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ABSTRACT 

More and more deep learning approaches have been proposed to 

segment secondary structures from cryo-electron density maps at 

medium resolution range (5-10Å). Although the deep learning 

approaches show great potential, only a few small experimental 

data sets have been used to test the approaches. There is limited 

understanding about potential factors, in data, that affect the 

performance of segmentation. We propose an approach to generate 

data sets with desired specifications in three potential factors - the 

protein sequence identity, structural contents, and data quality. The 

approach was implemented and has generated a test set and various 

training sets to study the effect of secondary structure content and 

data quality on the performance of DeepSSETracer, a deep learning 

method that segments regions of protein secondary structures from 

cryo-EM map components. Results show that various content 

levels in the secondary structure and data quality influence the 

performance of segmentation for DeepSSETracer.  
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1 INTRODUCTION 

Deep learning has been widely applied in biological problems. 

With the fast accumulation of cryo-electron microscopy (cryo-EM) 

image data and 3-dimensional molecular structure data, an 

increasing number of deep learning methods have been developed 

in many subdomains of cryo-EM or cryo-electron tomography 

(cryo-ET). For example, deep learning approaches have been 

developed for picking out molecular particles from 2D cryo-EM 

images [1], for segmentation of protein secondary structures from 

cryo-EM 3D density maps [2-6], for deriving initial backbones 

from cryo-EM density maps [7], and for segmentation of cellular 

objects from cryo-ET images [8, 9]. The problem of segmentation 

of protein secondary structures from a cryo-EM maps of medium 

resolution (5-10Å) is to detect the location of helices and β-sheets 

in the cryo-EM density map (Fig. 1).  

Many image processing methods have been proposed for 

segmentation of protein secondary structures [10-14]. In addition, 

recent deep learning methods have shown great potential leading to 

increased accuracy [2-6, 15].  However, different approaches were 

tested using different experimental data, and there has been limited 

study suggesting a proper procedure to construct a test data set. 

Emap2sec used 4-fold cross-validation to train and test using 43 

experimental maps with the medium resolution [3]. The data set 

was obtained after two steps of screening. The first step eliminates 

low-quality maps that have lower than 0.65 cross-correlation score 
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between the map and the atomic structure. The second screening 

removes maps if any of their chains share more than 25% sequence 

identity with any chain of a map in the data set [3]. EMNUSS used 

the same 43 experimental maps that was developed in EMap2sec 

method [6]. Emap2sec+, which segments both secondary structures 

and nucleic acids, was tested four times using medium-resolution 

experimental maps, each with 4 to 5 density maps. The small 

number of experimental maps used in testing may be related to 

limited cryo-EM maps that contain nucleic acids. Haruspex was 

trained and tested using high-resolution density maps with 

resolution better than 4Å  [4]. It was not tested using medium-

resolution maps. Our previous method DeepSSETracer was tested 

using cryo-EM density map components centered around protein 

chains, rather than entire density maps [5]. Structure validation has 

been an important problem in the cryo-EM community. There have 

been coordinated efforts to develop test data for structure validation 

[16-18], Map and Model Challenge of 2016 [17], and Model 

Metrics Challenge in 2019 [18]. The data used in the challenges 

were designed for validation of atomic structures, particularly for 

cryo-EM maps with better than 5 Å resolution, making them 

inapplicable for secondary structure segmentation from medium-

resolution maps. A benchmark data set will likely advance the 

development of approaches for the segmentation of secondary 

structures.    

Developing benchmark set requires understanding the distribution 

of data over metrics that potentially influence the segmentation. A 

general hypothesis is to eliminate bad quality data in training and 

testing. However, there has been no study how quality affects the 

performance and how many data at what quality level should be 

included in a benchmark set to fairly represent the entire database. 

There has also been no study on other potential factors for 

segmentation, such as the complexity of structures, the size of 

secondary structures, the size of the protein, and repetitive 

sequences that are often in cryo-EM density maps. 

