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ABSTRACT 

A STRUCTURED LIGIIT METHOD FOR CYLINDRICAL 

BEAM ALIGNMENT 

Jayesh K. Champaneri 

Old Dominion University, 1988 

Director: Dr. David L. Livingston 

A new method using structured light is proposed to obtain visual feedback 

information for aligning two cylindrical beams. For a robotic system employed to 

perform alignment operations in real time it is essential that the accompanying 
' vision system does not pose a heavy burden on the computing machinery and 

reduce the overall speed of operation. The method proposed here involves two 

stripes of light projected on each cylinder. One picture frame is sufficient to 

completely determine the position of the cylinder in space. An experiment was 

conducted to demonstrate the principle of this method. Results showed that the 

errors involved were within the practical limitations of the components. 
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CHAPTER I 

INTRODUCTION 

Vision as a means of feedback in robotic manipulator assisted operations is 

gaining widespread attention. Various techniques have been explored in this area 

depending upon the nature of information to be extracted. For example, edge 

detection techniques are being particularly employed for object identification 

purposes. For more specific applications where sufficiently accurate information 

about the object's surface features, position, and orientation is required, 

structured light methods are often used [5], [6], [7]. 

In a structured light method, the object whose features or properties are to 

be determined is illuminated either by stripes of light or a grid pattern. The 

stripes of light are commonly referred to as planes of light since they are formed 

due to light emanating in a single plane from the projector for each stripe. The 

grid pattern consists of two sets of planes of light where one set has the planes of 

light perpendicular to those in the other set. The projection pattern used in this 

research consists of four planes of light forming two stripes on each of the two 

cylinders. The position of two cylinders with respect to the coordinate system is 

shown in Figure 1.1. The axes of the two cylinders are colinear and parallel to the 

y-axis when they are aligned. 



K~----------+----. 

Figure 1.1. Geometrical configuration of cylinders K and L with respect to the 
cartesian coordinate system. 
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OBJECTIVE 

The objective of this thesis is to investigate the effectiveness of a visual 

feedback mechanism using structured light for a robotic system which performs 

assembly operations of a structure consisting of beams and nodes [16]. This 

assembly operation can be carried out either in the fully automatic mode or the 

teleoperated mode. At least two robotic arms are required to manipulate the 

cylinders, one for each cylinder. Before the two cylinders can be assembled, it is 

necessary that they are axially aligned. In the teleoperated mode, an operator is 

given feedback about the degree of alignment. Information about the direction 

and the amount required to move the cylinders to achieve alignment is then 

specified. In the fully automatic mode, the process of alignment of the cylinders 

is entirely performed by the robotic system. Direct commands for manipulating 

the cylindrical beams are presented and are decomposed and interpreted by the 

system as primitive commands for the arms handling each beam. It is here that 

primitive commands are defined to translate or rotate the cylindrical beam about a 

given axis by a certain amount. 

THESIS SlRUCI'URE 

This thesis describes how a structured light pattern consisting of stripes of 

light can be applied to the task of performing cylindrical beam alignment in real 

time with little computational overhead. The sequence of chapters closely 

matches the evolution of ideas, considerations and modifications that were 

required in its implementation. The image of the stripes of light projected on the 

cylinder is shown in Plate 1. The thresholded image as well as further processed 

images are shown in plates 2, 3, 4, and 5. Information about the position of the 

axis of the cylinder is obtained from the image shown in Plate 5. 
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Chapter II discusses the development of a general approach from which the 

final idea that was implemented was evolved. A survey of past approaches to 

robotic vision problems is also presented in this chapter. The need for the 

method presented in this thesis is also addressed. 

The geometrical configuration for the sake of analysis of the proposed 

scheme is introduced in Chapter III. This chapter explains the coordinate system 

used and the relative positions of the projectors, camera, and cylinders. An 

empirical result that relates the position of a point on the axis of the cylinder with 

that of the image as seen by the camera is formulated in Chapter IV. The actual 

experimental set-up and the practical difficulties which necessitated slight 

modifications are also presented in this chapter. 

Chapter V summarizes the results and presents the conclusions that are 

drawn from this research. Research topics for further exploration are also 

suggested in this chapter. 
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A GENERAL APPROACH 

CHAPTER2 

BACKGROUND 

The proposed method to perform the task of assembling trusses and nodes 

for the construction of large space structures, such as the space station, involves 

robotic manipulators aided with vision capabilities for feedback [16]. The 

feedback information is to be such that it can be interpreted by a human 

controlling the robotic arms in a teleoperated mode, or by the robotic control 

system in an automatic mode. This feedback information consists of the amount 

and direction in which the cylindrical beams are to be rotated and then displaced 

to achieve alignment. 

In using vision as a feedback aid to sense the position of objects, various 

techniques are generally employed depending upon the nature of the problem. 

The object may be viewed in ambient light and edge detection may be performed 

on its image to identify the object. Other features may be detected by carrying 

out specific processing techniques, for example, using reflectance properties and 

light scattering effects to determine surface texture, or using a grid pattern of light 

to determine object curvature. Most of the time positional information about an 

object, whether known or unknown, is determined using structured light patterns. 

The commonly used light patterns are the mesh projection which consists of 

horizontal and vertical stripes of light, and the grid projection which consists of 

evenly spaced points in a horizontal and vertical direction [SJ. Some structured 
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light methods use either horizontal or vertical stripes [6). The choice of a 

particular type of projection system depends on the system requirements. 

The structured light pattern chosen here consists of four stripes of light. 

Two light stripes project on each cylindrical beam. It is assumed that we know 

that the objects whose positions are to be determined are cylinders, but their 

diameters are unknown. As will be apparent from the discussion in forthcoming 

chapters, it is not necessary to determine the cylinder diameters. The light stripes 

are projected such that the vertical stripes are perpendicular to the cylinders' axes 

when they are aligned. 

PREVIOUS WORK 

The goal of the present research is to investigate a structured light robot 

vision system suitable for visual servoing in real time. This implies the capability 

to completely specify the position and orientation of an object in space relative to 

the robot's coordinate system (refer to Chapter ill) in real time. 

Different methods and their capabilities using structured light are now 

discussed. The definition of the position and orientation in space of an object 

relative to the robot's coordinate system has six degrees of freedom as explained 

by J. Albus, et al. [1]. Since the object used here is a cylinder, one of the degrees 

of freedom is about its axis. In this study, this degree of freedom is immaterial. 

This leaves five degrees of freedom to be determined. The use of structured light 

to extract three-dimensional shape and position information is a well known 

technique. A plane of light has been demonstrated to be a practical solution for 

feedback in robot arc welding [2], [3]. Discontinuities in the image of the plane 

of light perceived by a camera are analyzed and feedback information is given to 
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the robot controller. Where determining position of objects is concerned, this 

method does not generate sufficient information. 

Other techniques which recognize objects and determine their position have 

also been studied. Various kinds of pattern recognition and image processing 

techniques have been employed. Will and Pennington [5] have demonstrated the 

use of grid coding for curvature measurement. The object, which is to be 

identified and whose position is to be determined, is illuminated using either a 

one-dimensional or two-dimensional grating. Two-dimensional gratings provide 

an extra degree of freedom in the feature detection task. This technique is very 

useful in polyhedral object identification. Though this method is computationally 

taJdng, it can extract range information, segment plane area, etc., from a scene. 

This technique applied to cylindrical beam alignment would generate redundant 

information. 

Methods for making surface measurements using space encoded beams have 

been studied by Posdamer and Altschuler [6]. Ishii and Nagata have used a laser 

tracker to extract feature information from the object [7]. The laser tracks the 

edge of the object and determines the position of points on the edge using 

triangulation. This method is slower as compared with other methods discussed 

above, as well as the technique used in this research. 

Curved object location has been studied and techniques including stereo 

measurements, material identification, and simulated imagery have been employed 

[8]. Surface recognition which includes determining its location and orientation, 

specifically as it applies to quadric surfaces, is described in detail in a paper by 

E.L. Hall, et al. [9]. 

R. M. Haralick has explained the interpretation of information of the three

dimensional world on a two-dimensional image [10]. This involves the 
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understanding of perspective transformations which enables a vision system to 

perform scene analysis. In studying perspective transfomations it is important to 

know the camera parameters; such as the focal length of its lens system, the 

position of the optical center and dimensions of the image plane. A rectangle of 

known size is taken as the object and the perspective transformations that occur 

on its image are analyzed [11]. 

The task discussed here for alignment of cylindrical beams in space can be 

used in the teleoperated mode. A recognition operator for telerobotic vision is 

discussed by P.W. Goode [12). An intelligent system employed with robotic 

manipulators can enhance the capabilities of accomplishing this task in different 
-

kinds of environments [13], [14]. A high level overview of the requirements of 

object recognition have been discussed in a paper by P. Bes) and R. Jain [15]. 

PROPOSED METHODS 

Two methods are proposed here to perform the alignment task using four 

light stripe projectors. In the first method, two cameras are used and positioned 

between the two light stripe projectors for each cylinder. At this time no 

positional information about the cylinders is investigated; however, the necessary 

translational and rotational displacements that are to be initiated are determined. 

Such displacements are made until the two cylinders are axially aligned. 

In the second method, the positions and orientations of the cylinders are 

determined relative to the camera and light stripe projectors. From this 

information, the amount and direction in which the cylinders are to be rotated and 

displaced is computed and necessary action is taken to perform alignment. 

Various techniques that generate visual feedback information in a robotic system 
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have been discussed here. The geometrical configuration of the camera, 

projectors, and cylindrical beams is discussed in the next chapter. 
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CHAPTERIB 

THEORETICAL DEVELOPMENT 

In the previous chapter a brief introduction on potential methods to achieve 

alignment of two cylindrical beams was presented. In the following material two 

new methods are described in detail to sense the alignment of two cylinders. Both 

methods, as proposed, employ two light-stripe projectors for each cylinder. The 

first method consists of analyzing the properties of the relative position of the 

image stripes as seen by the camera; whereas the second method determines the 

equation of the cylinder in space with respect to the camera and light stripe 

projectors. The coordinate system is as explained in Chapter I. In both methods 

the two cylinders are independently rendered parallel to the y-axis before they are 

axially aligned. 

SYSTEM CONFIGURATION 

For method one, consider cylinder Las shown in Figure 3.1. Points A and B 

represent the center of the segments projected on the cylinder by stripes of light. 

The image points A and B on the camera focal plane will have their own set of 

pixel coordinates. Row pixels correspond to y coordinates while column pixels 

correspond to x coordinates. It is necessary to first align the cylinder axis parallel 

to the y-axis in the pixel coordinates of the camera focal plane. 

Consider the configuration shown in Figure 3.2. The camera focal plane is 

parallel to the XY -plane. It intersects with the z-axis at z = -k, where "k" is the 
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Figure 3. 1. Initial cylinder position in space. 



focal length of the camera lens. From this figure we also note that aligning the 

cylinder axis parallel to the y-axis in the pixel coordinates of the camera focal 

plane is the same as aligning the cylinder axis parallel to the YZ-plane. This is 

done by rotating the cylinder about an axis parallel to the z-axis passing through 

the midpoint of segment AB. The cylinder is rotated until the x-pixel coordinates 

of the image points A and B become equal. When this condition is achieved. the 

cylinder lies in a plane parallel to the YZ-plane. 

Since method one compares the symmetry of the two image points, A and B, 

about a vertical bisector of the camera focal plane, it is necessary that the camera 

lies exactly at the midpoint of the segment connecting projectors P1 and P2. 

Hence, this arrangement requires two cameras, one for each cylinder. 

