deduce that the ξ dependence only appears in the mχ-integral, and thus any enhancement due to the nonlocality
of the operator is suppressed in this diagram by the heavier particle mass.

The contribution of Fig. 3(i) is given by

δMðiÞ
L ðξ;pÞ ¼ g2g2χ

X
fn;mg≠0

Z
qE

eiðq−pÞ·ðξþLnÞ 1

q2E þm2
χ

Z
kE

eiLk·m
1

k2E þm2
φ

1

ðpE − kEÞ2 þm2
χ

1

ðqE − kEÞ2 þm2
χ
; ðA19Þ

where we have already performed the shift qE → qE − pE. Introducing two Feynman parameters, labeled x and z,
allows us to combine the three kE-dependent denominators

k2E þm2
φ þ x½ððpE − kEÞ2 þm2

χÞ − ðk2E þm2
φÞ� þ z½ððqE − kEÞ2 þm2

χÞ − ðk2E þm2
φÞ�

¼ ½kE − ðxpE þ zqEÞ�2 − 2xzpE · qE þ zð1 − zÞðq2E þm2
χÞ þ Δðx; zÞ2; ðA20Þ

where

Δðx; zÞ2 ¼ xð1 − xÞp2
E − zð1 − zÞm2

χ þm2
φ þ ðxþ zÞðm2

χ −m2
φÞ: ðA21Þ

Shifting kE → kE þ ðxpE þ zqEÞ and setting p ¼ 0, we arrive at
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δMðiÞ
L ðξ; 0Þ ¼ 2g2g2χ

X
fn;mg≠0

Z
1

0

dx
Z

1−x

0

dz
Z
qE

eiq·ξmn
ðiÞ 1

q2E þm2
χ

×
Z
kE

eiLk·m
1

½k2E − 2xzpE · qE þ zð1 − zÞðq2E þm2
χÞ þ Δðx; zÞ2�3 ; ðA22Þ

where

ξmn
ðiÞ ¼ ξþ Lnþ zLm: ðA23Þ

Proceeding as above, we now introduce two Schwinger parameters for the denominators to reach

δMðiÞ
L ðξ; 0Þ ¼ g2g2χ

X
fn;mg≠0

Z
1

0

dx
Z

1−x

0

dz
Z
qE;kE

eiq·ξmn
ðiÞ
eiLk·m

Z
∞

0

dαdββ2eið2βxzÞmχq0Ee−βðk2EþΔ2Þe−ðαþzð1−zÞβÞðq2Eþm2
χÞ;

ðA24Þ
where we have substituted pE · qE ¼ imχq0E and also set p2

E within Δðx; zÞ to be on shell, giving

Δðx; zÞ2 ¼ ð2 − x − zÞm2
φ þ ðx2 þ z2Þm2

χ > 0: ðA25Þ

If we now perform the variable substitution α ¼ λ − zð1 − zÞβ, then we once again reach an integrated product of
two I functions up to two caveats: (i) the λ integral has a lower bound of zð1 − zÞβ rather than 0 and (ii) the integrand
contains the phase factor arising from the product pE · qE. But allowing the λ integral to run from 0 to ∞ and
quenching the phase factor can only increase the value of the integral so that we reach the upper bound

δMðiÞ
L ðξ; 0Þ ≤ g2g2χ

X
fn;mg≠0

Z
1

0

dx
Z

1−x

0

dz
Z
qE;kE

eiq·ξmn
ðiÞ
eiLk·m

Z
∞

0

dββ2e−βðk2EþΔ2Þ
Z

∞

0

dλe−λðq2Eþm2
χÞ; ðA26Þ

≤ 2g2g2χ
X

fn;mg≠0

Z
1

0

dx
Z

1−x

0

dzI1½jξmn
ðiÞðx; zÞj;mχ �I3½jLmj;Δðx; zÞ�: ðA27Þ

Exactly as with Fig. 3(j), we find that the ξ dependence only appears in the mχ integral and therefore that any
enhancement due to the nonlocality of the operator is suppressed in this diagram by the heavier particle mass.
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