In this study, we developed a data stratification approach to create 

data sets satisfying pre-defined specifications in sequence identify, 

secondary structure contents, and quality of data. The idea is to 

cluster the entire data set using potential factors and then to 

compose and select data sets satisfying specific requirements. This 

approach was implemented and has generated a test set and various 

training sets with different levels of data quality and secondary 

structures contents. Our results show that the distributions of data 

across different structure clusters and quality clusters in the training 

set can affect the performance of deep learning models of 

DeepSSETracer. 

2 METHOD 

Cryo-EM density maps with resolution range 5-10 Å were 

downloaded from Electron Microscopy Data Bank (EMDB) [19]. 

Their corresponding atomic structures were downloaded from 

Protein Data Bank (PDB) [20]. Since many cryo-EM density maps 

contain multiple copies of the same atomic structure chains, only 

one of the repeated chains in a map was used as an envelope to 

isolate the corresponding density region with Chimera [21]. 

The data set used in this paper contains 1292 atomic structure 

chains and their corresponding regions in the cryo-EM maps. The 

overall idea for stratification is to first create clusters from the entire 

data set based on each factor that potentially affects the 

performance of segmentation training and testing. Three factors are 

used in this study – the sequence similarity between protein chains, 

the secondary structure content (helix, β-sheets) in a chain, the 

structure-map fit that often reflects the quality of a map region (Fig. 

1B).    

 

Figure 1: The segmentation of secondary structure problem and clusters of data in three metrics. (A): The atomic structure (ribbon) 

and its corresponding cryo-EM density map region (gray) for EMD-3850 PDB-5oqm chain 4; (B): Segmented helix (blue) and β sheet (pink) 

regions detected using DeepSSETracer [5]. The density map and the atomic structure are visualized in ChimeraX [22]. (C): Clusters created 

based on three metrics - sequence similarity, secondary structure content, and quality of structural fit in cryo-EM maps.  

2.1 Creation of Sequence Clusters  

A matrix of sequence identity scores for protein chains was created 

to represent the similarity between each pair of sequences across all 

obtained chains. The sequence identity score of any given pair was 

calculated by aligning two chain sequences using Needleman 

Wunsch algorithm [23] and defined as the percentage of identical 

amino acids in the alignment. The obtained similarity matrix was 

subsequently used to acquire sequence clusters of chains by the 

agglomerative hierarchical clustering algorithm. All clusters were 

created to ensure that any two chains with an identity score equal 

or above 40% were grouped into the same cluster. The 

agglomerative clustering algorithm is implemented in Python, 

using scikit-learn library [24]. The single-linkage with a distance 

C 
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threshold of 60 was used to maintain that any two chains with a 

sequence identity score equal to or above 40% were grouped into 

the same cluster, and any cluster shared no more than 40% 

sequence identity with the remaining clusters. 

2.2 Creation of Structure Clusters  

Seven variables describing varying aspects of secondary structure 

content in each chain were used to obtain structure clusters of 

chains. These variables include the chain length (i.e., the number of 

amino acid residues), the number of helix residues, the number of 

β-sheet residues, the number of helices, the number of β-strands, 

the average helix length, and the average of β-strand length. Each 

variable was normalized to between 0 and 1 before clustering. 

Specifically, the length of a chain was normalized by the minimum 

and maximum chain length in the dataset. The number of helix (β-

sheet) residues was divided by the chain length, followed by min-

max normalization. Similarly, the number of helices (β-strands) 

was also divided by the chain length followed by min-max 

normalization. The average length of helices (β-strands) in a chain 

was calculated as the number of total helix (β-strands) residues 

divided by the number of helices (β-strands) and was also 

normalized by min-max normalization. We plotted a dendrogram 

to visualize the hierarchical relationship of individual chains in our 

dataset and to determine the optimal number of structure clusters, 

then applied the agglomerative hierarchical clustering with Ward’s 

linkage to obtain 4 clusters. 

