
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1988

A Structured Light Method for Sensing Alignment During A Structured Light Method for Sensing Alignment During

Automated Truss Assembly Automated Truss Assembly

Jayesh K. Champaneri
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Champaneri, Jayesh K.. "A Structured Light Method for Sensing Alignment During Automated Truss
Assembly" (1988). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion
University, DOI: 10.25777/m1dn-gq66
https://digitalcommons.odu.edu/ece_etds/305

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/305?utm_source=digitalcommons.odu.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Karin Cornils

Nicolas Alvertos

A STRUCTURED LIGlIT METHOD FOR SENSING ALIGNMENT DURING
AUTOMATED TRUSS ASSEMBLY

by

Jaye.sh K. Champaneri
B.E. May 1984, University of Poona

A Thesis Submitted to the Faculty of
OJd Dominion University in Partial Fulfillment

of the Requirements for the Degree of

MASTER OF ENGINEERING

ELECI'RICAL ENGINEERING

OLD DOMINION UNNERSITY
November, 1988

Approved by:

Dav,i.d L. ;LiJ!P~Director)

ABSTRACT

A STRUCTURED LIGIIT METHOD FOR CYLINDRICAL

BEAM ALIGNMENT

Jayesh K. Champaneri

Old Dominion University, 1988

Director: Dr. David L. Livingston

A new method using structured light is proposed to obtain visual feedback

information for aligning two cylindrical beams. For a robotic system employed to

perform alignment operations in real time it is essential that the accompanying
' vision system does not pose a heavy burden on the computing machinery and

reduce the overall speed of operation. The method proposed here involves two

stripes of light projected on each cylinder. One picture frame is sufficient to

completely determine the position of the cylinder in space. An experiment was

conducted to demonstrate the principle of this method. Results showed that the

errors involved were within the practical limitations of the components.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. David L. Livingston,

for his guidance, encouragement and persistence throughout the course of this

research, and Mr. Plesent W. Goode, for his guidance on the practical aspects of

the project.

I would like to thank Ms. Karin Cornils for her time and perserverance in

introducing me to the image processing unit and its software, and Dr. Nicolas

Alvertos, for his time and effort in many stimulating discussions.

I would also like to acknowledge the financial support by the National

Aeronautics and Space Administration under contract NASl-17993-71.

ii

TABLE OF CONTENTS

PAGE

LIST OF TABLES . • V

LIST OF FIGURES. • vi

LIST OF PLATES . • vii

CHAPTER

I INTRODUCTION • • • 1
Objective • 3
Thesis Structure. 3

II BACKGROUND. • 5
A General Approach • 5
Previous Work. • • 6
Proposed Methods. • • 8

III THEORETICAL DEVELOPMENT • • • 10
System Configuration 10
Geometrical Analysis • • 18

IV PRACTICAL IMPLEMENTATION • • • 28
Empirical Evidence . 28
Approximation Error. • • • 32
Practical Considerations 36
Experimental Set-Up. 41
Results. • • • • 44

V CONCLUSIONS AND FUTURE RESEARCH 46
Remarks. • • • • • 46
Future Research . • • 48

iii

LIST OF REFERENCES,

APPENDIX A •

Program Listings

•

• •

iv

PAGE

50

57

58

TABLE

1. Results •

LIST OF TABLES

•

V

PAGE

45

FIGURE

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
4.la.
4.lb.

4.2.

4.3.

4.4.
4.5.1.
4.5.1.
4.5.1.

LIST OF FIGURES

Geometrical configuration of cylinders Kand
L with respect to the cartesian coordinate
system. . .
Initial cylinder position in space .
Schematic top view of cylinder,
projectors and camera • •
Height comparison of two cylinders ...
Depth comparison of two cylinders.
Schematic of three-dimensional set-up
Planes of light casting light stripes
Image stripes on the focal plane .
G--the axis of rotation ..
H--the final alignment point
Image stripe on a planar surface.
Image stripe on cylinder as seen by the
camera. . •
Image stripe comparison on
curved and planar surface
Representation of the corners of the image
stripe.
Projection of corner points. . .
Graph comparison for corner detection .
Graph comparison for corner detection
Graph comparison for corner detection .

vi

•

•

•

•
•

•

•

PAGE

2
11

13
14
16
17
19
20
23
25
29

29

31

33
34
39
40
42

LIST OF PLATES

PAGE

PLATE

1. Captured image at sixteen levels of gray 52

2. Binary thresholded image. • • • 53

3. Image after edge detection 54

4. Filtered image • • • • • 55

5. Image showing corner and center points • 56

vii

CHAPTER I

INTRODUCTION

Vision as a means of feedback in robotic manipulator assisted operations is

gaining widespread attention. Various techniques have been explored in this area

depending upon the nature of information to be extracted. For example, edge

detection techniques are being particularly employed for object identification

purposes. For more specific applications where sufficiently accurate information

about the object's surface features, position, and orientation is required,

structured light methods are often used [5], [6], [7].

In a structured light method, the object whose features or properties are to

be determined is illuminated either by stripes of light or a grid pattern. The

stripes of light are commonly referred to as planes of light since they are formed

due to light emanating in a single plane from the projector for each stripe. The

grid pattern consists of two sets of planes of light where one set has the planes of

light perpendicular to those in the other set. The projection pattern used in this

research consists of four planes of light forming two stripes on each of the two

cylinders. The position of two cylinders with respect to the coordinate system is

shown in Figure 1.1. The axes of the two cylinders are colinear and parallel to the

y-axis when they are aligned.

K~----------+----.

Figure 1.1. Geometrical configuration of cylinders K and L with respect to the
cartesian coordinate system.

z

N

OBJECTIVE

The objective of this thesis is to investigate the effectiveness of a visual

feedback mechanism using structured light for a robotic system which performs

assembly operations of a structure consisting of beams and nodes [16]. This

assembly operation can be carried out either in the fully automatic mode or the

teleoperated mode. At least two robotic arms are required to manipulate the

cylinders, one for each cylinder. Before the two cylinders can be assembled, it is

necessary that they are axially aligned. In the teleoperated mode, an operator is

given feedback about the degree of alignment. Information about the direction

and the amount required to move the cylinders to achieve alignment is then

specified. In the fully automatic mode, the process of alignment of the cylinders

is entirely performed by the robotic system. Direct commands for manipulating

the cylindrical beams are presented and are decomposed and interpreted by the

system as primitive commands for the arms handling each beam. It is here that

primitive commands are defined to translate or rotate the cylindrical beam about a

given axis by a certain amount.

THESIS SlRUCI'URE

This thesis describes how a structured light pattern consisting of stripes of

light can be applied to the task of performing cylindrical beam alignment in real

time with little computational overhead. The sequence of chapters closely

matches the evolution of ideas, considerations and modifications that were

required in its implementation. The image of the stripes of light projected on the

cylinder is shown in Plate 1. The thresholded image as well as further processed

images are shown in plates 2, 3, 4, and 5. Information about the position of the

axis of the cylinder is obtained from the image shown in Plate 5.

3

Chapter II discusses the development of a general approach from which the

final idea that was implemented was evolved. A survey of past approaches to

robotic vision problems is also presented in this chapter. The need for the

method presented in this thesis is also addressed.

The geometrical configuration for the sake of analysis of the proposed

scheme is introduced in Chapter III. This chapter explains the coordinate system

used and the relative positions of the projectors, camera, and cylinders. An

empirical result that relates the position of a point on the axis of the cylinder with

that of the image as seen by the camera is formulated in Chapter IV. The actual

experimental set-up and the practical difficulties which necessitated slight

modifications are also presented in this chapter.

Chapter V summarizes the results and presents the conclusions that are

drawn from this research. Research topics for further exploration are also

suggested in this chapter.

4

A GENERAL APPROACH

CHAPTER2

BACKGROUND

The proposed method to perform the task of assembling trusses and nodes

for the construction of large space structures, such as the space station, involves

robotic manipulators aided with vision capabilities for feedback [16]. The

feedback information is to be such that it can be interpreted by a human

controlling the robotic arms in a teleoperated mode, or by the robotic control

system in an automatic mode. This feedback information consists of the amount

and direction in which the cylindrical beams are to be rotated and then displaced

to achieve alignment.

In using vision as a feedback aid to sense the position of objects, various

techniques are generally employed depending upon the nature of the problem.

The object may be viewed in ambient light and edge detection may be performed

on its image to identify the object. Other features may be detected by carrying

out specific processing techniques, for example, using reflectance properties and

light scattering effects to determine surface texture, or using a grid pattern of light

to determine object curvature. Most of the time positional information about an

object, whether known or unknown, is determined using structured light patterns.

