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ABSTRACT

GAUSSIAN MIXTURE MODELS AND NEURAL NETWORKS FOR

AUTOMATIC SPEAKER IDENTIFICATION

Usha Gayatri Chalkapally
Old Dominion University, August 2006

Director: Dr. Stephen A. Zahorian

Automatic Speaker Recognition is the process of automatically recognizing who is

speaking on the basis of individual information contained in speech signals. This

technique of Automatic Speaker Recognition makes it possible to use the speaker's voice

to verify their identity and control access to services such as voice dialing, banking by

telephone, telephone shopping, database access services, information services, voice

mail, security control for confidential information areas, and remote access to computers.

In this thesis, the teclmiques of Gaussian Mixture Models and Neural Networks

for Automatic Speaker Identification are presented. Algorithms for Speaker Identification

using Gaussian Mixture Models were developed, using both full covariance matrices and

diagonal covariance matrices and were tested on the NTIMIT and SPIDRE databases.

Experiments were also conducted using the existing neural network — Binary-Pair

Partitioned on the NTIMIT and SPIDRE databases.

GMMs are trained with the maximum likelihood approach to give good models

for each speaker. In contrast, NNs are trained to discriminate between speakers but form

no explicit models for each speaker. It is conjectured that an appropriate combination of

maximum likelihood and discriminative training, using both GMMs and NNs should give

a better recognition rate than either method alone. Thus, fusion approaches to combine

the Gaussian Mixture Models and neural networks for Speaker ID are proposed and



nt

tested for various cases. Comparisons of the best results obtained with each method were

made for all the cases that were evaluated.

From the comparison of the results obtained with the GMMs alone, NNs alone,

and combined GMM/NN, it was observed that the results obtained with GMM alone

yielded the best recognition accuracy. The best accuracy using the NTIMIT database was

89.2% on the test data, and the best accuracy using the SPIDRE database was 86.7% on

the test data, both results obtained using GMMs alone,
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CHAPTER I

INTRODUCTION
Speech is one of the most natural ways for humans to interact. When it comes to

computers it is no different. If a computer application could be controlled solely by way

of voice commands then new opportunities would be presented. Even though the idea of

using speech as an input mechanism for a computer is not new, there is still a lot of

research going on in this field. In fact, human-computer interaction using speech is still

largely unrealized.

A field closely related to automatic speech recognition is automatic speaker

recognition. Automatic speaker recognition is the process of automatically recognizing

who is speaking on the basis of individual information contained in speech signals. It can

be divided into Speaker Identification and Speaker Verification. Speaker Identification

determines which registered speaker provides a given utterance from amongst a set of

known speakers. Speaker Verification accepts or rejects the claimed identity of a speaker

based on an arbitrary utterance from a pool of unlimited speakers.

This technique of automatic speaker recognition makes it possible to use the

speaker's voice to verify their identity and control access to services such as voice

dialing, banking by telephone, telephone shopping, database access services, information

services, voice mail, security control for confidential information areas, and remote

access to computers. Automatic speaker recognition technology is expected to create new

services that will make our daily lives more convenient. Another important application of

speaker recognition technology is for forensic purposes.



There are two basic types of Speaker Recognition methods. They are listed below:

1.1 Text- Dependent Speaker Recognition

Text-dependent speaker recognition seeks to associate an unknown speaker with a

member from a registered population, given a textual transcription of the phrases uttered

by the speaker. Typically, speaker-dependent word or sub word models are built for each

speaker. Given a labeled utterance from an unknown speaker, the system makes its

speaker recognition decision based on the likelihood scores of the appropriate speaker

dependent models.

Text-dependent methods are usually based on template-matching techniques. In

this approach, the input utterance is represented by a sequence of feature vectors,

generally short-term spectral feature vectors. The time axes of the input utterance and

each reference template or reference model of the registered speakers are aligned using a

dynamic time warping (DTW) algorithm, and the degree of similarity between them,

accumulated from the beginning to the end of the utterance, is calculated.

A Hidden Markov Model (HMM) can efficiently model statistical variation in

spectral features. Therefore, HMM-based methods have been used as extensions of the

DTW-based methods and have achieved significantly better recognition accuracies.

1.2 Text -Independent Speaker Recognition

On the other hand, for text-independent domains, the speech of a speaker is largely

unconstrained and often cannot feasibly be constrained with even the lexical content of

highly variable utterances. Because speaker cooperation is not necessary, systems

designed for the text-independent domain are considered more tlexible,



One of the most successful text-independent recognition methods is based on the vector

quantization (VQ). In this method, VQ codebooks consisting of a small number of

representative feature vectors are used as an efficient means of characterizing speaker-

specific features. A speaker-specific codebook is generated by clustering the training

feature vectors of each speaker. In the recognition stage, an input utterance is vector-

quantized using the codebook of each reference speaker and the VQ distortion

accumulated over the entire input utterance is used to make the recognition decision.

Temporal variation in speech signal parameters over the long term can be

represented by stochastic Markovian transitions between states. Therefore, methods using

an ergodic HMM, where all possible transitions between states are allowed, have been

proposed. Speech segments are classified into one of the broad phonetic categories

corresponding to the HMM states. After the classification, appropriate features are

selected.

In the training phase, reference templates are generated and verification

thresholds are computed for each phonetic category. In the verification phase, after the

phonetic categorization, a comparison with the reference template for each particular

category provides a verification score for that category. The final verification score is a

weighted linear combination of the scores from each category,

The "standard" HMM method has been extended to the richer class of mixture

autoregressive (AR) HMMs. In these models, the states are described as a linear

combination (mixture) of AR sources. It can be shown that mixture models are equivalent

to a larger HMM with simple states, with additional constraints on the possible transitions

between states.



It has been shown that a continuous ergodic HMM method is far superior to a

discrete ergodic HMM method and that a continuous ergodic HMM method is as robust

as a VQ-based method when enough training data is available. However, when little data

is available, the VQ-based method is more robust than a continuous HMM method [28].

A method using statistical dynamic features has recently been proposed. In this

method, a multivariate auto-regression (MAR) model is applied to the time series of

Cepstral vectors and used to characterize speakers. It was reported that identification and

verification rates were almost the same as those obtained by an HMM-based method.

All technologies for speaker recognition, identification and verification, text

independent and text-dependent, have advantages and disadvantages and require different

treatments and techniques. The choice of which technology to use is application-specific.

At the highest level, all speaker recognition systems contain two main modules-

the training module and the testing module, shown in Fig. 1.1 and Fig. 1.2 respectively.

The training phase is the process that extracts features from a small amount of data from

the voice signal that can later be used to represent each speaker. The testing phase

involves the actual procedure to identify the unknown speaker by comparing extracted

features from his/her voice input with the ones from a set of known speakers.

Speech data
for a given
speaker

Speech
Parametcrization
Module

Statistical modeling
Module

Speaker
Model

Pig. 1,1 Modular Representation of the Training Phase of a Speaker Identification System



Speech from an
Speech Parameters

Fig. 1.2 Modular Representation of the Test Phase of a Speaker Identification System [25I.

1.3 Outline of Work

The objective of this thesis is to develop a Gaussian Mixture Model (GMM) based

Speaker Identification system, compare the results obtained by this model with the

existing Binary-pair Partitioned Neural (BPP) network based Speaker Identification

system and then investigate methods to combine the models. Since the GMM is trained

with maximum likelihood methods, with the model for each speaker obtained using only

data from that speaker, whereas the BPP is discriminatively trained, it is hypothesized

that a combination of the two methods will be superior to either method alone.

Chapter 2 contains a description of the Gaussian training and testing procedure, in

theoretical terms. This chapter also includes the description of the binary-pair partitioned

neural network method and also the results from the literature using each of the methods.



Chapter 3 describes the Gaussian Mixture Modeling in more detail and also the

process for transforming data with Gaussian Mixture Mdels and then training the neural

networks using the Gaussian Mixture Model's outputs as new features.

Chapter 4 gives the description of all the experiments performed and the results

obtained using both the methods and also the combined method.

Chapter 5 gives a conclusion to the thesis summarizing the method used and the

key results obtained and it suggests some other areas where these ideas can be employed

and the future work that is to be done.



CHAPTER II

GAUSSIAN MIXTURE MODELS AND NEURAL NETWORKS FOR
SPEAKER IDENTIFICATION

Gaussian Mixture Models have proven to be a very powerful tool to characterize and

distinguish acoustic information. This model is the most common approach used for

speaker verification and speaker identification systems. In such a system, a Gaussian

Mixture Model is obtained for each speaker or a group of speakers. The model

characterizes the speaker or the group of speakers based on a set of parameters.