If the cylinder is parallel to the y-axis, the points A and B lie symmetrically 

about a line which vertically bisects the focal plane. If the cylinder is not parallel 

to the y-axis, then due to perspective these points are not equidistant. From the 

geometry shown in Figure 3.2 it is clear that the further the point (A or B) is from 

the camera, the closer its image is to the vertical bisector in the focal plane. Thus 

the direction in which the cylinder is to be rotated, can be determined. The 

cylinder can then be rotated about an axis parallel to the x-axis passing through 

the midpoint of segment AB, until ]A equals ls. When this condition is satisfied, 

the cylinder is parallel to the y-axis. A similar procedure is carried out for the 

other cylinder K. 

The first step necessary to align the two cylinders is to bring them to the 

same horizontal level; that is, to make the x-coordinate value of points A and B 

corresponding to cylinder L and points C and D corresponding to cylinder K the 

same as shown in Figure 3.3. 
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Figure 3.2. Schematic top view of cylinder, 

projectors and camera. 
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Figure 3.3. Height comparison of two cylinders 



Here the x-coordinate of any point on cylinder K is larger than the x

coordinate of any point on cylinder L. Thus, cylinder K is translated in such a 

direction that its x-coordinate decreases and cylinder L is translated such that its 

x-coordinate value increases. This is done until the x-coordinates of both 

cylinders become equal. The distance between points A and B, and C and D are 

compared, as is represented in Figure 3.4. Since the two cylinders are not the 

same distance away from the camera, IK and IL are not equal; this signifies that the 

z-coordinates are unequal. 

Due to perspective, the size of IK or IL is larger if the corresponding cylinder 

has a smaller z-coordinate value. In the example, IL is larger than IK since cylinder 

L is closer to the camera than cylinder K. From this relationship the direction in 

which the cylinders are to be moved along the z-direction is known. L is moved 

away from the camera while K is moved towards the camera until IK equals IL· 

As has been demonstrated, this method tends to achieve alignment of the 

two cylinders by comparing the relative positions of the image stripes on the 

camera and deducing the direction of motion of the cylinders to achieve 

alignment. No attempt is made to determine the position of the cylinder with 

respect to the camera and light stripe projectors. 

The second method proposed, which was finally used and is described 

extensively, uses only one camera which is placed exactly in between the two sets 

of two projectors. This method determines the equation of the axis of each 

cylinder and requires the use of algebraic and trigonometric techniques for 

triangulation. 

Figure 3.5 shows the configuration for use of the second method; the XYZ 

coordinate system is as shown. The optical center of the camera lens is at the 

origin. Its optical axis coincides with the z-axis. The camera focal plane is 
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Figure 3.4. Depth comparison of two cylinders 
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Figure 3.5. Schematic of three-dimensional set-up. 

z 

B 

L 

y 

--.I 



perpendicular to the z-axis and is at a distance "k" in the negative z-direction. 

Projectors P1 and P2 lie on the positive y-axis and cast stripes of light on cylinder L 

forming patterns A and B. Projectors 01 and 0 2 lie on the negative y-axis and 

cast stripes of light on cylinder K forming patterns C and D. 

The primary requirement in the alignment task is to determine the equation 

of the axis of the cylinder in question. This requires that the coordinates of at 

least two points on that axis be known in the reference space. Two parallel stripes 

of light are projected on the cylinder. The stripes of light are assumed to be of 

zero thickness so that the image formed on the cylinder is either a straight or a 

curved line depending upon the orientation of the cylinder and the viewing 

position. 

GEOMETRICAL ANALYSIS 

As shown in Figure 3.6, projectors P1 and P2 project stripes of light on 

cylinder L which form two patterns A and B. For the sake of analysis, let the 

diameter of the cylinders L and K be zero; therefore, stripes A and B are reduced 

to points and from now on shall be referred to as points A and B. Thus A and B 

represent the points on the axis of the cylinder, that is, the points due to the 

intersection of the axis and the plane of the light stripes. In Figure 3.7, Lis in the 

positive octant of the three-dimensional cartesian coordinate system and 

projectors P1 and P2 lie on the y-axis. P1 is at a distance "m" from the origin and 

P2 is at a distance "n" from the origin. The planes of these stripes of light are 

parallel to the XZ-plane. Rectangle F represents the focal plane or image plane 

of the camera, which consists of picture elements or pixels; thus rays from all 

patterns imaging on the focal plane pass through the origin. Focal plane F is 
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Figure 3.7. Image stripes on the focal plane. 



parallel to the XY-plane and lies in the negative z-direction at a distance "k" from 

the origin. The z-axis passes through the center of F. 

A' and B' are the image points on the camera focal plane corresponding to 

points A and B, respectively. The lines connecting A to A' and B to B' pass 

through the origin. The positions of points A' and B' with reference to F is known 

since the pixels to which they correspond can be easily determined. Since the 

camera position and orientation in space are known, the position of the focal 

plane F is also known. Hence the positions of points A' and B' can be determined 

in space. 

To find the positions of points A and B in space, we need to solve the 

equations of the lines AA' and BB' with the equations of the planes due to the 

stripes of light formed by projectors P1 and P2 respectively. 

Let the position of point A' be (x1,Y1.Z1) and that of point B' be (x2,Y2.Z2)

Then the equation of line AA' is 

x/x1 = YIY1 = z/z1 (1) 

the equation of line BB' is 

x/x2 = Y/y2 = z/z2 (2) 

From Figure 3.7, it is apparent that the equation of the plane of light due to 

projector P1 is 

y=m and 

that due to projector P2 is 

y = n. 

Therefore, by substituting y = m in (1) we obtain 

x = (x1/Y1)m • 

y= m,and 

z = ( z1/Y1)m . 

21 



By substituting y = n in (2) we obtain 

X = ( Xi/Y2)n , 

y = n,and 

z = (z'Zfy2)n . 

Thus the coordinates of point A are 

{(Y1/X1)m, m, (Y1lz1)m} 

and of point B are 

{(y'Zfx2)n, n, (y'Zfz2)n} 

In terms of the coordinates of the points A and B, the equation of the axis of the 

cylinder is 

(x -xA)/(xA - xa) = (y -yA)l(YA • Ya) = (z • zA)/(zA • za) , 

where (xA,YA.ZA) and (XA.XB.XC) are the space coordinates of points A and B 

respectively. As illustrated in Figure 3.8, M lies exactly in the center between 

points A and B. We can now determine the amount and direction through which 

the cylinder is to be rotated. 

Consider an axis G through point M which is perpendicular to the plane 

defined by the cylinder axis and a line passing through M and parallel to the y-axis. 

The cylinder is to be rotated about G. The direction numbers [17) of axis F are 

the same as the direction numbers of the normal to the above mentioned plane. 

The direction numbers of any line parallel to the y-axis are (0,1,0). Let the 

direction numbers of the axis of the cylinder L be ( dx,dy, dz) where 

<lx = xA. xa, 

dy = YA • YB and 

dz= ZA ·Za. 
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Let the direction numbers of G be (nx.ny,!lz). Thus 

nA:+nydy+Dzdz=0and 

nx(0) + ny(l) + 11z(0) = 0, 

which gives 

dx = 0, 

dy= land 

dz=0. 

Therefore, the direction numbers of axis G are (-dz, 0, dx). This demonstrates 

that G always lies in a plane parallel to the XZ-plane. The equations of the axis 

of Gare 

nx = -dz, 

ny = 0 and 

Dz= dx· 
Consider the direction numbers ( dz, 0, -dx). These will also give the same 

equation for axis G, but will signify the opposite direction. Maintaining 

consistency in the calculation of <ix. dy, and dx gives the proper direction for the 

axis of cylinder L and axis G. The direction in which L is to be rotated is 

determined by the Left-Hand Rule. Let the amount of rotation in this direction 

be 0. From the geometry of Figure 3.8, 0 is given by 

0 = tan·l {[(xB-xw2 + (za-zM)']½/(yB-YM)} 

Performing similar calculations for the second cylinder will give the amount and 

the direction through which it is to be rotated to render it horizontal. 

In Figure 3.9, both the cylinders L and K are horizontal but are not axially 

aligned. This is the general case. Let C and D be the corresponding points for 

cylinder K due to the projected light stripes, as A and B are to cylinder L. Now 

the equations of the axis of L are 
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That of the axis of K are 

x-xA = 0 and 

Z • ZA = 0. 

x-:tc=0 and 

z-zc=0. 

We need consider only one point on each cylinder; for example, point A on 

cylinder L and point C on cylinder K. These two cylinders can be aligned at any 

position; that is, at any desired x and z coordinate values. 

Such a point, H, is shown in Figure 3.9. Point H is in the XOZ-plane with 

coordinates (xtt,0,zH) such that its x and z coordinates correspond to the x and z 

coordinate values of the desired position of the cylinders. Then the direction in 

which L is translated is along the vector 

(xH - xA, 0, zH - zA) and 

the direction in which K is translated is along the vector 

(XH • Xe, 0, Ztt. ZC) · 

L is translated by an amount 

1 = [(xH - xA.)2 + (ztt • zA.)1½, 

where I is the Euclidean distance between point H and point A. K is moved by an 

amount 

where k is the Euclidean distance between point H and point C. After moving to 

this position, the equation of the axis of L is 

x - XA - (xH - xA) = 0 and 

Z • ZA • (zH • ZA) = 0. 
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That is, 

x-xH = 0and 

z-ZH = 0. 

Similarly, the equation of K is 

That is, 

x - xc- (xH- xc) = 0 and 

z -zc- (zH- zc) = o. 

x-xH = 0 and 

Z -ZH = 0. 

Here we see that the axes of cylinder L and K are the same, that is, their axes are 

colinear. 

In this chapter two possible methods for aligning cylindrical beams were 

discussed. The first method does not require that the positions of the cameras 

and projectors be known. The algorithm works towards achieving an image, as 

seen by the camera, that corresponds to alignment. In the second method, the 

positions of the cylinders are determined with respect to the camera and projector 

positions. The cylinder displacements are then computed to achieve alignment. 

Even though both methods would render the two cylinders aligned, the second 

method has obvious advantages over the first. Since the position of the cylinders 

can be determined in the second method, they can be moved to any other position 

relative to the camera and projectors if necessary. This feature would be 

impossible with the first method. In the next chapter we discuss the practical 

problems that were encountered in analyzing the image, especially that the 

cylinder has a finite diameter. 
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CHAYmRIY 

PRACTICAL IMPLEMENTATION 

From the discussion in Chapter ill it is evident that two points on the axis of 

the cylinder are required to determine its position. In this chapter, practical 

problems that arise in determining the points on the axis of the cylinder from the 

patterns cast by the light stripe projectors are discussed. 

EMPIRICAL EVIDENCE 

Ideally, the stripe of light emanates along a plane of zero thickness. 

However, under practical situations a line having finite width is projected. Since 

the cylinder has a finite diameter, the image of the light stripe as projected on the 

cylinder may appear curved or as a rectangular area in the camera, depending 

upon the relative positions of the cylinder and the projectors with respect to the 

camera. 

Figure 4.la shows the image of a single stripe as a straight segment. The 

center point C of this stripe can be found easily since it lies midway along the 

length and width. Now consider the case when the image stripe is a curved 

segment as illustrated in Figure 4.lb. Again, point C can be found in the same 

manner as explained above. Alternatively, the point C for both cases may be 

found by calculating the centroid of the segment. For the first case the 

centerpoint and centroid are identical points, but for the second case it is 

displaced slightly to the side depending upon the amount of curvature. The 
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Figure 4.1 a. Image stripe on a planar surface 

C' • • C 

Figure 4.1 b, Image stripe on cylinder as seen by 
the camera. 
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centroid in the second case is represented by the point C. The position of the 

point C or C, which lies on the focal plane, can be determined in space since the 

camera position is known. and its corresponding point on the cylinder found as 

explained in the previous theory. Here it is evident that this point would not 

correspond to a point on the axis of the cylinder. Point C would correspond to a 

point on the surface of the cylinder; whereas, point C', the centroid, would 

correspond to a point within the cylinder but not on the axis. 