The commonly used light patterns are the mesh projection which consists of

horizontal and vertical stripes of light, and the grid projection which consists of

evenly spaced points in a horizontal and vertical direction [SJ. Some structured

5

light methods use either horizontal or vertical stripes [6). The choice of a

particular type of projection system depends on the system requirements.

The structured light pattern chosen here consists of four stripes of light.

Two light stripes project on each cylindrical beam. It is assumed that we know

that the objects whose positions are to be determined are cylinders, but their

diameters are unknown. As will be apparent from the discussion in forthcoming

chapters, it is not necessary to determine the cylinder diameters. The light stripes

are projected such that the vertical stripes are perpendicular to the cylinders' axes

when they are aligned.

PREVIOUS WORK

The goal of the present research is to investigate a structured light robot

vision system suitable for visual servoing in real time. This implies the capability

to completely specify the position and orientation of an object in space relative to

the robot's coordinate system (refer to Chapter ill) in real time.

Different methods and their capabilities using structured light are now

discussed. The definition of the position and orientation in space of an object

relative to the robot's coordinate system has six degrees of freedom as explained

by J. Albus, et al. [1]. Since the object used here is a cylinder, one of the degrees

of freedom is about its axis. In this study, this degree of freedom is immaterial.

This leaves five degrees of freedom to be determined. The use of structured light

to extract three-dimensional shape and position information is a well known

technique. A plane of light has been demonstrated to be a practical solution for

feedback in robot arc welding [2], [3]. Discontinuities in the image of the plane

of light perceived by a camera are analyzed and feedback information is given to

6

the robot controller. Where determining position of objects is concerned, this

method does not generate sufficient information.

Other techniques which recognize objects and determine their position have

also been studied. Various kinds of pattern recognition and image processing

techniques have been employed. Will and Pennington [5] have demonstrated the

use of grid coding for curvature measurement. The object, which is to be

identified and whose position is to be determined, is illuminated using either a

one-dimensional or two-dimensional grating. Two-dimensional gratings provide

an extra degree of freedom in the feature detection task. This technique is very

useful in polyhedral object identification. Though this method is computationally

taJdng, it can extract range information, segment plane area, etc., from a scene.

This technique applied to cylindrical beam alignment would generate redundant

information.

Methods for making surface measurements using space encoded beams have

been studied by Posdamer and Altschuler [6]. Ishii and Nagata have used a laser

tracker to extract feature information from the object [7]. The laser tracks the

edge of the object and determines the position of points on the edge using

triangulation. This method is slower as compared with other methods discussed

above, as well as the technique used in this research.

Curved object location has been studied and techniques including stereo

measurements, material identification, and simulated imagery have been employed

[8]. Surface recognition which includes determining its location and orientation,

specifically as it applies to quadric surfaces, is described in detail in a paper by

E.L. Hall, et al. [9].

R. M. Haralick has explained the interpretation of information of the three

dimensional world on a two-dimensional image [10]. This involves the

7

understanding of perspective transformations which enables a vision system to

perform scene analysis. In studying perspective transfomations it is important to

know the camera parameters; such as the focal length of its lens system, the

position of the optical center and dimensions of the image plane. A rectangle of

known size is taken as the object and the perspective transformations that occur

on its image are analyzed [11].

The task discussed here for alignment of cylindrical beams in space can be

used in the teleoperated mode. A recognition operator for telerobotic vision is

discussed by P.W. Goode [12). An intelligent system employed with robotic

manipulators can enhance the capabilities of accomplishing this task in different
-

kinds of environments [13], [14]. A high level overview of the requirements of

object recognition have been discussed in a paper by P. Bes) and R. Jain [15].

PROPOSED METHODS

Two methods are proposed here to perform the alignment task using four

light stripe projectors. In the first method, two cameras are used and positioned

between the two light stripe projectors for each cylinder. At this time no

positional information about the cylinders is investigated; however, the necessary

translational and rotational displacements that are to be initiated are determined.

Such displacements are made until the two cylinders are axially aligned.

In the second method, the positions and orientations of the cylinders are

determined relative to the camera and light stripe projectors. From this

information, the amount and direction in which the cylinders are to be rotated and

displaced is computed and necessary action is taken to perform alignment.

Various techniques that generate visual feedback information in a robotic system

8

have been discussed here. The geometrical configuration of the camera,

projectors, and cylindrical beams is discussed in the next chapter.

9

CHAPTERIB

THEORETICAL DEVELOPMENT

In the previous chapter a brief introduction on potential methods to achieve

alignment of two cylindrical beams was presented. In the following material two

new methods are described in detail to sense the alignment of two cylinders. Both

methods, as proposed, employ two light-stripe projectors for each cylinder. The

first method consists of analyzing the properties of the relative position of the

image stripes as seen by the camera; whereas the second method determines the

equation of the cylinder in space with respect to the camera and light stripe

projectors. The coordinate system is as explained in Chapter I. In both methods

the two cylinders are independently rendered parallel to the y-axis before they are

axially aligned.

SYSTEM CONFIGURATION

For method one, consider cylinder Las shown in Figure 3.1. Points A and B

represent the center of the segments projected on the cylinder by stripes of light.

The image points A and B on the camera focal plane will have their own set of

pixel coordinates. Row pixels correspond to y coordinates while column pixels

correspond to x coordinates. It is necessary to first align the cylinder axis parallel

to the y-axis in the pixel coordinates of the camera focal plane.

Consider the configuration shown in Figure 3.2. The camera focal plane is

parallel to the XY -plane. It intersects with the z-axis at z = -k, where "k" is the

10

11

X

L

y

Figure 3. 1. Initial cylinder position in space.

focal length of the camera lens. From this figure we also note that aligning the

cylinder axis parallel to the y-axis in the pixel coordinates of the camera focal

plane is the same as aligning the cylinder axis parallel to the YZ-plane. This is

done by rotating the cylinder about an axis parallel to the z-axis passing through

the midpoint of segment AB. The cylinder is rotated until the x-pixel coordinates

of the image points A and B become equal. When this condition is achieved. the

cylinder lies in a plane parallel to the YZ-plane.

Since method one compares the symmetry of the two image points, A and B,

about a vertical bisector of the camera focal plane, it is necessary that the camera

lies exactly at the midpoint of the segment connecting projectors P1 and P2.

Hence, this arrangement requires two cameras, one for each cylinder.

If the cylinder is parallel to the y-axis, the points A and B lie symmetrically

about a line which vertically bisects the focal plane. If the cylinder is not parallel

to the y-axis, then due to perspective these points are not equidistant. From the

geometry shown in Figure 3.2 it is clear that the further the point (A or B) is from

the camera, the closer its image is to the vertical bisector in the focal plane. Thus

the direction in which the cylinder is to be rotated, can be determined. The

cylinder can then be rotated about an axis parallel to the x-axis passing through

the midpoint of segment AB, until]A equals ls. When this condition is satisfied,

the cylinder is parallel to the y-axis. A similar procedure is carried out for the

other cylinder K.

The first step necessary to align the two cylinders is to bring them to the

same horizontal level; that is, to make the x-coordinate value of points A and B

corresponding to cylinder L and points C and D corresponding to cylinder K the

same as shown in Figure 3.3.

12

13

>-
P1

y
M

z
focal plane

11B I lA

0 y
Figure 3.2. Schematic top view of cylinder,

projectors and camera.

X

C D K

A B L

(a) y
(b) y

Figure 3.3. Height comparison of two cylinders

Here the x-coordinate of any point on cylinder K is larger than the x

coordinate of any point on cylinder L. Thus, cylinder K is translated in such a

direction that its x-coordinate decreases and cylinder L is translated such that its

x-coordinate value increases. This is done until the x-coordinates of both

cylinders become equal. The distance between points A and B, and C and D are

compared, as is represented in Figure 3.4. Since the two cylinders are not the

same distance away from the camera, IK and IL are not equal; this signifies that the

z-coordinates are unequal.

Due to perspective, the size of IK or IL is larger if the corresponding cylinder

has a smaller z-coordinate value. In the example, IL is larger than IK since cylinder

L is closer to the camera than cylinder K. From this relationship the direction in

which the cylinders are to be moved along the z-direction is known. L is moved

away from the camera while K is moved towards the camera until IK equals IL·

As has been demonstrated, this method tends to achieve alignment of the

two cylinders by comparing the relative positions of the image stripes on the

camera and deducing the direction of motion of the cylinders to achieve

alignment. No attempt is made to determine the position of the cylinder with

respect to the camera and light stripe projectors.

The second method proposed, which was finally used and is described

extensively, uses only one camera which is placed exactly in between the two sets

of two projectors. This method determines the equation of the axis of each

cylinder and requires the use of algebraic and trigonometric techniques for

triangulation.