A Gaussian Mixture Model is a probabilistic model defined as a weighted sum of

Gaussian density functions with different means and covariances. The model, referred to

as A, can be represented as a sum of Gaussian densities with means/i,, covariances 2,,

and weights wl, where i=1, 2..., M, with M the number of mixture components, i.e. the

number of Gaussian density functions. The model for one dimension is illustrated with

the following equation:

p(x/A)= g w G(x//i„cr,) (2.1)

where G(x//il,o,) represents the Gaussian density function for the i" mixture

component and is given by the equation,

-(x-lr, )

G(x//t,,o,.) = e
42rrcr,.

(2.2)

and the weights are constrained by the equation
M

i.e. the sum of the weights is 1.
w =I

r=l

The figure below shows an example of a single variable Gaussian Mixture Model with

two mixture components, i.e. two Gaussian density functions:



Fig. 2.1. Single Variable Gaussian Mixture Model [8].

The figure above is for single variable Gaussian densities. However, for speaker

recognition, the Gaussian densities are generally multivariate, i.e., there are a number of

variables which are the features for each speaker's acoustic information. The equations

for such a multivariate Gaussian density are given as:

G(x] y) (-)/2(x lt) s '(x-lr))

i
2@K

[u'here

x represents the variable vector, p is the mean vector and Z is the covariance

matrix. A two-dimensional multivariate Gaussian density is depicted in Figure 2.2.



0.08 .

000.

-8

Fig. 2.2. Two-Dimension Gaussian Density Function [gi.

2.1 Gaussian Mixture Models for Speaker Identification

Each speaker or a group of speakers will have a model representing its characteristics.

Each model consists of the following parameters: M weights w,, M mean vectors p,, and

M covariance matrices Z, Such models are estimated for each of the N speakers to be

identified and are stored in a database. The training phase of the speaker ID system

consists of estimating these parameters. This training phase is explained in more detail

below.

In the testing phase, the likelihood values of the test speaker's spectral features

with respect to each speaker model are computed. The speaker model that results in the

maximum of these likelihood values is considered to be from the unknown speaker.
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2.1.1 Gaussian Mixture Model Estimation

EM Algorithm: Expectation Maximization Algorithm

The EM (Expectation Maximization) Algorithm is a general iterative algorithm for

maximum likelihood estimation where some unknown parameters are estimated given

measurement data. The algorithm is initialized with random values for the parameters

that are to be estimated. Then the algorithm iteratively alternates between two steps:

Expectation and Maximization. In the Expectation-step, the expected likelihood for the

data is computed where the expectation is taken with respect to the computed conditional

distribution of the unknown parameters, given the current settings of parameters and the

observed data. In the Maximization-step, the parameters are re-estimated by maximizing

the likelihood function. Given a new generation of parameter values, the E-step and

another M-step can be repeated. This process continues until the likelihood converges,

i.e., reaching a local maxima. Thus, the aim of the EM algorithm is to find the parameters

0", such that 0(8"") &0(8"), where 0(8") represents the expected value of the

complete data log-likelihood function in terms of the previous parameters, 8" represents

the parameters at the end of the n'" iteration and g(0"') represents the likelihood at the

end of the (n+I)'" iteration. Note that the EM algorithm applied to GMMs can be

conveniently developed by positing that some of the data is missing ('ncomplete data')

even though in fact none of the data is missing ('omplete data'). The EM algorithm with

these assumptions about data is as follows:

1. Initialize 8'andomly or heuristically according to any prior knowledge about

the optimal parameter values.
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2. Iteratively alternate between the steps Expectation and Maximization until an

optimum estimate of the parameters is obtained. The Expectation and

Maximization steps respectively are;

(a) Expectation Step: Compute the function Q(0;0")

(b) Maximization Step; Re-estimate the parameter values 0" by maximizing

the value of the function Q(0; 0" ), i.e., find the values of 0" for which the

function Q has the maximum value.

3. Stop when the Likelihood value converges.

EM algorithm in detail applied to Gaussian Mixture Models:

The abstract discussion of the previous section is now related specifically to the

problem of estimation of Gaussian Mixture Models. Note that 0 from the previous

discussion refers to the Gaussian model parameters (means',, covariancesX,, and

weights w, ), and Q is the likelihood of a given set of feature vectors, given 0.

First, the probabilistic model is assumed as

p(x i 0) = g a, p, (x i
0,.) (2.4)

M

where the parameters are 8= ((a„.„,aM 0l, 0M) such that ga, = I and each p,

is a Gaussian density function parameterized by 0, (means p,, covariances Z, ). There are

M component densities mixed together with M mixing coefficients a, .

The data log-likelihood expression for this density from the data X is given by:

N N M

log(L(8 i X)) = logg p(x, I 0) = g log g a, p, (x, i 0, )
r-I j=1



It is difficult to optimize this expression because it contains the log of the sum.

The solution for this is to consider X as incomplete and posit the existence of unobserved

data items Y = (y,),, whose values indicate which component density generated each

data item. This helps in simplifying the likelihood expression significantly. i.e. it is

assumed that y,. el,...,M for each I, and y,. =k if the i'" sample was generated by the

k'" mixture component. If the data values of Y are known, the likelihood expression takes

the form:

log(L(8
I
X, Y)) = log(P(X, Y

I 8)) = g log(P(x, I y,. ) P(y)) = g log(kx, py (x, I l9y ))

(2.6)

which, given a particular form of the component densities, can be optimized using a

variety of techniques.

The next problem is that the values of Y are unknown. It is assumed to be a

random vector. An expression for the distribution of the unobserved data is first derived.

The initial parameters for the mixture density are assumed

as 0' (kr,',..., aM,O,",...,0~) . Given8, p, (x, I
6i,'.) for each i and j is computed. The

mixing parameters ai can be thought of as prior probabilities of each mixture

component, i.e, kx, = p (component j). Using Baye's rule, p(y, I
x„8') can be

determined as shown below:

y'Py(, I
y') y'Py(,I y')

p(y, I
x„8')—

P(x I
O ) g&kp (x I

ok)
k=1

p(v I
X,O') = l7. p(y, I

x„8')
i=i

(2 7)



13

where Y=(y„...,yN) is an instance of the unobserved data independently drawn. Then

the likelihood equation takes the form:

Q(O,O') = flog(L(8 I
X, Y))p(Y

I
X,O')

I'EY

N N

Q(8 8') = ZZ og( e p, (; I a))H p(y, I xj,8')
YEY t=l

(2.8)

This can be simplified as

M N

Q(o o') =~~log(rxip'l(x; I 19i))p(1 Ix, 8')
I=i r=l

(2.9)

The expression above is to be maximized. To do that, the term containing Ixi and

the term containing I9I are maximized independently. The logarithm term helps us in

doing that. Solving all the equations would result in the following equations to estimate

the new parameters from the old ones.

llEW

I

new

Errew
I

N

—g p(l I
xi,8')

N;I
N

gx,p(l I
xi,8')

r=1

N

Qp(l I
x„O')

r=1

N

y p(l
I
X„O )(x,, — pi"'")(x, — pI" )'

p(l I
x;,O')

(2.10)

The above equations perform both the expectation and the maximization step

simultaneously. The algorithm proceeds by using newly derived parameters as the guess

for the next iteration [I].

To better illustrate the concepts described above, an example is presented which

uses the EM algorithm to derive a simple mixture model, In the example, the means of
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two mixture components are to be estimated from the given data samples (Figure 2.3)

without knowing which mixture component the data sample belongs to. Figure 2.4 shows

the Likelihood function. Recall that the likelihood refers to the likelihood of parameter

values, given the data.

EM proceeds as follows in this example. In the Expectation-step, an assignment is

computed that assigns a posterior probability to each possible association of each

individual sample. In the current example, there are 2 mixtures and 6 samples, so the

computed probabilities can be represented in a 2 x 6 table. Given these probabilities, EM

computes a tight lower bound to the true likelihood function of Figure 2.4. The bound is

constructed such that it touches the likelihood function at the current estimate, and it is

only close to the true likelihood in the neighborhood of this estimate. The bound along

with its corresponding

Fig. 2.3. KM Example. The data consists of three samples drawn from each of two mixture

components, shown above as circles and triangles. The means of the mixture components

are -2 and 2, respectively [8].
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probability table is computed in each iteration, as shown in Figure 2.5. In this case, EM

was run for 5 iterations. In the Maximization step, the lower bound is maximized (shown

by a black asterisk in the figure), and the corresponding new estimate (0„0,) is

guaranteed to lie closer to the location of the nearest local maximum of the likelihood.

