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to co-eluting, interfering peptides or misidentified and misquantified peptide transitions46. There is no corre-
lation between high CV and peptide transition retention time, suggesting that retention time does not affect 
peptide transition stability and that there is little interference from co-eluting peptides in target peptide detection. 
Additionally, peptide transitions yielding the highest CVs were observed in the sample with the lowest bacterial 
abundance, suggesting that peptide transition quantification accuracy decreases with the target species relative 
abundance in a sample. In previous work, CVs for SRM assays on low abundance peptides in single-species pro-
tein lysates ranged from 5.4–16.8%23. Peptide inter-run variability is important to consider in assay development 
because a target with high inter-run variability would lead to low confidence peptide quantifications. Decreasing 
the number of peptides and transitions per MS injection would improve quantifications for low abundance pep-
tides by increasing the dwell time of the triple quadrupole for each transition22.

Despite these promising results, SRM is not the panacea to low abundance peptide and protein detection. SRM 
assays designed for complex environmental communities where species have little available sequence data, can 
require investment in preliminary detection of peptides using DDA or DIA47. Even this preliminary step can be 
biased, with the several alternative methods now available that allow for the development of SRM assays without 
the requirement of MS-based peptide detection48–51. To detect low abundance peptides using only DDA, sample 
fractionation should be considered to reduce peptide complexity in MS experiments despite their varied recover-
ies. Chemical fractionation to remove interfering matrices, depletion of high abundance proteins, multiple filtra-
tions steps, protein size fractionations (including gel separations), and selective antibody removal are all examples 
that would decrease sample complexity in MS experiments, allowing access to lower abundance proteins for 
DDA experiments. Additionally, not all techniques are applicable to every system; for example, selective antibody 
removal17 is common in some model systems but would be challenging to apply to complex, uncharacterized sys-
tems when interfering, high abundance protein sequences are unknown. Gas phase fractionation within the mass 
spectrometer with DDA experiments has been shown to dramatically improve the depth of proteome discov-
ery10,52. DIA has been reported to improve peptide discovery by 94%10, detects many more peptides than DDA, 
and does not require sample fractionation or enrichment; however, current bioinformatic pipelines for complex 
communities are less established than for DDA or SRM. DIA does not limit the mass spectrometer to collecting 
MS2 only on ions with intense precursor signals, as in DDA, and thus dramatically increases the dynamic range 
of the MS and increases overall proteome coverage by detecting peptides that occur at lower abundances10,52. 
However, due to the multiple injections per sample required to cover the full range of masses, DIA can require 
significantly more MS time and starting material than SRM, which may not be feasible with environmental sam-
ples37. Additionally, once an SRM assay is developed, it is imperative to ensure the specificity of the peptide tran-
sitions monitored, especially since multiple peptides can co-elute resulting in different fragments within an MS2 
selection window. A peptide’s presence in a sample can be verified with total confidence through the inclusion 
of a synthesized stable isotope labeled peptide of interest. Specific research goals and limitations of experimental 
design and samples need to be considered when choosing DDA, DIA, or SRM for characterizing a proteome.

In the oceanic ecosystem, many species coexist and compete as they metabolize, degrade and recycle organic 
material. Standard MS techniques (DDA) can capture proteomic profiles of the most abundant proteins within a 
system, but since individual microbe protein contributions vary, the desired signal may not be detected. Through 
applications of SRM to samples containing some realistic cellular ratios of bacteria and phytoplankton, and with 
peptides previously characterized on a mass spectrometer, we assessed the ability of targeted proteomics to detect 
selected metabolic processes of an organism present at low cell counts. In DDA mode, the ability of the mass 
spectrometer to detect bacterial peptides declined with a reduction in relative bacterial abundance; yet targeted 
SRM analysis reliably detected the metabolic signals of our desired bacterial species of interest across the full 
dilution series. Although SRM can detect and quantify peptides down to the attomolar level, knowledge of the 
peptide sequence detectability is required for assay development. This can be obtained with proteotypic peptide 
calculators that predict detectability based on physio-chemical properties31,37,53–55, or experimental determination 
using DDA or DIA, or the mining of previously published spectral libraries56. The reliability of these assays can 
be determined via a first-round of SRM analysis, with subsequent rounds dedicated to refining the set of peptides 
included in the assay. These assays could be used to probe microbial metabolic processes across a range of envi-
ronments to better understand the ecosystem-level transfer of essential nutrients57.