Figure 3.5 shows the configuration for use of the second method; the XYZ

coordinate system is as shown. The optical center of the camera lens is at the

origin. Its optical axis coincides with the z-axis. The camera focal plane is

15

z

K

L

y

Figure 3.4. Depth comparison of two cylinders

:r:

K c::::::::;::::;~C~:;::::;:::::::::::=:::::::::::=7D~::::::r

F (focal plane)

Pz

P1 ,Pz,Q1,Q2 : projectors

L, K : cylinders

Figure 3.5. Schematic of three-dimensional set-up.

z

B

L

y

--.I

perpendicular to the z-axis and is at a distance "k" in the negative z-direction.

Projectors P1 and P2 lie on the positive y-axis and cast stripes of light on cylinder L

forming patterns A and B. Projectors 01 and 0 2 lie on the negative y-axis and

cast stripes of light on cylinder K forming patterns C and D.

The primary requirement in the alignment task is to determine the equation

of the axis of the cylinder in question. This requires that the coordinates of at

least two points on that axis be known in the reference space. Two parallel stripes

of light are projected on the cylinder. The stripes of light are assumed to be of

zero thickness so that the image formed on the cylinder is either a straight or a

curved line depending upon the orientation of the cylinder and the viewing

position.

GEOMETRICAL ANALYSIS

As shown in Figure 3.6, projectors P1 and P2 project stripes of light on

cylinder L which form two patterns A and B. For the sake of analysis, let the

diameter of the cylinders L and K be zero; therefore, stripes A and B are reduced

to points and from now on shall be referred to as points A and B. Thus A and B

represent the points on the axis of the cylinder, that is, the points due to the

intersection of the axis and the plane of the light stripes. In Figure 3.7, Lis in the

positive octant of the three-dimensional cartesian coordinate system and

projectors P1 and P2 lie on the y-axis. P1 is at a distance "m" from the origin and

P2 is at a distance "n" from the origin. The planes of these stripes of light are

parallel to the XZ-plane. Rectangle F represents the focal plane or image plane

of the camera, which consists of picture elements or pixels; thus rays from all

patterns imaging on the focal plane pass through the origin. Focal plane F is

18

L

Pz

Figure 3.6 Planes of light costing light stripes.

X z

A B
L

1 y

B'
F

(focal plane) -----m--➔➔

i+------ll-------+t

Figure 3.7. Image stripes on the focal plane.

parallel to the XY-plane and lies in the negative z-direction at a distance "k" from

the origin. The z-axis passes through the center of F.

A' and B' are the image points on the camera focal plane corresponding to

points A and B, respectively. The lines connecting A to A' and B to B' pass

through the origin. The positions of points A' and B' with reference to F is known

since the pixels to which they correspond can be easily determined. Since the

camera position and orientation in space are known, the position of the focal

plane F is also known. Hence the positions of points A' and B' can be determined

in space.

To find the positions of points A and B in space, we need to solve the

equations of the lines AA' and BB' with the equations of the planes due to the

stripes of light formed by projectors P1 and P2 respectively.

Let the position of point A' be (x1,Y1.Z1) and that of point B' be (x2,Y2.Z2)

Then the equation of line AA' is

x/x1 = YIY1 = z/z1 (1)

the equation of line BB' is

x/x2 = Y/y2 = z/z2 (2)

From Figure 3.7, it is apparent that the equation of the plane of light due to

projector P1 is

y=m and

that due to projector P2 is

y = n.

Therefore, by substituting y = m in (1) we obtain

x = (x1/Y1)m •

y= m,and

z = (z1/Y1)m .

21

By substituting y = n in (2) we obtain

X = (Xi/Y2)n ,

y = n,and

z = (z'Zfy2)n .

Thus the coordinates of point A are

{(Y1/X1)m, m, (Y1lz1)m}

and of point B are

{(y'Zfx2)n, n, (y'Zfz2)n}

In terms of the coordinates of the points A and B, the equation of the axis of the

cylinder is

(x -xA)/(xA - xa) = (y -yA)l(YA • Ya) = (z • zA)/(zA • za) ,

where (xA,YA.ZA) and (XA.XB.XC) are the space coordinates of points A and B

respectively. As illustrated in Figure 3.8, M lies exactly in the center between

points A and B. We can now determine the amount and direction through which

the cylinder is to be rotated.

Consider an axis G through point M which is perpendicular to the plane

defined by the cylinder axis and a line passing through M and parallel to the y-axis.

The cylinder is to be rotated about G. The direction numbers [17) of axis F are

the same as the direction numbers of the normal to the above mentioned plane.

The direction numbers of any line parallel to the y-axis are (0,1,0). Let the

direction numbers of the axis of the cylinder L be (dx,dy, dz) where

<lx = xA. xa,

dy = YA • YB and

dz= ZA ·Za.

22

23

X

L
\

\

Figure 3.8. G-the axis of rotation.

Let the direction numbers of G be (nx.ny,!lz). Thus

nA:+nydy+Dzdz=0and

nx(0) + ny(l) + 11z(0) = 0,

which gives

dx = 0,

dy= land

dz=0.

Therefore, the direction numbers of axis G are (-dz, 0, dx). This demonstrates

that G always lies in a plane parallel to the XZ-plane. The equations of the axis

of Gare

nx = -dz,

ny = 0 and

Dz= dx·
Consider the direction numbers (dz, 0, -dx). These will also give the same

equation for axis G, but will signify the opposite direction. Maintaining

consistency in the calculation of <ix. dy, and dx gives the proper direction for the

axis of cylinder L and axis G. The direction in which L is to be rotated is

determined by the Left-Hand Rule. Let the amount of rotation in this direction

be 0. From the geometry of Figure 3.8, 0 is given by

0 = tan·l {[(xB-xw2 + (za-zM)']½/(yB-YM)}

Performing similar calculations for the second cylinder will give the amount and

the direction through which it is to be rotated to render it horizontal.

In Figure 3.9, both the cylinders L and K are horizontal but are not axially

aligned. This is the general case. Let C and D be the corresponding points for

cylinder K due to the projected light stripes, as A and B are to cylinder L. Now

the equations of the axis of L are

24

X

z

K ======l==::J

L

Figure 3.9. H-the final alignment point.

That of the axis of K are

x-xA = 0 and

Z • ZA = 0.

x-:tc=0 and

z-zc=0.

We need consider only one point on each cylinder; for example, point A on

cylinder L and point C on cylinder K. These two cylinders can be aligned at any

position; that is, at any desired x and z coordinate values.

Such a point, H, is shown in Figure 3.9. Point H is in the XOZ-plane with

coordinates (xtt,0,zH) such that its x and z coordinates correspond to the x and z

coordinate values of the desired position of the cylinders. Then the direction in

which L is translated is along the vector

(xH - xA, 0, zH - zA) and

the direction in which K is translated is along the vector

(XH • Xe, 0, Ztt. ZC) ·

L is translated by an amount

1 = [(xH - xA.)2 + (ztt • zA.)1½,

where I is the Euclidean distance between point H and point A. K is moved by an

amount

where k is the Euclidean distance between point H and point C. After moving to

this position, the equation of the axis of L is

x - XA - (xH - xA) = 0 and

Z • ZA • (zH • ZA) = 0.

26

That is,

x-xH = 0and

z-ZH = 0.

Similarly, the equation of K is

That is,

x - xc- (xH- xc) = 0 and

z -zc- (zH- zc) = o.

x-xH = 0 and

Z -ZH = 0.

Here we see that the axes of cylinder L and K are the same, that is, their axes are

colinear.

In this chapter two possible methods for aligning cylindrical beams were

discussed. The first method does not require that the positions of the cameras

and projectors be known. The algorithm works towards achieving an image, as

seen by the camera, that corresponds to alignment. In the second method, the

positions of the cylinders are determined with respect to the camera and projector

positions. The cylinder displacements are then computed to achieve alignment.

Even though both methods would render the two cylinders aligned, the second

method has obvious advantages over the first. Since the position of the cylinders

can be determined in the second method, they can be moved to any other position

relative to the camera and projectors if necessary. This feature would be

impossible with the first method. In the next chapter we discuss the practical

problems that were encountered in analyzing the image, especially that the

cylinder has a finite diameter.

27

CHAYmRIY

PRACTICAL IMPLEMENTATION

From the discussion in Chapter ill it is evident that two points on the axis of

the cylinder are required to determine its position. In this chapter, practical

problems that arise in determining the points on the axis of the cylinder from the

patterns cast by the light stripe projectors are discussed.

EMPIRICAL EVIDENCE

Ideally, the stripe of light emanates along a plane of zero thickness.

However, under practical situations a line having finite width is projected. Since

the cylinder has a finite diameter, the image of the light stripe as projected on the

cylinder may appear curved or as a rectangular area in the camera, depending

upon the relative positions of the cylinder and the projectors with respect to the

camera.