2.3 Creation of Quality Clusters 

For a given density map, its quality was estimated by that of its 

helix regions. A previously developed metric, the cylindrical fit 

between atomic structures of helices and their respective density 

map regions [25] was used to assess the quality. Quality clusters of 

chains were subsequently obtained by applying thresholds on the 

quality scores, leading to four non-overlapping clusters indexed 

with integers from 1 to 4. Quality cluster 1 is considered as the 

highest quality cluster, in which the cylindrical fit scores (F1 

measurement) of chains are between 0.7 and 1.0.  The difference 

between precision and recall () are further used for the 

classification of clusters 2 and 3. Specifically, cluster 2 includes 

chains with cylindrical fit score ranging between 0.6 and 0.7, with 

 less than 0.15. Quality cluster 3 consists of chains under one of 

the two conditions: Either the cylindrical fit score between 0.6-0.7, 

and >0.15, or the quality score between 0.55 and 0.6, and <0.15. 

All remaining chains that do not enter into any of the clusters 1, 2 

and 3 are placed in cluster 4. 

Figure 2: Constructing testing set (A) and training sets with varying desired content (B).  

2.4 Test Set Construction  

In general, the construction of a good test set involves the 

consideration of multiple factors, such as redundancy in density 

map regions, map quality, representativeness of targeted 

population, and structural complexity. Here, we implemented a 

method to construct a test set that has a distribution of chains in 

both structure content and map quality similar to those in the full 

dataset. Specifically, a total of 50 candidate test sets were first 

obtained by uniform random sampling from the full dataset (Fig. 

2A). For each candidate set, the Mean Square Error (MSE) [26] 

defined in below was then calculated to measure the difference in 

the distribution of chains by structure content between the 

candidate set and the reference set, which, in this case, is the full 

set.  

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖

𝑟𝑒𝑓
−  𝑦𝑖

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)2

𝑛

𝑖=1

            (1) 

where 𝑛  is total number of structure clusters, 𝑦𝑖
𝑟𝑒𝑓

  is the 

proportion of chains in the full set that are from 𝑖 -th structure 

cluster, and 𝑦𝑖
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is the similar proportion in a candidate test 

set. A similar MSE was also calculated to measure the difference 

in the distribution over quality clusters. Finally, the candidate test 

set with the minimum average of the two MSEs was chosen as the 

test set.  

A Dataset 

Sequence Comparison 

Sequence Clusters 

Random sampling repeatedly 

Candidates of the test set 

Select the test candidate with similar 
distribution of entire dataset using min MSE 

Test Set 

Excluding test set and unwanted entries 
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Candidates of the training set 
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specification using MSE 

Training Set 
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2.5 Construct Training Sets with Pre-defined 

Specifications  

The constructed sequence, structure, and quality clusters of chains 

provide a foundation for producing various data sets satisfying 

desired distributions over the three factors. For example, since the 

four structure clusters have distinct structural compositions (such 

as numbers and lengths of helices and β-strands), and therefore a 

data set with high content of β-sheets can be composed to include 

more chains from those structure clusters with high β-sheet 

composition. As illustrated in Figure 2B, once the test set was 

determined, a training set with a pre-defined specification was 

derived through sampling from a specially prepared pool of 

chains. The construction of this pool started with the inclusion of 

all chains in the entire data set except those included in the test 

set. The pool was further prepared to meet the pre-defined 

specification. As an example, a pre-defined specification 

(Specification 1 in Table 1) is intended to create a training set 

biased towards chains in structure clusters 1 through 4 with 

specification: <70%, 50%, 30%, 100%>. To achieve this, 30%, 

50%, 70%, and 0% chains from structure clusters 1 through 4, 

respectively, were randomly chosen and removed from the pool. 