Methods
Dilution series.  The marine diatom Thalassiosira pseudonana (Thaps, CCMP1335) was grown in f/2 
media58,59 with autoclaved and filtered artificial seawater (salinity 30) at ambient room temperature (18–22 °C) 
under a 13:11 hour light:dark schedule. Diatom growth was monitored by absorbance measurements at 550 nm 
(Spectronic Educator, Flinn Scientific, Batavia, IL). Cell counts and cellular health were checked throughout the 

#Rpom cells: # 
Thaps cells

100% 
Thaps 62 125 250 500 1000 5000 10000

100% 
Rpom

Rpom cells 0 2.08 × 109 2.08 × 109 2.08 × 109 2.08 × 109 2.08 × 109 2.08 × 109 2.08 × 109 2.08 × 109

Thaps cells 8.33 × 106 3.33 × 107 1.67 × 107 8.33 × 106 4.17 × 106 2.08 × 106 4.17 × 105 2.08 × 105 0

Protein ratio 4.9 9.8 19.7 39.3 78.8 393.0 788.0

Table 1.  Cell counts of the bacteria R. pomeroyi (Rpom) and diatom T. pseudonana (Thaps) mixtures produced 
by serial dilution and the calculated ratio of estimated protein contributed from each source (Rpom g protein/
Thaps g protein). The Rpom cellular protein content is estimated from46 and Thaps cellular protein content is 
estimated from84.
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growth cycle with a hemocytometer on an Olympus Optical epifluorescence microscope. The culture was har-
vested during exponential growth.

The marine heterotrophic bacterium Ruegeria pomeroyi (Rpom, NCMA B3) was reconstituted in autoclaved 
and filtered 0.5 YTSS media60 and slowly transitioned into a low carbon (as 0.625 mM glucose) medium over 
multiple generations. Cultures were grown under axenic conditions at room temperature and bacterial growth 
tracked by absorbance measurements at 600 nm. The culture was harvested during early stationary phase for 
experimental mixtures.

To mimic a wide range of oceanic POM samples, a dilution series involving mixtures of Rpom and Thaps was 
created using different cellular ratios of bacteria:phytoplankton based on previous publications of bacteria and 

Figure 4.  Illustration of experimental setup and workflow for mass spectrometry data acquisition and analysis. 
(a) Serial dilutions were completed using bacterial cells (RPom) as the diluent (see text). Dilution was based 
on cell counts to achieve cellular rations of Rpom (R. pomeroyi) to Thaps (T. pseudonana). Each serial dilution 
was then lysed and proteins were digested prior to MS experiments. (b) MS experimental workflow: 1. Data 
dependent acquisition (DDA) was performed on the Q-Exactive-HF (QE) to assess the limit of detection for a 
standard, discovery-driven proteomics experiment. 2. Data independent acquisition (DIA) was also completed 
on the QE to create spectral libraries for selected reaction monitoring (SRM) method development. 3 & 4. These 
spectral libraries were analyzed with PECAN and Skyline was used to select optimal transitions and to design 
an instrument method for SRM analyses. 5. SRM was completed on the TSQ Vantage for 309 bacterial peptide 
transitions. 6. Peptide transition detection and quantification was performed in Skyline. (c) The chromatograms 
of peptide IPSAVGYQPTLATDMGAMQER (from protein Q5LNP1) were collected using the 3 different MS 
approaches (DDA, DIA, and SRM) on bacterial dilution 5000:1. Black vertical lines indicate peak integration 
boundaries, and colored peaks represent the different transitions (i.e. peptide fragments) collected.
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phytoplankton counts in (1) mesocosm experiments61,62, (2) before, during, and after phytoplankton blooms34–36, 
and (3) as a function of depth63. In nature, these ratios can vary by an order of magnitude34,35,63,64 and we extended 
our dilution ratios to better define the upper and lower limits of mass spectrometry detection within these com-
plex mixtures. Aliquots of cultures at concentrations of 108 cell ml−1 (Rpom) and 105 cell ml−1 (Thaps) were 
mixed to yield desired Rpom:Thaps ratios (outlined in Table 1) in triplicate. Samples were subsequently filtered 
onto 47 mm, 0.2 µm Nucleopore polycarbonate filters (Whatman, Maidstone, UK) to simulate simultaneous in 
situ ocean collections of these mixtures onto a 0.2 µm filter. Once filtered, cells were killed with a 5 ml rinse of cold 
10% TCA before the filtered samples were frozen in liquid nitrogen and stored at −80 °C. After protein digestion, 
additional dilutions were created from these original samples based on calculated cell counts to yield Rpom:Thaps 
ratios of 1:1000, 1:100, 1:10, and 1:1 for the DDA analysis.

Protein extraction.  Proteins were extracted from filters by shaking the filters suspended in 500 µl of 6 M 
urea in a bead beater with no beads (repeat 3 times:1 min shaking; ice 5 minutes). After removing the filters 
from the liquid, cells were lysed using a sonicating probe3. This method removed an average of 42% (range: 
9–94%) of total proteins from the filter, determined by amino acid quantification (Supplementary Methods and 
Supplementary Table S3).