Figure 4.la shows the image of a single stripe as a straight segment. The

center point C of this stripe can be found easily since it lies midway along the

length and width. Now consider the case when the image stripe is a curved

segment as illustrated in Figure 4.lb. Again, point C can be found in the same

manner as explained above. Alternatively, the point C for both cases may be

found by calculating the centroid of the segment. For the first case the

centerpoint and centroid are identical points, but for the second case it is

displaced slightly to the side depending upon the amount of curvature. The

28

• C

Figure 4.1 a. Image stripe on a planar surface

C' • • C

Figure 4.1 b, Image stripe on cylinder as seen by
the camera.

29

centroid in the second case is represented by the point C. The position of the

point C or C, which lies on the focal plane, can be determined in space since the

camera position is known. and its corresponding point on the cylinder found as

explained in the previous theory. Here it is evident that this point would not

correspond to a point on the axis of the cylinder. Point C would correspond to a

point on the surface of the cylinder; whereas, point C', the centroid, would

correspond to a point within the cylinder but not on the axis.

Figure 4.2 represents a stripe of light projected on the cylinder L. The image

stripe on L has comers designated Ci, Cz, C3, and C4. If L is replaced by a "half-

cylinder" with a semi-circular cross-section, as shown in Figure 4.2b, we obtain the

image with corresponding comer points Di, Dz, D3, and D4. The planar area of

this half-cylinder is perpendicular to the YZ-plane. The only difference between

the image in Figure 4.2a and 4.2b is that in the second case the closed curve

formed with comer points D1, D2, D3, and D4 is a quadrilateral. From the

geometry of the quadrilateral, the central point C can be computed. It will be

shown how closely point C in the image plane corresponds to the point on the axis

of the cylinder, since it is theoretically impossible to determine a point on the axis

of the cylinder from the four comer points Di, D2, D3, and D4. In the theoretical

development in Chapter 3, it was assumed that the plane of light has zero

thickness. This is practically not possible. Instead, a volume of light is emanated

from the light stripe projector. Points Di, D4 and Dz, D3 are formed due to the

intersection of the cylinder with the two boundary planes, respectively. The ideal

plane of light can be represented by a plane lying exactly between the two

boundary planes, and it vertically bisects the projected stripe of light. It is

possible to determine a point on the axis of the cylinder only if we know the

30

()))) (I I I

(a) (b)

Figure 4.2. Image stripe comparison on curved and planar surface.

equations of the two boundary planes. Here it is assumed that the equations of

the boundary planes are unknown but that of the ideal plane is known.

APPROXIMATION ERROR

Since it is theoretically impossible to determine a point on the axis of the

cylinder unless the boundary planes are known, the amount of error incurred in

determining a point on the axis of the cylinder for the worst case configuration is

found. This is shown to be within the resolution of the image processing unit and

therefore is acceptable.

In Figure 4.3, points A.D and B,C are the projection of points on the image

plane due to the intersection of the two boundary planes with the cylinder; while,

points E,F are due to the projection of points on the image plane due to the

intersection of the ideal plane with the cylinder. Let points S,T on the cylinder

correspond to points A,D on the image plane as shown in Figure 4.4. V is the

midpoint of segment ST. Let the projected point on the image plane due to V be

V'. The error in determining the position of V' on the image plane is found. In

Figure 4.4, segment ST corresponds to the top portion of the stripe and coincides

with the axis of the cylinder. The cylinder axis is inclined at 30 degrees to the y

axis. This is the worst case. In the actual experiment it was not possible to incline

the cylinder by more than 20 degrees to the y-axis because of the experiment's

configuration constraints. Segment ST is considered to be formed due to

projector P2, instead of P1, since the farther the projector is from the camera the

larger the error in determining the position V'. Projector P2 is at a distance of

637mm from the optical center of the camera lens; point V is at a distance of

937mm; and the image plane of the camera is at a distance of 25.4mm in the

negative z-direction.

32

'
D

A
I

I
F

E 8

I

J

C

Figure 4.3. Representation of the corners of the image stripe.

33

34

0

11-4-(-- 637 --H

Figure 4.4. Projection of corner points.

The points A. B and V' lie at distances

respectively, from the XZ-plane.

a= 17.1765mm,

b = 17.3746mm and

v'= 17.2750mm,

Any point on segment ST maps on to the segment AB in the image plane. E is the

midpoint of segment AB and is given by

e =(a+ b)/2.

Thus, e = 17.2755mm. This gives an error of 0.0005mm, which is less than the

resolution of the image processing unit. The resolution of the image processing

unit is 0.0275mm. Point E, when projected on the cylinder axis deviates from the

point V by an amount which is negligible for practical purposes.

Another error that gets introduced is that the rays going into the camera

enter through a single point. The tangent rays that define the points Ci, Cz, c3,

and C4 in Figure 4.2a are unable to define points such that they lie in a plane

passing through the axis of the cylinder. The distance between this plane and the

axis of the cylinder as calculated for a cylinder of 50mm diameter is 0.66mm.

Consequently, it has not been considered in this experiment since it does not

contribute to the information regarding the amount the cylindrical beam is to be

rotated to render it horizontal.

Referring to Figure 4.3, which represents the quadrilateral due to points Di,

Dz, D3, and D4 in Figure 4.2b, the central point I can be determined as follows.

First points E and F are determined which are the midpoints of segments AB and

CD, respectively. Then I, the midpoint of segment EF, is found. Therefore, by

finding these corner points the parallelogram can be constructed and the center

point which now corresponds closely to a point on the axis of the cylinder can be

35

found. Broad stripes of light were considered here so that the comers could be

relatively well defined.

PRACTICAL CONSIDERATIONS

The approach chosen here for the alignment process is to first manipulate

the cylindrical beams so that they are horizontal. Manipulation of both the

cylindrical beams is performed through an identical sequence of steps. The

experimental configuration and design was carried out for one cylinder only for

the sake of simplicity. The method of obtaining information about the initial

position of the cylinder was described. With this information, the amount the

cylinder is to be rotated to render it horizontal can be computed.

From the preceding argument it is evident that this technique primarily

involves finding the points of intersection of the lines formed due to image stripes

on the camera focal plane passing through the lens center and the plane which

projects the light stripes. These quantities can be determined with the projectors

and camera in any other orientation. The optical center of the camera and the

projectors, must always be colinear, with the exception that the camera lens center

should not lie in any one of the planes of the light stripe projectors.

In the actual experimental set-up the optical axis of the camera, instead of

being coincident with the z-axis, was inclined towards the stripe patterns on the

cylinder by an angle µ,. This does not change the x-coordinates of the image points

formed on the camera focal plane. The new image y and z coordinates are given

by

y = (k2 + yp2)~in[tan•l(kfyp) + µ) and

z = (k2 + yp2)½cos[tan•l(kJyp) - µ],

36

where µ. is as given above, k is the distance of the focal plane from the Jens center

and yp is the distance along the row in the focal plane from the row center.

The image obtained from the camera was captured by an image processor

having a resolution of 320 x 240 pixels. The image was stored in a file consisting

of 240 lines corresponding to the 240 scan lines of the camera. Each line consisted

of 160 words each of which contained coded information representing the

intensity of two horizontally adjacent pixels which were digitized into sixteen gray

levels. Two neighboring pixels which were binary coded using eight bits were

concatenated to form a single sixteen bit word. The even-column pixels, starting

with zero, were assigned the least significant eight bits of the sixteen bit word,

while the odd-column pixels were assigned the most significant eight bits.

Reflective properties of the cylinder had to be modified by painting its

surface with white matte paint. Such a painting reduces the reflectivity of the

surface to a great extent while increasing the scattering effect. This resulted in a

uniform brightness over the entire segment. The image stored in the computer is

at a resolution of sixteen levels of gray (0 - 15) as is seen in Plate 1. Since we are

interested only in the two image stripes, which are the brightest parts in the

picture with an intensity level ranging from thirteen to fifteen, a threshold value of

twelve was chosen. Thus, all brightness values below twelve were converted to

zero and values at twelve or above were converted to fifteen. The thresholded

image is shown in Plate 2.

This binary image file was then processed by an edge finding algorithm.

This program looks for the total number of connected white areas present in the

image file which is two in our example. It gives the total number of boundary

points and their pixel coordinate values. Because of the nature of the edge

finding algorithm, some pixel values listed as edge pixels get repeated. Also

37

certain stray or unnecessary pixel values get listed as border pixels. The repeating

pixels and the stray pixels are removed by passing this edge pixel list file through

another algorithm which filters out unwanted pixel coordinates. The difference in

the two edge images before filtering and after filtering can be seen by comparing

Plates 3 and 4. This filter is essential so that the comer finding algorithms can

work effectively.

There are different ways to find the comers in a given closed curve. One way

is to find the rate of change in the slope of a tangent as we move along the curve.