Each next bound is an increasingly better approximation to the mode of the likelihood,

until at convergence the bound touches the likelihood at the local maximum, and progress

can no longer be made. This is shown in the last panel of Figure 2.5.

03

03

03

Fig. 2.4. The True Likelihood Function of the Two-Component Means, given the data [gl.
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Fig. 2.5. An Illustration of the EM Algorithm for estimating the means of a Two-

Component GMM from 6 data points. After 5 iterations, the EM converges to one of the

maxima shown [gj.
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The following graph depicted in Fig. 2.6 illustrates the typical performance of a

Gaussian Mixture Model based Speaker Identification system as the number of mixture

components is varied. These results were obtained from the NTIMIT database with 102

speakers, using 8 sentences for training and 2 sentences for testing. In the graph, Series l

refers to the case of 25 features and 2 sentences used for testing, Series 2 refers to the

case of 25 features and 1 sentence for testing, and Series 3 refers to 20 features and 2

sentences used for testing.

100

90
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Fig. 2.6. Sample Speaker ID Recognition Results using GMMs.

From the above graph, we can conclude that the recognition rate of the Gaussian

Mixture Model Based Speaker Identification System is almost 90% for the best of the

cases. Chapter 4 gives results for a variety of cases using two public domain databases.
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2.2 Neural Networks for Automatic Speaker ID

Automatic speaker identification is essentially a statistical pattern classification problem

involving decisions over M categories. Here, a brief review of methods of data

partitioning and advantages of binary pair partitioning are provided along with a

discussion of the added feasibility of such a partitioning approach for speaker

identification. Neural Networks have been shown to work exceptionally well for small

but relatively difficult classification tasks — especially speaker identification. For some

cases, it has been shown that a neural network classifier performs significantly better than

a maximum likelihood classifier for ASI,

Nevertheless, Neural Network Classifiers (NNC) have problems. For example, it

is known that the amount of training data and number of iterations of training have a

significant impact on the performance of an NNC. This training/performance issue of the

NNC manifests itself particularly when dealing with a relatively larger number of

categories (or speakers for the present case). Experiments conducted in the past have

revealed that the training time required to train a single neural classifier to perform an M-

way classification task is roughly quadratic in M. However, this training time may be

reduced by partitioning the classification task, as a series of Y way decisions (Y & 2). It

has further been shown that partitioned neural network classifiers require less training

data compared to a single large network. Fig. 2.7 shows the block diagram for a typical

Group Partitioned Speaker ID system.
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Unhlowll
Speech Sample

Pig. 2.7. Group Partitioning for Automatic Speaker Identification.

Two of the most distinct forms of partitioning of a classification task are group

partitioning and pair-wise or binary pair partitioning (BPP). Group partitioning has been

extensively exploited in several previous and current research studies. Nevertheless, it is

worthwhile to mention that group partitioning can be successfully applied when the entire

data can be broadly categorized into more than one category — for example, for humans

(men, women, and children) or for medication (antihistamines, analgesic, etc.). Each

broad category may or may not contain sub categories. On the other hand, binary-pair

partitioning is more suitable when applied to different subsets belonging to a single

category (Males malel, male2, male3...etc). Figure 2.8 presents a graphical depiction of

an example for classification layers when group partitioning is employed.

A special case of group partitioning is binary-group partitioning — for which M-1

two-way classifiers are used to achieve M-way classification. The classification progress

follows a tree path wherein each branch leads to only one of two possible alternative

remaining categories. The performance advantage with such a partitioning is that as long

as no errors are made at the preceding levels of the decision tree, no sub classifier needs
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to make a decision for an input sample it was not trained to classify. Nevertheless, this

great benefit is severely affected by the need for a "good" partitioning of the categories

for each sub-classifier.

2.2.1 Binary-Pair Partitioned Neural Networks

Binary-Pair Partitioning is a special type of classifier. It uses M*(M-I)/2 two-way

classifiers to make an M-way decision, Each binary decision is made between a pair of

categories or speakers. Thus, there are M-I decisions relevant to each user in set M. For

classification these decisions are combined to produce an overall decision. This may be

visualized as a square matrix form, which shows elements corresponding to pairs of

unique categories that can be formed. In this form, only the elements above the principal

diagonal are relevant. The speaker pairs below the principal diagonal can be separated

using the classifiers for pairs above the diagonal. For example, a classifier that can

separate categories I, 2 will also be able to separate categories 2, I, which leads to the

number of classifiers needed given by the expression above. This leads to a sharp growth

in the number of classifiers as M increases. A square matrix representation of the BPP is

shown in Fig. 2.8.

1,2 1,3 1,4

2,3 2,4
3,4

1,M

2,M
3,M

Fig. 2.8. Square Matrix Representation of BPP.
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The greatest benefit that has been derived from BPP partitioned neural networks

is exceptional performance, which is apparent when we consider that there is a dedicated

classifier that has to differentiate between TWO categories only. Other advantages of

BPP partitioning over group partitioning is that categories need not be grouped, which

eliminates the need for arranging similar categories together prior to classification. Using

a conventional single network for an M-way decision requires training time exponentially

proportional to the number of users (M). Using the BPP network can reduce the training

time to as little as logi (M). Implementation of the BPP network requires two steps in the

classification process:

1. "Elemental" classifiers are trained to distinguish between every possible pair of

speakers in set M (users).

2. Test data is then run through each elemental classifier trained in step 1. The

decisions made in this process are combined to produce an overall decision based

on all the binary-pairs,

In the identification problem we are faced with a fixed number of possible speakers,

M. The identification task is to identify the present speaker as one of the M possible

speakers. The verification task includes not only this simple classification, but the system

must also be able to reject an infinite set of 'impostor'peakers. Thus, the speaker space

consists of a set of acceptable speakers, M (users), and an infinite set of possible

speakers, N, including N-M impostors. The verification task includes not only correctly

identifying users, but also rejecting impostors. Therefore, the Binary-Pair Partitioning has

been adapted for verification [4].
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2.3 Combined GMM/NN

Based on the results of Gaussian Mixture Model Based Speaker identification and those

of BPP NN based Speaker ID, a combination of both the models can be designed for

better results. GMMs are trained with the maximum likelihood approach to give good

models for each speaker. In contrast, NNs are trained to discriminate speakers but form

no explicit models for each speaker. The hypothesis underlying this work is that an

appropriate combination of maximum likelihood and discriminative training, using both

GMMs and NNs should give a better recognition rate than the individual ones. However,

it is not clear how to combine these two models. A few possibilities are presented in the

remainder of this thesis, and experimental evaluations given.

This chapter has a discussion of the concepts of Gaussain Mixture Models, Neural

Networks and the possibilities their combination of both for speaker identification. The

next chapter explains the algorithms used for each method in more detail.
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CHAPTER III

ALGORITHMS FOR GMM SPEAKER ID AND COMBINED
GMM/NN SPEAKER ID SYSTEM

In this Chapter, the algorithms used for implementing a speaker ID system with

Gaussian Mixture Models and a combined GMM/Neural Network model are given in

detail. The first step in both of these methods is to extract the features from acoustic

(typically, *.wav) files. For experimentation, we used "standard" widely distributed

databases because such databases allow comparison of experimental results with other

researchers, using other algorithms for feature extraction and/or recognition.

The databases used were NTIMIT (Nynex-Texas Instruments and MIT)

consisting of 630 speakers, with each speaker reading IO sentences and the SPIDRE

database consisting of 45 speakers, each speaker having 4 conversations. In both cases,

the speech was recorded over telephone lines.

3.1 Feature Extraction

The first step of speaker identification is feature extraction. For the work reported in this

thesis, the extraction of the features was done using the ODU Speech lab program

'tfrontm', which computes Discrete Cosine Transform Coefficients from the waveform

files. This front end feature extraction process results in feature files. The feature files

were written with one file for each speaker, with each sentence considered as one token

and with 25 variables (DCTC coefficients) for each frame, and the number of frames

depending on the length of the sentence. Thus, for example, with 10 sec. of speech data

from each speaker, there would be 1000 frames of data from each speaker.
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Using this feature extraction process, each speaker has a feature file representing

his/her acoustic information. Typically, each acoustic file is parameterized using;

~ 25 DCTCs per frame (Features CCI- CC25)

~ 40 ms frames, spaced 10ms apart

~ Kaiser windowing with [I = 0/6

~ A frequency warping factor of 0.25

~ A frequency range of 300 — 4000 Hz

More details of the feature extraction process and feature file formats can be found in [3].