Once the pool was prepared, 50 times of random sampling was 

conducted to generate candidate training sets with each 

containing 400 chains. If maintaining the same distribution of 

map quality as in the full set is among the desired specification, a 

MSE was calculated as in Eq. (1) where the full set and the 

candidate training set were used for 𝑦𝑖
𝑟𝑒𝑓

  and 𝑦𝑖
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

respectively. The one with the minimum MSE was chosen to be 

the final training set satisfying the specification. The above 

procedure also allows construction of training sets that are biased 

towards any of the quality clusters while maintaining similar 

distribution of structural content as in the full set, such as in 

Specification 6 (Table 1). 

Table 1: Structure and quality specifications used in 

generating training sets. a: percentages of chains from the four 

structure clusters (Specifications 1 to 3) and quality clusters 

(Specifications 4 to 6) entered into the sampling pool; b: numbers 

of chains from structure clusters s1 to s4 and quality clusters q1 

to q4. 

3 RESULTS 

The full data set contains 1,292 protein chains, each having its 

corresponding region isolated from cryo-EM density maps. To 

understand the overall characteristics of the aggregated data, we 

examined the distribution of all chains in length (i.e., number of 

amino acid residues), percentage of helix and β-sheet content, and 

number of helices and β-strands. The most popular chain length 

is about 150 amino acid residuals; and chains are predominantly 

within 400 residuals (Figure 3A). Large number of chains have 

around 40% of their residues from helices and 20% from β-sheets, 

although substantial number of chains vary widely in length and 

are without β-sheets (Figure 3B). In majority of the chains, both 

the numbers of helices and β-strands are within 20. The 

distribution of these chains is somewhat uniform in the two 

numbers (Figure 3C), meaning no obvious correlation between 

the two.   

Figure 3: Distribution of chains in the aggregated data over 

various properties. (A) length, (B) percentage of helix and β-

strand residues, (C) number of helices and β-strands, (D) number 

of chains in each quality cluster. 

 

Figure 4: Distribution of cluster size (i.e., number of chains) 

among the 414 sequence clusters. 

 

 

Specification 

<%,%,%,%>a 

Training sets 

<s1, s2, s3, s4, q1, q2, q3, q4>b 

1   
Structure: <70,50,30,100> 

Quality: same as full set  
<148,143,56,53,31,64,63,242>  

2   
Structure: <30,70,50,100> 

Quality: same as full set  
<58,188,105,49,24,67,67,242>  

3   
Structure: <50,30,70,100> 

Quality: same as full set 
<104,71,180,45,31,71,60,238>  

4   
Structure: same as full set 

Quality: <0,0,100,100>  
<124,113,145,18,64,180,156,0>  

5   
Structure: same as full set 

Quality: <0,0,0,100>  
<91,136,152,21,0,0,0,400>  

6   
Structure: same as full set 

Quality: <0,100,100,25>  
<99,121,157,23,0,145,127,128>  
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3.1 Sequence Clusters  

Cluster analysis based on pairwise sequence identity led to a total 

of 414 distinct clusters, guaranteeing that the chains in the same 

cluster share at least 40% sequence identity with each other, and 

every cluster shares at most 39.9% sequence similarity with any 

other. The distribution of size among these clusters is provided in 

Figure 4. The largest cluster contains 21 chains, and 22 clusters 

have more than 10 chains. There are 196 clusters that contain only 

one member, indicating that the aggregated data set has 196 

chains with less than 40% sequence identity shared with any other 

chain. To simplify the procedure, the test set was constructed via 

random sampling from these 196 unique clusters, and the set with 

the lowest average MSE was chosen.  