Figure 4.2 represents a stripe of light projected on the cylinder L. The image 

stripe on L has comers designated Ci, Cz, C3, and C4. If L is replaced by a "half-

cylinder" with a semi-circular cross-section, as shown in Figure 4.2b, we obtain the 

image with corresponding comer points Di, Dz, D3, and D4. The planar area of 

this half-cylinder is perpendicular to the YZ-plane. The only difference between 

the image in Figure 4.2a and 4.2b is that in the second case the closed curve 

formed with comer points D1, D2, D3, and D4 is a quadrilateral. From the 

geometry of the quadrilateral, the central point C can be computed. It will be 

shown how closely point C in the image plane corresponds to the point on the axis 

of the cylinder, since it is theoretically impossible to determine a point on the axis 

of the cylinder from the four comer points Di, D2, D3, and D4. In the theoretical 

development in Chapter 3, it was assumed that the plane of light has zero 

thickness. This is practically not possible. Instead, a volume of light is emanated 

from the light stripe projector. Points Di, D4 and Dz, D3 are formed due to the 

intersection of the cylinder with the two boundary planes, respectively. The ideal 

plane of light can be represented by a plane lying exactly between the two 

boundary planes, and it vertically bisects the projected stripe of light. It is 

possible to determine a point on the axis of the cylinder only if we know the 
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Figure 4.2. Image stripe comparison on curved and planar surface. 



equations of the two boundary planes. Here it is assumed that the equations of 

the boundary planes are unknown but that of the ideal plane is known. 

APPROXIMATION ERROR 

Since it is theoretically impossible to determine a point on the axis of the 

cylinder unless the boundary planes are known, the amount of error incurred in 

determining a point on the axis of the cylinder for the worst case configuration is 

found. This is shown to be within the resolution of the image processing unit and 

therefore is acceptable. 

In Figure 4.3, points A.D and B,C are the projection of points on the image 

plane due to the intersection of the two boundary planes with the cylinder; while, 

points E,F are due to the projection of points on the image plane due to the 

intersection of the ideal plane with the cylinder. Let points S,T on the cylinder 

correspond to points A,D on the image plane as shown in Figure 4.4. V is the 

midpoint of segment ST. Let the projected point on the image plane due to V be 

V'. The error in determining the position of V' on the image plane is found. In 

Figure 4.4, segment ST corresponds to the top portion of the stripe and coincides 

with the axis of the cylinder. The cylinder axis is inclined at 30 degrees to the y

axis. This is the worst case. In the actual experiment it was not possible to incline 

the cylinder by more than 20 degrees to the y-axis because of the experiment's 

configuration constraints. Segment ST is considered to be formed due to 

projector P2, instead of P1, since the farther the projector is from the camera the 

larger the error in determining the position V'. Projector P2 is at a distance of 

637mm from the optical center of the camera lens; point V is at a distance of 

937mm; and the image plane of the camera is at a distance of 25.4mm in the 

negative z-direction. 
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Figure 4.3. Representation of the corners of the image stripe. 
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The points A. B and V' lie at distances 

respectively, from the XZ-plane. 

a= 17.1765mm, 

b = 17.3746mm and 

v'= 17.2750mm, 

Any point on segment ST maps on to the segment AB in the image plane. E is the 

midpoint of segment AB and is given by 

e =(a+ b)/2. 

Thus, e = 17.2755mm. This gives an error of 0.0005mm, which is less than the 

resolution of the image processing unit. The resolution of the image processing 

unit is 0.0275mm. Point E, when projected on the cylinder axis deviates from the 

point V by an amount which is negligible for practical purposes. 

Another error that gets introduced is that the rays going into the camera 

enter through a single point. The tangent rays that define the points Ci, Cz, c3, 

and C4 in Figure 4.2a are unable to define points such that they lie in a plane 

passing through the axis of the cylinder. The distance between this plane and the 

axis of the cylinder as calculated for a cylinder of 50mm diameter is 0.66mm. 

Consequently, it has not been considered in this experiment since it does not 

contribute to the information regarding the amount the cylindrical beam is to be 

rotated to render it horizontal. 

Referring to Figure 4.3, which represents the quadrilateral due to points Di, 

Dz, D3, and D4 in Figure 4.2b, the central point I can be determined as follows. 

First points E and F are determined which are the midpoints of segments AB and 

CD, respectively. Then I, the midpoint of segment EF, is found. Therefore, by 

finding these corner points the parallelogram can be constructed and the center 

point which now corresponds closely to a point on the axis of the cylinder can be 
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found. Broad stripes of light were considered here so that the comers could be 

relatively well defined. 

PRACTICAL CONSIDERATIONS 

The approach chosen here for the alignment process is to first manipulate 

the cylindrical beams so that they are horizontal. Manipulation of both the 

cylindrical beams is performed through an identical sequence of steps. The 

experimental configuration and design was carried out for one cylinder only for 

the sake of simplicity. The method of obtaining information about the initial 

position of the cylinder was described. With this information, the amount the 

cylinder is to be rotated to render it horizontal can be computed. 

From the preceding argument it is evident that this technique primarily 

involves finding the points of intersection of the lines formed due to image stripes 

on the camera focal plane passing through the lens center and the plane which 

projects the light stripes. These quantities can be determined with the projectors 

and camera in any other orientation. The optical center of the camera and the 

projectors, must always be colinear, with the exception that the camera lens center 

should not lie in any one of the planes of the light stripe projectors. 

In the actual experimental set-up the optical axis of the camera, instead of 

being coincident with the z-axis, was inclined towards the stripe patterns on the 

cylinder by an angle µ,. This does not change the x-coordinates of the image points 

formed on the camera focal plane. The new image y and z coordinates are given 

by 

y = (k2 + yp2)~in[tan•l(kfyp) + µ) and 

z = (k2 + yp2)½cos[tan•l(kJyp) - µ], 
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where µ. is as given above, k is the distance of the focal plane from the Jens center 

and yp is the distance along the row in the focal plane from the row center. 

The image obtained from the camera was captured by an image processor 

having a resolution of 320 x 240 pixels. The image was stored in a file consisting 

of 240 lines corresponding to the 240 scan lines of the camera. Each line consisted 

of 160 words each of which contained coded information representing the 

intensity of two horizontally adjacent pixels which were digitized into sixteen gray 

levels. Two neighboring pixels which were binary coded using eight bits were 

concatenated to form a single sixteen bit word. The even-column pixels, starting 

with zero, were assigned the least significant eight bits of the sixteen bit word, 

while the odd-column pixels were assigned the most significant eight bits. 

Reflective properties of the cylinder had to be modified by painting its 

surface with white matte paint. Such a painting reduces the reflectivity of the 

surface to a great extent while increasing the scattering effect. This resulted in a 

uniform brightness over the entire segment. The image stored in the computer is 

at a resolution of sixteen levels of gray (0 - 15) as is seen in Plate 1. Since we are 

interested only in the two image stripes, which are the brightest parts in the 

picture with an intensity level ranging from thirteen to fifteen, a threshold value of 

twelve was chosen. Thus, all brightness values below twelve were converted to 

zero and values at twelve or above were converted to fifteen. The thresholded 

image is shown in Plate 2. 

This binary image file was then processed by an edge finding algorithm. 

This program looks for the total number of connected white areas present in the 

image file which is two in our example. It gives the total number of boundary 

points and their pixel coordinate values. Because of the nature of the edge 

finding algorithm, some pixel values listed as edge pixels get repeated. Also 
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certain stray or unnecessary pixel values get listed as border pixels. The repeating 

pixels and the stray pixels are removed by passing this edge pixel list file through 

another algorithm which filters out unwanted pixel coordinates. The difference in 

the two edge images before filtering and after filtering can be seen by comparing 

Plates 3 and 4. This filter is essential so that the comer finding algorithms can 

work effectively. 

There are different ways to find the comers in a given closed curve. One way 

is to find the rate of change in the slope of a tangent as we move along the curve. 

Another way is to find the curvature at each point and plot the curvature against 

the distance traveled along the curve. We obtain a graph as shown in Figure 4.5.1. 

This graph shows four peaks, one for each comer. Assuming there are four 

comers in the closed curve, we demonstrate two methods for finding the comers 

of the closed curve. 

In the first method we consider a pixel on the curve. Let this pixel be called 

the vertex pixel. Two more pixels on either side of this pixel at a distance, e.g., ten 

pixels, are chosen. Both of these pixels are connected to the vertex pixel by two 

segments. The angle of the segments at the vertex pixel within the closed curve is 

then computed; therefore this process is repeated for all the pixels. H we plot a 

graph of the angle at each. pixel against the pixel number, we obtain a graph 

similar to the one shown in Figure 4.5.1, except that it is inverted. See Figure 

4.5.2. 

In the second method, instead of finding the angle within the curve at each 

point, we find the perpendicular distance from the vertex point and the line 

joining the two pixels on either side of the vertex pixel, as mentioned before. A 

graph showing this perpendicular distance for each pixel against the pixel number 
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Figure 4.5.1. Graph comparison for corner detection. 
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Flgure 4.5.2. Graph comparison for corner detection. 



is plotted. This graph is similar to the first graph of the curvature, as shown in 

Figure 4.5.3. 

The second method is preferred since the algorithm is more simple than the 

algorithm used in the first method. Both the methods gave identical results on 

test samples. The peaks of the resulting graph represent the comers of the closed 

curve. The procedure used to detect these comers is as follows. 

The highest value of the curve on the graph is chosen. This point represents 

any one of the comers. About twenty points on either side of this point are taken 

and their value is made zero: see Figure 4.5.3. We now have three peaks. The 

above process is repeated so that the next peak represents another comer and the 

number of peaks is reduced to two. This process is repeated two more times to 

obtain the two remaining comers. The comers are obtained in random order; 

that is, if we move along the curve the comers are not necessarily in a sequential 

order. This ordering is important in order to restore the correct relative sequence 

of the points. The two points which are closest to one another are found and a 

midpoint between them is then computed. The midpoint between the other two 

points is also computed. The midpoint between the two previously found 

midpoints is then computed. This is the point which is the intersection of the axis 

of the cylinder with the plane of,,light. In order to represent this point on a 

monitor, it is rounded-off to the nearest pixel coordinates. This point and the 

four comer points are shown in Plate 5. 

EXPERIMENTAL SET-UP 

As explained earlier, the alignment task consists of two steps. First, the two 

cylinders are made horizontal, and then are axially aligned. Since the experiment 

was carried out on only one cylinder, the process of making it horizontal was 
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tested for different orientations in space. The cylinder was clamped onto a device 

which enabled it to be rotated in two degrees of freedom. If the cylinder is 

clamped and calibrated to be in a horizontal position initially, then one degree of 

freedom has a vertical axis of rotation, while the other has a horizontal axis of 

rotation, but perpendicular to the cylinder axis. 

The amount of movement about these two axes was initially set to any 

desired angle because of a calibrated scale present on the mounting device. Two 

slide projectors which served as the light-stripe projectors were at roughly the 

same height of the cylinder. The slides used in these projectors were blackened 

slides with a thin vertical slit cut along its center. The horizontal level at which the 

projectors were placed was not critical since it tended to displace the image-stripe 

on the cylinder in the vertical direction. This did not affect the position of the 

image stripe cast on the cylinder, but care had to be taken that the cylinder did 

not go out of the range of the stripes of light. It was also necessary that the 

stripes of light casted on the cylinder were vertical. 