Another way is to find the curvature at each point and plot the curvature against

the distance traveled along the curve. We obtain a graph as shown in Figure 4.5.1.

This graph shows four peaks, one for each comer. Assuming there are four

comers in the closed curve, we demonstrate two methods for finding the comers

of the closed curve.

In the first method we consider a pixel on the curve. Let this pixel be called

the vertex pixel. Two more pixels on either side of this pixel at a distance, e.g., ten

pixels, are chosen. Both of these pixels are connected to the vertex pixel by two

segments. The angle of the segments at the vertex pixel within the closed curve is

then computed; therefore this process is repeated for all the pixels. H we plot a

graph of the angle at each. pixel against the pixel number, we obtain a graph

similar to the one shown in Figure 4.5.1, except that it is inverted. See Figure

4.5.2.

In the second method, instead of finding the angle within the curve at each

point, we find the perpendicular distance from the vertex point and the line

joining the two pixels on either side of the vertex pixel, as mentioned before. A

graph showing this perpendicular distance for each pixel against the pixel number

38

curvature

distance along curve

Figure 4.5.1. Graph comparison for corner detection.

angle

pixel number

Flgure 4.5.2. Graph comparison for corner detection.

is plotted. This graph is similar to the first graph of the curvature, as shown in

Figure 4.5.3.

The second method is preferred since the algorithm is more simple than the

algorithm used in the first method. Both the methods gave identical results on

test samples. The peaks of the resulting graph represent the comers of the closed

curve. The procedure used to detect these comers is as follows.

The highest value of the curve on the graph is chosen. This point represents

any one of the comers. About twenty points on either side of this point are taken

and their value is made zero: see Figure 4.5.3. We now have three peaks. The

above process is repeated so that the next peak represents another comer and the

number of peaks is reduced to two. This process is repeated two more times to

obtain the two remaining comers. The comers are obtained in random order;

that is, if we move along the curve the comers are not necessarily in a sequential

order. This ordering is important in order to restore the correct relative sequence

of the points. The two points which are closest to one another are found and a

midpoint between them is then computed. The midpoint between the other two

points is also computed. The midpoint between the two previously found

midpoints is then computed. This is the point which is the intersection of the axis

of the cylinder with the plane of,,light. In order to represent this point on a

monitor, it is rounded-off to the nearest pixel coordinates. This point and the

four comer points are shown in Plate 5.

EXPERIMENTAL SET-UP

As explained earlier, the alignment task consists of two steps. First, the two

cylinders are made horizontal, and then are axially aligned. Since the experiment

was carried out on only one cylinder, the process of making it horizontal was

41

perpendicular
distance

Figure 4.5.3. Graph comparison for corner detection.

, ,,
I

>I< ~,
I I
I I
I
I
I
I
I

I
I
I
I
I

.20
pixels

I
I

I

>I

I
I
I

I
I

I
I

I

I
\
\
\

\

' ' ' ~----

pixel number

tested for different orientations in space. The cylinder was clamped onto a device

which enabled it to be rotated in two degrees of freedom. If the cylinder is

clamped and calibrated to be in a horizontal position initially, then one degree of

freedom has a vertical axis of rotation, while the other has a horizontal axis of

rotation, but perpendicular to the cylinder axis.

The amount of movement about these two axes was initially set to any

desired angle because of a calibrated scale present on the mounting device. Two

slide projectors which served as the light-stripe projectors were at roughly the

same height of the cylinder. The slides used in these projectors were blackened

slides with a thin vertical slit cut along its center. The horizontal level at which the

projectors were placed was not critical since it tended to displace the image-stripe

on the cylinder in the vertical direction. This did not affect the position of the

image stripe cast on the cylinder, but care had to be taken that the cylinder did

not go out of the range of the stripes of light. It was also necessary that the

stripes of light casted on the cylinder were vertical.

The camera was mounted on a tripod. Its optical axis was made horizontal

to simplify the calculation process. In a general sense it could be oriented in any

direction with the requirement that the optical center should lie on the y-axis and

it should be able to capture the image of the cylinder. For simplicity again, the

camera orientation about the optical axis was maintained such that the rows of

pixels are horizontal and the columns of pixels are vertical. A spirit level was used

to calibrate orientation of the cylinder, light stripe projector and camera. The

cylinder was calibrated in a horizontal position, the light stripe projectors were

calibrated to project a vertical stripe of light, and the camera was calibrated such

that its row pixels were horizontal and column pixels were vertical. In the

theoretical development it is assumed that the camera axis is coincident with the z-

43

axis. In the actual set-up this was not possible. Because of the close proximity of

the components used in the experiment, the camera had to be turned about a

vertical axis passing through its optical center towards the cylinder in order to

capture its image. The optical center of the camera was the origin of the space

coordinate system. The planes of the stripes of light were parallel to the xz-plane.

With the initial position of the cylinder as horizontal, its axis was parallel to the y

axis.

Two monitors were used in the experiment; one was for viewing what was

seen by the camera, and the other for the processed images. The image processor

that was used has the capability to capture an image and display it on the monitor

either directly or thresholded. The processor was not able to store a thresholded

image which is necessary for further processing. The original captured image data

is transferred to a computer on which all further processing work is executed

because of its higher speed and storage capacity. The position of the cylinder was

computed from the image data after a sequence of processing steps for various

cylinder orientations. The results of these tests are discussed in the next section.

RESULTS

The positions of two points on the axis of the cylinder were computed from

the equations of the planes of light and the equations of the lines passing through

the optical center of the lens and the center of the image stripes on the focal

plane. Let the angle through which the cylinder is rotated about a horizontal axis

perpendicular to the cylinder be ALPHA and that about the vertical axis be

BETA. Table 1 shows the set ALPHA and BETA angles and the corresponding

computed angles. Appendix A contains programs that process the image and

compute the angles ALPHA and BETA.

44

45

ALPHA (degrees) BETA (degrees)

Set Computed Error Set Computed Error

0 1.3B7 1.3B7 0 0.313 0.313

0 0.753 0.753 -20 -20.287 0.2B7

0 1.420 1.420 15 16.357 1.357

-10 -9.1B0 0.B2 0 0.757 0.757

5 6.6 1.6 0 0.312 0.312

5 6.44 1.44 -B -7.357 0.643

-10 -9.120 0.BB -10 -9.423 0.577

-12 -10.6 1.4 15 14.B6 0.140

5 6.B7 1.B7 17 17.725 0.725

Table 1. Results

CHAPTERV

CONCLUSIONS AND FUTURE RESEARCH

The type of structured light pattern to be used is determined by the kind of

task in which it is employed. In this research, two planes of light were employed

in a method to align two cylindrical beams or cylinders. The orientation of a single

cylinder in three-dimensional space was determined. It is known a priori that the

object was a cylinder. Hence, the positions of any two points on its axis were

determined in three-dimensional space. From this information the cylinder

orientation was computed.

REMARKS

The error observed in the measurement of the angles is due mainly to the

finite resolution of the camera and image processing unit which is 320 x 240 pixels.

From the geometry of the configuration it can be shown that the cylinder has to be

rotated by approximately 2.8 degrees about a vertical axis, from a position parallel

to the y-axis before a change in the coordinate of the excited pixel is detected.

The results presented in Table 1 are well within the error limits. The largest error

is 1.87 degrees, produced in measuring the angle ALPHA. There are two

possible reasons for this: one, an image stripe was at the comer of the focal plane

where the angular resolution is poor compared to that at the center; and two,

images at the comer of the focal plane get highly distorted which makes it difficult

46

for the comer finding algorithm to exactly pinpoint the comer pixel. This finally

results in an error in locating the position of the point on the cylinder axis.

Depending upon the kind of structured light pattern used, one can obtain

different kinds of information about the properties of an object under study.

Curvature measurement using grid coding · has been studied by Will and

Pennington (SJ employing one and twci dimen$ional gratings. In the single laser

tracker (7] employed by Ishii and Nagj{ta t6 extract feature information of three

dimensional objects, the prQCel!S·of'digitization),eing• point-by-pofut is slow, but

has less stringent requirementscon the~memofy ~fy;!o~ the computing system.

Since w~. are mainly interested in)lir PQSitional · information of cylinders, the

above discussed methods, if applied to this. task; wmild geherate a significant

amount of redundant information. • This would in~olve additional computational

requirements and slow the process of aligning the cylinders.