3.2 Structure Clusters  

With the agglomerative hierarchical clustering on the seven 

variables characterizing secondary structural content of chains, 

we obtained four structure clusters indexed using integers from 1 

to 4. The numbers of chains in the four clusters are 318, 402, 500, 

and 72, respectively (Table 2). Structure cluster 3 comprises the 

majority of protein chains in the full data set. The average length 

among the chains in this cluster is 215 residues, echoing the peak 

in the histogram of chain lengths (Figure 3A). On average, each 

chain in this cluster has 40% residues in helices and 10% residues 

in β-sheets, suggesting that this type of secondary structural 

composition is the most common in our dataset. Structure cluster 

1 contains chains with helix-rich structure, as chains in this cluster 

have 68% of residues in helices, on average, and almost no β- 

strands. Cluster 2 has the highest β-sheet content, with over 22% 

β-sheet residues, followed by cluster 3 with 10%. Chains in 

cluster 4 are characterized by 32% residues in helices and almost 

no β-sheet content. This cluster likely contains more loops, 

representing the minority chains in our dataset, as the number of 

chains in this cluster is significantly lower than the other three. 

 

Table 2: Structural characteristics of chains in the four 

obtained structure clusters. Avg.: average; res.: residues; #: 

number.  

Characteristics 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

(N=318) (N=402) (N=500) (N=72) 

Avg. # of residues 130 158 215 100 

Avg. # of helices 5.3 3.34 6.92 3.23 

Avg. # of β-strands 0.36 8.14 6.138 0.06 

Avg. % of helix res.  68% 24% 40% 32% 

Avg. % of β-strands res.  0.3% 22.3% 10% 0.1% 

Avg. length of helices  18.6 11 12 10 

Avg. length of β-strands  0.3 4.5 3.5 0 

 

3.3 Quality Clusters  

There are 96, 221, 196, and 779 chains included in the four quality 

clusters 1, 2, 3, and 4, respectively. Among these clusters, cluster 

4 is the largest and contains maps that have the lowest quality, 

indicating that most of the chains in the aggregated set have poor 

structure-map fit [25]. Lower fit score indicates less cylindrical 

density at a helix region. Since a helix is expected to have a rough 

cylindrical shape at a density threshold, the structure-map fit 

score represents the best cylinder score among all density 

thresholds. A low score suggests either the density map has low 

quality at the helix region or the erroneous placement of the 

atomic structure of the helix.   

3.4 Test Set 

We created a test set consisting of 50 chains by following the 

procedures depicted in Figure 2A. Specially, all 50 chains came 

from the 196 unique clusters (containing one chain in each 

cluster). This means for every chain in the test set, there is no 

other that has considerable amount (over 40%) of sequence 

identity in the entire dataset (also among the rest 49 chains in the 

test set). This test set has 9,804 residues in total, with 43.16% of 

all residues from helices, and 12.48% from β-sheets. 

Since we chose the candidate set with the lowest MSE calculated 

as in Eq. (1) to be the final test set, it is representative of the full 

dataset in terms of both secondary structure content and map 

quality. The numbers of test chains in structure clusters 1, 2, 3, 

and 4 are, respectively, 12, 16, 19 and 3. These are proportional 

to the sizes of the four clusters in the entire chain population as 

indicated in Table 2. The numbers of test chains from the four 

quality clusters 1 through 4 are 7, 7, 6, and 30 respectively. This 

distribution also reflects that of the entire dataset, as out of the 

total 50 test chains, 20 (40%) belong to high-medium quality 

clusters (i.e., clusters 1, 2, and 3), and 30 chains (60%) belong to 

low quality cluster (i.e., cluster 4). These numbers for the entire 

dataset are 39.94% and 60.06%, respectively. Note that the test 

set currently represents the quality distribution of the entire data 

set that includes significant portion of poor data. However, the 

same data stratification method can be applied to a subset of the 

entire data, after extremely poor data are excluded.  

3.5 Training Sets with Various Pre-defined 

Specifications  

We created six training sets using six distinct specifications 

(Table 1) to study the effect of various factors on the performance 

of trained models. For example, since structure cluster 1 contains 

mostly helices (Table 2) and Specification 1 uses a greater 

percentage of cluster 1 than does Specification 2, its training set 

contains more helices than that of Specification 2. This is 

observed in the number of chains from structure cluster 1 in 

Training sets 1 and 2 (148 and 58 chains respectively) (Table 1 

rows 1 and 2).  However, Specification 2 led to a training set with 

more β-sheet content, as it included a greater percentage of 

structure cluster 2, the richest of the four clusters in β-strands. 