The camera was mounted on a tripod. Its optical axis was made horizontal 

to simplify the calculation process. In a general sense it could be oriented in any 

direction with the requirement that the optical center should lie on the y-axis and 

it should be able to capture the image of the cylinder. For simplicity again, the 

camera orientation about the optical axis was maintained such that the rows of 

pixels are horizontal and the columns of pixels are vertical. A spirit level was used 

to calibrate orientation of the cylinder, light stripe projector and camera. The 

cylinder was calibrated in a horizontal position, the light stripe projectors were 

calibrated to project a vertical stripe of light, and the camera was calibrated such 

that its row pixels were horizontal and column pixels were vertical. In the 

theoretical development it is assumed that the camera axis is coincident with the z-
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axis. In the actual set-up this was not possible. Because of the close proximity of 

the components used in the experiment, the camera had to be turned about a 

vertical axis passing through its optical center towards the cylinder in order to 

capture its image. The optical center of the camera was the origin of the space 

coordinate system. The planes of the stripes of light were parallel to the xz-plane. 

With the initial position of the cylinder as horizontal, its axis was parallel to the y

axis. 

Two monitors were used in the experiment; one was for viewing what was 

seen by the camera, and the other for the processed images. The image processor 

that was used has the capability to capture an image and display it on the monitor 

either directly or thresholded. The processor was not able to store a thresholded 

image which is necessary for further processing. The original captured image data 

is transferred to a computer on which all further processing work is executed 

because of its higher speed and storage capacity. The position of the cylinder was 

computed from the image data after a sequence of processing steps for various 

cylinder orientations. The results of these tests are discussed in the next section. 

RESULTS 

The positions of two points on the axis of the cylinder were computed from 

the equations of the planes of light and the equations of the lines passing through 

the optical center of the lens and the center of the image stripes on the focal 

plane. Let the angle through which the cylinder is rotated about a horizontal axis 

perpendicular to the cylinder be ALPHA and that about the vertical axis be 

BETA. Table 1 shows the set ALPHA and BETA angles and the corresponding 

computed angles. Appendix A contains programs that process the image and 

compute the angles ALPHA and BETA. 
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ALPHA (degrees) BETA (degrees) 

Set Computed Error Set Computed Error 

0 1.3B7 1.3B7 0 0.313 0.313 

0 0.753 0.753 -20 -20.287 0.2B7 

0 1.420 1.420 15 16.357 1.357 

-10 -9.1B0 0.B2 0 0.757 0.757 

5 6.6 1.6 0 0.312 0.312 

5 6.44 1.44 -B -7.357 0.643 

-10 -9.120 0.BB -10 -9.423 0.577 

-12 -10.6 1.4 15 14.B6 0.140 

5 6.B7 1.B7 17 17.725 0.725 

Table 1. Results 



CHAPTERV 

CONCLUSIONS AND FUTURE RESEARCH 

The type of structured light pattern to be used is determined by the kind of 

task in which it is employed. In this research, two planes of light were employed 

in a method to align two cylindrical beams or cylinders. The orientation of a single 

cylinder in three-dimensional space was determined. It is known a priori that the 

object was a cylinder. Hence, the positions of any two points on its axis were 

determined in three-dimensional space. From this information the cylinder 

orientation was computed. 

REMARKS 

The error observed in the measurement of the angles is due mainly to the 

finite resolution of the camera and image processing unit which is 320 x 240 pixels. 

From the geometry of the configuration it can be shown that the cylinder has to be 

rotated by approximately 2.8 degrees about a vertical axis, from a position parallel 

to the y-axis before a change in the coordinate of the excited pixel is detected. 

The results presented in Table 1 are well within the error limits. The largest error 

is 1.87 degrees, produced in measuring the angle ALPHA. There are two 

possible reasons for this: one, an image stripe was at the comer of the focal plane 

where the angular resolution is poor compared to that at the center; and two, 

images at the comer of the focal plane get highly distorted which makes it difficult 
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for the comer finding algorithm to exactly pinpoint the comer pixel. This finally 

results in an error in locating the position of the point on the cylinder axis. 

Depending upon the kind of structured light pattern used, one can obtain 

different kinds of information about the properties of an object under study. 

Curvature measurement using grid coding · has been studied by Will and 

Pennington (SJ employing one and twci dimen$ional gratings. In the single laser 

tracker (7] employed by Ishii and Nagj{ta t6 extract feature information of three

dimensional objects, the prQCel!S·of'digitization),eing• point-by-pofut is slow, but 

has less stringent requirementscon the~memofy ~fy;!o~ the computing system. 

Since w~. are mainly interested in)lir PQSitional · information of cylinders, the 

above discussed methods, if applied to this. task; wmild geherate a significant 

amount of redundant information. • This would in~olve additional computational 

requirements and slow the process of aligning the cylinders. 

In the processing task of the image stripes wi' determine the position of a 

point close to the point on the axis of the cylinder.. The "ideal" point on the axis 

of the cylinder is due to the intersection of the cylinder axis and the plane of light. 
¥ 

One of the most significant step& in_ this p;ocessing ·task is to find the four 

comers:or.'..~~"'-8 of the image ~t:iifie: Most~ol'tlt~ commonly used methods 
,. _-; ... -·if.it • ~~.:_·::_' __ -_,";.~1·~1'_-·"~· -i·~:_~~-~ ~ . 

employ fhe::te'c1ibique of finding thliYettren'JUbJ,:valuMof the x and y coordinates, 
.. ~ .,.. ·,j.,.~ • ' -_, .. _: ~ ¾._. ~:-;'' 

which ·wouJd'ffuifoaIJy correspond to the four ~mers .• Since the image stripes are 

from a curved surface, that is the cylinder, it is curved instead of being 

rectangular. Taking extremum values of the x and y coo~dinates would yield 

erroneous results; hence, a new technique has been emplbyed her, which detects 

the vertices for either a normal rectangular stripe or any closed curve with 

prominent vertices. The only constraint is that prior information about the 

number of comers or vertices should be known. 

47 



The method of using structured light described in this research requires one 

image frame to completely determine the position of the cylinders. Using a 

sufficiently strong source of light for the light stripe projection sytems, this 

method is less prone to errors that may occur due to stray light. Since the 

computations involve geometric and trigonometric identities, it is fast in 

determining the cylinders' positions, compared with other vision techniques where 

large amciun~ 9f image PfQC.Cssing take up ifie bulk of:the pr~ing.time. 
~ -~-- -

FUTURE RESEARCH· •• •·· •• ,, . ·',; ., 

. - .• . 
• - - ~•·· ~·. ;. -~-i-k ~~_.-__ .~.~,; ~,:,:, __ ••'• ··:L :.:;. ,,.· . . ·¥. 

Future. work ~n ~bl3,.~~ co!11d be'done to mtegratc two robotic arms each 
-~·-i<:;· '.;.... ~ -· ·.: ,...1-~ 

carrying a cylinder with the,,visjon system an(j imwemcntU.e'~~ of alignment 
;._ .... "' .·· '-· 

of the cylinders·fii real 'l:imi:· ~Some"« the current research· showi that a single 
- . ... ., 

plane of light is 1.IS4'd to extract feato:ttfand pesition information ·by rotating the 

plane of light in'cfiscrete:lt•,'°;tbat>-it casts parallel adjacent Stripes on the 

object. An enhan'cemei1t to this research could be to ·use a single plane of light 

and use only a single line caston.Jhe cylinder"tO'obtain,its orientati~n. Assuming 

that the. cy~der:-~nsions,, ar~ kno~. its ~ eq~n in three-
. • J--~::. --:-. 7!::IPJ-:'c!J'•t: . ..:.. ',·:.: •• :· ."..7 : • .".. • . ·l ·• ~ - - • :. :S'.:: 

dimensiorialtf~~;,~·~~c:,af . ."U,Pbn findnf' -O'tt~ "' -.tio .- of an three 
-.~ .-.? :_:··-~,':.~·-~::_:~-~~~-{!~~~;~~:f~t!;;-.;·:. :~,_.-~-~ ;.~-.;~~-'-~:-~::~ .. --~~ y 

points on·tbe cylb~ nfi-~'1t,it'@te~,tl:t~~fflclenl&Y'~ 
., .' .:;. ~- ',;:-.:-1-f/,;·;-;:i,,,t_-,"_.:-;Jn-: •• ·,-_ . ,:-., ·:'• ~":··.:\ ¾,~, ·,, 

To ~conclude1 ·.~~'~¥ .. t.f in-ethodytor:'~ alignment provides a 
,,_.,_ .I~ 

computationally fast -t~hnique for aligning cylindrical beams in space which can 

be performed in real tiine. With sufficiently strong planes of light projecting on 

the cylinders, th,e 'system is less prone to errors due to stray light. The error in 

calculating the orientation of the cylinder is primarily dependent on the resolution 

of the camera. This thesis demonstrates the use of a structured light method for 
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determining the position of cylindrical beams. A similar approach can be used for 

locating or determining positions of objects in an industrial environment. 
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Plate 1. Captured image at sixteen levels of gray 
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Plate 2. Binary thresholded image. 
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Plate 3. Image ofter edge detection. 
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Plate 4. Filtered image. 
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Plate 5. Image showing corner and center points 
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APPENDIXA 

The programs that follow are executed in the same order as they appear, to 

determine the position of the cylinder in space. The first program thresholds the 

digitized image; the thresholded data thus obtained is used by the program 

"IMG_SEG" to segment the stripes and find edges around them. The remaining 

programs perform the task of filtering the edge data, finding the comers, and 

determining the position of the cylinder. 

The program "IMG_SEG" and its associated subroutines were developed by 

the Automation Technology Branch at NASA, Langley Research Center. 

Note: In the last program "ORION," the angles "ALPHA" and "BETA" 

mentioned in the comments correspond to the angles "beta" and "gamma," 

respectively, in the program code. 
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PROGRAM LISTINGS 

C PROGRAM THRESHOLD 

C THIS PROGRAM CONVERTS AN IMAGE FILE INTO A BINARY FILE. 
C THE THRESHOLD VALUE IS ENTERED BY THE USER (0 - 15). THE INPUT 
C IS 'WORK.51' AND THE BINARY OUTPUT tILE CREATED IS 'WORK.52' 

intege, k I 160 I , a I 160, 16 l, abl ( 16 0, 8 I , ab2 I 160, 8 I , chi 16 0 I , h( 16 0, 2) 
integer th,j,m,b,p,tl,t2,l,fs 
open(unit-2,file•'work.51' ,status•'old') 
open(unit•3,file••work.52' ,status•'new') 
TYPE *,'ENTER THRESHOLD (0 -15)' 
READ I 5, • I I th l 
TYPE*, 'Enter no. of lines stored' 
READ ( 5, *) fs 
do 80 l•l,fs 
read(2,20) (k(j),j•l,160) 