The low energy frames were also removed; removing all frames with CCI values

less than a certain threshold. From other work [24], for the case of the SPIDRE database,

approximately, 90% of the total frames were removed saving only the top 10% (in terms

of signal level) frames. For the case of NTIMIT, it was found empirically that the best

choice was to remove approximately the lowest energy 30% of frames. Finally, a scaled

file for each speaker was created, containing all the sentences for that speaker (10 for

NTIMIT and 4 for SPIDRE).

These files are used by the GMM and NN algorithms for the speaker ID system.

3.2 Gaussian Mixture Model Algorithm for Speaker ID

As was discussed in chapter 2, a Gaussian Mixture Model can be mathematically

represented as



25

where G(x, p„Z,) represents the Gaussian density function for the i" mixture

component and is given by the equation,

G(x) g) ( — ll2(x-P) z '(x-v))

I
2~Z
I"'3.2)

and the weights are constrained by the equation

gw, =I
i.e. the sum of the weights is 1.

This algorithm generates a Gaussian Mixture Model for each speaker. The Model inputs

1. Number ofmixture components

2. Number of data samples

3. Input Feature file

4. Number of iterations for the EM algorithm

5. Threshold for the log likelihood value

The outputs are these parameters:

1. Weights for each mixture

2. Mean vector for each mixture

3. Covariance matrix for each mixture

An overview of the algorithm is as follows:

1. The input feature file is opened for the data and the file is read according to the

specifications given— i.e. the number of tokens and the number of features to be

read from the file.

2. The file with the corresponding specifications is read and the data is stored in a

matrix.
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3. The Gaussian Mixture Model for each speaker is determined using the EM-

Expectation —Maximization algorithm. This can be summarized as follows:

(i) The dimension of the input data is determined.

(ii) Initialization for the EM algorithm is done, i.e. the mean vectors,

covariance matrices and weights are initialized. Also the initial

likelihood values are assumed. Note, as mentioned in chapter two,

previous researchers have noted that GMMs for speaker ID generally

perform better using many mixtures, but only diagonal covariance

matrices.

(iii) The density function for the set of parameters is determined.

(iv) The log likelihood value for the pdf is calculated

(v) If the difference of the current log likelihood value with the previous

value is less than the threshold value, the algorithm terminates.

Otherwise Steps (iii) through (v) are repeated until the number of

iterations is equal to the value specified.

Thus a Gaussian Mixture Model for each speaker is obtained. This is the training phase

for the Speaker ID system. Once these models are obtained, the testing has to be done for

recognition. This is done by the evaluation algorithm discussed below.

3.3 Evaluation of the Gaussian Mixture Models

This algorithm works as a testing phase for the speaker ID system. Here the input is the

test speaker and the output is the likelihood value of the test speaker with each of the

speakers in the database. The inputs and outputs for this algorithm are given below;
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Inputs:

1. Test speakers feature files

2. The Gaussian Mixture Models for each speaker in the database. (Note that these

models are obtained with different sentences than those in the test set.)

Outputs;

1. The likelihood value of each test speaker with respect to each trained speaker

model in the database

2. The overall recognition rate of the evaluation system

The algorithm can be summarized as follows:

1. The input feature file of the test speaker is read according to the specifications

given, and the data is stored as a matrix.

2. The test data is then compared with the training data from the database, and the

log likelihood value of the test data with each speaker is calculated. Note that the

calculation is done by first evaluating each frame of data and summing frame

scores. The speaker having the maximum likelihood value is identified as the test

speaker.

3. Based on the likelihood values the recognition rate of the system is calculated.

This algorithm gives the recognition rate of the speaker ID system based on the

likelihood values of the input speaker with respect to each speaker in the database.

The speaker having the maximum value of likelihood is chosen as the test speaker.

3.4 Algorithm for Neural Network based speaker ID

Neural networks used in this work have the following architecture:
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~ Three layers (input, hidden and output)

Number of input nodes — 24

Number of hidden nodes — 10

Number of output nodes — 1

~ Feed forward, Memory less

I
~ Sigmoid non-linearity at the nodes f(x) =

1+e"

~ Back-propagation training method

This classifier performs only 2-way decisions. Thus, the classification problem involving

M speakers is divided into classifications involving only 2 speakers. All these 2-way

classifiers obtained can be considered as elements of a square matrix as shown in Fig.

2.8.

The element &g, h& represents the output of a classifier, trained to separate

categories g and h only. Each classifier is a neural network trained over categories g, h
~

output (g) -=0 & output (b) —— 1.Each of the elements in the lower diagonal can be

computed as x„"=1-x,; (binary output).

The classifier works as follows:

~ The unknown parameterized acoustic sequence is passed through all the 2-way

classifiers.

~ The outputs of all these classifiers are stored at the respective matrix location.

~ The row-wise sum of the matrix is computed.

~ The row index with the highest sum is used as the index for the recognized

speaker.
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The neural network is trained to attempt separation of feature frames of one speaker with

those of another speaker. In particular, the neural network has an output target of'0'low)

for one speaker and 'I'high) for the other speaker. With this approach and for

"clean" speech, typically about 80-95% of frames can be separated for the TIMIT

database (using the natural separation level of 0.5 for the neural network output).

However, since actual decisions are made by averaging the neural network output over

the entire utterance, nearly 100% accuracy is easily obtained for each 2-way classifier.

3.5 GMM combined with Neural Network

The approach for combining Gaussian Mixture Models and Neural Networks for speaker

identification is discussed in this section. Two methods have been designed and

implemented for the combined GMM/NN speaker identification model.

3.5.1 Method 1- Universal Background Model Approach

The first method employed for the combined GMM/NN model is derived from the

Universal Background Model (UBM). In the UBM method, a large GMM is obtained

from all the speakers or a group of speakers in the database and this universal model is

used as the basis for speaker recognition. This "large" GMM is intended to have enough

mixture components to represent any speaker. The UBM approach has recently become

the basis for virtually all state-of-the-art Speaker Verification systems [20]. However, it

has not been used much for speaker identification.

The first step is to form a single universal Gaussian Mixture Model with a large

group of speakers. The UBM is trained with speakers not used for the actual
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identification, and is intended as a generic model for the universe of speakers. For the

speaker verification task, two speech samples are "presented" to the system. The task of

the verification system is to determine whether or not the two samples are from the same

or different speakers. For the UBM approach, the system determines whether the two

samples are more similar to each other or to the UBM.

In this thesis, we use a variant of the UBM approach for speaker identification for

the combined GMM/NN method. The specific algorithm is explained below.

Training Phase

1. A group of speakers from the database is used to obtain a universal background

Gaussian Mixture Model with many mixtures. This method was only tested using

the NTIMIT database and a group of the speakers from the database for creating

the model. The parameters obtained, i.e. the weights, means and variances, were

stored in a file called UBM.

2. The remaining speakers from the database are used to create speaker specific

Gaussian Mixture Models. Ideally these models should be created by adapting the

UBM models, as mentioned in [20j. However, due to the complexity of this

adaptation process, in this work, the speaker specific models were created

independently. Specific training tokens were used to create these models. These

parameters, i.e. the mean vectors and variances were saved as the speaker specific

model. Next, UBM mixture components close to each speaker-specific

component were computed, That is, the distances between the means of each

mixture in the UBM and each mixture of each speaker specific model are

calculated and the mixtures that are close are obtained.
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3. a) Using the same training sentences, compute the contribution of log likelihoods

from each mixture. Then, determine the P highest values for each frame. These

values can be viewed as new features for each speaker.

b) Evaluate the corresponding mixture log likelihood values for the UBM, using

the correspondence table described above. Again obtain the highest P mixture

likelihoods. Again, write these values in a feature file with the values obtained as

the data for each frame in the feature file.

Thus, two "feature" files for each are obtained for each speaker. One file is the

representation of the speaker with respect to the training GMM for that speaker,

The other file represents how the speaker appears when evaluated by the UBM,

but with the correspondence linkage as described above.

4. Run the Neural network-BPP algorithm on the above obtained files to train a

neural network to discriminate the features for each pair of files mentioned in step

3. Ideally, this network should be able to determine all the UBM features that are

different than the speaker-specific GMM features. It was hypothesized that the

percentage of actual frames of UBM features "properly" discriminated would be a

good indicator for recognizing each speaker.

Test Phase

1. Beginning with the acoustic feature files, use the test sentences for each speaker

to create the two sets of files as described above for the haining data.