Protein concentrations were measured using the BCA assay (Pierce, Thermo Fisher Scientific), following the 
manufacturer’s protocol. All samples were analyzed in triplicate and concentrations were averaged for a final 
protein concentration. Digestions of 100 µg of protein were completed following3.

LC-MS/MS and protein inference: DDA.  Liquid chromatography coupled with tandem mass spectrom-
etry (LC-MS/MS) was completed on a Q-Exactive-HF (QE: Thermo Fisher Scientific) in technical duplicate 
analyses for each sample using data dependent acquisition (DDA) on the top 20 precursor ions (Fig. 4). The 
analytical column was 20 cm long and packed in house (3 µm C18; Dr. Maisch) with a 3 cm long trap (3 µm C12; 
Dr. Maisch). Peptides were eluted using a 5–35% ACN gradient over 60 minute at 300 nl/min flow rate. MS1 ions 
were collected in the scan range of 400–1400 m/z. Automatic gain control threshold was set at 1 × 106 for MS1 
and 5 × 104 for MS2 and dynamic exclusion of 30 s was used for MS2. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository39 with the dataset 
identifier PXD004799 (http://www.proteomexchange.org/). 

Database search parameters.  Completed proteomes for Thalassiosira pseudonana and Ruegeria pomeroyi 
were downloaded from Uniprot (7/2013; www.uniprot.org). These databases were concatenated with 50 common 
contaminants, yielding a protein database of 17,395 proteins. To assign spectra to peptide sequences, correla-
tive database searches were completed using Comet v. 2015.01 rev. 265,66. Comet parameters included: Trypsin 
enzyme specificity, semi-digested, allowed 1 missed cleavage, 50 ppm mass tolerance, cysteine modification of 
57 Da (resulting from the iodoacetamide) and modifications on methionine of 15.999 Da (oxidation). Minimum 
protein and peptide thresholds were set at P > 0.9 on Protein and Peptide Prophet67. Protein inferences from the 
whole-cell lysates were accepted by ProteinProphet if the thresholds noted above were passed, two or more pep-
tides were identified, and at least one terminus was tryptic68–70. Normalized spectral abundance factor (NSAF) 
was calculated71 for all inferred proteins72.

Proteomic differences across Rpom:Thaps gradient.  Non-metric multidimensional scaling (NMDS) 
in the vegan package73 in R v. 3.2.374 was applied to assess tightness of technical replicates (Supplementary 
Fig. S3), excluding the 100% Thaps sample. Technical replicate analyses of individual samples showed consistent 
proteome characterization so spectral counts were averaged across technical replicates to calculate final NSAF 
and for NMDS and ANOSIM analyses in the vegan package in R.

The Rpom proteins that had significant loadings (p = 0.00099 and loading >0.99) along the NMDS axis that 
differentiates the samples based on ratio of Rpom:Thaps (Supplementary Table S4) were analyzed for enrichment 
of specific biological processes in DAVID v. 6.775,76 using the Rpom proteome as the background protein list. 
These are proteins that are increasingly difficult to detect with DDA methods when bacteria are at relatively low 
abundance.

In silico analysis of peptide sequence identity and taxonomic specificity.  The Thaps and Rpom 
complete proteomes were digested in silico using the Protein Digestion Simulator v. 2.2.5350.26597 from PNNL 
(omics.pnl.gov) to determine if there would be peptide sequence homology between organisms. The follow-
ing settings were used: Minimum fragment mass = 400, maximum fragment mass = 6000, minimum residue 
count = 5, max missed cleavages = 3, hydrophobicity mode = Hopp and Woods. This created two files, one con-
taining putative Thaps tryptic peptides and the other containing putative Rpom tryptic peptides.

Rpom peptides selected for SRM analysis (see below) were compared to all known bacterial peptide sequences 
in Unipept32,77, which searches peptide sequences against the entire UniProt database, on February 13, 2017. This 
analysis gives the taxonomic specificity of each peptide, i.e. if a peptide is species-specific or found across bacterial 
taxa at a higher taxonomic level.

LC-MS/MS: DIA, targeted proteomic assay development, and SRM.  Targeted proteomics assays 
were developed and tested to determine at what point in the dilution steps the bacterial peptides were undetect-
able among the dominating eukaryotic peptides. Based on the DDA analysis of the bacterial dilution series, pep-
tides in the following categories were selected for targeted assays: (1) peptides present across biological replicates 
and dilutions, (2) unique peptides identified only in low Rpom:Thaps dilution (i.e., phosphate-specific transport 

http://www.proteomexchange.org/
http://www.uniprot.org
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system (Q5LS18) and ABC transporter, ATP-binding (Q5LLS4)), (3) peptides that drive the differences observed 
in the NMDS (see Methods, Proteomic differences across Rpom:Thaps gradient). These categories yielded an 
assay of 64 peptides derived from 24 proteins (Supplementary Table S2). Predetermined peptides with identical 
sequences between the Rpom and Thaps proteomes were not present in the list of peptides of interest for targeted 
proteomics.

