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From Science Student to Scientist: Predictors and Outcomes of 
Heterogeneous Science Identity Trajectories in College

Kristy A. Robinsona,*, Tony Perezb, Amy K. Nuttalla, Cary J. Rosetha, and Lisa Linnenbrink-
Garciaa

aMichigan State University, East Lansing, MI, United States

bOld Dominion University, Norfolk, VA, United States

Abstract

This five-year longitudinal study investigates the development of science identity throughout 

college from an expectancy-value perspective. Specifically, heterogeneous developmental patterns 

of science identity across four years of college were examined using growth mixture modeling. 

Gender, race/ethnicity, and competence beliefs (efficacy for science tasks, perceived competence 

in science) were modeled as antecedents, and participation in a science career after graduation was 

modeled as a distal outcome of these identity development trajectories. Three latent classes (High 
with Transitory Incline, Moderate-High and Stable, and Moderate-Low with Early Decline) were 

identified. Gender, race/ethnicity, and competence beliefs in the first year of college significantly 

predicted latent class membership. In addition, students in the two highest classes were 

significantly more likely to report being involved in science careers or science fields after college 

graduation than students in the Moderate-Low with Early Decline class.
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While college is a time of potentially volatile change in students’ academic and professional 

identities (Côté, 2006; Eccles, 2009; Marcia, 1993; Roisman, Masten, Coatsworth, & 

Tellegen, 2004; Waterman, 1993), few prior studies have examined developmental 

trajectories during these years. This gap in knowledge is especially problematic in science, 

technology, engineering, and math (STEM) domains where there is an acute need to expand 

and diversify the workforce (National Science and Technology Council, 2013). After all, 

many students start college with the intention of majoring in a STEM discipline and 

pursuing a STEM career, but a large proportion “leak” out of the STEM pipeline, 

particularly students who are traditionally underrepresented in science fields (National 

Science Board, 2016; Koenig, 2009; Myers & Pavel, 2011; Penner, 2015). Different patterns 

of identity development may help to explain why this occurs.
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Extant work on identity development in STEM (e.g., Hernandez, Schultz, Estrada, 

Woodcock, & Chance, 2013) generally considers changes in identity on the average, without 

considering whether developmental patterns vary among individuals. However, there is 

likely to be a great deal of heterogeneity in identity trajectories, given the variety of barriers 

that some students may face during college such as stereotype threat and the often 

competitive climate of introductory STEM courses (Murphy, Steele, & Gross, 2007; 

Seymour & Hewitt, 1997). Thus, a person-oriented developmental approach may be needed 

to account for heterogeneous patterns of science identity development. Moreover, theory and 

prior research suggest that students’ competence beliefs are important in identity 

development (Eccles 2009; Chemers, Zurbriggen, Syed, Goza, & Bearman, 2011; Robnett, 

Chemers, & Zurbriggen, 2015), and that identity development processes have important 

implications for career outcomes (Eccles, 2009; Estrada, Woodcock, Hernandez, & Schultz, 

2011; Hernandez et al., 2013; Woodcock, Hernandez, Estrada, & Schultz, 2012). However, 

there is little empirical research investigating these claims, especially longitudinal research 

that follows traditional college students (i.e., student who enter college directly from high 

school) from the start of college until after graduation.

In the current study, we use an expectancy-value theory perspective to investigate science 

identity development among a diverse population of traditional college students who begin 

college with a focus in science. Specifically, we aim to (1) identify and describe varying 

science identity trajectories across four years of college, (2) consider predictors of these 

science identity trajectories, and (3) examine how science identity trajectories predict post-

graduation participation in science careers.

Conceptualization of Identity

Students who begin college intending to pursue science often engage in academic pursuits 

and career preparation activities that have the potential to solidify or destabilize academic 

and career identities (Eccles, 2009; Waterman, 1993). Contemporary Expectancy-Value 
Theory (Eccles, 2009) posits that an individual’s expectancies for success and appraisals of 

value for a task or domain (i.e., task value) are the most proximal predictors of academic and 

occupational choices (Eccles et al., 1983). Task value is conceptualized as multifaceted, with 

individuals valuing tasks or domains for multiple reasons including the personal importance 

of a task or domain because of its relevance to their personal and collective (or social) 

identities (i.e., attainment value; Eccles, 2009). Attainment value in particular is 

conceptualized as a central, defining component of an individual’s personal and collective 

identities.

Expectancy-value theory’s conceptualization of identity is similar to the self-theories or 

schemas as conceptualized by Markus and Nurius (1986). It is also has much in common 

with identity commitments that define Marcia’s (1993) foreclosed (i.e., committed to an 

identity that is valued by important others) and achieved (i.e., committed to an identity after 

personal exploration) identity statuses, although Eccles does not differentiate between 

commitments made through differing exploration processes as Marcia does in the ego-

identity status model. An expectancy-value view of identity is also similar to the concept of 

‘identification with commitment’ (e.g., embracing and integrating commitments into one’s 
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sense of self) in Luyckx and colleagues’ dual-cycle model of identity formation (Luyckx, 

Goossens, Soenens, & Beyers, 2006; Schwartz, Zamboanga, Luyckx, Meca, & Ritchie, 

2013). However, the focus in expectancy-value theory is on salient identity contents (e.g., 

importance of a particular identity), with academic and occupational choices viewed as 

potential enactments of such identity contents. Thus, if majoring in science and pursuing a 

science career is an enactment of one’s science identity, then one should have high 

expectancies for success in science, high attainment value for science, and be more likely to 

have a career in science after graduation.

Development of Science Identity During College

According to expectancy-value theory, the importance, salience, and contents of one’s 

identities represent dynamic processes that change over time in response to information 

gleaned from the environment, from introspection, and through experience (Eccles, 2009). 

This means that students who enter college highly valuing a science identity may continue to 

explore the importance of this and other identities over time. It also means that students may 

encounter periods of identity instability as a result of destabilizing events, such as receiving 

a poor grade in a course or experiencing stereotype threat (cf. Luyckx et al., 2006). 

However, much of the identity literature has focused on identity processes broadly, either 

examining identity processes in general (e.g. exploration and commitment; Luyckx, Teppers, 

Klimstra, & Rassart, 2014) or in relation to broad domains such as education and friendship 

(e.g. Klimstra et al., 2010). Thus, the present student contributes to this literature by 

focusing specifically on identity in science and examining different patterns of change over 

time.

Despite the potential importance of college for stabilizing or destabilizing science identity, 

there exists little longitudinal research examining the development of science identity during 

this time. In one relevant study, Hernandez and colleagues (2013) found that science 

identity1, examined over three years in a sample of college students from underrepresented 

ethnic and racial groups, was relatively stable, suggesting that there are very few changes in 

science identity towards the latter half of college. This finding aligns with other research 

reporting slight, but statistically significant change in vocational identity across three time 

points during high school (Negru-Subtirica, Pop, & Crocetti, 2015). Taking a person-

oriented approach, Musu-Gillette, Wigfield, Harring, and Eccles (2015) also examined 

whether there were multiple, distinct trajectories of value2 for math during adolescence and 

early adulthood. Results indicated that mathematics value declined rapidly for some students 

(fast decline), slowly for others (slow decline), and remained relatively stable, though lower 

overall (low steady) for a third class of students. However, given their broader 

developmental focus, Musu-Gillette and colleagues only included one measurement point in 

college, which makes it difficult to make claims about developmental trajectories within 

college.

1Science identity was conceptualized somewhat differently in terms of role orientation (e.g., a composite of identity beliefs related to 
belonging, interest, and self-categorization as a scientist; see Estrada et al., 2011 for a more detailed discussion) rather than identity-
related attainment value.
2Value was conceptualized in terms of both utility and attainment value, and attainment value was assessed in terms of broad personal 
importance. Thus, the measure of value used does not fully align with Eccles’ (2009) conceptualization of identity-related importance.
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One important implication of Musu-Gillette et al.’s (2015) findings is that solely examining 

one average trajectory may mask sub-group differences in identity development. Thus, using 

a person-oriented approach to complement variable-oriented research on science identity 

development may provide insight into the nature of the construct and advance theoretical 

understanding. For practice, this approach may also indicate whether interventions to 

support science identity should be administered to all students or only to subgroups of 

students.