In the processing task of the image stripes wi' determine the position of a

point close to the point on the axis of the cylinder.. The "ideal" point on the axis

of the cylinder is due to the intersection of the cylinder axis and the plane of light.
¥

One of the most significant step& in_ this p;ocessing ·task is to find the four

comers:or.'..~~"'-8 of the image ~t:iifie: Most~ol'tlt~ commonly used methods
,. _-; ... -·if.it • ~~.:_·::_' __ -_,";.~1·~1'_-·"~· -i·~:_~~-~ ~ .

employ fhe::te'c1ibique of finding thliYettren'JUbJ,:valuMof the x and y coordinates,
.. ~ .,.. ·,j.,.~ • ' -_, .. _: ~ ¾._. ~:-;''

which ·wouJd'ffuifoaIJy correspond to the four ~mers .• Since the image stripes are

from a curved surface, that is the cylinder, it is curved instead of being

rectangular. Taking extremum values of the x and y coo~dinates would yield

erroneous results; hence, a new technique has been emplbyed her, which detects

the vertices for either a normal rectangular stripe or any closed curve with

prominent vertices. The only constraint is that prior information about the

number of comers or vertices should be known.

47

The method of using structured light described in this research requires one

image frame to completely determine the position of the cylinders. Using a

sufficiently strong source of light for the light stripe projection sytems, this

method is less prone to errors that may occur due to stray light. Since the

computations involve geometric and trigonometric identities, it is fast in

determining the cylinders' positions, compared with other vision techniques where

large amciun~ 9f image PfQC.Cssing take up ifie bulk of:the pr~ing.time.
~ -~-- -

FUTURE RESEARCH· •• •·· •• ,, . ·',; .,

. - .• .
• - - ~•·· ~·. ;. -~-i-k ~~_.-__ .~.~,; ~,:,:, __ ••'• ··:L :.:;. ,,.· . . ·¥.

Future. work ~n ~bl3,.~~ co!11d be'done to mtegratc two robotic arms each
-~·-i<:;· '.;.... ~ -· ·.: ,...1-~

carrying a cylinder with the,,visjon system an(j imwemcntU.e'~~ of alignment
;._ "' .·· '-·

of the cylinders·fii real 'l:imi:· ~Some"« the current research· showi that a single
-,

plane of light is 1.IS4'd to extract feato:ttfand pesition information ·by rotating the

plane of light in'cfiscrete:lt•,'°;tbat>-it casts parallel adjacent Stripes on the

object. An enhan'cemei1t to this research could be to ·use a single plane of light

and use only a single line caston.Jhe cylinder"tO'obtain,its orientati~n. Assuming

that the. cy~der:-~nsions,, ar~ kno~. its ~ eq~n in three-
. • J--~::. --:-. 7!::IPJ-:'c!J'•t: . ..:.. ',·:.: •• :· ."..7 : • .".. • . ·l ·• ~ - - • :. :S'.::

dimensiorialtf~~;,~·~~c:,af . ."U,Pbn findnf' -O'tt~ "' -.tio .- of an three
-.~ .-.? :_:··-~,':.~·-~::_:~-~~~-{!~~~;~~:f~t!;;-.;·:. :~,_.-~-~ ;.~-.;~~-'-~:-~::~ .. --~~ y

points on·tbe cylb~ nfi-~'1t,it'@te~,tl:t~~fflclenl&Y'~
., .' .:;. ~- ',;:-.:-1-f/,;·;-;:i,,,t_-,"_.:-;Jn-: •• ·,-_ . ,:-., ·:'• ~":··.:\ ¾,~, ·,,

To ~conclude1 ·.~~'~¥ .. t.f in-ethodytor:'~ alignment provides a
,,_.,_ .I~

computationally fast -t~hnique for aligning cylindrical beams in space which can

be performed in real tiine. With sufficiently strong planes of light projecting on

the cylinders, th,e 'system is less prone to errors due to stray light. The error in

calculating the orientation of the cylinder is primarily dependent on the resolution

of the camera. This thesis demonstrates the use of a structured light method for

48

determining the position of cylindrical beams. A similar approach can be used for

locating or determining positions of objects in an industrial environment.

., ..

. 'I

.-: ... ¼

49

LIST OF REFERENCES

1. J. Albus, E. Kent, M. Nashman, f. M!lllllbach; L. Palombo, ~d M. Schneier,
"Six-Dimensional Vision Systems/ RobotVisioo,. SPIE, Vol.336, 1982, pp.
142-153.

2. I. Masaki, M. J. Dunne, and-;}{. Toda, "Vision Guided Robot. System for Arc
Welding." Robot Vision by A,!an Pugh, Ei::l., 1983, pp. 179-185.

:.::. .. _.- • - • -..-~ ·q;.._ ., ·"

3. W. F. Oocksin, P.. G. Daver,·c .. G: Morgan,.au,d A.R. Vidler, "Progress in
Visual Feedback for Robot Ate Welding of Thin Sheet Steel," .Robot v;shn
by Ale Pugh, Ed., 1983, pp;- 186-198. • " -:c·

4. B. K. P, Horn, Robot Vis'JoJi, The MIT Press, McGraw Hill Boolt Company,
1986.

5. P. M. Will and K. S. Pennington, "Grid Codu!g:. A Novel Technique for
Image Processing," ProceedJnp of t/Je IEEE, Vol. 60, No. 6, June 1972, pp.
669-680.

8. E. L. Hall, J. B. K. Tio, C. A. McPherson, and J. J. 'Hwang, "Surface Location
in Scene Content Analysis," Proceedings of IEEE Sout/Jeastcon /g2, 1982

9. E. L. Hall, J. B. K. Tio, C. A McPherson, and F. A. Sadjadi, "Measuring
Curved Surfaces for Robo,t Vision," Computer, Dec., 1982, pp. 42~54.

0

10. R. M. Haralick, "Using Perspective Transformations in Scene Analysis,"
Computer Grap/Jia and Image Processing, Vol. 13, 1980, pp. 191-221.

50

11. R. M. Haralick, "Determining Camera Parameters from the Perspective
Projection of a Rectangle," Virginia Polytechnic Institute and State
University, June 1982, pp. 1-14.

12. P. W. Goode, "A Multifunction Recognition Operator for Telerobotic
Vision," Presentation at the AL4A Guidance , Navigation .and Control
Conlerence, Williamsburg, Virginia, August 18-20, 1986, pp. 1-11.

13. N. E. Orlando, "Interfacing Intelligent Software to Robotic Peripherals."
Presentation at 77Je FYrst fntemational Conference on Applications of
A.rtiilcia/ fntel/Jgence to Engineermg Problems, Southampton University,
England, April 15-18, 1986.

14. R. W. Will and N. E. Orlando, "Design for a Goal-Oriented Telerobotic
System." Presentation at the AL4A Guidance , Nawgation , and Control
Conference, Williamsburg, Virginia, August 18-28, 1986, pp.1-7.

15. P. Bes! and R. Jain, "An Overview of Three-Dimensional Object
Recognition," Dept. of EECS, The University of Michigan, Ann Arbor,
Michigan, December 1984, pp. 1-85.

16. J. Champaneri and D. Livingston, "A Structured Light Method for Sensing
Alignment during Automated Truss Assembly," Proceedings of IEEE
Southeastcon W, 1988.

17. L. P. Eisenhart, Coordinate Geome/Jy, Ginn and Company, N.Y., 1939.

51

Plate 1. Captured image at sixteen levels of gray

u,
N

Plate 2. Binary thresholded image.

Vt w

Plate 3. Image ofter edge detection.

!Jt
.I>,

Plate 4. Filtered image.

Ul
Ul

Plate 5. Image showing corner and center points

Vt
0\

APPENDIXA

The programs that follow are executed in the same order as they appear, to

determine the position of the cylinder in space. The first program thresholds the

digitized image; the thresholded data thus obtained is used by the program

"IMG_SEG" to segment the stripes and find edges around them. The remaining

programs perform the task of filtering the edge data, finding the comers, and

determining the position of the cylinder.

The program "IMG_SEG" and its associated subroutines were developed by

the Automation Technology Branch at NASA, Langley Research Center.

Note: In the last program "ORION," the angles "ALPHA" and "BETA"

mentioned in the comments correspond to the angles "beta" and "gamma,"

respectively, in the program code.