DO 2 m•l,16 
DO 3 j•l,160 

a(j,m)•O 
3 CONTINUE 
2 CONTINUE 

DO 59 m•l,160 
p•k(m) 
b•l 

5 a(m,bl•mod(p,21 
b•b+l 
p•p/2 

if (p.eg,0) then 
go to 30 

end if 
if Ip. ne .1 I then 

go to 5 
end if 

a{m,b)•l 
30 p•a(m,1)+2*a{m,2)+4*a(m,3)+8*a(m,4) 

tl•p 
p•O 
p•a(m,9)+2*a(m,10)+4*a(m,11)+8*a(m,12) 
t2•p 

c HERE .MAKE COMPARISON WITH THRESHOLD 

IF (tl,lt,th ,AND. t2,lt,th) THEN 
ch(m)•O 

ELSE IF (tl.lt.th .AND. t2.ge,thl THEN 
ch(m)•3840 

ELSE IF ltl,ge,th .AND, t2.lt,thl THEN 
ch(m)•lS 

ELSE IF (tl,ge,th .AND, t2,ge.thl THEN 
chlml•3855 

END IF 
59 CONTINUE 

WRITE(3,20) (ch(m),m•l,160) 
write(6,*) l 

80 CONTINUE 
20 FORMAT(lli7) 
22 FORMAT\20(i3,trl)) 

close(unit•3,dispose•'save' l 
close(unit•2,dispose•'save') 
end 
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program img_seg coo 
coo , 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
coo 
coo Decomposition of image into object contours 
coo 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
col 
CDl PURPOSE 
CDl 
CDl This program breaks image into separate objects and describes 
CDl the objects in terms of their centroid, first axis and contour in 
CDl x-y raster form. 
COl PSEUDOCODE: 
Col GRAB IMAGE: Read input image, decompressing the data into pixel format 
CDl Grau~ pixels into desired nxn "cell'' size, determine 
CDl and apply binary threshold to image cells. 
CDl Do until object blobs become smaller than noise cutoff 
CDl CENTROID: Sum neighboring cells to determine object centers of ''mass'' 
CDl CONTOUR: Plat a cough cantouc of blob of highest "mass'' 
CDl AXIS: Calculate the centroid and ficst moment of object 
CDl TRACK: Track the pixel resolution contour of object 
CDl GRAB IMAGE: Erase the current obJect from stored image 
CDl Enddo 
CDl OUT: Output object attributes to file 
CDl 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CO2 
CO2 DEFINITION OF INPUT 
CO2 
CO2 CALLING ARGUMENTS 
CO2 
CO2 SYMBOL TYPE DIM DEFINITION 
CO2 
CO2 None 
CO2 
CO2 TEEtMINAL INPUTS 
CO2 
CO2 SYMBOL TYPE DIM DEFINITION 
CO2 
CO2 None 

CD3 
CD3 DEFINITION OF OUTPUT 
C03 
CD3 CALLING ARGUMENTS 
CD3 
CO2 SYMBOL TYPE DIM DEFINITION 
CD3 
CD3 N/A 
CD3 
CD3 TERMINAL OUTPUTS 
C03 
CO2 SYMBOL TYPE DIii DEFINITION 
CD3 
CD3 None 
C03 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CD4 
CD4 COMMON VARIABLES 
CD4 
CD4 INPUT 
CD4 
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CD4 None 
CD4 
CD4 OUTPUT 
CD4 SYMBOL 
CD4 
CD4 
sed 

object_ 

CD4 object_ 
CD4 

TYPE 

index integer 

total integer 

DIM DEFINITION 

index describing object currently proces 

total number of objects in image 

C************************************************************ 
CDS 
CDS 
CDS 
CD2 
CDS 
CDS 
CDS 
cos 
cos 
CDS 
CDS 
CDS 
cos 

INTERNAL VARIABLES 

SYMBOL TYPE DIM 

uinput character•l32 
segment.img size.xpix integer 
segment.img:size.ypix integer 
cellsize integer 
cutoff integer 
segment.img size.xcell 
segment.img=size.ycell 

DEFINITION 

handles user input to getlib ions 
horizontal image dimension in pixels 
vertical image dimension in pixels 
dimension of square cell group in pixela 
greylevel value of binary threshold 
horizontal image dimension in cells 
vertical image dimension in cells 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CD6 
CD6 EXTEENAL REFERENCES 
CD6 
CD6 I/0 FILES 
CD6 
CD6 Compressed integer image files {ex. {karin.img_seg_temp)scene.t60 
CD6 
CD6 SCRATCH FILES 
C06 
CD6 N/A 
CD6 
CD6 EXTERNAL ROUTINES 
CD6 
C06 integer - getlib function which gets integer from user input 
CD6 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CD7 
CD7 FUNCTIONAL DESCRIPTION 
CD7 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ens 
COB ASSUMPTIONS AND LIMITATIONS 
CDS 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CD9 
CD9 SPECIAL COMMENTS 
CD9 
CD9 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CDlO 
CDlO REFERENCES 
CDlO 
CDlO None 
CDlO 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C THE FOLLOWING CREATES A HELP LIBRARY MODULE 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CDXl AREAL 
CDX 
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CDX 

C 
CP BEGIN program 
C 

C 

program img seq 
implicit - none 
include 
integer 
character•l32 
integer 

'img seq.def' 
threShold 

real 

uinput /' '/ 
integer 
theta(p_maxobj) 

Initialize object 
object index 
object:total 

condition and image partitioning **C 
• 1 
• 0 

segment.img size.xpix • integer{ 'image x-dimension' ,uinput,'320') 
segment.img-size.ypix • integer{ 'image y-dimension' ,uinput,'240') 
cellsize • Integer:(' cellsize' ,uinput, '1') 
cutoff• integer( 'cutoff threshold' ,uinput, '4') 
segment.img size.xcell • segment.img size.xpix/cellsize 
segment.img:size.ycell a segment.img=size.ypix/cellsize 

do while(object total .eq, 0) 
call grab imag'e 
call centCoid(threshold) 
call contour 
call axisltheta) 
call tcack 
object index• abject index+ 1 

enddo - -
call outl(threshold,theta) 
close(unit•l5,dispose-•save') 
end 
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C 

subroutine grab_image 

implicit 
include 
integer 
integer:•4 
character:*132 
character*l32 
integer 

none 
'img_seq.def/list' 
x,y,px,py,data(l60) 
str$find first in set 
uinput 7' '/ 
filename 
loc 

if{object index .eq, llthen 
segment:file_name,in•filename( 'Input file name',uinput,' .dat') 
segment.file_name.out•filename( 'Output file name' ,uinput,' .dat' J 
loc .. str$find first in set (segment.file name.out,';') 
segment.file name.piC-segment.file name.oUt(l:loc-4)//'pic' 
open(unit•ll~name•segment.file name.in,status•'old') 
open(unit•l2,name•segment.file-name.pic{l:loc-l),status•'new'J 
open(unit•13,name•segment.file-name.out(l:loc-l) ,status•'new' l 
open(unit•l5,file•'b image.dat7 ,status•'new') 
do y • 1,segment.img=size,ypix 

read(ll,•) {data(x) ,x•l,segment.img size.xpix/2) 
do x • l,segment.img size.xpix/2 -

segment.image.pixeI(2•x-1,y)•ibits(data(x),8,8) 
segment.image.pixel(2•x,yl•ibits(data(x),0,8) 

enddo 
write(l2,100) (segment.image.pixel(x,y),x•l,segment.img_size.xpix) 
enddo 

else 

index-1) 
do px • segment.bound.left(object_index-ll ,segment.bound.right(object_ 

do py • segment.bound.top(object_index-1,px),segment.bound.bottom(ob 
ject index-1,px) 

- segment.image.cellmass(px,pyJ•O 
do x • (px-l)*cellsize+l,px*cellsize 

do y • (py-l)•cellsize+l,py•cellsize 
segment.image.pixel(x,y) • O 

enddo 
enddo 

enddo 
enddo 

endif 

close(unit•ll) 
100 format(<segment.img size.xpix>(I4)) 

goto 99 -
666 type*, 'read err:' 
99 return 

end 
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C 
C 
C 
C 
C 

subroutine centroid(threshold) 

Locates centroid of major mass in binary thresholded image. 
Process involves summing greyvalues for each n X n picture 
cell in image, thresholding out sparse picture cells, and 
ranking remaining cells in terms of greatest connectivity to the 
remaining "higher mass'' cells, the highest rank becoming centroid. 

implicit 
include 
integer 
integer 
integer 

none 
'img seq.def' 
threShold 
sumtotal,x,y,cellcolumn,cellrow,k,c,count,last 
px{4800),py(4800) ,connectivityt320,240),superconnectivit 

y(320,240) 
logical flag 

C 

flag 
sumtotal 

• .true. 
• 0 

Calculate cell masses; determine threshold level. 

do cellrow • l,segment.img size.ycell 
do cellcolumn • l,segment.img size.xcell 

if(object index .eq. l)then
segment7image.cellmass(cellcolumn,cellrow) • 0 
do y • cellsize*(cellrow-l)+l,cellsize•(cellcow-l)+cellsize 

do x • cellsize•(cellcolumn-ll+l,cellsize•(cellcolumn-1\+cellsiz 
e 
c segment.image.cellmass(cellcolumn,cellrow) • segment.image.eel 
lmass(cellcolumn,cellcowJ + seqment.image.pixel(x,y) 

if(seqment.imaqe.p1xel(x,y).gt. cutoff) segment.image.cellmass 
(cellcolumn,cellrowl • 

l segment.image.cellmass(cellcolumn,cellrowJ + 1 
enddo 

enddo 
endif 
sumtotal • sumtotal + segment.image.cellmass(cellcolumn,cellrow) 

enddo 
enddo 
c • nint(4.0*sumtotal/(segment.img size.xcell•segment.img size.ycell•cel 

lsize.,cellsizel l+l - -
if(object index .eq. 1) threshold• nint(c•cellsize••2/8.0l 
if(cellsiie .eq. l) threshold• 1 

c threshold cellmasses and store locations of 'winning• cells 
do cellrow • l,segment.img size.ycell 

do cellcolumn • l,segment.img size,xcell 
segment.image.bigcell(cellcOlumn,cellcow)•0 
connectivity(cellcolumn,cellcow} • O 

enddo 
enddo 
k • 0 
do cellrow • 2,segment.img size.ycell-l 

do cellcolumn • 2,segment.img size.xcell-1 
c type*,cellrow,cellcolumn,segment.image.cellmass(cellcolumn,cellrow) 

if(segment.image.cellmass(cellcolumn,cellrow) .ge. threshold)then 
segment.image.bigcell(cellcolumn,cellrow) • l 

k • k + l 
px{k) • cellcolumn 
py(k) • cellrow 

endif 
enddo 

enddo 
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last '"' k 
if{(last*l.0/(segment.img size.xcell•segment.img size.ycell)),lt .. 0025) 

object total• object index - 1 - -
C - write(13,*) •Cellfcac:' 1 (last*l.0/(segment.img size.xcell*segment.img si 
ze,ycell)) - -

C determine connectivity of winning cells 

do k•l,last 
connectivity(px(kl ,py(k)) • segment.image.bigcell(px(k)-1,py(k))+segme 

nt.image.bigcell(px(k)+l,py(k) )+ 
l segment.image.bigcell(px(k),py(k)-l)+segme 

nt.image.bigcell(px(k),py(k)+l) 
enddo 

count• O 
do whiletflag.and.count.lt. 4) 

count• count+ 1 
do k•l,last 

supetconnectivity{px(k),py(k)} • connectivity(pxlk)-1,py(k))+ 
1 connectivity(px(k)+l,py(k))+ 
2 connectivity(px(k),py(k)-1)+ 
3 cannectivity(px(kl ,py(k)+l)+ 
4 connectivity{px(k),py(k)) 

C 

1 

1 

enddo 

determine centroid 
C • 1 
flag• .false. 
do k•2,last 

if(superconnectivity(px(k),py(k)l .eq. 
superconnectivity(px(c),py(c)l )then 

flag - .true. 
endif 
if(superconnectivity(px(k),py(k)).gt. 

superconnectivity(px(c),py(c)) )then 
flag• .false. 
C • k 

endif 
enddo 

do k•l,last 
connectivity(px(k),py(k))•superconnectivity(px(k),py(k)) 

enddo 

segment.centroid.xcell(object index) • px(c) 
segment.centroid.ycell{object:indexl • py(c) 

enddo 
c if(count .ge. 4) writetS,~) 'centroid tie, object' ,object_index 
200 format(' ',<segment.img si:z:e.xcell>(Il)) 
300 format(' ',<segment.img:size.xcell>(IB)) 

retutn 
end 
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subroutine contour 

implicit 
include 
logical 
integer 
integer 

flag• .true. 