Predictors of Science Identity Trajectories

In addition to describing heterogeneity in developmental trajectories, further research is also 

needed to illuminate the processes through which science identity can be supported or 

destabilized. According to expectancy-value theory, competence beliefs, derived from 

appraisals of success or failure in the domain, are important predictors of the value one 

places on a domain (Wigfield & Cambria, 2010), including identity-related attainment value. 

Specifically, a student’s perceived failure on domain-specific tasks can lead that student to 

devalue his or her identity and seek other options, while a student’s apparent success may 

lead the student to seek out future opportunities to re-engage. Citing a large body of research 

linking task-specific competence beliefs to behavior, Eccles (2009) further posits that 

identity formation processes may act as a mediator between competence beliefs and 

behavioral choices. Thus, students who pursue science when beginning college may be at 

risk for lower identity appraisals over time if they are unsure about their science abilities.

While there are a variety of relevant competence beliefs, we focus on two common types: 

perceived competence, or students’ beliefs in their ability to learn content in a given domain, 

and self-efficacy, which is students’ confidence in their ability to successfully complete 

specific tasks (Schunk & Pajares, 2005). We conceptualize perceived competence in terms of 

students’ general beliefs about their ability to learn and do academic work in science courses 

and self-efficacy as students’ beliefs about their ability to successfully complete specific 

tasks related to the scientific process (e.g., generate a hypothesis, analyze/interpret data). 

Both ability beliefs may influence students’ science identity beliefs: self-efficacy via 

experiences that inform students’ beliefs about their ability to perform scientific tasks, and 

perceived competence via students’ beliefs that they can successfully navigate the academic 

challenges associated with pursuing a scientific career. But self-efficacy may be a more 

relevant predictor of science identity because it pertains to “authentic” scientific skills used 

by scientists (at least in terms of how we conceptualize self-efficacy here), as opposed to 

academic skills that may or may not be useful in a science career. Students who lack 

confidence in their ability to pass a test in a science course may or may not view this as 

relevant to their identities as scientists, whereas lack of confidence in one’s ability to form 

and test a scientific hypothesis may directly inform appraisals of science identity. Supporting 

this view, prior research indicates that self-efficacy mediates the relation between research 

experiences and science identity, both concurrently (Chemers et al., 2011) and longitudinally 

(Robnett et al., 2015). However, no prior research investigates perceived competence as a 

predictor of science identity trajectories, nor does it assess both self-efficacy and perceived 

competence as predictors. Thus, the present study extends prior work by testing whether 
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both of these competence beliefs predict membership in different science identity 

trajectories.

In addition to competence beliefs, gender as well as race and ethnicity may predict 

differences in college students’ developing science identities. Women and students from 

underrepresented ethnic/racial groups (e.g., African American, Hispanic/Latino) may face 

additional barriers to identifying with science, as evidenced by low representation in STEM 

fields and a lower likelihood of completing degrees in STEM in the United States (National 

Science Board, 2016; Koenig, 2009; Myers & Pavel, 2011). However, empirical support for 

this claim is mixed. Within the math domain, for example, gender predicted different 

trajectories of value-related identity change among adolescents in some studies (Nagy et al., 

2008; Watt, 2004), but not others (Musu-Gillette et al., 2015). Importantly, this prior work 

did not consider science specifically nor did it follow students throughout college. And, 

there is little, if any, research that examines whether racial/ethnic minority students 

experience declines in science-related identity throughout college in comparison to majority 

groups. Thus, while there is research suggesting possible mechanisms for disidentification in 

science by both women and racial and ethnic minorities (e.g., stereotype threat, Cokley, 

2002; Osborne, 1995; 1997), we know very little about whether underrepresented groups in 

the sciences actually experience distinct patterns of science identity development 

longitudinally throughout college relative to male and Caucasian or Asian students. As such, 

it is critical to first understand whether women and racial/ethnic minorities are more likely to 

experience steeper declines in identity throughout college, before attempting to further 

investigate the particular contextual and psychological elements that may be associated with 

varying patterns of identity development during college among gender and racial/ethnic 

groups traditionally underrepresented in STEM fields.

Science Identity Trajectories as Predictors of Science Careers

As a defining component of identity, attainment value provides a framework for organizing 

overall self-perceptions, worldviews, and behavior (Eccles, 2009; Kaplan & Flum, 2012; 

Oyserman, 2015; Rosenberg, 1979). Thus, the more a student values science as a part of his 

or her identity, the more he or she also self-evaluates through the lens of a scientist, thinks 

like a scientist, and makes choices that are congruent with being a scientist. 

Developmentally, it follows that students reporting high science identity should also be more 

likely to choose and achieve science careers after graduation. However, these links between 

identity and behavior have not yet been fully investigated, as most studies integrating 

identity and motivation constructs as important predictors of college science students’ 

retention have been limited by cross-sectional designs (e.g., Andersen & Ward, 2013; 

Chemers et al., 2011; Hazari, Sonnert, Sadler, & Shanahan, 2010). One exception to this 

pattern is the study by Estrada and colleagues (2011), who found that science identity in a 

sample of underrepresented minority students was a powerful predictor of science career 

intentions and behavioral involvement in science (e.g., independent research and graduate 

school attendance) assessed one year later. Likewise, in two subsequent studies using a 

similar sample, Woodcock et al. (2012) found that science identity predicted 

underrepresented minority college students’ intentions to pursue a scientific research career 

(one year later), and Hernandez and colleagues (2013) found that science identity 
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trajectories positively correlated with stability in mastery goals, which was in turn a 

significant positive predictor of undergraduate GPA.

Extant research focused specifically on value is also relevant to the relation between identity 

beliefs and STEM persistence. For instance, Musu-Gillette and colleagues (2015) found that 

adolescents whose value for mathematics declined more rapidly were less likely to choose a 

math-intensive major in college. Focusing specifically on identity development in science, 

other research has found that students who engaged in identity exploration reported higher 

value for science and lower perceived costs associated with pursuing a science major than 

students who chose a major based on others’ expectations (Perez, Cromley, & Kaplan, 

2014). Importantly, commitment to a career identity after exploration was related to 

persistence intentions via students’ value for science. That is, students who reported higher 

value (including attainment value conceptualized as personal importance) and lower costs 

associated with pursuing STEM fields reported lower intentions to leave science.

Present Study

In summary, extant literature provides some information about the development of science 

identity, as well as its predictors and implications for involvement in science careers, but 

also leaves important questions unexamined. For example, prior studies used varied 

conceptualizations of science identity, often combining numerous identity facets into one 

measure (e.g., Chemers et al., 2011; Estrada et al., 2011). Additionally, while two prior 

studies considered how identity trajectories predict subsequent persistence-related outcomes 

(Hernandez et al., 2013; Musu-Gillete et al., 2015), only one has followed students after 

graduation to assess whether or not they were involved in science fields (Estrada et al., 

2011), which is perhaps the most important outcome of interest to science educators and 

policy makers. Accordingly, the current study extends theory and prior research by 

examining heterogeneous change trajectories in traditional college students’ science 

identities over the entirety of the undergraduate leaky STEM pipeline, from the beginning of 

college through one year after graduation. Three research questions guided the work:

1. Are there multiple patterns (or latent classes) of science identity development 

during college?

2. How do gender, race/ethnicity, perceived competence, and self-efficacy predict 

science identity class membership?

3. Do differential science identity trajectories (class membership) predict science 

career outcomes after college graduation?

Based on prior research identifying heterogeneous developmental patterns of value for 

academic subjects (e.g., Musu-Gillette et al., 2015), we expected to find multiple classes of 

development in science identity. Given that these were students enrolled in courses for 

science majors, we expected that the science identity intercept for at least some classes 

would be relatively high. We also expected that some students would exhibit declines in 

science identity over time (Marcia, 1993) and others would report stable or increasing 

patterns of science identity over time, presumably as a result of different affirming or 

destabilizing experiences. We also tested for non-linear change based on the assumption that 
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identity development is dynamic and on-going and therefore not necessarily linear (Eccles, 

2009). We did not have specific hypotheses about the number of classes, particularly as 

testing quadratic growth trajectories in addition to linear growth expanded the possible 

growth patterns.