2. Again run the neural network-BPP algorithm on the files obtained in this test

phase in the same way as done in the training phase, i.e., take the files obtained

from the UBM for training and the files obtained from the speaker specific
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models for testing. Obtain the recognition rate. It was anticipated that this rate

would be very similar to that obtained in the training phase for that speaker.

3. Compare the recognition rates obtained in both the training and test phases,

The steps described above were implemented and evaluated for the NTIMIT database

using 102 speakers (DR2) with 8 sentences for training and 2 sentences for testing. If the

recognition rates obtained for the training data and test data for each speaker were very

similar, it would have been assumed that the feature files obtained above would be good

indicators of speaker identity, and additional NN processing steps would have been

implemented to make the final identification. However the recognition rates obtained for

training and test data did not match well at all. Therefore, this method was neither fully

implemented nor thoroughly tested. It appeared that this particular approach for

combining the maximum likelihood and likelihood discriminative estimates was not

promising and not worthwhile to investigate in more detail. Nevertheless, it was one

method that was implemented and evaluated as a first attempt to combine GMMs and

3.5.2 Method 2-Speaker Score Averaging

In this method, which is quite similar to methods used in other applications for

combining results of two classification methods, the speaker scores calculated from both

the methods, i.e. the Gaussian Mixture Model approach and the Neural Network method

are averaged. That is for the GMM method, the likelihood scores are computed for each

possible speaker. Similarly for the BPP NN, a score is computed for each possible

speaker. In both cases, these scores can be (and were) normalized to a 0-1 range. The
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scores can then be added and averaged to obtain an overall score to identify the most

likely speaker. It was hoped that the composite score, based on two quite different

methods, would result in higher accuracy than the score based on either method alone.

This process thus consists of the following steps:

I) Run the GMM algorithm on the training data and obtain the speaker

specific models for each speaker.

2) Evaluate the test data on the speaker specific models and compute the log

likelihood values.

3) From the log likelihood values, obtain the speaker scores for each test

speaker. Use an offset and linear scaling to normalize these scores to a 0-

I range.

4) Run the Neural Network-BPP on the same data.

5) Obtain the speaker scores for each test speaker using the Neural Network

also. Note that these scores are normalized from the NN to be in a range

of 0 to l.

6) Average the speaker scores for all the speakers obtained from both the

methods.

7) The speaker having the highest ranking is identified as the test speaker.

As mentioned above, it was hoped that this score based on averaging would result in

higher speaker identification accuracy than the score based on either method alone.
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Summary

The various methods used for speaker identification in this work have been discussed in

this chapter. The main focus was the Gaussian Mixture Model algorithm, The

experiments and the results obtained using these methods are explained in more detail in

the next chapter.
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CHAPTER IV

EXPERIMENTS AND RESULTS

This Chapter includes all the experiments conducted for this thesis. It begins with a

description of the databases used for experimentation. The chapter includes a detailed

description of all the experiments conducted. It also includes the results of all the

experiments conducted and it gives a comparison between the results wherever

applicable.

The experiments for the Automatic Speaker Identification system are based on the

following approaches:

1. Neural Networks with Binary-pair Partitioning

2. Gaussian Mixture Models

3. Combination model of Gaussian Mixture Models and Neural Networks using

Binary-Pair partitioning

These experiments were conducted on two standard databases, NTIMIT and SPIDRE, as

summarized below. These experiments were conducted on standard databases so as to

allow effective comparison of the results obtained with those obtained by other

researchers and other algorithms.

4.1 NTIMIT Database

The TIMIT database was provided by a joint effort between Texas Instruments and MIT,

and was developed primarily to aid acoustic phonetic speech recognition research,

NTIMIT is a variant of TIMIT, consisting of the identical acoustic files, but re-recorded
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from telephone lines. The databases consist of 630 speakers from 8 dialect regions (DR

1-8) with 10 sentences per speaker, as listed below and summarized in Table 4.1.

(a) 2 SA sentences — meant to highlight the dialect variance of each speaker,

(b) 3 SI sentences — phonetically diverse selected form existing texts,

(c) 5 SX sentences — phonetically compact and meant to provide good and repeated

occurrences of pairs of phones. "SA" consists of 2 (same sentences for all speakers)

sentences per speaker which are considered as SRI dialect calibration sentences; "SI"

consists of 3 (different) sentences per speaker which are referred to as TI (Texas

Instruments) random contextual variants sentences; and "SX" consists of 5

(different) sentences per speaker, which are the MIT phonetically compact sentences.

The Dialect Regions and the numbers of speakers in each region are:

Table 4.1. Summary of the TIMIT aud NTIMIT Databases

Experiments in this thesis were mainly conducted with speakers from dialect region 2.
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4.2 SPlDRE Database

This corpus is a 2-CD subset of the Switchboard-I collection selected for speaker ID

research, with special attention to telephone instrument variation. Combining the two

sides of the conversations also permits speaker change detection or speaker monitoring

experiments. There are 45 target speakers (27 male, 18 female); four conversations from

each target are included, of which two are from the same handset. Since all conversations

are two-sided, this results in 180 target recordings. Typically, conversations were about 5

minutes. Thus, there are 180 wave files, four for each of the 45 speakers, saved in

uncompressed wave format (8 kHz sampling rate, 16 bits per sample).

An important aspect of the SPIDRE database is that two of the conversations are

over the same telephone line, and two of the conversations are over different telephone

lines. Thus a total of three telephone lines are used. In all of our experiments, as reported

below, three conservations were used for training, and one conversation was used for

testing. For the channel matched case, the test conversation is one of the conversations

from the set of two recorded over the same phone line. For the channel mismatched case,

the test conversation is one of the conversations recorded over a "unique" telephone line,

All experiments done in this thesis were on the mismatched case.

4.3 Signal Processing for NTIMIT

For most of the experiments conducted with the NTIMIT database, the 102 speakers from

DR2 were used. For most of the experiments, eight sentences were used for training and

two sentences were used for testing. Features used were 25 Discrete Cosine Transform

Coefficients (DCTCO to DCTC24) of the log magnitude spectrum for each frame, The
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feature parameter values for these experiments were (frame length= 30ms, frame spacing

= 10ms, Kaiser window, beta of 6, FFT length = 1024, warping factor = 0.45, frequency

range of 50 Hz to 3950 Hz, high frequency pre-emphasis with center frequency at 3200

Hz). Typically, about 2400 feature vectors were used for training for each speaker, and

about 600 feature vectors were used for testing.

4.4 Signal Processing for SPIDRE

In all experiments 25 Discrete Cosine Transform Coefficients (DCTCO to DCTC24) were

computed for each speech frame as follows. First, a second order high frequency pre-

emphasis filter with a broad peak around 3 kHz was applied to the speech signal. The

second step was to compute a 1024 point FFT from each 30 ms Kaiser-windowed

(coefficient of 5.33) frame of speech data with the window advanced by 10 ms. The

following step was to compute the amplitude spectrum, logarithmically scale it, and then

frequency warp it with a bilinear function using a coefficient of .25. The next step was to

compute the 25-DCTC coefficients as the cosine transform of the scaled magnitude

spectrum over the frequency range 25 Hz to 3900 Hz.

The next step in signal processing was removal of low energy frames. DCTCO,

computed as described above, was used as the energy measure. For each sentence, the

frames were rank ordered in terms of energy. Using two thresholds (expressed as

percentages), thresh low, and thresh high, the lowest energy and highest energy frames

were removed. The motivation for the low energy frame removal is that the lowest

energy frames are generally silent or very noisy. The motivation for the high-energy

threshold is that the highest energy frames may contain signal distortion due to clipping,
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or may represent non-speech signals. For example, after listening to many of these

conversations, it was observed that many of the largest amplitude portions of each file

were due to coughs or laughs.

The next step in signal processing was to perform feature mean and/or variance

normalization. For each feature, for each recording, the mean p, and variance, o were2

computed. Then features were rescaled according to

y=(x- li)/o (4 1)

Such normalization has been shown to remove much of the variability due to

channel transfer function, noise, and nonlinearity differences. Another step in signal

processing was to again perform mean and variance normalization, but based on the

entire database of all speakers. Additionally, the data was typically linearly scaled so that

the resultant final standard deviation was .2, or thus an overall range of +-1.0 for each

feature, as this range has typically been found to result in best performance for neural

network training with bipolar (-1 to +1) sigmoidal nonlinearities.