none 
'img seg.def' 
flag~yflag 
ymaxl320),ymin(320l,direction,x,y,xmax 
px,py,sum,ixx,iyy 

x ~ segment.centroid.xcell(object index\ 
ymin(x) • segment.centroid.ycell(Object index) - 1 
ymax(x) • segment.centroid.ycell(object-index) + l 
do while(flag .and. (x .le. segment.img-size.xcelll) 

direction• - 1 -
yflag • . true. 
do while(ymin(x) .ge. 1 .and. ymin(x) .lt. segment.centroid.ycell(obje 

ct index) .and. yflag) 
ymin(x) • ymin{x) + direction 
if(segment.image.bigcell(x,yminix))) then 

if(direction .eq. ll yflag • .false. 
else 

direction• 1 
endif 

enddo 
di cection ,. 1 
yflag • .tC'ue, 
do while(ymax(x) .le. segment.img size.ycell .and. ymax(x) .gt. segmen 

t.centroid.ycell(object index) .and. yflagJ-
ymax(xl • yfflax(x) + direction 
if(segment.image.bigcell(x,ymax(x))l then 

if(direction .eq. -1) yflag • .false. 
else 

direction• -1 
endi f 

enddo 
if( (ymax(xl .eq. segment.centroid.ycell(object index)) .and. (ymin(x) .e 

q. segment.centroid,ycell(object index) ))flag •.fals -
if(ymin(x) .le. 0) ymiri(x) • l 

ll 

cell -1 

if(ymaxtx) .ge. segment.img_size.ycelll ymax(x) • segment.img_size.yce 

segment.bound,top(object index,x) • ymin(x) 
segment.bound.bottom(objict index,x) a ymax(xl 
X•X+l -

ymin(xl• ymin(x-1) 
ymax(xJ• ymax(x-l) 
if(ymin(x) .lt. 2) ymin(x) • 2 
if(ymax(x) .gt. segment.img_size.ycell-ll ymax(x) - segment.img_size.y 

• segment. if(ymin(x).ge. segment.centroid.ycell(object index)Jymin(x) 
centroid.ycell(object index) - l -

if(ymax(x).Ie. segment.centroid.ycell(object index) )ymax(x) 
centroid.ycell(object index} + l -

enddo -
segment.bound.right(object_indexl • x-1 

flag• .true. 
x • segment.centroid.xcell(object index)-1 
ymax(x) • ymax(segment.centroid.xCell(object index)) 
ymin(x) • ymin(segment.centroid.xcell(object-index)) 
do while I flag , and, Ix . ge. 0 I I -

direction• -1 

• segment. 

yflag • . true, 
do while(ymin(x) .ge. l .and. ymin(x) .lt. segment.centroid,ycell(obje 
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ct index) . and. yflag} 
ymin(x) • ymin(x) + direction 
if{segment.irnage.bigcell(x,ymin(x) ll then 

if(direction .eq. 1) yflag • .false. 
else 

direction• 1 
endif 

enddo 

direction• i 
yflag • .true. 
do while(ymax(x) .le. segment.img size.ycell .and. ymax(x) .gt. segmen 

t.centroid.ycell(object index) .and. yflagJ-
ymax(x) - yfflaxtx) + direction 
if{segment.image.bigcell(x,ymax(x)l) then 

if(direction .eq. -1) yflag • .false. 
else 

direction• -1 
endif 

enddo 
if((ymax(x) .eq. segment.centroid.ycell(object 1ndex)J.and.(ymin(x) .e 

q, segment.centroid.ycell{object index)))flag •.fals 
if{ymin(x) .le. 0) ymiri(x) • l 

11 

cell -1 

if(ymax(x) .ge, segment,img_size.ycelll ymax(x) • segment,itng_size.yce 

segment.bound.top(object index,xJ • ymin(x) 
segment.bound.bottom(object index,x) • ymax(x) 
X • X - 1 
ymin(x)• ymin(x+l) 
ymax(x)• ymax(x+l) 
if(ymin(x) .lt. 2) ymin(x) • 2 
if(ymax(x) .gt. segment.img_size.ycell-1) ymax(x) • segment.img_aize.y 

if(ym1n(x).ge. segment.centroid.ycell(object 1ndexl)ym1n(x) • segment. 
centroid.ycell(object index) - 1 

if{ymax(x).Ie. segment.centroid.ycell(object index))ymax(x) • segment. 
centroid.ycell(object index) + 1 -

enddo -

+ 

C 

x) 

segment,bound.left(object index) • x+l 
if(segment.bound.left(object_index) .eq.O)segment.bound.left(object_index 

do x • segment.bound.left(object_index),segment.bound.right(object_index 

segment.image.bigcelltx,segment.bound.top(object index,x))•8 
segment.image.bigcell(x,segment.bound.bottom(objict_index,x)l•B 

enddo 
segment.image.bigcell(segment.centroid.xcell{object_index), 

segment.centroid.ycell(object_index))•S 

Find centroid of object_index segment.image.pixel mass 
ixx • O 
iyy • 0 
sum• 0 
do px • segment.bound.left(object_index),segment.bound.right(object_inde 

do py • segment,bound.top(object index,px),segment.bound.bottomtobject 
_index,px) 

C 
C 

C 
C 

do x • (px-l)•cellsize+l,px•cellsize 
do y • (py-l)•cellsize+l,py•cellsize 

ix • segment.image.pixel(x,y)•x 
iy • segment.image,pixel(x,y)•y 
ixx • ix + ixx 
iyy - iy + iyy 
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C 

C 
uffer' 
C 
C 
C 

100 
X l +l> {, 
200 

if{segment.image.pixel(x,y) .gt. cutoff) then 
ixx • x + ixx 
iyy - y + iyy 
sum• sum+ 1 

endif 
enddo 

enddo 
enddo 

enddo 
if(sum .ne. O)then 

segment.centroid.xpix(object index) • ixx/sum 
segment.centroid.ypixtobject-index) • iyy/sum 

else -
write(S,•) 'centroid singularity, object' ,object index 
write(l3,*) 'centroid singularity, object' ,object index 

endif -

xmax•jminO(SO,segment.img_size.xcell) 

if{segment.img_size.xcell .gt. 80) write(l2,•) 'image truncated to fit b 

do y•l,segment.img size.ycell 
write(l2,200) (sigment.image.bigcell(x,y),x•l,xmax) 

enddo 

format(<segment.bound.right(object index)-segment.bound.left{object inde 
', I3 l) - -
format(' ', <segment. img_size.xcell>( Il)) 
return 
end 
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10 

20 

JO 

40 

50 

C 

subroutine track 

none implicit 
include 
integer 
integer 
logical 

'img seq.def' 
x,y,iteSt,ytest,count,edgecount.case,xmax 
xlast,ylast,xstart,ystart,threshold,theta 
flag 

flag• .true. 
edgecount • 0 
x • segment.centroid.xcell(object index) 
y • segment.centroid.ycell(object-index) 
do while(((segment.image,bigcell(X,y-1).gt. O) .or. 
1 (segment.image.bigcell(x,y-2).gt. O)).and.(y 

y - y - 1 
end do 
xlast • x - 1 
ylast • y 
xstart • x 
ystart,. y 

. gt. 2 I I 

do while( ( (x .ne. xstart) 
1 

.or. (y .ne. ystartJ .or.(edgecount .eq, 0)) 

.and. (flag .eq .. true.)l 
count• l 
flag • . false. 
if(x .eq. xlast) then 

if(y .lt. ylast)then 
case• 1 

else 
case• 3 

endif 
else 

if(x .gt. xlast)then 
case• 2 

else 
case• 4 

endif 
endif 

xla.st,. x 
ylast,. y 
do while((count ,le, 4) .and. (flag .eq .. false.)) 

count• count+ l 
x • xlast 
y • ylast 

go to (10,20,30,40), case 
x • xlast-1 
goto 50 
y • ylast-1 
goto 50 
x • xlast+l 
goto 50 
y • ylast+l 

case• jmod(case,4)+1 
if(segment.image.bigcell(x,y).gt. 0) then 

flag• .true. 
edgecount•edgecount + 1 
segment.contour.x(object index,edgecountl • x 
segment.contour.y(object=index,edgecount) • y 
segment.image.bigcell(x,y) • jmod(edgecount,9)+1 
segment.image,bigcell(x,y) • 8 

endif 
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c type*,'xlast,ylast,flag,count,case:' ,xlast,ylast,flag,count,case-1 
end do 

end do 
segment.contour.count(object indexl • edgecount 
if{flag .eq .. false.) write(S',*) 'tracking error at x,y • ',x,y,', objec 

t' ,object index 
iI(flag .eq .. false.) write{13,*) 'tracking error at x,y • ',x,y,', obje 

ct' ,object index 
xmix•j minO ( 80, s_egment. img size. xcel l) 
write (12,"') 'object: ',o5ject index 
if{segment.img_size.xcell .gt,-80) write(l2,*) 'image truncated to fit b 

uffer' 
do y•l,segment.img size.ycell 

write( 12,100) ( s'egment. image. bigcell { x, y J, x•l, xmax l 
enddo 
write(l2,*l ' ' 

100 format(' ',<xmax>(Il)) 
return 
end 
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subroutine 
implicit 
include 
integer 
real 

outl 
none 
'img seg,def' 
threShold,count 
theta(p_maxobj) 

write(lS,22) object_total 

do object index•l,object total 
write{l5,22} seqment.cOntour.count(object index) 
do count•l,segment.contour.count(object index) 

write(lS,24) {segment.contour.x(object index,count}, 
1 segment.contour.ytobject_Index,count)l 

enddo 
enddo 

22 format( 1 7) 
24 formatl2 7) 

close(un tmlS,dispose•'save•) 
return 
end 
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C PROGRAM CHECK_REPEAT 

C THg INPUT FILE TO THIS PROGRAM IS 'B IMAGE.OAT'. THE PURPOSE OF 
c THIS PROGRAM TO CHECK IF REPEAT VALUES EXIST IN CONTOUR DATA, 
C ANY POINT THAT REPEATS, IS REMOVED. THIS DATA IS STORED IN A FILE 
C 'B IMAGEl,DAT'. THE SECOND HALF OF THIS PROGRAM USES THIS FILE 
C '8-IMAGEl.DAT' ANO DELETES ALL SINGLE POINTS AND POINTS WHICH FORM 
C AN-UNCLOSED CURVE, A NEW FILE B IMAGE2,DAT IS CREATED WHICH STORES 
C THE REFINED FORM OF THE CONTOUR DATA. 
C THE FIRST INTEGER IN THE FILES B IMAGE*.DAT INDICATES THE NUMBER OF 
C OBJECTS WHICH IS INVARIABLY IN THIS CASE. THE SECOND INTEGER INDICATES 
C THE NUMBER OF POINTS IN THE FIRST OBJECT, THE PAIR OF INTEGERS WHICH 
C FOLLOW, DENOTE THE X ANO Y COORDINATES OF THE OBJECT ~ONTOUR. THE PAIRS 
C OF INTEGERS IS FOLLOWED BY A SINGLE INTEGER WHICH INDICATES THE NUMBER OF 
C POINTS IN THE SECOND OBJECT AND SO ON. 

integer i,j,k,ptl(2,1000),tot ptsl,d,m,n,l,t pt 
integer tptl,tpt2,count(lOOO)~pt 1(2,1000),pt 2(2,1000) 
integer lx,rx,ty,by,pt2(2,1000J,tot pts2 -
integer flagl,flag2,any nl,any n2 ~ 
open(unit•l,file•'b image.dat•~status•'old' J 

open(unit•2,file•'b-imagel.dat' ,status••new' J 

read(l,20) (il -
if (i.ne.2) then 

go to 50 
end if 
write(2,20) (i) 