As posited by expectancy-value theory (Eccles, 2009) and prior research showing strong 

relations between self-efficacy and science identity (Chemers et al., 2011; Estrada et al., 

2011), we hypothesized that both competence beliefs (self-efficacy for science tasks, 

academic perceived competence in science) would predict class membership, with higher 

competence beliefs in the first year predicting membership in classes with higher initial 

science identity and either growth or stability in science identity during college. Given its 

relevance to future science careers, we expected that science self-efficacy would explain 

unique variance when controlling for perceived competence. We also expected that 

perceived competence would explain significant, unique variance in class membership 

because of the importance of academic success for pursuing science careers.

We also examined whether women and underrepresented minority students were more likely 

to belong to identity trajectories characterized by declines in science identity. The 

assumption was that these groups are underrepresented in STEM and would therefore 

encounter different opportunities and barriers for developing their identities as scientists. 

Attrition from science is disproportionately higher for women and racial/ethnic minority 

students (National Science Foundation, 2015), and prior research provides evidence that 

domain-specific values and competence beliefs vary by gender and race/ethnicity (Cokley, 

2002; Gaspard et al., 2015; Jacobs, Lanza, Osgood, Eccles, & Wigfield, 2002; Nagy et al., 

2008). Therefore, we hypothesized that female students and students from underrepresented 

racial/ethnic groups would be more likely to exhibit declines in science identity over time.

Finally, in alignment with theory (Eccles, 2009) and prior research (e.g., Chemers et al., 

2011; Estrada et al., 2011; Musu-Gillette et al., 2015; Woodcock et al., 2012), we expected 

that science identity class membership would differentially predict participants’ involvement 

in science careers or fields after college. We hypothesized that students with relatively high 

and stable or increasing science identity would be more likely to be involved in science 

careers than students for whom science identity decreased over time and/or whose levels of 

science identity were initially low.

Method

Participants and Procedure

Data for the current study were collected as part of an ongoing intervention study at an elite 

university in the United States. The study, titled “Self-Generated Research Experiences to 

Support Biomedical/Behavioral Research Careers,” was approved by the Institutional 

Review Board at Lisa Linnenbrink-Garcia’s former and current institutions (IRB Nos. 

A0166 and x16-881e). Students who participated in the intervention (n = 197) were 

excluded from our analyses, because the intervention may have impacted the constructs 

examined in the current study. Using a longitudinal design that prospectively assessed 

students across five years following a three-year original enrollment period, data collection 
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began during fall of participants’ freshman year (2010, 2011, or 2012) and continued 

annually through the year after graduation. Therefore, our data collection period spanned 

seven years. Participants were recruited from freshman chemistry courses required for 

science majors. With the permission of course instructors, we visited each chemistry course 

to describe the study and invite participation. Students aged 18 and over who were in their 

first year of college were eligible to participate. Those who were not yet 18 (n = 56) at the 

time of recruitment were invited to participate after turning 18. Of the 2,581 students 

enrolled in the recruitment courses, 75% (n = 1,934) agreed to participate in the study. 

Students provided informed consent and completed paper surveys in class, receiving $10 for 

participation.

From this larger sample of students who completed the first-year baseline survey, a 

longitudinal comparison group was randomly selected from those who did not participate in 

the intervention, with stratification to oversample women and students from 

underrepresented ethnic and racial groups.3 The selected comparison group, consisting of 

1,023 participants, was invited annually to take follow-up surveys via email during spring 

semester of their sophomore, junior, and senior years as well as eight months post-

graduation, resulting in 5 waves of data. Of those invited to take follow-up surveys, 49% (n 
= 506) responded to the sophomore (T2) survey, 45% (n = 456) responded to the junior year 

(T3) survey, 46% (n = 475) responded to the senior year (T4) survey, and 47% (n = 483) 

responded to the postgraduation survey (T5). Students who did not complete one or more of 

the follow-up surveys were still invited to participate in subsequent follow-up surveys. 

College dropout was quite rare in this sample (4%), and participants were invited to 

complete follow-up surveys whether or not they dropped out of college.

The final sample for the present study included the entire comparison group sample of 1,023 

undergraduate students (58% female; 25% White, 43% Asian, 13% African American, 11% 

Hispanic/Latino, 8% multi-racial/other). Results of missing data analyses are provided in the 

results section.

Measures

Science identity—Science identity was assessed annually each of the four years of 

college using a 4-item self-report scale adapted from two scales: a science identity scale 

developed by Pugh, Linnenbrink-Garcia, Koskey, Stewart, and Manzey (2009) and an 

attainment value scale developed by Conley (2012). The four items measure individual 

appraisals of the personal importance or value of science to one’s identity (α = .83–.90), for 

example: “Being involved in science is a key part of who I am.” Students rated items on a 

Likert-type scale ranging from 1 to 5, with 1 = strongly disagree and 5 = strongly agree.

Competence beliefs—Self-efficacy for science tasks was measured in the first year using 

a six-item scale (α =.84), adapted by Estrada et al. (2011) from Chemers et al. (2011) 

assessing students’ confidence in their ability to complete scientific tasks. An example item 

3The intervention group had a larger proportion of women and underrepresented ethnic and racial minority groups than the student 
population; thus, we also over sampled women and racial/ethnic minority groups in the comparison group in an attempt to match the 
intervention sample.
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read, “I am confident that I can generate a research question to answer.” Perceived 
competence for science coursework, or students’ confidence in their ability to succeed at 

academic work in science, was measured in the first year using a five-item scale (Midgley et 

al., 2000; α =.87). A sample item for this scale is, “Even if the work in science is hard, I can 

learn it.” Items for both scales were rated on a 5-point Likert-type scale (1 = strongly 

disagree, 5 = strongly agree).

Science involvement—To assess students’ participation in science careers or graduate 

programs after college graduation, participants responded to a self-report item collected in 

the spring following graduation. The question asked, “Do you consider yourself to be 

involved in a science-related career or field?” Following the question, science-related careers 

or fields were defined for the participant: “A science-related career is one that is based on 

scientific knowledge or principles, uses scientific methodology and techniques, and/or 

engages in scientific research.” Participants could choose 1 = “Yes, I’m involved in a 

traditional science career/field (e.g., work in a lab, science research analyst/consultant, 

continuing my education in a science career (e.g., medical school, PhD program in science, 

etc.))”, 2 = “Somewhat, my work is related to science but is not in a traditional field (e.g., 

science writer, investment advisor in biotech, drug regulatory affairs)”, or 3 = “Definitely 

not”. Categories 1 and 2 were collapsed for the current study to create a dichotomous 

measure, with 1 indicating involvement in a science-related career or field and 0 indicating 

no involvement in science.

Data Analytic Strategy

All analyses were conducted using Mplus Version 8 (Muthén & Muthén, 1998–2017) and 

missing data were handled using full information maximum likelihood (FIML) estimation. 

Prior to fitting growth models, preliminary analyses included descriptive statistics, 

correlations, and examining individual trajectory plots to inform the selection of plausible 

models for examination (Ram & Grimm, 2009).

Latent growth model—First, latent growth modeling, which represents a one-class 

growth mixture model, was used to select a baseline model for GMM (Masyn, 2013; Ram & 

Grimm, 2009). Intercept-only (no growth), linear, and quadratic models were fit to the full 

sample to find the best-fitting representation of change for the overall sample.

Growth mixture models—Growth mixture modeling (GMM) was used to identify 

classes of participants based on observed heterogeneity in patterns of change (Nylund, 

Asparouhov, & Muthén, 2007). Rather than relying on a single growth curve model, which 

assumes all participants belong to a single population, or on multi-group models defined by 

observed group membership, GMM was used to classify heterogeneity in patterns of change. 