4.5 Experiment 1: Speaker Identification using Binary-Pair Partitioned Neural

Networks

The experiments on the NTIMIT database were conducted using 102 speakers of the

total 630 speakers with 8 sentences for training and 2 sentences for testing. For this

experiment, 20 DCTC features were used for both training and testing.

The experiments with the SPIDRE database were conducted using all 45

speakers of the database, using 3 sentences for training and 1 sentence for testing. The
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number of DCTC features used for the SPIDRE experiments was 25. Results for these

experiments are shown in Table 4.2.

Table 4.2, Speaker Identification Accuracy for 102 speakers of NTIMIT and 45 speakers of
SPIDRE using BPP Neural Networks

4.6 Experiment Set 2: Speaker Identification using Gaussian Mixture Models with

Full Covariance Matrices

This section outlines various experiments conducted using Gaussian Mixture Models

with full covariance matrices and summarizes the results obtained for these experiments.

These experiments, as were the ones reported in the previous section, were conducted on

the two standard databases NTIMIT and SPIDRE.

4.6.1 Results using the NTIMIT Database

4.6.1.1 Results for 102 Speakers from the NTIMIT Database

For the NTIMIT database, first the experiments were conducted with the 102 speakers of

DR2, with 8 training tokens and 2 test tokens. Speaker identification accuracy was

examined as the number of mixture components of the GMM was varied from I to 25.

The GMM was configured as a full covariance matrix. The number of DCTC features

was 25, the maximum number tested in the course of this research. The training and test

performances were then obtained with the above parameters.
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Table 4.3. Speaker Identification Accuracy for 102 Speakers of NTIMIT using a GMM with
Full Covariance Matrix and 25 DCTC Features (2 test sentences)

From the table above, it can be observed that the training accuracy is 100% for all

the cases as the number of mixtures is increased from 1 to 25. Unlike the training

accuracy, the test accuracy was highest for I mixture component at 89.2%, and it kept

decreasing as the number of mixture components was increased. The number of

parameters to be computed for this experiment is M * (I+N+N*N), where M is the

number of mixture components and N is the number of features used. Thus, for

example, with 10 mixture components and 25 features, the number of parameters that

must be estimated by the EM algorithm is 6510.

The experiment was repeated with all the conditions identical, except only 20

DCTCs were used (as opposed to 25 in the previous case), and the number of mixtures

was only varied from 1 to 8. This case was considered so as to reduce the number of

parameters to be computed and therefore reduce the execution time. Note that the
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number of parameters to be estimated using the full covariance matrix method (6510 for a

typical case as mentioned above) was likely too large for the size of the database (about

1800 training frames,) The results, based on 20 features, are given below in Table 4.4.

Table 4.4. Speaker Identification Accuracy for 102 Speakers of NTIMIT using a GMM with
Full Covariance Matrix and 20 DCTC Features (2 test sentences)

Even if 20 features were used instead of 25 features for the speaker identification

process, the training accuracy remained the same and the test accuracy was also

comparable to the one obtained with the experiments using 25 features. The highest

accuracy obtained in this case was also 89.2% for 5 mixture components. Therefore, it

can be concluded that even if the feature size is reduced, the same accuracy can be

obtained using more mixture components. However, the number of parameters to be

computed and the time of execution for 5 mixture components with 20 features would be

much more than the number of parameters to be computed and the time of execution for 1

mixture component with 25 features.

Then the number of test sentences was changed to 1, keeping the number of

training sentences as 8 and the number of DCTC features as 25. This case was to evaluate

the case when the amount of test data gets reduced. The results obtained are given below

in Table 4.5.
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Table 4.5. Speaker Identification Accuracy for 102 Speakers of NTIMIT using a GMM with
Full Covariance Matrix and 25 DCTC Features (I test sentence)

The above table allows us to conclude that the maximum test accuracy that can be

obtained when only 1 sentence is used for testing instead of 2 is 81.4% as compared to

the 89,2% obtained in the previous cases where 2 sentences were used for testing. The

training accuracy is the same as in the previous cases— 100%.

The above chart shows that the best case results are obtained when all 25 features

are used and 2 test tokens are used. When all the 25 features are used, the best results are

obtained for I mixture component. While 20 features are used, the best results are

obtained for 5 mixture components.

The time required for the execution was quite reasonable. In particular, it took

approximately 4 minutes for the code to run for the case of I mixture component. Then as

the number of mixture components was increased, the time required for the execution

increased almost linearly with the number of mixture components, until the number of

mixture components was increased to a large number like 25, for which the execution

time started increasing rapidly.
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4.6.1.2 Results for 630 Speakers from the NTIMIT Database

As the Gaussian Mixture Model approach took far less execution time than the BPP

speaker ID system, some experiments were also conducted using all the 630 speakers

present in the NTIMIT database and the results were obtained. For the BPP Neural

Network to perform this experiment using all the 630 speakers would take more than I

day, using the type of computers used for the GMM experiments.

For the first experiment, the number of training sentences was 8 and the number

of test sentences was 2, 25 DCTC features were used. Experiments were conducted with

I and 2 mixture components and a full covariance matrix. Results are given in Table

4.6.

Table 4.6. Speaker Identification Accuracy for 630 Speakers of NTIMIT using a GMM with
Full Covariance Matrix and 25 DCTC Features (2 test sentences)

The number of training and test sentences was changed to 5 training and 5 test sentences,

and the same experiment was conducted with 25 DCTC coefficients and varying the

number of mixture components. Results are given in Table 4.7.

Table 4.7. Speaker Identification Accuracy for 630 Speakers of NTIMIT using a GMM with
Full Covariance Matrix and 25 DCTC Features (5 test sentences)
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The feature files used above were then scaled using the SCALE program and the

experiment was conducted with 8 training sentences and 2 test sentences and 25 DCTC

features. The scaling was performed so that the mean of each feature becomes 0, and the

standard deviation .2. In this experiment the number of mixtures was varied and the

number of features was kept at 25. The best result obtained for this case was 63.01%

using 2 mixture components. The results obtained after scaling the feature files are better

than the results obtained without scaling.

The following steps were included in the scaling process and the generation of the new

set of feature files:

a. energy threshold to remove low energy frames

b, Scaling to have an overall mean of 0.0 and a standard deviation of 0.2.

Table 4.8. Speaker Identification Accuracy for 630 speakers of NTIMIT using a GMM with
Full Covariance Matrix and 25 DCTC Features (2 test sentences)

4.6,2 Results using the SPIDRE Database

For the SPIDRE database, the experiments were conducted on all the 45 speakers in the

database with 3 training tokens and I test token by varying the number of mixture

components. The number of features used in this experiment was 24 out of the 25

features (removing DCTCO) in the feature file. The results obtained from this experiment

are shown below. These are the results for the mismatched headsets group of the SPIDRE

database.



46

Table 4.9. Speaker Identification Accuracy for 45 Speakers of SPIDRE using a GMM with
Full Covariance Matrix and 24 DCTC Features (I test sentence)

From the table shown above, the maximum recognition rate that can be attained

using full covariance matrix based Gaussian mixture models on the SPIDRE database is

84.4% corresponding to 4 mixture components.

The recognition rate increases as the number of mixtures is increased to 5 mixture

components, but decreases as the number of components is more than 5. This accuracy is

higher than the 80% accuracy obtained when the Binary-pair partitioned neural network

method is used.

4.7 Experiment Set 3: Speaker Identification using Gaussian Mixture Models with

Diagonal Covariance Matrices

The results of the previous section indicate that GMM performance might have

been limited due to the very large number of parameters to be estimated and relatively

small amount of data. This hypothesis of inadequate data for the number of the

parameters to be estimated is also supported by the 100% accuracy obtained with training

data, and much lower accuracy obtained with test data.

The Gaussian components act together to model the overall probability density

function. However, full covariance matrices are not necessary even if the features are not

statistically independent. In particular, a linear combination of diagonal covariance
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Gaussians is capable of modeling the correlations between feature vector elements. As

noted in a previous chapter, other researchers have noted that speaker ID systems often

perform better using only diagonal covariance models.

Considering the discussion in the previous two paragraphs, additional experiments

were conducted with diagonal covariance matrix based GMMs, so that the number of

parameters to be computed would be fewer than the number required by full covariance

matrix based GMMs.

4.7.1 Results using the NTIMIT Database

These experiments were conducted on NTIMIT database with 8 training sentences and 2

test sentences. The results on this set of experiments are given below in Table 4.10.