20 format(li7) 
22 format(2i7l 

readll,20) (tot ptsll 
do j•l,tot ptsl-

read(l,2!1 lptlli,jl,i•l,2) 
enddo 
readll,201 (tot pts21 
do j•l,tot pts2-

read(l,2!) (pt21i,jl,i•l,2) 
enddo 
do k•l,tot ptsl-1 

t pt•tot-ptsl 
d;;;O -
j•k+l 

do i•j,t pt 
l•i-d -
if llptlll,k).eq.ptlil,l)).ANO.(ptll2,k).eq.ptli2,llll then 

do m•l+l,tot ptsl 
ptl(l,m-l);;;ptl(l,m) 
ptl(2,m-l)•ptl12,m) 

enddo 
tot ptsl•tot ptsl-1 

c write { 6, •) ( tot ptsl) 
d•d-1 -

end if 
enddo 

enddo 
write(2,201 (tot ptsl) 
do n•l,tot ptsl -

write(2,Z2l (ptl(i,n),i•l,2) 
enddo 

C 
do k•l,tot pts2-1 

t pt•tot-pts2 
a;o -
j•k+l 

do i•j,t_pt 
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lsi-d 
if I I pt2 I 1, k I. eq. pt2 I 1,111 .AND, I pt2 I 2, k I. eq. pt2 I 2, l I I I then 

do m•l+l,tot pts2 
pt2(1,m-l)~pt2(1,m) 
pt2(2,m-ll•pt212,mJ 

enddo 
tot pts2•tot pts2-l 

c wri'te(6,*) (tot pts2) 
d•d-1 -

end if 
enddo 

enddo 
write(2,20) (tot pts2) 
do n•l,tot pts2 

write(2,12) (pt2{i,nl,i•l,2) 
enddo 
close(unit•l,disoose•'save•) 
close(unit•2,disPose•'save•) 

c THIS PART OF THE PROGRAM REMOVES SINGLE POINTS AND UNCLOSED CURVES 

open(unit•l,file•'b imagel.dat' ,status•'old' l 
open(unit•2,file••b-image2.dat• ,status••new') 
read(l,20) (i) -

if ( i . ne. 2 l then 
go to SO 

end if 
write(2,20) (i) 
read(l,20) (tptl) 

c write(6,*) {tptll 
do j•l,tptl 

read(l,221 (pt l(i,jl,i•l,21 
enddo -

read(l,20) (tpt2) 
c write ( 6, *) ( tpt2) 

do j•l,tpt2 
read(l,22) (pt_2(i,j),i•l,2) 

enddo 

any nl,.O 
52 flagl•O 

do i•l,tptl 
count(i)•O 

enddo 
do i•l,tptl 

do j•l,tptl 
lx•pt 1(1,i)-l 
rx•pt-1( l, i )+l 
ty•pt-1(2,i)-l 
by•pt-1(2,i)+l 
if (ITlxl.eq,(pt 111,j))l,AND. 

+ ((pt 1(2,ill,eq,lpt-112,j)lll then 
- count(i)•count(i)+l 

end if 
if I I ( rx I, eq. ( pt l I 1, j I I I . AND. 

+ ((pt 1(2,i)).eq,(pt-112,jlll I then 
- count(i)•count{i)+l 

end if 
if (((ty).eq,(pt 1(2,jlll,AND, 

+ I I pt l I 1, i I I . eq. I pt-1 I 1, j I 111 then 
- count(il•count(i)+l 

end if 
if (((byl.eq,(pt_l(2,j))l,AND. 
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+ llpt 111,i)).eq.{pt 111,j)II) then 
- count{i)•count(il+l 

end if 
enddo 

enddo 
d•O 

do i•l,tptl 
if (count{i).le.l) then 

do j:ai, t,ptl-1 
pt 111,j+di•pt 111,j+d+ll 
pt-112,j+d)•pt-112,j+d+ll 

enddO -
flagl•l 
d•d-1 

end if 
c write(6,*) (d) 

enddo 
if (flagl.eq.l) then 

any nl•l 
end if-

c write(6,*) (d) 
tptl•tptl+d 

if (flagl.eq.ll then 
go to 52 

end if 
if (any nl.eq.OJ then 

type*, 'NO NOISE IN STRIPE l l' 
else 

type•, 'NOISE REDUCTION IN STRIPE l COMPLETE' 
end if 

write(2,20) (tptl) 
do i•l,tptl 

write(2,22) (pt_Ul,i),pt_1(2,i)l 
enddo 

any n2•0 
5 3 flag2•0 

do i•l, q:it2 
count(i)•O 

enddo 
do isl,tpt2 

do j•l, tpt2 
lx•pt 211,i)-l 
rx•pt-2(1,il+l 
ty•pt-212,l)-l 
by•pt-2(2,i)+l 
if l(Tlx).eq.{pt 2(1,j)II.ANO. 

+ ( ( pt 2 ( 2, i) I . eq. ( pt-2 I 2, j I I I I then 
- count{il•count(i)+l 

end if 
if l((rx).eq.(pt 211,j)l).ANO. 

+ ((pt 2(2,l)) .eq.(pt-212,j)l)I then 
- count(i)•count(i)+l 

end if 
if (((ty).eq.(pt 212,j))).ANO. 

+ ({pt 211,il).eq.{pt-211,j)lll then 
- count(i)•count(il+l 

end if 
if ({(by).eq.(pt 212,j))).ANO. 

+ {(pt 211,i)).eq.lpt-211,j)l)l then 
- count(i)•count(i)+l 

end if 
enddo 
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enddo 
d•O 

do i=l,tpt2 
if (count(i).le.l) then 

do j•i.,tpt2-l 
pt 2(1,j+d)•pt 2{1,j+d+l) 
pt-2(2,j+d)apt-2(2,j+d+l) 

endd0 -
flag2•1 
d•d-1 

end if 
c write(6,*l (d) 

enddo 
if lflag2.eq.l) then 

any n2•1 
end if-

c write(6,*) (d) 
tpt2•tpt2+d 

if {flag2.eq.l) then 
go to 53 

end if 
if (any n2.eq.OJ then 

type*, 'NO NOISE IN STRIPE 2 !' 
else 

type*, 'NOISE REDUCTION IN STRIPE 2 COMPLETE' 
end if 

writel2,20) ltpt21 
do i•l,tpt2 

writel2,221 (pt 211,11 ,pt 212,111 
enddo - -

close(unit•l,dispose•'save') 
close(unit•2,dispose•'save') 
go to 51 

50 type*, 'NUMBER OF OBJECTS NOT TWO, CHECK THRESHOLD' 
51 isl 

end 
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C PROGRAM FINO CORNER 

C THIS PROGRAM FINDS THE PERPENDICULAR DISTANCE FROM EACH POINT IN THE 
C OBJECT CONTOUR DATA TO THE LINE PASSING THROUGH TWO POINTS ON EITHER 
C SIDE OF THE CONCERNED POINT. THE DISTANCE AT WHICH TWO POIN~S ARE 
C CHOSEN ON EITHER SIDE OF THE CONCERNED POINT IS ENTERED BY THE USER 
C WHEN THE PROGRAM PROMTS TO ENTER THIS SPAN, THE INPUT FILE IS 
C 'B IMAGE2.DAT' AND THE OUTPUT FILE CREATED IS 'CORN.OAT'. THE FIRST 
C INTEGER IN THIS FILE INDICATES THE NUMBER OF OBJECTS WHICH IS TWO HERE. 
C THE SECOND INTEGER INDICATES THE THE TOTAL NUMBER OF POINTS IN THE 
C FIRST OBJECT CONTOUR DATA, THE INTEGERS THAT FOLLOW REPRESENT THE 
C ABOVE MENTIONED 'PERPENDICULAR DISTANCE'. THE NEXT INTEGER THAT 
C FOLLOWS, INDICATES THE NUMBER OF POINTS IN THE SECOND OBJECT CONTOUR 
C DATA, AND SO ON. 

integer i,j,k,tot_obj,tot_ptsl,tot_pts2,ptl(2000,2l ,pt2(2000,2),sp 
integer vl,v2,xol,xo2,yol,yo2,xtl,xt2,ytl,yt2,nll,nl2 
real disl(l000),dis2(l000),dll,dl2 
apen(unit•l,file•'b image2.dat• ,status•'old') 
open(unit•2,file••c0rn.dat' ,status•'new') 
read(l,22) (tot obj) 

22 format(li7) -
if (tot obj.ne.2) then 

go tO 30 
end if 
write(2,22l (tot obj) 
read(l,22) (tot Ptsl) 

do 40 i•l,tot-ptsl 
read(l,24) Tptl(i,j},j•l,2) 

40 continue 
write(2,22) (tot ptsl) 

24 format(2i7l -
read(l,22) (tot pts2) 

do 41 i•l,tot-pts2 
read(l,24) Tpt2(i,j),j•l,2) 

41 continue 
type*, 'ENTER SPAN IN PIXEL UNITS -
read(S,*) (sp) 

do 42 i•l,tot ptsl 
vl•i-sp -

if (vl.le.Ol then 
vl•tot ptsl+vl 

end if -
v2•mod(i+sp,tot_ptsl) 

if (v2.eq,Ol then 
v2•tot ptsl 

end if -
yol•ptl(i,21 
xol•ptl(i,11 
ytl•ptl(vl,2)-ptl(v2,21 
xtl•ptl(vl,l)-ptl(v2,l) 
nll•xol*ytl - yol*xtl - ptl(vl,l)*ytl + ptl(vl,2l*xtl 
nll•abs(nlll 
dll•sqrt(real(ytl••2 + xtl**2)) 
disl(il - nll/dll 

write(2,26) (disl(i)) 

42 continue 
write(2,22l (tot pts2) 
do 43 i•l,tot pti2 

vl•i-sp -
if (vl.le.Ol then 
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43 
26 

C 

C 

C 

C 

C 

C 

C 
c45 
C 

C 

C 

C 

C 

C 

C 

JO 
35 

vl•tot i;>ts2+vl 
end if -

v2•mod(i+sp,tot pts2) 
if (v2.eq.O) then 

v2•tot pts2 
end if -

yo2•pt21i,2J 
x.o2•pt2{i,l) 
yt2•pt2(vl,2)-pt2(v2,2) 
xt2•pt21vl,1J-pt2(v2,l) 
nl2•xo2•yt2 - yo2•xt2 - ~t2(vl,ll•yt2 + pt2(vl,2)•xt2 
nl2,.abs(nl2) 
dl2•sqrt(real(yt2**2 + xt2**2)) 
dis2(i) • nl2/dl2 

write(2,26) (dis2(i)) 
continue 

format{el8,6) 
aminl•angl(l) 
imin•l 
do 45 i•2,tot ptsl 

if (ang(il.It.aminl) then 
aminl•ang(i) 
imin•i 

end if 
continue 
dif2•angl(ll-aminl 
do 46 i•l,tot ptsl 

if ((angl(iT-aminl).lt.dif2l then 
dif2•angl(i)-aminl 
imin2•i 

end if 
dif3•ang 

go to 3S 
type•, 'NO. OF OBJECTS IS NOT TWO CHECK THRESHOLD' 
i,.l 
close(unit•2,dispose•'save' l 
close(unit•l,dispose•'save') 
end 
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C PROGRAM CORNER 

c THIS PROGRAM FINDS THE FOUR CORNERS TN THE CONTOUR OF THE TWO OBJECTS, 
C THIS IS DONE BY FINDING THE FOUR PEAKS IN THE 'PERPENDICULAR DISTANCE' 
C DATA FORM THE FILE 'CORN.DAT'. FROM THE FOUR CORNER POINTS THE CENTER 
C OF THE QUADRILATERAL IS FOUND, WHICH IS THE POINT OF INTEREST, THE 
C FOUR POINTS AND ITS CENTER FOR BOTH OBJECTS IS STORED IN A FILE CALLEO 
C 'POINTS.DAT'. 