These training sets enable the study of how changes in the ratio 

between helix and β-sheet content impact model performance. As 

another example, Specification 5 produced Training set 5, which 

contained only low-quality density maps, and hence can be used 
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to study the performance of a model that is trained with only low 

quality data. 

Table 3: Performance of four DeepSSETracer models in detection of helices and β-sheets from cryo-EM density map components. 

The performance was measured by F1 score (%). The four models were trained using four training sets generated using Specifications 1 

and 2 in Table 1. Two training sets (A and B) were generated for each specification. N/A: no β-sheet in the chain; Chain ID: 

<EMDB/PDB/Chain>; H: F1 score of helix detection, β: F1 score of β-sheet detection. 

Chain ID  

    

Specification 1  Specification 2   

Set A   Set B   Set A   Set B   

H   β H   β H   β H   β 

0139/6h58/x  49.8  33.5   52.2   47.7   49.8   54.5   48.6   47.9   

1480/4v5z/B8  70.5   NA   73.5   NA   64.2  NA   73.5   NA   

2221/2ynj/A  65.5   43.8   66.6   41.0   65.2   39.1   53.1   36.6   

2678/4upc/A  60.2 41.2  65.1 47.0   69.1   60.5   66.9   43.3   

2844/4ue5/E  24.1 52.0 47.6  40.9  30.1   57.6  37.8  40.8   

2844/4ue5/S  9.5 NA   49.6 NA   40.0  NA   2.3 NA   

2860/5afu/K  45.1 41.5 44.6 38.6 43.2  47.4  43.3   39.6   

3049/3jaq/m  59.7 45.9   58.4 35.0 59.8 52.8  64.7   57.2 

3101/5a9e/A  67.6 NA   68.3  NA   67.3 NA   65.7  NA   

3440/5g5p/A  37.2  0.0   42.6  0.0 52.3  0.0 49.5  0.0 

3491/5mdx/D  67.9 8.2  68.6 6.3 58.6  3.4   53.3 5.5  

3491/5mdx/M  82.9 NA   82.1 NA   54.1   NA   63.7  NA   

3544/5mq7/0A  72.1 61.0 71.3 51.1 70.2 65.8 69.4 62.3 

3594/5n61/R  45.4 0.0 50.7 0.1 48.1  0.0   46.5 0.0 

3683/5nrl/M  68.6 0.0 67.2 17.4 65.6   1.3  66.4 34.2  

3850/5oqm/g  77.1   NA   76.9   NA   67.7   NA   74.7   NA   

3896/6emk/E  22.7   NA   28.0   NA   29.5   NA   30.3   NA   

3948/6esg/B  73.0   NA   76.7   NA   75.6   NA   77.3   NA   

4041/5ldx/I  50.2   43.6   52.2   26.7   54.7   38.7   50.7   46.2   

4041/5ldx/l  42.4   NA   38.4   NA   40.8   NA   41.4   NA   

4041/5ldx/m  67.8   NA   70.2   NA   65.1   NA   65.2   NA   

4041/5ldx/o  74.9 NA   77.1 NA   65.3  NA   76.8   NA   

4089/5ln3/T  66.6 0.0 66.1 0.3  64.2 1.4   61.1   0.0   

4089/5ln3/U  70.8 58.2 67.7 29.8 67.0 52.0   71.5  49.0   

4098/5lqp/AB  66.4 68.1 56.3 64.8 56.9 65.1  67.5   65.2   

4100/5lqx/H  59.9 55.6 53.1  54.4  69.2  59.7   68.7   61.0   

4141/5m1s/B  50.0 53.7  45.3  49.7   50.0 57.5 49.8   56.9   

4177/6f38/V  8.4 11.1 16.6  28.7 25.0  9.5  3.5   28.8  

4182/6f42/P  35.1 0.0 26.2 21.8  32.0 21.2 36.1  22.9 

5030/4v68/B1  26.1 16.4 25.9 9.2 26.2 37.0 26.6  16.5  

5030/4v68/BF  66.2  42.4 65.9  57.4 67.0 53.9 69.1 61.0  

5249/3izm/A  45.8  26.6 57.3 33.8  52.7 33.1 43.6 29.6 