Table 4.10. Speaker Identification Accuracy for 102 Speakers of NTIMIT using a GMM
with Diagonal Covariance Matrix and 25 DCTC Features (2 test sentences)

Here the number of features was kept constant as 25 and the number of mixture

components were varied. From the table, it can be observed that the highest recognition

rate is obtained for 40 mixture components, Thus the best result using the diagonal

covariance based GMM on the NTIMIT database is 88.2% for 40 mixture components.

This is slightly less than the 89.2% obtained with the full covariance GMM. However,

the diagonal covariance GMM is potentially advantageous due to the much simpler

model and possible reduction in the number of parameters to be computed.
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Then, the number of features, i.e. the DCTC coefficients, is changed to 20, and

the experiment is carried out in the same way keeping the training sentences as 8 and the

test sentences as 2. The number of mixture components is varied and the results are listed

below in Table 4.11.

Table 4.11. Speaker Identification Accuracy for 102 speakers of NTIMIT using a GMM
with Diagonal Covariance Matrix and 20 DCTC Features (2 test sentences)

The above table shows that 87.3% is the highest possible recognition accuracy that can be

obtained when diagonal covariance GMMs are used with 20 features. When the same

experiment is conducted using full covariance GMMs, the accuracy obtained is 89.2%.

Note that the comparable experiment using the BPP-NN method results in 73.0%

accuracy.

Overall, the experiments reported thus far in this chapter indicate that the GMM

with a full covariance matrix and a small number of mixtures gives results very similar to

those obtained with a diagonal covariance matrix and a large number of mixtures.

Results obtained with a BPP-NN are much lower. The highest results among the three

cases were obtained with the GMM and full covariance matrix.
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4.7.2 Results using the SPIDRE Database

Speaker identification experiments with diagonal covariance matrices were also

performed on the SPIDRE database of 45 speakers. The number of training sentences

used was 3 and the number of test sentences was 1 and all the 24 DCTC features

(removing DCTCO) were used. The number of mixture components was varied and the

results are given in Table 4.12.

The results obtained using the SPIDRE database with diagonal covariance matrix

based GMM were more promising then the results obtained with full covariance matrix

based GMM. The best result obtained with the diagonal covariance matrix was 86.7%, as

compared to the 84.4% obtained with full covariance GMMs. The number of mixture

components used with the diagonal covariance based GMMs (best results with 40

mixture components) is much more than the number of mixture components used with

the full covariance based GMMs (best results with 4 mixture components). However, it

gives better results and the number of paratneters to be computed is slightly fewer (2040

for the best result case) than when full covariance GMMs are used. (2064 for the best

case)

Table 4.12. Speaker Identification Accuracy for 45 Speakers of SPIDRE using a GMM with
Diagonal Covariance Matrix and 24 DCTC Features (1 test sentence)



50

4.8 Experiment Set 4: Speaker IdentiTication using Combined GMM/NN with

Diagonal Covariance Matrices

The next set of experiments was conducted using the combined GMM and Neural

Network approach. In chapter 3, two methods were discussed for the combined GMM/

Neural Network approach. One is the UBM method, and the second one is the likelihood

averaging method. As reported in chapter 3, the UBM method did not give good results

in the pilot experiments and was therefore dropped. The results obtained by the likelihood

averaging method were more promising. The experimental technique for this approach is

as follows:

I, The Gaussian Mixture Model algorithm is applied on the speaker feature files,

and the parameters of the weights, means and variances are estimated.

2. The test data is evaluated with the above obtained models, the log likelihood

values for each speaker with respect to every other speaker are computed, and the

speaker score for each speaker are determined and stored.

3. Then the Neural network is used for speaker identification, and the speaker

scores are computed for this method.

4. The corresponding scores for each speaker are averaged, and the speaker with the

highest total score is chosen as the speaker.

These experiments were conducted using only the SPIDRE database. The results obtained

are shown below. The experimental configurations for the GMM and the NN are the

same as those reported in previous sections of this chapter. The GMM was implemented

with a diagonal covariance only. 24 DCTC features were used. Results obtained are given

in Table 4.13.
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Table 4.13. Speaker Identification Accuracy for 45 Speakers of SPIDRK using a Combined
GMM/NN with Diagonal Covariance Matrix and 24 DCTC Peatures (I test sentence)

The results obtained with this combined GMM/NN approach approximate an average of

the results obtained with each method alone. However, since the GMM with a large

number of mixtures appears nearly always to be superior to the BPP-NN, the combined

approach is actually not advantageous. Thus, although far better than the combined

GMM/NN method presented in chapter 3, this approach still does not appear to be

worthwhile.

Summary

This chapter gives a detailed explanation of the various experiments conducted and the

results obtained with these experiments. It can be observed from the results that the

GMM performs far better than the Neural Networks or the combined GMM/NN for

speaker ID, The next chapter gives a conclusion of the work done in this thesis and the

work that can be done as an extension of this.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK
In this thesis, the main aim was to investigate a combination of Gaussian Mixture Models

and Neural Networks for Speaker Identification system. GMMs are trained with the

maximum likelihood approach to give good models for each speaker. In contrast, NNs

are trained to discriminate speakers but form no explicit models for each speaker. An

appropriate combination of maximum likelihood and discriminative training, using both

GMMs and NNs should give a better recognition rate than either method alone.

A comparison of three main algorithms used for speaker identification was also

done in this work—the Neural Network Binary Pair-Partitioning method, the Gaussian

Mixture Model method using full covariance matrices, and the Gaussian Mixture Model

method using diagonal covariance matrices. The general concepts for combining

Gaussian Mixture models and Neural Networks for Speaker Identification were

discussed. Two methods were developed in some detail and implemented, with only one

method yielding reasonable results.

A summary of the results obtained in this work is as follows. The Neural

Network- Binary-Pair Partitioning Speaker Identification was performed on the NTIMIT

database with 102 speakers. In the database, each speaker produced 10 sentences. For this

experiment, 25 DCTC features were computed for each frame of speech, 8 sentences

were used for training, and the remaining 2 sentences were used for testing. The

recognition rate obtained for this experiment was 95.2% for training and 80.3% for

testing. The Neural Network-Binary Pair Partitioning was again used for speaker

identification using the SPIDRE database, which has 45 speakers with 4 sentences per

speakers. These *.wav files were also converted to feature files with 25 DCTC features
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for each frame. Out of 4 sentences for each speaker, 3 sentences were used for training

and I sentence for testing. The best training performance was 98.2% and the best test

performance was 80%.

Another series of experiments was performed with the Gaussian Mixture Model

method. Various cases were tested with the NTIMIT database. Keeping all the

parameters, such as the number of DCTC features, the number of training sentences and

the test sentences constant, the number of mixture components was varied. Two

variations of the Gaussian Mixture Model were tested. One is the full covariance method

and the other is the diagonal covariance method.

The best results obtained when all the 25 DCTC features were used for 102

speakers were 100% for training data and 89.2% for test data. This result was obtained

for 1 mixture component used with the full covariance matrix. If 20 DCTC features are

used instead of 25 features, and all the other parameters unchanged, the best training

performance is 100% and the best test performance is 89.2%, which is obtained when 4

mixture components are used with the full covariance matrix. While using the diagonal

covariance matrix for the GMM, the best result obtained was 100% for the training data

and 88,2% for the test data when using 25 DCTC features and 8 training and 2 test

sentences. This result was obtained with 40 mixture components. Using 20 DCTCs as

features, the best training and test results were 100% and 87.2% respectively using 30

mixture components.

Additional tests were performed with all 630 speakers using the Gaussian Mixture

Model algorithm only. The Neural Network Method was not tested because of the very

long computational time required. Two experiments were performed with the GMM. For
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the first case, 25 DCTC features were used with 8 training sentences and 2 test sentences.

The best test result obtained was 59.3'lo using one mixture component and a full

covariance matrix. The setup for the second case was identical except the number of

training and test sentences were each 5. The best test result for this case was 58.24'ia

again with I mixture component and the full covariance matrix.

These feature files for all the 630 speakers were then scaled so that each feature,

after scaling, had a mean of 0.0 and a standard deviation of 0.2. The GMM speaker

identification was then again tested with these scaled feature files. The best test result for

this set of files was 63.0'ro for 2 mixture components. A full covariance matrix, 25 DCTC

features, 8 sentences for training and 2 sentences for testing were used.

The SPIDRE database was used for testing the GMM speaker identification again.

The best result obtained with 4 mixture components was 84.4'ro. This was obtained with

25 DCTC features, and 3 training sentences and I test sentences. As mentioned, all

results were obtained using full covariance matrices.