integer i,j,k,t ptl,t pt2,iil{4),ii2{4) ,m,i2,sml 
integer ptl(l001r,2),pt2(l000,2),prl 1121,prl 2(21 
integer pr2 1(2] ,pr2 2{2),clx,cly,clx,c2y -
real disl(lijOQ),dis2(1000),tdl,td2,sm,ndisl(4),ndis2(4) 
real ppl 1(21,ppl 212),pp2 l(2),pp2 2121 
real ccli,ccly,cc!x,cc2y - -
open(unit•l,file•'corn.dat' ,status•'old') 
open(unit•2,file•'b image2.dat• ,status•'old' l 
open(unit•3,file• 1 pOints.dat 1 ,status•'new•) 

20 format{li7l 
22 format(e18.6J 
24 format(2i7) 

read(2,20) (ii 
cead(2,20) (i) 

do j•l.i 
cead{2,24J (ptl(j,kl,k•l,2) 

enddo 
read(2,20l (i) 

do j•l,i 
read(2,24l (pt2(j,k),k•l,2) 

enddo 

read(l,201 (ii 
read(l,20) It ptll 

do i•l,t ptI 
read(I.22) (disl(ill 

enddo 
read ( l, 20) ( t pt2) 

do i•l,t pt2" 
read(I,221 (dis2(i)) 

enddo 
do j•l,4 
tdl•disl(ll 

do i•2,t ptl 
if (dfsl(i) .gt.tdll then 

tdl•disl(il 
end if 

enddo 
do i•l,t ptl 

if (dTsl(i).eq.tdll then 
iil(j)•i 
go to 50 

end if 
enddo 

50 k•lillj) 
disl(k)•O 
do i•l,8 

m•mod(k+i,t ptll 
if (m.eq.0)-then 

m•O 
end if 
disl(m)•O 
m•k-i 
if (m.le.O) then 

m•t_ptl+m 
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end if 
disl(m)•O 

enddo 
endrio 
write(6,•J {iil(il,i•l,4) 
do j•l,4 
td2•dis2(1) 

do i,.2,t pt2 
if (dis2(i).gt.td2) then 

td2•dis2(i) 
end if 

enddo 
do i•l,t pt2 

if {dis2{i}.eq.td2J then 
ii2(j)•i 
go to 51 

end if 
enddo 

51 k•ii21jJ 
dis2(kJ•O 
do i•l,8 

m•mod(k+i,t pt2) 
1.£ (m.eq,0) then 

m•O 
end if 
dis2(ml•O 
m•k-i 
if (m.le.O) then 

m•t pt2+m 
end i! 
dis2(m)•O 

enddo 
enddo 
write(6,•) (ii2(i),i•l,4J 

do i•l,3 
do j•i+l,4 

if (iil(i).gt.iillj)) then 
k•iil{i) 
iil{ i l•iil( j) 
iil( j l•k 

end if 
enddo 

enddo 
do i-1,3 

do j•i-t-1,4 
if (ii2(il .gt.ii2{j)) then 

k•ii2Ci) 
ii2(i)•ii2(j) 
ii2(jl•k 

end if 
enddo 

enddo 
write(6,•) (iil(il,i•l,4) 
write{6,•) (ii2(il,i•l,4) 

do i•l,4 
i2•mod(i+l,4) 

if li2.eq.O) then 
i2•4 

end if 
ndisl( i l•I ptl I ill Ii), 1 J-ptl( ill( i2), l)) **2 + 

+ ( ptl ( i il I i) , 2 I -ptl \ i il I i 2 I , 2 I I** 2 
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ndisl(i)•sqrt(ndisl(i)) 
enddo 

do i"'l,4 
i2•mod(i+l,4) 

if (i2.eq.O) then 
i2•4 

end if 
ndis2(il•(pt2(iil(il,ll-pt2(iil(i2),1))"'"'2 + 

+ {pt2(iil(iJ,2l-pt2(iil(i2J,21)"'*2 
nd i s2 ( i ) •sqrt { nd is 2 ( i ) ) 

enddo 

sm-ndisl(l) 
do i•2,4 

if (sm.gt.ndisl(i)) then 
sm•ndisl(i) 

end if 
enddo 
do i•l,4 

if ( sm.eq.ndisl( i)) then 
sml•i 

end if 
enddo 

prl l(l)•sml 
i;:mod{ sml+l ,_4 l 

if {i.eq.O) then 
i•4 

end if 
prl 112l•i 
p,l-21ll•modlp,l 1121+1,4) 

-if {prl 2(1J~eq.0) then 
p<l !11)•4 

end if-
prl 2(2)•mod(prl 2(1)+1,4) 

-if lprl 212)7eq,0) then 
prl 112)•4 

end if-

sm•ndis2( l l 
do i•2, 4 

if (sm.gt.ndis2(i)J then 
sm•ndis2(i) 

end if 
enddo 
do i•l,4 

if lsm.eq.ndis2(i)) then 
sml•i 

end if 
enddo 

pr2_11ll•sml 
i•mod(sml+l,4) 

if (i.eq.01 then 
i•4 

end if 
pr2 112)•i 
p,2-21ll•modlp,2 1(2)+1,4) 

-if (pr2 2il)7eq.O) then 
pr2 "2'11)•4 

end if
pr2_2(2)•mod(pr2_2(1)+1,4) 

if (pt2 2(2).eq.0) then 
pt2_!(2)•4 
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end if 

ppl lill•lptll 
ppl=l 12 l•I ptl( 
ppl 2(l)•(ptl( 
ppl=2121•1ptl( 

l(prl llll 1,11 + ptlli l(prl 1(211 ,lll/2 
l(prl-11111,21 + ptl(i l(prl-112)1,211/2 
l(prl-2111),1) + ptlli llprl-21211,11)/2 
l(prl=21111,21 + ptlli llprl=2(2)),2))/2 

pp2 llll•lpt2(ii21pr2 111)1,l) + pt21ii2(pr2 1(2)1,111/2 
pp2-1(21•1pt2(ii2(pr2-l(ll),2) + pt2(ii21pr2-li2)),2))/2 
pp2-2(l)•lpt2(ii2(pr2=21111,ll + pt2(ii21pr2-2(2)),lll/2 
pp2=2(2)•1pt2(ii2(pr2_2(l)) ,2) + pt21ii21pr2=2(2)) ,211/2 

cclx • (ppl llll + ppl 2(111/2 
ccly • (ppl-112) + ppl-2121)/2 
cc2x • (pp2-lil) + pp2-2ill)/2 
cc2y • (pp2=112) + pp2=2(2)1/2 

clx•int(cclx) 
cly•int(ccly) 
c2x•int(cc2x) 
c2y•int(cc2y) 

write(3,201 121 
write(3,201 (51 
write(3,24) lptlliil(prl l(ll), ),i•l,2) 
write(3,241 (ptlliil(prCl(211, l,i•l,21 
write(3,24) (ptl(iil(prl-2(1)), ),i•l,2) 
write( 3,24) (ptl( iil(pcl-2(2) I, I ,i•l,2) 
write( 3,241 (clx,cly) -

wcite(l,201 (51 
write(l,241 (pt2(ii2(pc2 1(1)1, ),i•l,2) 
wcite(3,241 (pt2(ii2(pc2-1(211, ),i•l,2) 
wcite(3,241 lpt2(ii2(pc2-2(11), l,i•l,2) 
wcite(3,24) (pt2(ii21pc2-2(2)), l,i•l,21 
write(3,24) {c2x,c2y) -

close(un t•l,status•'save') 
close(un t-2,status-•save•) 
close(un t•3,status••save') 

end 
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C PROGRAM ORION 

C THIS PROGRAM COMPUTES THE ORIENTATION USING THE TWO POINTS 
C OBTAINED FROM THE PROGRAM 'CORNER.FOR' 1 THAT IS THE CENTER OF 
C THE QUADRILATERAL. THIS DATA IS IN THE FILE 'POINTS.DAT'. 
C THE OUTPUT ORIENTATION ANGLES IS SHOWN ON THE SCREEN. 
C 'ALPHA' IS THE INCLINATION OF THE CYLINDER AXIS WITH RESPECT TO 
C THE HORIZONTAL ABOUT A HORIZONTAL AXIS. 
C 'BETA' IS THE ORIENTATION ABOUT THE VERTICAL AXIS. 

integer i,j,k,xi,yl,x2,y2 
real r,xpl,ypl,xp2,yp2,x apl,y apl,x ap2,y ap2,z0,hyl,hy2 
real a_phil,a phi2,th,alPhal,aipha2,inl,ynI,znl,xn2,yn2,zn2 
real y pl,y p1,xsl,ysl,zsl,xs2,ys2,zs2,beta,gamma,bnl,bn2,br 
real giil,gnl,gr1tP 
open(unit•l,file•'points.dat' ,status•'old') 

22 format(li7) 
24 formatt2i7) 

read(l,22) (i) 
read(l,22) Iii 
read(l,24) {i,j) 
cead(l,24) (i,j) 
readtl,241 li,jl 
read(l,24) (i,j) 
read(l,24) (xl,yll 
read(l,22) (i) 
read(l,24) (i,jl 
read(l,241 (i,j) 
read(l,24) (i,j) 
read(l,24) (i,j) 
read(l,24) (x2,y2) 

c type*, 'input xl,yl values' 
c read{S,•) (xl,yl) 
c type*, • input x2, y2 values• 
c read(S,*) (x2,y2) 

if {xl.gt.x2) then 
tp • xl 
xl • x2 
x:2 • tp 
tp • yl 
yl • y2 
y2 • tp 

end if 
r • 2.2/80 
xpl • -119,5 + yl 
ypl • 159,S - xl 
xp2 • -119.S + y2 
yp2 • 1S9,S - x2 
x apl • r•xpl 
y-apl • r•ypl 
x=ap2 • r"'Xp2 
y ap2 • r•yp2 
i!! • 2S.4 
hyl • sqrt((z0)**2 + Cy apl)**2l 
hy2 • sqrt((z0)**2 + (y-ap2)••2) 
a phil • atand(y apl/zOT 
•-phi2 • atand(y-ap2/z0J 
tli • 28 -
alphal - a phil - th 
alpha2 • •-phi2 - th 
xnl • x apI 
ynl • hyl•(sind(alphal)I 
znl • -hyl•(cosdlalphalJJ 
xn2 • x_ap2 
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yn2 • hy2•{sind(alpha2)) 
zn2 • -hy2*{cosd(alpha2)) 
y pl • 359 
y-p2 • 359 + 278 
ysl • y pl 
xsl • (Y_pl/ynl)*xnl 
zsl • (y_pl/ynl)*znl 
ys2 • y p2 
xs2 • (Y p2/yn2J*xn2 
zs2 • (y=p2/yn2)*zn2 
write(6,*) (xsl,ysl,zsl) 
write(6,*) (xs2,ys2,zs2) 
bnl • (ysl - ys2)**2 + (zsl - zs2)**2 
bnl • sgrt(bnlJ 
bn2 • (xsl - xs2)**2 + {ysl - ys2)**2 + (zsl - zs2)**2 
bn2 • sqrt(bn2) 
br • bnl/bn2 
beta• acosd(br) 

if (xsl.lt.xs2J then 
beta• -beta 

end if 
gnl • (ysl - ys2)*•2 
gnl • sqrt(gnl) 
gn2 • (ysl - ys2)**2 + (zsl - zs2)**2 
gn2 • sqrt{gn2) 
gr• gnl/gn2 
gamma• acosd(gr) 

if {zsl.lt.zs2) then 
gamma• -gamma 

end if 
write(6,*) ('beta• ',beta) 
write(6,*) ('gamma• ',gamma) 
close(unit•l,dispose•'save') 
end 
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