Bayesian Information Criterion (BIC) was used to select the class solution, with smaller 

values of BIC indicating better fit, because simulation studies demonstrate the utility of the 

BIC in GMM (Nylund et al., 2007). The theoretical interpretability of class solutions was 

also considered in the selection of the final classes (Grimm & Ram, 2009b; Nylund et al., 

2007).
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The introduction of predictors (termed covariates in the GMM literature) and distal 

outcomes of class membership can be approached in a number of ways. One approach, the 

one-step method, involves adding covariates or distal outcomes directly to the GMM; 

however, adding these variables to a GMM provides additional information that influences 

estimation, often changing the class solution. This can make interpretation difficult, 

particularly when researchers aim to understand covariates as predictors of class 

membership (Vermunt, 2010). Another approach involves a 3-step procedure: after the 

GMM is specified (Step 1), each case is assigned to the most likely class based on 

probabilities of latent class membership (Step 2). Class membership is then used as a 

categorical variable which can be modeled as a predictor or an outcome (Step 3). However, 

because this method treats latent class membership as known, standard errors and estimates 

of model parameters are biased (Vermunt, 2010).

In the current study, we used an updated 3-step approach (Asparouhov & Muthén, 2014) 

implemented in the Mplus software (Muthén & Muthén, 1998–2017) to introduce covariates 

(gender, race/ethnicity, self-efficacy, and perceived competence) and a distal outcome (post-

graduation science involvement) to the GMM. After estimating the GMM, this approach is 

similar to the earlier 3-step approach in that it assigns each case to the most likely class in 

Step 2, then regresses the most likely class on predictor variables (or distal outcomes on 

class). However, the updated approach improves upon the one-step approach by taking into 

account the uncertainty of classification in the second step using logit probabilities that have 

been shown to result in less biased estimates than the original 3-step procedure while 

maintaining a stable class solution for the GMM and interpretable coefficients for predictors 

and outcomes of class membership (Asparouhov & Muthén, 2014). The command R3STEP 

was used for covariates, and the DCATEGORICAL command was used for the distal 

outcome, as recommended by Muthén & Muthén (1998–2017; see also Asparouhov & 

Muthén, 2012; Vermunt, 2010).

Results

Preliminary Analyses

Correlations and descriptive statistics—Table 1 displays correlations and descriptive 

statistics for each study variable. Science identity at all time points was significantly 

positively correlated with self-efficacy and perceived competence at Time 1, and self-

efficacy and perceived competence were also positively correlated. As expected, repeated 

measures of science identity were also positively correlated over time and means of science 

identity were relatively stable over time. Overall, 77% of participants reported being 

involved in a science-related career or field after graduation.

Missing data—To address the assumptions for full information maximum likelihood 

estimation (FIML), we examined patterns of missing data in relation to study variables. 

Study recruitment (e.g., invitations to complete follow-up surveys) was randomly selected 

with follow-up invitations regardless of prior participation, and the amount of missing data 

at each time point was within the expected range (52–57%). In addition, participants with 

any missing data were compared to subjects with complete data on demographic variables, 
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initial competence beliefs, and initial science identity. Students with missing data did not 

significantly differ from students with complete data on first-generation college student 

status [χ2 (2) = .314, p = 0.86], but the two groups did differ significantly with respect to 

membership in an underrepresented ethnic/racial minority group [χ2 (1) = 10.55, p < .01] 

and gender [χ2 (1) = 15.83, p < .001]. Those with complete data were more likely to be 

female and White or Asian/Asian American. The MANOVA comparing year 1 perceived 

competence, self-efficacy, and science identity was not significant, Wilks’ λ (3, 1014) = 

0.99, p = .06, η2 = 0.01.

Confirmatory factor analyses—Confirmatory factor analyses (CFAs) for Time 1 

perceived competence and self-efficacy indicated that the two-factor model fit the data well, 

χ2 (43) = 191.966, RMSEA = .06, CFI = .97, TLI = .96, providing evidence that participants 

differentiated self-efficacy for scientific tasks from perceived competence for science 

coursework in their responses. Below, we describe the measurement model for science 

identity.

Second-Order Growth Model

Measurement invariance—In order to make inferences about change over time, it is 

necessary to first establish evidence that the same construct is being measured over time. 

Observed change over time can then be attributed to true change rather than change in the 

meaning of the construct over time (Widaman & Reise, 1997). Measurement invariance over 

four time points for the first-order common factor model for science identity was evaluated 

by successively fitting configural, weak, strong, and strict invariance models. The configural 

model constrained the factor structure to be the same across time. Weak invariance was 

specified by additionally constraining factor loadings to be equal across time, and strong 

invariance additionally assumed equal observed intercepts over time. Lastly, the strict 

invariance model constrained residual variances for observed factor indicators over time. 

Model comparisons resulted in less than .01 change in CFI between models (see Table 2; 

Cheung & Rensvold, 2002). Therefore, the strict invariance model of science identity, with 

invariant factor loadings, intercepts, and unique factor variances across time (Widaman, 

Ferrer, & Conger, 2010), fit the data well and provided evidence that the same construct was 

measured over time. This model was used as the first-order measurement model for science 

identity in subsequent analyses.

We also conducted tests of group invariance by gender and race/ethnicity assuming time 

invariance within groups (i.e., factor loadings, intercepts, and residual variances were 

constrained to be equal over time). Similar to the test of measurement invariance over time, 

we fit configural, weak, strong, and strict invariance models including all four time points of 

science identity with parameters successively constrained to be equal across groups. As 

displayed in Table 2, results showed evidence of strict measurement invariance in science 

identity across gender and race/ethnicity groups.

Second-order latent growth curve model—With strict invariance constraints imposed 

on the first-order measurement model, science identity trajectories were modeled as second-

order latent factors first with an intercept-only (no growth) model, a linear growth model, 
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and finally a quadratic model. Model fit was acceptable for the intercept-only model, χ2 

(139) = 638.12, RMSEA = .059, CFI = .914, TLI = .926. The linear model, χ2 (136) = 

532.49, RMSEA = .053, CFI = .932, TLI = .940, appeared to fit the data better than the 

intercept-only model, with a difference in CFI of > .01. The quadratic model, χ2 (132) = 

491.28, RMSEA = .052, CFI = .939, TLI = .944, appeared to fit the data similarly to the 

linear model, but the quadratic factor was non-significant (M = −.005, SE = .01, p = .69). 

Importantly, for the intercept-only, linear, and quadratic models, the addition of gender and 

race/ethnicity as auxiliary variables in FIML estimation resulted in no changes to fit indices 

or model parameters.

For the entire sample, these findings suggest that the linear model offered the most 

parsimonious fit to the data, describing initial mean science identity at 3.74 (SE = 0.04, p < .

001), a slight, non-significant negative linear slope of −.03 (SE = .01, p = .06), and 

significant estimated variation in the intercept (σ2 = 0.39, SE = 0.04, p < .001) and slope (σ2 

= 0.04, SE = .01, p < .001). However, for the GMM analyses, we tested both linear and 

quadratic models because the two unconditional models fit similarly and quadratic patterns 

could be identified for subgroups in the sample, even if the overall pattern is linear.

Growth mixture model selection—The next step in our analyses was to examine 

heterogeneity in developmental trajectories of science identity among the students in our 

sample using GMM. A series of 2-, 3-, and 4-class linear and quadratic models were 

specified and compared to a 1-class baseline model, successively freeing between-class 

equality constraints in order to examine increasingly complex models (Grimm & Ram, 

2009a). In order to test heterogeneity in the initial level and slope of change in science 

identity across classes, we successively freed the means, variances, and covariances of the 

intercept and slope factors to be class-specific (e.g., vary across classes; see Table 3, 4, and 5 

for the 2-, 3-, and 4-class models, respectively). In addition, we also successively freed 

residual variances, factor intercepts, and factor loadings of the first-order science identity 

factors to be class-specific in order to assess measurement invariance across classes, avoid 

over-extraction of classes, and minimize bias in parameter estimates (Enders & Tofighi, 

2008). We selected a three-class solution with class-specific means of the intercept, linear 

slope, and quadratic slope factors, and class-specific residual variances of observed items; all 

other parameters were class-invariant (see Table 4, Model 10). This model had the lowest 

BIC value, was interpretable, and aligned with theoretical expectations. Classification 

quality was acceptable, with average latent class probabilities for most likely latent class 

memberships greater than .80. Therefore, we identified three classes that differed in terms of 

mean level, rate of change, and unexplained variance.