The three technical replicates from the DDA experiment for the dilution of 5000 Rpom: 1 Thaps cell were 
pooled in equal quantities to create two new technical replicates for data independent acquisition (DIA) on the 
QE (Thermo). Each sample included a spiked-in internal quality control peptide standard (375 fmol Peptide 
Retention Calibration Mix; Pierce, hereafter referred to as “QC”). Sample injections for all DIA experiments 
included 1 µg protein plus the internal standard in a 2 µl injection. DIA experiments were completed using a 
27 cm analytical column with a 3 cm pre-column (3 µm C18; Dr. Maisch). Technical replicates were collected in 
4 m/z isolation width windows in 125 m/z ranges (400–525, 525–650, 650–775, 775–900)10. For each method, a 
gradient of 5–80% ACN over 90 minutes was applied for peptide spectra acquisition. Raw data can be accessed via 
ProteomeXchange (http://www.proteomexchange.org/) under identifier PXD004758.

To generate spectral libraries for targeted method development, Peptide Centric Analysis was completed with 
the software program PECAN78. Input files included the list of peptides generated for targeted proteomics, as 
described above, and the mzML files generated from the raw DIA files using MSConvert79. PECAN correlates a 
list of peptide sequences of interest with the acquired DIA spectra to locate the peptide-specific spectra within 
the acquired DIA dataset.

The PECAN.blib output file was then imported into Skyline daily v. 3.5.1.970680 for targeted method devel-
opment. The targeted method development workflow, including screenshots, can be found in Supplementary 
Methods. Peptide transitions are defined as the reproducible fragments of peptides that are produced during the 
MS2 scan in a mass spectrometer81. Peptide transitions were selected if peak morphology was uniform and con-
sistent across the MS2 scans for both technical replicates. Peptides were selected for targeted analysis if they had 
>3 high quality transitions and >3 peptides per protein. Only 4 transitions per peptide were selected for targeted 
analysis and no more than 3 peptides per protein were selected. The final list consisted of 334 transitions (based 
on manual protein selection) and this transition list was divided among two method files for the final SRM analy-
ses (Supplementary Table S2). The Skyline document used to make the SRM assay is freely available at Panorama: 
https://panoramaweb.org/labkey/oceanbact.url.

Selected reaction monitoring (SRM), was completed on a Thermo Vantage for all bacterial dilution sam-
ples in Table 1. Samples were prepared as described above for DIA (1 µg of protein per 3 µl injection), and each 
sample was analyzed individually on the Thermo Vantage. New C18 trap (2 cm) and C18 analytical columns 
(27.5 cm) were used and each sample was analyzed in two MS experiments to cover the entire peptide transi-
tion list (n = 334). Raw data can be accessed in the PeptideAtlas (http://www.peptideatlas.org/PASS/PASS00917) 
under accession PASS00917.

Acquired SRM data were analyzed in Skyline (https://panoramaweb.org/labkey/oceanbact.url). Peptide tran-
sition MS2 peaks were quantified using peak area integration across all samples. Peak presence was determined 
based on consistency of retention time (verified by spiked in QC peptides) and peak morphology. Relative reten-
tion times for QC and bacterial peptides were correlated between DIA and SRM experiments with an R2 > 0.99 
(Supplementary Fig. S2).

All peptide transition peak intensities were exported from Skyline for analysis. QC transitions were assessed 
for consistency across runs by calculating the coefficients of variation (CVs) of transition peak area across injec-
tions in the raster package82 in R v. 3.2.374. The eight QC transitions with the lowest CV (<40) were used for 
inter-run normalization. Peak intensities for 305 bacterial transitions were normalized by dividing by the aver-
aged intensities for 8 QC transitions within a given run. Normalized peak intensities were analyzed using NMDS 
and ANOSIM, as described above for DDA. Pearson’s r and the critical r value were calculated in R v. 3.2.374 for 
the correlation between peptide transition peak intensity and bacterial dilution factor. A heatmap of average 
peptide transition peak intensities for each dilution above the cut-off of Pearson’s critical r was constructed in 
pheatmap83 in R, with rows (transitions) and columns (dilutions) clustered using Euclidean distance and the 
average clustering method. Proteins were annotated with Gene Ontology terms using the UniProt Retrieve/ID 
mapping tool (uniprot.org).

Data availability.  The datasets generated during and/or analyzed during the current study are available 
in the repositories ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 
PXD004799 for DDA data and PXD004758 for DIA data; Peptide Atlas for SRM data (http://www.peptideatlas.
org/PASS/PASS00917) under accession PASS00917; and Panorama for Skyline documents (https://panoramaweb.
org/labkey/oceanbact.url). Other data generated or analysed during this study are including in this published 
article (and its Supplementary Information files).
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