57

PROGRAM LISTINGS

C PROGRAM THRESHOLD

C THIS PROGRAM CONVERTS AN IMAGE FILE INTO A BINARY FILE.
C THE THRESHOLD VALUE IS ENTERED BY THE USER (0 - 15). THE INPUT
C IS 'WORK.51' AND THE BINARY OUTPUT tILE CREATED IS 'WORK.52'

intege, k I 160 I , a I 160, 16 l, abl (16 0, 8 I , ab2 I 160, 8 I , chi 16 0 I , h(16 0, 2)
integer th,j,m,b,p,tl,t2,l,fs
open(unit-2,file•'work.51' ,status•'old')
open(unit•3,file••work.52' ,status•'new')
TYPE *,'ENTER THRESHOLD (0 -15)'
READ I 5, • I I th l
TYPE*, 'Enter no. of lines stored'
READ (5, *) fs
do 80 l•l,fs
read(2,20) (k(j),j•l,160)

DO 2 m•l,16
DO 3 j•l,160

a(j,m)•O
3 CONTINUE
2 CONTINUE

DO 59 m•l,160
p•k(m)
b•l

5 a(m,bl•mod(p,21
b•b+l
p•p/2

if (p.eg,0) then
go to 30

end if
if Ip. ne .1 I then

go to 5
end if

a{m,b)•l
30 p•a(m,1)+2*a{m,2)+4*a(m,3)+8*a(m,4)

tl•p
p•O
p•a(m,9)+2*a(m,10)+4*a(m,11)+8*a(m,12)
t2•p

c HERE .MAKE COMPARISON WITH THRESHOLD

IF (tl,lt,th ,AND. t2,lt,th) THEN
ch(m)•O

ELSE IF (tl.lt.th .AND. t2.ge,thl THEN
ch(m)•3840

ELSE IF ltl,ge,th .AND, t2.lt,thl THEN
ch(m)•lS

ELSE IF (tl,ge,th .AND, t2,ge.thl THEN
chlml•3855

END IF
59 CONTINUE

WRITE(3,20) (ch(m),m•l,160)
write(6,*) l

80 CONTINUE
20 FORMAT(lli7)
22 FORMAT\20(i3,trl))

close(unit•3,dispose•'save' l
close(unit•2,dispose•'save')
end

58

program img_seg coo
coo ,
c•••
coo
coo Decomposition of image into object contours
coo
c•••
col
CDl PURPOSE
CDl
CDl This program breaks image into separate objects and describes
CDl the objects in terms of their centroid, first axis and contour in
CDl x-y raster form.
COl PSEUDOCODE:
Col GRAB IMAGE: Read input image, decompressing the data into pixel format
CDl Grau~ pixels into desired nxn "cell'' size, determine
CDl and apply binary threshold to image cells.
CDl Do until object blobs become smaller than noise cutoff
CDl CENTROID: Sum neighboring cells to determine object centers of ''mass''
CDl CONTOUR: Plat a cough cantouc of blob of highest "mass''
CDl AXIS: Calculate the centroid and ficst moment of object
CDl TRACK: Track the pixel resolution contour of object
CDl GRAB IMAGE: Erase the current obJect from stored image
CDl Enddo
CDl OUT: Output object attributes to file
CDl
c••
CO2
CO2 DEFINITION OF INPUT
CO2
CO2 CALLING ARGUMENTS
CO2
CO2 SYMBOL TYPE DIM DEFINITION
CO2
CO2 None
CO2
CO2 TEEtMINAL INPUTS
CO2
CO2 SYMBOL TYPE DIM DEFINITION
CO2
CO2 None

CD3
CD3 DEFINITION OF OUTPUT
C03
CD3 CALLING ARGUMENTS
CD3
CO2 SYMBOL TYPE DIM DEFINITION
CD3
CD3 N/A
CD3
CD3 TERMINAL OUTPUTS
C03
CO2 SYMBOL TYPE DIii DEFINITION
CD3
CD3 None
C03
c••
CD4
CD4 COMMON VARIABLES
CD4
CD4 INPUT
CD4

59

CD4 None
CD4
CD4 OUTPUT
CD4 SYMBOL
CD4
CD4
sed

object_

CD4 object_
CD4

TYPE

index integer

total integer

DIM DEFINITION

index describing object currently proces

total number of objects in image

C**
CDS
CDS
CDS
CD2
CDS
CDS
CDS
cos
cos
CDS
CDS
CDS
cos

INTERNAL VARIABLES

SYMBOL TYPE DIM

uinput character•l32
segment.img size.xpix integer
segment.img:size.ypix integer
cellsize integer
cutoff integer
segment.img size.xcell
segment.img=size.ycell

DEFINITION

handles user input to getlib ions
horizontal image dimension in pixels
vertical image dimension in pixels
dimension of square cell group in pixela
greylevel value of binary threshold
horizontal image dimension in cells
vertical image dimension in cells

c•••
CD6
CD6 EXTEENAL REFERENCES
CD6
CD6 I/0 FILES
CD6
CD6 Compressed integer image files {ex. {karin.img_seg_temp)scene.t60
CD6
CD6 SCRATCH FILES
C06
CD6 N/A
CD6
CD6 EXTERNAL ROUTINES
CD6
C06 integer - getlib function which gets integer from user input
CD6
c•••
CD7
CD7 FUNCTIONAL DESCRIPTION
CD7
c•••
ens
COB ASSUMPTIONS AND LIMITATIONS
CDS
c•••
CD9
CD9 SPECIAL COMMENTS
CD9
CD9
c•••
CDlO
CDlO REFERENCES
CDlO
CDlO None
CDlO
c•••
C THE FOLLOWING CREATES A HELP LIBRARY MODULE
c•••
CDXl AREAL
CDX

60

CDX

C
CP BEGIN program
C

C

program img seq
implicit - none
include
integer
character•l32
integer

'img seq.def'
threShold

real

uinput /' '/
integer
theta(p_maxobj)

Initialize object
object index
object:total

condition and image partitioning **C
• 1
• 0

segment.img size.xpix • integer{ 'image x-dimension' ,uinput,'320')
segment.img-size.ypix • integer{ 'image y-dimension' ,uinput,'240')
cellsize • Integer:(' cellsize' ,uinput, '1')
cutoff• integer('cutoff threshold' ,uinput, '4')
segment.img size.xcell • segment.img size.xpix/cellsize
segment.img:size.ycell a segment.img=size.ypix/cellsize

do while(object total .eq, 0)
call grab imag'e
call centCoid(threshold)
call contour
call axisltheta)
call tcack
object index• abject index+ 1

enddo - -
call outl(threshold,theta)
close(unit•l5,dispose-•save')
end

61

C

subroutine grab_image

implicit
include
integer
integer:•4
character:*132
character*l32
integer

none
'img_seq.def/list'
x,y,px,py,data(l60)
str$find first in set
uinput 7' '/
filename
loc

if{object index .eq, llthen
segment:file_name,in•filename('Input file name',uinput,' .dat')
segment.file_name.out•filename('Output file name' ,uinput,' .dat' J
loc .. str$find first in set (segment.file name.out,';')
segment.file name.piC-segment.file name.oUt(l:loc-4)//'pic'
open(unit•ll~name•segment.file name.in,status•'old')
open(unit•l2,name•segment.file-name.pic{l:loc-l),status•'new'J
open(unit•13,name•segment.file-name.out(l:loc-l) ,status•'new' l
open(unit•l5,file•'b image.dat7 ,status•'new')
do y • 1,segment.img=size,ypix

read(ll,•) {data(x) ,x•l,segment.img size.xpix/2)
do x • l,segment.img size.xpix/2 -

segment.image.pixeI(2•x-1,y)•ibits(data(x),8,8)
segment.image.pixel(2•x,yl•ibits(data(x),0,8)

enddo
write(l2,100) (segment.image.pixel(x,y),x•l,segment.img_size.xpix)
enddo

else

index-1)
do px • segment.bound.left(object_index-ll ,segment.bound.right(object_

do py • segment.bound.top(object_index-1,px),segment.bound.bottom(ob
ject index-1,px)

- segment.image.cellmass(px,pyJ•O
do x • (px-l)*cellsize+l,px*cellsize

do y • (py-l)•cellsize+l,py•cellsize
segment.image.pixel(x,y) • O

enddo
enddo

enddo
enddo

endif

close(unit•ll)
100 format(<segment.img size.xpix>(I4))

goto 99 -
666 type*, 'read err:'
99 return

end

62

C
C
C
C
C

subroutine centroid(threshold)

Locates centroid of major mass in binary thresholded image.
Process involves summing greyvalues for each n X n picture
cell in image, thresholding out sparse picture cells, and
ranking remaining cells in terms of greatest connectivity to the
remaining "higher mass'' cells, the highest rank becoming centroid.

implicit
include
integer
integer
integer

none
'img seq.def'
threShold
sumtotal,x,y,cellcolumn,cellrow,k,c,count,last
px{4800),py(4800) ,connectivityt320,240),superconnectivit

y(320,240)
logical flag

C

flag
sumtotal

• .true.
• 0

Calculate cell masses; determine threshold level.