Table 6 displays parameter estimates for each class, and Figure 1 displays model-implied 

trajectories of science identity for each class. Sample sizes and proportions are based on 

most likely class memberships for each case. In one class (High with Transitory Incline; n = 

404; 40% of sample), science identity was initially high, with a positive linear slope and a 

negative quadratic slope. In other words, these students reported high science identity at the 

beginning and end of college, which then increased and decreased slightly across college. 

The second class (Moderate-High and Stable; n = 513; 50% of sample) was characterized by 

relatively lower initial science identity and non-significant mean linear and quadratic slopes. 
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These students reported moderately high science identity in their first year and relative 

stability in their beliefs throughout college. The third class (Moderate-Low with Early 
Decline; n = 106; 10% of sample) reported relatively low levels of initial science identity, 

with a sharply decreasing linear slope and a positive quadratic slope. This class was 

characterized by lower science identity in the first year, which then decreased sharply from 

the first to second years then leveled off between the third and fourth years. Non-overlapping 

confidence intervals confirmed that the intercepts differed significantly across the three 

classes. The intercept in the High with Transitory Incline class, M = 4.12, 95% CI [3.97, 

4.27], was significantly higher than the intercept of the Moderate-High and Stable class, M = 

3.61, 95% CI [3.38, 3.84], and both were significantly higher than the intercept of the 

Moderate-Low with Early Decline class M = 2.93, 95% CI [2.62, 3.25].

Predictors of Class Membership

Following the selection of the 3-class GMM, auxiliary variables were added to the model as 

predictors of class membership using the updated 3-step method in Mplus (Asparouhov & 

Muthén, 2014). Composite scores for perceived competence and self-efficacy were 

calculated by averaging the items due to specification limitations with regards to the 

inclusion of latent variables in the 3-step approach as implemented in Mplus. Gender (male 

= 0, female = 1), membership in an underrepresented racial/ethnic group (African American, 

Hispanic/Latino, or Native American = 1, White or Asian/Asian American = 0), self-

efficacy, and perceived competence were modeled as predictors of class membership. 

Multinomial logistic regression coefficients and odds ratios for each pairwise comparison 

are presented below and each coefficient can be interpreted as the difference in log odds of 

being in a class (vs. the reference class) associated with a 1-unit difference in the predictor 

variable, controlling for the other predictors.

The coefficients for gender indicate that women were nearly two times more likely than men 

to be in the Moderate-High and Stable class compared to the High with Transitory Incline 
class (b = 0.64, p < .01, odds ratio = 1.90). There was no evidence of gender differences in 

the likelihood of being in the Moderate-Low with Early Decline class compared to the High 
with Transitory Incline class (b = 0.52, p = .09, odds ratio = 1.68) or in the likelihood of 

being in the Moderate-High and Stable vs. the Moderate-Low with Early Decline class (b = 

−0.12, p = .72, odds ratio = .89).

Coefficients for membership in an underrepresented racial/ethnic group (URM) indicate that 

African American, Native American, and Hispanic students were more than two times as 

likely as racial/ethnic majority students to be in the Moderate-Low with Early Decline class 

compared to the High with Transitory Incline class (b = 0.75, p <.05, odds ratio = 2.12). 

There was no evidence of racial/ethnic group differences in the likelihood of being in the 

Moderate-Low with Early Decline compared to the Moderate-High and Stable class (b = 

0.48, p =.15, odds ratio = 1.62), nor was there any evidence of differences in the likelihood 

of being in the Moderate-High and Stable compared to the High with Transitory Incline 
class (b = 0.28, p =.23, odds ratio = 1.32).

Higher self-efficacy predicted a greater likelihood of being in the High with Transitory 
Incline class (b = 0.92, p < .001, odds ratio = 2.51) or the Moderate-High and Stable class (b 
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= 0.92, p < .001, odds ratio = 2.51) compared to the Moderate-Low with Early Decline class. 

Self-efficacy was not a significant predictor of membership in the High with Transitory 
Incline class vs. the Moderate-High and Stable class (b = 0.001, p = .59, odds ratio = 1.00). 

These coefficients indicate that self-efficacy was an important predictor of whether students 

were most likely to be in either of the two relatively high and stable classes of science 

identity versus the low and declining class.

Higher perceived competence predicted a greater likelihood of being in the High with 
Transitory Incline class vs. the Moderate-Low with Early Decline class (b = 0.56, p < .05, 

odds ratio = 1.75), but was not a significant predictor of being in the High with Transitory 
Incline class vs. the Moderate-High and Stable class (b = 0.29, p = .08, odds ratio = 1.34) or 

of membership in the Moderate-High and Stable vs. Moderate Low with Early Decline 
classes (b = 0.28, p = .24, odds ratio = 1.32). These coefficients indicate that variation in 

perceived competence was an important discriminator between low and high science identity 

trajectories, but was not predictive of less extreme differences (i.e., Moderate-High vs. High 
class or Moderate-High vs. Low).

Class Membership and Science Career Outcomes

Finally, we tested whether science identity class membership predicted participants’ 

involvement in science careers after graduation. This model did not include predictors of 

class membership, as the 3-step method does not allow for both predictor and outcome 

auxiliary variables to be modeled simultaneously. Class membership was significantly 

associated with involvement in a science career or field after graduation, χ2 (2) = 60.50, p 
< .001. Specifically, 88.7% of students in the High with Transitory Incline class and 83.3% 

of participants in the Moderate-High and Stable class reported being in a science-related 

career or field after graduation, compared to 27.2% of those in the Moderate-Low with Early 
Decline class. Follow-up chi-square comparisons indicated that there was no significant 

difference in the likelihood of High with Transitory Incline and Moderate-High and Stable 
students being in a science career after graduation, χ2 (1) = 1.19, p = .28, whereas those in 

the Moderate-Low with Early Decline class were less likely to be in a science career 

compared to both the High with Transitory Incline, χ2 (1) = 58.66, p < .001, and the 

Moderate-High and Stable classes, χ2 (1) = 49.23, p < .001.

Discussion

Using expectancy-value theory as a framework, the current study examined the development 

of science identity during college, a key developmental period for career-related identities. 

Results showed evidence of three latent developmental trajectories that were differentially 

associated with gender, race/ethnicity, academic perceived competence, and science self-

efficacy. The trajectories also differentially predicted participation in a science-related career 

after graduation. By examining changes in science identity across four years of college, a 

key time period of the “leaky pipeline” in science career pursuit, and tracking students 

beyond graduation to examine post-college career outcomes, our results provide critical 

information about science identity development during college and its consequences for 

science career persistence after graduation.
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We identified three latent classes that exhibited qualitative differences in the development of 

science identity across four years. We labeled one High with Transitory Incline because it 

was characterized by high science identity in the first year with a slight increase followed by 

a slight decrease in science identity during the four years of college, but overall reflected 

very high levels throughout college. Another class was labeled Moderate-High and Stable 
because it was characterized by moderately high science identity in the first year with little 

to no evidence of change over four years. The third class was labeled Moderate-Low with 
Early Decline because it reflected relatively low science identity in the first year with a sharp 

decrease, followed by a less dramatic decrease in the final two years. These findings suggest 

that students belonging to the High with Transitory Incline and Moderate-High and Stable 
groups remained strongly identified with the field throughout their undergraduate career, 

while the Moderate-Low with Early Decline group disidentified with science early in 

college. In fact, the magnitude of decrease in science identity corresponded to an average 

change from “neutral” to “disagree” responses to science identity items in later years. The 

identification of multiple patterns of science identity development extends prior research 

showing multiple developmental trajectories for literacy value (Archambault, Eccles, & 

Vida, 2010) and math value (Musu-Gillette et al., 2015) among adolescents and early college 

students by focusing on science identity across all four years of college.