The experiments were performed again using diagonal covariance matrices and

the Gaussian Mixture Models. Results are as follows. Using 102 speakers of NTIMIT

with 25 DCTC features and 8 haining sentences and 2 test sentences, the best training

performance was 1005'o and the best test performance was 88.2'lo for 40 mixture

components. Using 20 DCTC features instead of 25 and 8 training and 2 test sentences,

the best result was 100'lo for the training data and 87.2'lo for the test data, again with 40

mixtures. With the SPIDRE database, the best result obtained with 25 DCTC features, 3

training, and I test sentences was 86.7'lo. This result was obtained for the case of 30

mixture components.
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The combined Gaussian Mixture Model and Neural Network approach was then

tested using the SPIDRE database. Here, the speaker scores obtained with both methods

were averaged and the speaker having the highest overall score was identified as the

speaker. The best result obtained here was 84.4% for 40 mixture components when 25

DCTC features were used and 3 sentences for training and I sentence for testing.

Below is a summary table showing a comparison of all the methods compared in

this work and the best results obtained with all the methods in each case. The table shows

that the GMM performs far better than the Neural Network BPP method. The GMM

system gave a result of 89.2% for the NTIMIT using 102 speakers as compared to the

73.0% of the Neural Network speaker identification system. Additionally, the

computational time required was far less for the GMM than the neural network method.

So, in any case, the GMM can be said to be performing extremely well. In tests with the

SPIDRE database, again, the results obtained with the GMM speaker identification

system were comparatively better than the ones obtained with the Neural Network

approach.

Here, the diagonal covariance based GMM showed the best accuracy of all the

methods used. The diagonal covariance GMM gave an accuracy of 86.7% as compared

to the 84.4% of the full covariance GMM and the 80% for the Neural Network Speaker

ID. This result is in accordance with the theory that diagonal covariance based GMMs

using a large number of mixtures show very good performance [25]. In the table below,

the results taken from the literature are also given for comparison. The results for the case

of NTIMIT (630 speakers) are from Douglas A. Reynolds'aper on Speaker

Identification and Verification using GMMs [27j. In this paper, only I sentence is used



56

for testing instead of 2 sentences as used in the experiments conducted in this thesis

work. The results for the case of SPIDRE are taken from the previous tests conducted by

Ezzaidi and Roust[29].

Table 5.1. Summary of the Best Results Obtained by Various Methods

Unfortunately, the combined Gaussian Mixture Model and Neural Network

approach did not yield good results. Three approaches of combining the GMM and NN

were proposed and tested, of which only one method showed reasonable results.

However, these results were not comparable to the results of the Gaussian Mixture Model

method alone.

Thus, the idea of combining the Maximum Likelihood Classification of the

Gaussian Mixture Model and the Discriminative training of the Neural Networks did not

work well for the various approaches proposed and tested in this thesis.

Future Work

The work done in this thesis can be extended to Adapted Gaussian Mixture Models

suggested by Douglas A, Reynolds [20]. This approach is based on creating a single

universal background model for all or a group of speakers in the database and a form of

Bayesian adaptation to derive speaker models from the universal background model. The

basic idea here is to derive speaker models by updating the well-trained parameters in the
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UBM via adaptation. This estimation process is similar to the Expectation-Maximization

method. The first step here is the same as for the EM algorithm, where the estimates of

the sufficient statistics of the speaker's training data are computed for each mixture in the

UBM. However, in the second step, unlike the EM algorithm, the new sufficient statistics

are combined with the old sufficient statistics &om the UBM mixture parameters using a

data dependent mixing coefficient. The data-dependent mixing coefficient is designed so

that mixtures with high counts of data from the speaker rely more on the new sufficient

statistics for final parameter estimation and mixtures with low counts of data &om the

speaker rely more on the old sufficient statistics for final parameter estimation. This is an

approach where the Gaussian Mixture Models can be improved for better performance of

speaker identification systems.

Even though the approaches presented in this thesis for the combination of

Gaussian Mixture Models and Neural Networks for Speaker Identification did not yield

good results, the idea of generating a single model making use of the maximum

likelihood classification characteristic of the Gaussian Mixture Models and the

discriminative characteristic of the Neural Network is always possible. A more

mathematically rigorous foundation for combining the two approaches should be

explored. One possible avenue to investigate is given below.

Probabilistic Neural networks can be used instead of the Binary-Pair Partitioned

Neural Networks used in this thesis. A probabilistic neural network uses a supervised

training set to develop distribution functions within a pattern layer. These functions are

used to estimate the likelihood of an input feature vector being part of a learned category,

or class. The learned patterns can also be combined, or weighted, with the a priori
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probability of each category to determine the most likely class for a given input vector. If

the a priori probability of the categories is unknown, then all categories can be assumed

to be equally likely and the determination of category is solely based on the closeness of

the input feature vector to the distribution function of a class.

The combination of these Probabilistic Neural networks and Gaussian Mixture

Models for Speaker Identification shows promising results. [26] Once the n-best lists

from the PNN and GMM classifiers are obtained, their inner product is to be computed.

The best score element of the resulting matrix is searched, and the final result is chosen

as that. This approach is similar to the Speaker Score Averaging method of combining

the GMMs and Neural Networks for Speaker Identification in this thesis.
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APPENDIX
Matlab sottware was used for the implementation of all the algorithms in this thesis. The

Matlab routines created in this thesis are as follows:

~ Gmmspkidtrain — creates GMMs for speakers using the speakers'eature files

Usage

[estimate] = gmmspkidtrain (filename)

Inputs:

1. File containing a list of the feature files of all the speakers in the database

Outputs:

1. GMM parameters for each speaker, i.e. the weights, means and covariances for

each speaker

Entries of the lilename:

1. Number of Speakers

2. Token Selection Mode (1 for selecting all tokens and 2 for selecting

specific tokens)

3. First token to be read

4. Step size of the tokens to be read

5. Last token to be read

6. First feature to be read

7. Last feature to be read

8. Number ofmixture components

9. List of the feature files to be read
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~ Gmmspkidtest — performs the evaluation step in the speaker ID process

Usage

[evaluation] = gmmspkidtest (estimate, testfilename)

Inputs:

Structure of the variables of the GMM parameters for all the

speakers used for training

File containing the list of the features files of all the speakers to be

tested

Outputs:

1. Likelihood values of each test speaker with respect to all the speakers in the

training set

Entries of the testfilename:

1. Number of Speakers

2. Token Selection Mode (1 for selecting all tokens and 2 for selecting

specific tokens)

3. First token to be read

4. Step size of the tokens to be read

5. Last token to be read

6. First feature to be read

7. Last feature to be read

8. Number ofmixture components

9. List of the feature files to be read
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~ Gmmb~dfl — Computes the likelihood values of the test data with respect to

each speaker

Usage

[eval 1] = gmmb~dfl (testdata, estimate)

Inputs:

Test data that whose likelihoods with respect to the speakers in the

database are to be calculated

Structure of the variables of the GMM parameters for all the speakers

used for training

Outputs:

1. The likelihood values of the test data with respect to the speakers in the

database

~ Gmm algo — estimates the GMM parameters for one speaker with full covariance

matrix

Usage:

estimate = gmm em (data,c)

Inputs:

1. Data whose GMM parameters are to be estimated

2. Number of mixture components for the GMM

Outputs:

1. GMM parameters for the data given as the input



~ Gmm algodiag — estimates the GMM parameters for one speaker with diagonal

covariance matrix

Usage.

estimate = gmm em (data,c)

Inputs:

3. Data whose GMM parameters are to be estimated

4. Number of mixture components for the GMM

Outputs:

2. GMM parameters for the data given as the input

~ Gmmb covfixer — converts a matrix into a valid covariance matrix

Usage:

[nsigma, varargout] = gmmb covfixer (sigma)

Inputs:

1. Matrix which has to be converted into a valid covariance matrix

Outputs:

1. Valid covariance matrix

~ Gmmcpdf — computes the weighted probability density for a GMM, given the

data, means, covariances and the weights

Usage:

tulo = gmmcpdf(data, mu, sigma, weight)

Inputs:

1. Data whose pdf is to be computed

2. Mean of the data
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3. Covariance of the data

4. Weights of each mixture component

Outputs:

1. Weighted probability density of the inputs

~ Scores — calculates the average of the scores of the NN speaker ID program and

the GMM speaker ID program

Usage:

avg = scores (nnscores, gmmscores)

Inputs:

1. speaker scores obtained by the NN program

2. speaker scores obtained by the GMM program

Outputs:

1. average of the scores obtained from both the NN and GMM programs
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