5592/4v6x/Ce  0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 

5943/3j6y/80  42.5 0.9 39.1 1.1 37.0 0.0 39.4 0.0 

6149/3j8g/W  34.5 56.4  19.9 62.9 35.9 50.4 29.1 69.3 

6456/3jbn/2  51.1 NA   53.4 NA   52.7 NA   53.9  NA   

6695/5wyj/R1  49.9 44.3 50.3 35.6 55.0 51.6  51.2 47.3 

6695/5wyj/U1  NA   53.1 NA   44.5 NA   54.7 NA   59.0 

6810/5y5x/H  0.2 0.0  1.3 0.2 0.0 0.0 0.2   0.0 

6889/5z56/6  16.8 1.6 18.7 8.4 19.9 0.0 14.8 21.6 

8129/5j8k/D  56.4 30.2   58.9 25.5  60.9  29.2 59.0 24.4   

8130/5j4z/BG  61.7 NA   56.9 NA   66.6  NA   56.5 NA   

8143/5jpq/s  62.3 50.8  54.5  24.5   62.6  55.6   64.6   53.9   

8148/5jb3/E  35.7   45.6   23.9   45.2   19.8   45.1   31.2   50.3   

8400/5tcr/Q  76.4   58.6   73.9   61.8   74.7   66.5   64.2   62.1   

8473/5tzs/d  48.5   50.9   39.7   50.4   0.9   34.7   43.3   49.0   

8473/5tzs/l  57.8   51.8   43.8   38.1   24.1   3.4   58.1   41.6   

8518/5u8s/2  59.9  46.6   61.8   54.8   63.3  56.3   61.9   47.6   

8518/5u8s/B  61.1 30.4 64.1 26.3   63.4   20.5 67.3  27.0 

8789/5w9n/B  24.2 53.5 14.7 46.2 7.0  54.8 1.7 49.2 

Average  49.4   33.7   49.7  32.3 47.8 35.1   48.3  37.0   

3.6 Performance of Models trained using 

Training Sets Generated with Two 

Specifications    

To showcase the utility of the obtained test set and training sets, 

we trained models using training sets generated according to 

Specifications 1 and 2 (defined in Table 1). As discussed in 

section 3.5, specification 1 led to training set with higher helix 

content, while specification 2 led to training set with higher β-

sheet content. Although Specification 1 and 2 have different 

desired distributions over structure clusters, they have the same 

distribution over quality clusters (Table 1). Both distributions 

over the quality clusters are same as that in the full data set. Since 

779 of 1292 chains in the full data set belong to quality cluster 4 

(Section 3.3), the worst of the four in quality, the training sets 

produced using Specification 1 and 2 have about 60% of the 

training data with poor quality. On the other hand, the test set was 

selected to resemble the distributions the same as those in the full 

data set, and therefore 30 of the 50 chains in the test set belong to 

quality cluster 4 (Section 3.4). Therefore, both the training sets 

and the test sets contain about 60% of the data with poor quality, 

and this may be reflected in the lower F1 scores of the 

performance. In fact, we observed a higher F1 score for both helix 

and β-sheet detection for models trained and tested using data 

without cluster 4 previously [5, 27].  

To reduce observations due to random chance, two independent 

training sets (A and B) were generated for each specification 

(Table 3).  With each training set, a model was obtained by 

training the U-Net deep neural network in DeepSSETracer [5]. 