These findings lend support to the idea that identities are relatively stable once commitments 

are made (Eccles, 2009), with value remaining high and relatively stable for two of the three 

latent classes. Our results also suggest that consistently high science identity was the most 

commonly reported experience among the students in our sample, with 50% of participants 

classified in the Moderate-High and Stable class and 40% in the High with Transitory 
Incline class. The high occurrence of these patterns is likely a result of our initial sampling 

procedure and focus on the leaky pipeline among prospective science majors; students who 

were less strongly identified with science might have delayed enrollment in the required 

introductory chemistry course until a later semester. Given the heavy emphasis on pre-

professional goals (e.g., pre-med, pre-law) at this elite university, it is also possible that our 

sample included students who were more strongly committed (cf. Luyckx et al., 2006) to a 

particular career path than might be observed in a broader population of college students.

At the same time, however, our finding of a class experiencing initially lower science 

identity followed by a sharp decline is also consistent with the idea that college is a time of 

potentially volatile changes in identity as students confront new experiences and challenges 

(Eccles, 2009; Waterman, 1993). Following Marcia (1993), the Moderate-Low with Early 
Decline class may also represent a class of students in moratorium, with students beginning 

their college years unsure about their commitment to science and experiencing subsequent 

instability in their science identity. While this experience represents only 10% of the sample, 

these findings suggest that identities can be re-evaluated and change rather dramatically for 

some students, perhaps as a result of changing circumstances (e.g., beginning college; see 

also Luyckx, Schwartz, Goossens, Beyers, & Missotten, 2011), hostile environments, or 

gender/race-based discrimination in STEM fields.

Looking at predictors of class membership, the findings regarding race/ethnicity also 

indicate that students from underrepresented racial/ethnic groups were more likely to report 
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moderate to low levels of science identity that decreased throughout college. Additionally, 

both women and URMs were least likely to be in the class with the highest levels of science 

identity. This aligns with our hypotheses and with prior research indicating that Black, 

Hispanic/Latino, and female students encounter unique difficulties while navigating White-, 

Asian-, and male-dominated science fields (Seymour & Hewitt, 1997). However, the results 

did not indicate that women were more likely to be in the Moderate-Low with Early Decline 
class vs. the other two classes, which was unexpected. According to the expectancy-value 

model, values for science are shaped by sociocultural factors, and these factors lead to 

differences in both value and expectancies for success across gender and racial/ethnic 

groups. As such, it is likely that observed gender and racial/ethnic differences may be a 

result of discrimination and inequality (Wong, Eccles, & Sameroff, 2003) as well as 

differences in critical psychological processes related to discrimination and stereotypes 

about science as the domain of men and individuals of Caucasian or Asian descent. 

Although not measured in this study, it seems likely that key psychological processes such 

as stereotype threat (Murphy et al., 2007), belonging threat (Walton & Cohen, 2007), or 

perceptions that science is incongruent with gender or racial/ethnic roles (Cheryan, Plaut, 

Davies, & Steele, 2009; Diekman, Brown, Johnston, & Clark, 2010; Settles, Jellison, & 

Pratt-Hyatt, 2009) may have accounted for these gender and racial/ethnic differences in class 

membership. Indeed, the sciences are still dominated by men, White students, and Asian 

students at this university. For example, in the first-year chemistry courses where 

participants were recruited for the current study, only 33% of faculty were women.

Our research also provides support for theorized relations among competence beliefs and 

identity processes (Eccles, 2009). As we expected and in alignment with prior research 

exhibiting relations between competence beliefs and science identity (Eccles, 2009; 

Chemers et al., 2011; Robnett et al., 2015), both self-efficacy and perceived competence 

were significant predictors of class membership. Students who felt more confident in their 

ability to succeed at academic tasks, form and test hypotheses, use scientific equipment, and 

form conclusions using the scientific method were more likely to report higher, more stable 

science identity throughout college. In addition, the two competence beliefs exhibited 

differential patterns of relations to science identity trajectories: while self-efficacy appeared 

to be an important factor for differentiating the highest two trajectories from the Moderate-
Low science identity trajectory, perceived competence was only associated with membership 

in the highest pattern of science identity relative to the lowest pattern. This indicates that 

while both competence beliefs may be important factors supporting science identity among 

those who are unsure of their commitment, variation in self-efficacy better discriminates the 

Moderate-Low with Early Decline class from the Moderate-High and Stable class. This is 

particularly significant considering that it may be easier to shift students from moderately 

low to moderately high levels of science identity than to very high levels, with important 

implications for career attainment. This suggests a need for expectancy-value theorists to 

differentially examine competence beliefs for academic and career-related tasks, as they 

appear to be differentially related to identity development.

Consistent with our hypotheses and with prior research showing strong relations between 

science identity and career outcomes (Chemers et al., 2011; Estrada et al., 2011; Hernandez 

et al., 2013), we also found that class membership was a significant predictor of participants’ 
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reported involvement in science fields after graduation. Students in the two classes with 

higher identity were more likely to be involved in science careers after graduation than 

students in the Moderate-Low with Early Decline class. This is in accord with expectancy-

value conceptualizations of identity and suggests that for students who enter college aiming 

for science careers, attrition from science fields may be explained in part by lower initial 

levels of and declines in science identity. Even among well-prepared students at an elite 

university with numerous supports for retention, lower initial levels and declines in science 

identity significantly decreased the likelihood of post-graduation involvement in science. 

Similarly, lower competence beliefs at the beginning of college may put students at risk for 

lower initial identities and greater instability in their science identities. Among a sample of 

first-year undergraduates enrolled in chemistry courses at an elite university, it is not 

necessarily surprising that most students had higher initial science identity and remained 

stable over time. However, the 10% of students in the Moderate-Low with Early Decline 
class may be important to target for intervention, as they show early interest in science but 

are lost along the way. An important question is whether contextual barriers explain this 

pattern and whether it is possible to develop or use existing interventions to mitigate the loss 

of these students from science. We discuss this further in the Implications section below.

Finally, our focus on identity-related conceptions of attainment value also supports and 

refines expectancy-value theory. While earlier expectancy-value conceptualizations of 

attainment value (e.g., Wigfield & Eccles, 2000; Wigfield et al., 1997) characterized 

attainment value as personal importance broadly (e.g., “For me, being good at math is 

important”), more recent conceptualizations (Conley, 2012; Eccles, 2009) emphasize the 

importance of a task or domain to the individual’s identity. Recent research by Gaspard and 

colleagues (2015) examined two types of attainment value for math: personal importance 

and broad importance of high achievement, the former relating more closely to identity. 

They found that this differentiation accurately reflected distinct types of value for academic 

subjects and revealed differential relations to other constructs, such as gender and other 

types of value. Indeed, tasks may be important to individuals for a variety of reasons, just as 

students can perceive tasks to be costly along several dimensions (Eccles, 1983). Greater 

precision in conceptualizing and measuring value constructs can refine our understanding of 

the phenomena and its relations to important correlates. The current study helps to clarify 

this issue by focusing on identity-related attainment value specifically and over time.

Implications for Supporting Persistence in Science

In addition to implications for theory and research, the current study has numerous practical 

implications for supporting persistence in science. First, significant relations between class 

membership and post-graduation involvement in science suggest that identity development is 

an important predictor of science careers and is worth investigating as a possible point of 

intervention for increasing persistence. Thus, efforts at broadening and diversifying the 

workforce in science fields should aim to support not only necessary motivation, skills, and 

knowledge, but also students’ science identity development, and more particularly sustained 

high value for their identities as scientists.
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Importantly, our identification of multiple classes suggests a need for differential supports 

for identity development, as only 10% of students reported declines in science identity 

during college. In addition, while students from racial/ethnic minority groups were more 

than twice as likely as their White and Asian peers to be in the Moderate-Low class vs. the 

High class, and women were almost twice as likely as men to be in the Moderate-High class 

vs. the High class, our data suggests that what matters for science career outcomes is not 

whether students have high or moderately high science identity, but rather whether they start 

college with lower science identity and experience declines. Lastly, it is important to note 

that students may have begun college with different levels of science identity and it was 

those with lower initial levels who experienced declines over time. This suggests a multi-

pronged approach may be necessary for supporting science identity, and ultimately, 

persistence in science careers by supporting both initial levels and stability throughout 

college.

Given our findings that both perceived competence and self-efficacy predicted whether 

students were most likely to be classified into the Moderate-Low with Early Decline class, 

one potential mechanism for supporting scientific identity development is through pre-

college interventions that target students’ confidence in their ability to complete scientific 

and academic tasks. This is encouraging, particularly as self-efficacy is fairly malleable over 

short periods of time (Bong & Skaalvik, 2003), and can be supported via mastery 

experiences, vicarious experiences, social persuasion, and affective states (Bandura, 1986; 

Usher, 2009). Thus, we see the need for future research aimed at helping high school 

students begin college with greater confidence in their science abilities.

It may also be possible to target science identity more directly either before students enter 

college or as they first begin to take challenging science coursework. Relevance 

interventions (Hulleman & Harackiewicz, 2009), which directly target task value, could be 

most appropriately used in high school or the first year of college to help students connect 

science to their lives and so increase initial science identity. However, even when students 

begin college with high value and competence in science, low perceived belonging, 

discrimination, or other experiences relevant to their personal identities may prompt students 

to devalue the importance of science to their identities (Steele, 1997). Designing more 

equitable environments, particularly to minimize discriminatory practices and subtle cues 

that may activate belonging threat or stereotype threat (e.g., Murphy et al., 2007), should be 

a primary concern of educational institutions. In addition, values affirmation interventions 

(Cohen, Garcia, Apfel, & Master, 2006) and belonging interventions (Walton & Cohen, 

2007) could be used after students begin college to prevent students from construing 

academic setbacks as reflections of their abilities or belonging within science, potentially 

preventing sharp declines in science identity.

More broadly, involvement in STEM enrichment programs may be an additional way to 

support science identity directly, as those who strongly identify with both a personal identity 

and a scientific identity appear to maintain stronger commitments to science than those who 

perceive their personal and scientific identities to be incompatible (Settles, 2004). There is 

some evidence that mentoring or other targeted science programs can minimize stereotype 

threat and influence feelings of belonging in science (Carlone & Johnson, 2007; Merolla, 
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Serpe, Stryker, & Schultz, 2012; Merolla & Serpe, 2013). These, along with the relevance, 

belonging, and values affirmation interventions mentioned above, may directly support 

science identity development among those most at risk for declines and help to reduce the 

racial/ethnic gap in pursuing science career attainment (National Science Foundation, 2015).

Limitations and Future Directions

A few limitations should be considered when interpreting the results. First, our sample 

consisted of students at an elite, private university who may be more highly qualified for 

science training and careers. Our sampling procedure also targeted only those students who 

were enrolled in chemistry courses required for natural science majors in their first semester, 

which may have excluded students who delayed taking a required chemistry course in in 

their first semester because they were unsure about whether they wanted to pursue a science 

degree. Thus, replication is needed in other university settings and among other groups of 

students. As a balance to this limitation, however, it is important to note that our findings 

signal that scientific identity is a key factor for retention in science even among students 

who are well qualified and receive high-quality training. Indeed, the 10% of these highly-

qualified students in the Moderate-Low with Early Decline class suggest that interventions 

could prove useful even in this sample. Furthermore, our sample was comprised of 

“traditional” college students, and these findings may not generalize to non-traditional 

college students. For example, an older undergraduate student with a family may start 

college more committed to a science identity but also may face more barriers due to their 

family responsibilities.

Second, replication of these results in additional samples is also an important direction for 

future work for statistical reasons. As with any longitudinal study, our study had some 

missing data and it is possible that results may be biased due to the overrepresentation of 

female, White, and Asian students among those with data at all five time points. Replication 

is therefore necessary to understand heterogeneous developmental trajectories of science 

identity groups with higher representation of males and those from racial/ethnic groups that 

are underrepresented in science fields. In addition, models estimating class-specific variance 

parameters of initial levels and change factors did not converge. Instead, our model assumed 

that variances were the same across classes. This is a limitation of the data, and replication 

with a new data set may provide sufficient resolution to allow for estimating class-specific 

variances of these parameters. As is true with any application of growth mixture modeling, 

replication is important considering the data-driven nature of GMM.

A third limitation is that we only measured science identity once per year. While this 

measurement interval aligns with the theorized slow pace of change in identity constructs, 

research with shorter intervals of measurement is needed to test this assumption. This may 

be particularly relevant for identity salience, which has been manipulated in lab settings 

(LeBoeuf, Shafir, & Bayuk, 2010) and may be a more appropriate construct on which to 

intervene in support of identity development given its potentially greater malleability.

Fourth, our study was also potentially limited by the self-report nature of the science career 

outcome measure. While participants’ reports of whether they are involved in science 

careers are likely to be accurate (e.g., Estrada et al., 2011), particularly considering that we 
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clearly defined what we meant by science careers when posing the question to participants, 

it is also possible that participants still had varied perceptions of what constitutes a science 

field. For instance, some who are involved in social science fields (e.g., psychology) may 

consider themselves to be involved in science while others may not. Future research should 

combine self-report and objective measures of science career involvement, when possible, in 

order to assess and limit error in examining relations between science identity trajectories 

and career outcomes.

Lastly, a key future direction for increasing understanding of how science identity develops 

should involve directly examining experiences that facilitate or act as barriers to identity 

development in science (e.g., Estrada, Hernandez, & Schultz, 2018). Our focus on 

psychological and demographic predictors does not provide empirical evidence of the 

specific experiences leading to between-student differences. Thus, it is important to more 

closely examine the mechanisms by which contextual influences lead to differences in 

science identity. Such research could provide evidence both about the barriers students 

experience as well as ways to overcome these barriers through direct support for students’ 

psychological development and more broad-based institutional changes to the design of 

programs and courses.

Conclusion

A strong STEM workforce is vital to the health of our society. For students who enter 

college aiming for science careers, attrition from science may be partially explained by both 

lower initial levels and greater instability in science identity over time. Our study aimed to 

describe heterogeneity in developmental trajectories of science identity from an expectancy-

value perspective across four years of college, and to examine relations among these 

trajectories with first-year competence beliefs, gender, race/ethnicity, and post-graduation 

science careers. As hypothesized, we found latent classes of students with differential 

trajectories in science identity, and these trajectories were related to gender, race/ethnicity, 

and first-year competence beliefs as well as to career outcomes after college.

The findings from this five-year longitudinal study underscore the importance of 

understanding and supporting high initial levels and stability in science identity over time for 

traditional college students and also considering identity development before college. 

Furthermore, though our results indicate that a disproportionate number of underrepresented 

minority students report lower initial levels and declines in science identity throughout 

college, these declines could possibly be buffered by institutional supports for self-efficacy 

to perform scientific tasks and academic perceived competence prior to entry into college or 

during the first year. These findings contribute essential understanding of how science 

identity develops and also provide insight into the future design of interventions aimed at 

broadening participation in science fields. In short, becoming a scientist appears to involve 

more than cultivating skills and knowledge; students who also come to think of themselves 

as scientists may be best equipped to achieve success in science.
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Appendix A: Full List of Scale Items

Science Identity

1. I consider myself a science person.
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2. Being involved in science is a key part of who I am.

3. Being someone who is good at science is important to me.

4. Being good in science is an important part of who I am.

Academic Perceived Competence

1. I’m certain I can master the skills taught in science classes.

2. I’m certain I can figure out how to do the most difficult class work in science.

3. I can do almost all the work in science classes if I don’t give up.

4. Even if the work in science is hard, I can learn it.

5. I can do even the hardest work in science if I try.

Science Self-Efficacy

I am confident that I can…

1. Use technical science skills (use of tools, instruments, and/or techniques).

2. Generate a research question to answer.

3. Figure out what data/observations to collect and how to collect them.

4. Create explanations for the results of the study.

5. Use scientific literature and/or reports to guide research.

6. Develop theories (integrate and coordinate results from multiple studies).
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Figure 1. 
Model-implied trajectories of science identity for three-class solution over four years.
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Table 1

Descriptive Statistics of Study Variables

1 2 3 4 5 6 7

1. Sci Identity T1 --

2. Sci Identity T2 .60** --

3. Sci Identity T3 .53** .73** --

4. Sci Identity T4 .54** .69** .77** --

5. Self-Eff. T1 .38** .27** .21** .23** --

6. Per. Comp. T1 .41** .24** .18** .17** .43** --

7. Sci Career .22** .32** .31** .43** .11* .06 --

Mean 3.82 3.81 3.83 3.73 3.74 4.05 0.77

SD 0.73 0.82 0.83 0.88 0.67 0.65 0.42

Minimum 1.25 1.00 1.25 1.00 1.83 1.20 0.00

Maximum 5.00 5.00 5.00 5.00 5.00 5.00 1.00

Note: All observed correlations, means, and SDs were calculated in SPSS. Self-Eff T1 = Self-efficacy at Time 1, Per. Comp. T1 = Perceived competence at Time 1, Sci Career = post-graduation involvement 
in science careers.