The performance of all models was evaluated using the test set 

described in section 3.4 by calculating the F1 score. The average 

performance across all 50 test cases is consistent between the two 

replicates (A and B) for each specification (Table 3). Typically, 

machine learning models benefit from more training examples. 

So, as expected, models trained with data from Specification 1 

performed better for helix than those trained with data from 

Specification 2, while the opposite is true for β-strands. For 

example, higher averaged F1 scores of 49.4% (trained using set 

A) and 49.7% (trained using set B) for helix detection were 

observed, when Specification 1 was used to generate the two 
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training sets (Table 3). These F1 scores are higher than the 

corresponding F1 scores of 47.8% and 48.3%, when Specification 

2 was used to generate its training sets A and B. In terms of β-

sheet detection, the F1 scores (35.1% and 37.0%) for models 

trained using Specification 2 (more β-content) are higher than 

those (33.7% and 32.3%) for models trained using Specification 

1. 

We noticed that changes in distribution of structure clusters in the 

training sets has a greater impact on β-sheet detection than helix 

detection, since the difference in the average β-sheet F1 scores 

between the two specifications are much higher than that of helix. 

This can be explained as our dataset contains more helix residues 

than β-sheet (Figure 3B). This imbalanced problem is also 

common in other datasets where coil is the majority component, 

and β-sheet is the minority class. Our method can be used to 

adjust the distribution over secondary structure content in a 

training set to target the minority group in the dataset. The ideas 

of combining clustering algorithm and under-sampling have been 

implemented in many studies and in various fields. Some of them 

include density-based majority under-sampling technique 

(DBMUTE) [28] and cluster-based hybrid sampling for 

imbalanced-data (CBHSID) [29]. In addition, our method can be 

used to design multiple custom training sets with different 

distribution of structure and quality clusters to study the effect of 

these features on model performance. 

4 CONCLUSION 

Segmentation of secondary structures from cryo-EM density 

maps with medium resolution is still a challenging problem due 

to quality of the maps at such a resolution range. Although deep 

learning methods have shown potential to enhance the 

segmentation, different methods were tested using different data. 

First of all, there are limited experimental data sets available to 

test the approaches. Currently there are only two test data sets 

using cryo-EM maps. One is the set of 43 medium-resolution 

cryo-EM maps that was used in a 4-fold cross-validation test [3]. 

This suggests that each of the four tests only uses about 11 maps 

in the test. The other is the set of 28 unique chain regions of cryo-

EM map components [5]. Moreover, there has been no previous 

study supporting a method to establish a proper test set for the 

segmentation problem. Various studies are needed to understand 

potential factors that influence the segmentation. We developed a 

method to stratify data with three potential factors and created the 

sequence identity clusters, structure clusters for secondary 

structure characteristics, and quality clusters. We proposed an 

approach, in this paper, to compose data sets with desired 

specifications related to the three potential factors. Even though 

this approach has not been applied to study the actual effect of the 

potential factors, the methodology shown here can be used to 

attack the challenging problem of benchmark data establishment.   

Although our current study only focused on three potential 

factors, the stratification method could potentially be generalized 

to other factors that are considered important.   

The proposed approach was implemented to create a test set and 

various training sets to study the effect of the data on the 

performance of models trained using these data sets with distinct 

properties. The two training sets with higher content of helix 

perform better detection of helix overall, as expected, and the 

training set with lower content of β-sheet performs worse 

detecting β-sheet. The expected results show the potential of the 

stratification method for producing more balanced training sets to 

enhance overall performance of deep learning methods. 

The work presented here is the first investigation for the problem 

of establishing benchmark data for protein secondary structure 

segmentation from cryo-EM maps at the medium resolution. The 

focus of this work is the development of a framework to attack 

the problem. Many more studies are needed, such as constructing 

larger data sets, understanding variables currently existing in the 

framework, making the specifications more flexible, and 

optimizing the selection of candidate data sets. 
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