**
p < .001,

*
p < .05
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Table 2

Fit Statistics for Time, Gender, and URM Invariance Models

Model χ2 (df) RMSEA CFI TLI

Time Configural 387.704 (98) 0.054 0.950 0.939

Weak 401.937 (107) 0.052 0.950 0.943

Strong 423.053 (116) 0.051 0.947 0.946

Strict 480.229 (128) 0.052 0.940 0.943

Gender Configural 676.568 (256) 0.057 0.928 0.933

Weak 686.565 (259) 0.057 0.927 0.932

Strong 700.402 (262) 0.057 0.925 0.932

Strict 717.486 (266) 0.058 0.923 0.931

URM Configural 654.101 (256) 0.055 0.932 0.936

Weak 662.921 (259) 0.055 0.931 0.936

Strong 677.112 (262) 0.056 0.929 0.935

Strict 680.358 (266) 0.055 0.929 0.936

Note: URM = underrepresented racial/ethnic minority.
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Table 3

Fit Statistics for the Second-Order Linear Growth Model and 2-class Second-Order Growth Mixture Models

Second-Order Component of Model First-Order Component of Model Class Proportions

Model Class-Specific Parameters Class-Invariant Parameters Class-Specific Parameters Class-Invariant Parameters N1 N2 N3 N4 # Param.Est. BIC

M0 - - - - 1023 (100%) 16 20984.44

M1 M V & CV - R, I, L 119 (12%) 904 (88%) 19 20895.75

M2 M V & CV R I, L 592 (58%) 431 (42%) 23 20274.64

M3 M V & CV R, I L 601 (59%) 422 (41%) 26 20293.09

M4 M V & CV R, I, L - 613 (60%) 410 (40%) 29 20297.71

M5* M, V, & CV - - R, I, L 740 (72%) 283 (27%) 20 20880.22

M6 M, V, & CV - R I, L 421 (41%) 602 (59%) 26 20250.71

M7 M, V, & CV - R, I L 607 (59%) 416 (41%) 29 20268.98

M8 M, V, & CV - R, I, L - 615 (60%) 408 (40%) 32 20279.03

M9 M V & CV - R, I, L 909 (89%) 114 (11%) 24 20887.44

M10 M V & CV R I, L 432 (42%) 591 (58%) 28 20264.83

M11 M V & CV R, I L 596 (58%) 427 (42%) 31 20283.57

M12 M V & CV R, I, L - 597 (58%) 426 (42%) 34 20289.38

M13* M, V, & CV - - R, I, L 328 (32%) 695 (68%) 27 20869.08

M14 M, V, & CV - R I, L 599 (59%) 424 (41%) 34 20252.73

M15 M, V, & CV - R, I L 604 (59%) 419 (41%) 37 20270.96

M16 M, V, & CV - R, I, L - Non-interpretable solution. 40

Note: Models 0–8 were linear models and Models 9–16 were quadratic models. M = latent means of intercept and slope factors, V = variances of latent intercept and slope factors, CV = covariances of 
latent intercept and slope factors, R = residual variances of observed items, I = intercepts of observed items, L = loadings of observed items.

*
Variance and covariance in 1 class was fixed to resolve estimation issues with variances.
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Table 4

Fit Statistics for the 3-class Second-Order Growth Mixture Models

Second-Order Component of Model First-Order Component of Model Class Proportions

Model Class-Specific Parameters Class-Invariant Parameters Class-Specific Parameters Class-Invariant Parameters N1 N2 N3 N4 # Param.Est. BIC

M1 M V & CV - R, I, L 49 (5%) 910 (89%) 64 (6%) 22 20902.72

M2 M V & CV R I, L Non-interpretable solution. 30

M3 M V & CV R, I L Non-interpretable solution. 36

M4 M V & CV R, I, L - Non-interpretable solution. 42

M5 M, V, & CV - - R, I, L Non-interpretable solution. 28

M6 M, V, & CV - R I, L Non-interpretable solution. 36

M7 M, V, & CV - R, I L Non-interpretable solution. 42

M8 M, V, & CV - R, I, L - Non-interpretable solution. 48

M9 M V & CV - R, I, L 106 (10%) 909 (89%) 8 (1%) 28 20895.57

M10 M V & CV R I, L 404 (40%) 513 (50%) 106 (10%) 36 20209.27

M11 M V & CV R, I L Non-interpretable solution. 44

M12 M V & CV R, I, L - Non-interpretable solution. 50

M13 M, V, & CV - - R, I, L Non-interpretable solution. 40

M14 M, V, & CV - R I, L Non-interpretable solution. 44

M15 M, V, & CV - R, I L Non-interpretable solution. 50

M16 M, V, & CV - R, I, L - Non-interpretable solution. 56

Note: Models 1–8 were linear models and Models 9–16 were quadratic models. M = latent means of intercept and slope factors, V = variances of latent intercept and slope factors, CV = covariances of 
latent intercept and slope factors, R = residual variances of observed items, I = intercepts of observed items, L = loadings of observed items.
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Table 5

Fit Statistics for the 4-class Second-Order Growth Mixture Models

Second-Order Component of Model First-Order Component of Model Class Proportions

Model Class-Specific Parameters Class-Invariant Parameters Class-Specific Parameters Class-Invariant Parameters N1 N2 N3 N4 # Param.Est. BIC

M1 M V & CV - R, I, L 911 (89%) 59 (6%) 52 (5%) 1 (0%) 25 20911.61

M2 M V & CV R I, L Non-interpretable solution. 37

M3 M V & CV R, I L Non-interpretable solution. 46

M4 M V & CV R, I, L - Non-interpretable solution. 55

M5 M, V, & CV - - R, I, L Non-interpretable solution. 34

M6 M, V, & CV - R I, L Non-interpretable solution. 46

M7 M, V, & CV - R, I L Non-interpretable solution. 55

M8 M, V, & CV - R, I, L - Non-interpretable solution. 64

M9 M V & CV - R, I, L 8 (1%) 69 (7%) 40 (4%) 906 (89%) 32 20905.92

M10 M V & CV R I, L Non-interpretable solution. 44

M11 M V & CV R, I L Non-interpretable solution. 53

M12 M V & CV R, I, L - Non-interpretable solution. 62

M13 M, V, & CV - - R, I, L Non-interpretable solution. 50

M14 M, V, & CV - R I, L Non-interpretable solution. 58

M15 M, V, & CV - R, I L Non-interpretable solution. 67

M16 M, V, & CV - R, I, L - Non-interpretable solution. 76

Note: Models 1–8 were linear models and Models 9–16 were quadratic models. M = latent means of intercept and slope factors, V = variances of latent intercept and slope factors, CV = covariances of 
latent intercept and slope factors, R = residual variances of observed items, I = intercepts of observed items, L = loadings of observed items.
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Table 6

Parameter Estimates for Selected 3-class Growth Mixture Model

Parameter Class 1 Class 2 Class 3

(n) 404 513 106

Means

 Intercept 4.12*** 3.61*** 2.93***

 Linear Slope 0.16** 0.04 −0.79***

 Quadratic Slope −0.05** −0.004 0.15*

Variances

 Intercept 0.29** 0.29** 0.29**

 Linear Slope 0.19** 0.19** 0.19**

 Quadratic Slope 0.01* 0.01* 0.01*

Covariances

 Intercept, Linear Slope −0.11*** −0.11*** −0.11***

 Intercept, Quadratic 0.02* 0.02* 0.02*

 Linear Slope, Quadratic Slope 0.05* 0.05* 0.05*

Note:

*
p < .05,

**
p < .01,

***
p < .001, indicating parameter estimates that are significantly different from zero.
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