do cellrow • l,segment.img size.ycell
do cellcolumn • l,segment.img size.xcell

if(object index .eq. l)then
segment7image.cellmass(cellcolumn,cellrow) • 0
do y • cellsize*(cellrow-l)+l,cellsize•(cellcow-l)+cellsize

do x • cellsize•(cellcolumn-ll+l,cellsize•(cellcolumn-1\+cellsiz
e
c segment.image.cellmass(cellcolumn,cellrow) • segment.image.eel
lmass(cellcolumn,cellcowJ + seqment.image.pixel(x,y)

if(seqment.imaqe.p1xel(x,y).gt. cutoff) segment.image.cellmass
(cellcolumn,cellrowl •

l segment.image.cellmass(cellcolumn,cellrowJ + 1
enddo

enddo
endif
sumtotal • sumtotal + segment.image.cellmass(cellcolumn,cellrow)

enddo
enddo
c • nint(4.0*sumtotal/(segment.img size.xcell•segment.img size.ycell•cel

lsize.,cellsizel l+l - -
if(object index .eq. 1) threshold• nint(c•cellsize••2/8.0l
if(cellsiie .eq. l) threshold• 1

c threshold cellmasses and store locations of 'winning• cells
do cellrow • l,segment.img size.ycell

do cellcolumn • l,segment.img size,xcell
segment.image.bigcell(cellcOlumn,cellcow)•0
connectivity(cellcolumn,cellcow} • O

enddo
enddo
k • 0
do cellrow • 2,segment.img size.ycell-l

do cellcolumn • 2,segment.img size.xcell-1
c type*,cellrow,cellcolumn,segment.image.cellmass(cellcolumn,cellrow)

if(segment.image.cellmass(cellcolumn,cellrow) .ge. threshold)then
segment.image.bigcell(cellcolumn,cellrow) • l

k • k + l
px{k) • cellcolumn
py(k) • cellrow

endif
enddo

enddo

63

last '"' k
if{(last*l.0/(segment.img size.xcell•segment.img size.ycell)),lt .. 0025)

object total• object index - 1 - -
C - write(13,*) •Cellfcac:' 1 (last*l.0/(segment.img size.xcell*segment.img si
ze,ycell)) - -

C determine connectivity of winning cells

do k•l,last
connectivity(px(kl ,py(k)) • segment.image.bigcell(px(k)-1,py(k))+segme

nt.image.bigcell(px(k)+l,py(k))+
l segment.image.bigcell(px(k),py(k)-l)+segme

nt.image.bigcell(px(k),py(k)+l)
enddo

count• O
do whiletflag.and.count.lt. 4)

count• count+ 1
do k•l,last

supetconnectivity{px(k),py(k)} • connectivity(pxlk)-1,py(k))+
1 connectivity(px(k)+l,py(k))+
2 connectivity(px(k),py(k)-1)+
3 cannectivity(px(kl ,py(k)+l)+
4 connectivity{px(k),py(k))

C

1

1

enddo

determine centroid
C • 1
flag• .false.
do k•2,last

if(superconnectivity(px(k),py(k)l .eq.
superconnectivity(px(c),py(c)l)then

flag - .true.
endif
if(superconnectivity(px(k),py(k)).gt.

superconnectivity(px(c),py(c)))then
flag• .false.
C • k

endif
enddo

do k•l,last
connectivity(px(k),py(k))•superconnectivity(px(k),py(k))

enddo

segment.centroid.xcell(object index) • px(c)
segment.centroid.ycell{object:indexl • py(c)

enddo
c if(count .ge. 4) writetS,~) 'centroid tie, object' ,object_index
200 format(' ',<segment.img si:z:e.xcell>(Il))
300 format(' ',<segment.img:size.xcell>(IB))

retutn
end

64

subroutine contour

implicit
include
logical
integer
integer

flag• .true.

none
'img seg.def'
flag~yflag
ymaxl320),ymin(320l,direction,x,y,xmax
px,py,sum,ixx,iyy

x ~ segment.centroid.xcell(object index\
ymin(x) • segment.centroid.ycell(Object index) - 1
ymax(x) • segment.centroid.ycell(object-index) + l
do while(flag .and. (x .le. segment.img-size.xcelll)

direction• - 1 -
yflag • . true.
do while(ymin(x) .ge. 1 .and. ymin(x) .lt. segment.centroid.ycell(obje

ct index) .and. yflag)
ymin(x) • ymin{x) + direction
if(segment.image.bigcell(x,yminix))) then

if(direction .eq. ll yflag • .false.
else

direction• 1
endif

enddo
di cection ,. 1
yflag • .tC'ue,
do while(ymax(x) .le. segment.img size.ycell .and. ymax(x) .gt. segmen

t.centroid.ycell(object index) .and. yflagJ-
ymax(xl • yfflax(x) + direction
if(segment.image.bigcell(x,ymax(x))l then

if(direction .eq. -1) yflag • .false.
else

direction• -1
endi f

enddo
if((ymax(xl .eq. segment.centroid.ycell(object index)) .and. (ymin(x) .e

q. segment.centroid,ycell(object index)))flag •.fals -
if(ymin(x) .le. 0) ymiri(x) • l

ll

cell -1

if(ymaxtx) .ge. segment.img_size.ycelll ymax(x) • segment.img_size.yce

segment.bound,top(object index,x) • ymin(x)
segment.bound.bottom(objict index,x) a ymax(xl
X•X+l -

ymin(xl• ymin(x-1)
ymax(xJ• ymax(x-l)
if(ymin(x) .lt. 2) ymin(x) • 2
if(ymax(x) .gt. segment.img_size.ycell-ll ymax(x) - segment.img_size.y

• segment. if(ymin(x).ge. segment.centroid.ycell(object index)Jymin(x)
centroid.ycell(object index) - l -

if(ymax(x).Ie. segment.centroid.ycell(object index))ymax(x)
centroid.ycell(object index} + l -

enddo -
segment.bound.right(object_indexl • x-1

flag• .true.
x • segment.centroid.xcell(object index)-1
ymax(x) • ymax(segment.centroid.xCell(object index))
ymin(x) • ymin(segment.centroid.xcell(object-index))
do while I flag , and, Ix . ge. 0 I I -

direction• -1

• segment.

yflag • . true,
do while(ymin(x) .ge. l .and. ymin(x) .lt. segment.centroid,ycell(obje

65

ct index) . and. yflag}
ymin(x) • ymin(x) + direction
if{segment.irnage.bigcell(x,ymin(x) ll then

if(direction .eq. 1) yflag • .false.
else

direction• 1
endif

enddo

direction• i
yflag • .true.
do while(ymax(x) .le. segment.img size.ycell .and. ymax(x) .gt. segmen

t.centroid.ycell(object index) .and. yflagJ-
ymax(x) - yfflaxtx) + direction
if{segment.image.bigcell(x,ymax(x)l) then

if(direction .eq. -1) yflag • .false.
else

direction• -1
endif

enddo
if((ymax(x) .eq. segment.centroid.ycell(object 1ndex)J.and.(ymin(x) .e

q, segment.centroid.ycell{object index)))flag •.fals
if{ymin(x) .le. 0) ymiri(x) • l

11

cell -1

if(ymax(x) .ge, segment,img_size.ycelll ymax(x) • segment,itng_size.yce

segment.bound.top(object index,xJ • ymin(x)
segment.bound.bottom(object index,x) • ymax(x)
X • X - 1
ymin(x)• ymin(x+l)
ymax(x)• ymax(x+l)
if(ymin(x) .lt. 2) ymin(x) • 2
if(ymax(x) .gt. segment.img_size.ycell-1) ymax(x) • segment.img_aize.y

if(ym1n(x).ge. segment.centroid.ycell(object 1ndexl)ym1n(x) • segment.
centroid.ycell(object index) - 1

if{ymax(x).Ie. segment.centroid.ycell(object index))ymax(x) • segment.
centroid.ycell(object index) + 1 -

enddo -

+

C

x)

segment,bound.left(object index) • x+l
if(segment.bound.left(object_index) .eq.O)segment.bound.left(object_index

do x • segment.bound.left(object_index),segment.bound.right(object_index

segment.image.bigcelltx,segment.bound.top(object index,x))•8
segment.image.bigcell(x,segment.bound.bottom(objict_index,x)l•B

enddo
segment.image.bigcell(segment.centroid.xcell{object_index),

segment.centroid.ycell(object_index))•S

Find centroid of object_index segment.image.pixel mass
ixx • O
iyy • 0
sum• 0
do px • segment.bound.left(object_index),segment.bound.right(object_inde

do py • segment,bound.top(object index,px),segment.bound.bottomtobject
_index,px)

C
C

C
C

do x • (px-l)•cellsize+l,px•cellsize
do y • (py-l)•cellsize+l,py•cellsize

ix • segment.image.pixel(x,y)•x
iy • segment.image,pixel(x,y)•y
ixx • ix + ixx
iyy - iy + iyy

66

C

C
uffer'
C
C
C

100
X l +l> {,
200

if{segment.image.pixel(x,y) .gt. cutoff) then
ixx • x + ixx
iyy - y + iyy
sum• sum+ 1

endif
enddo

enddo
enddo

enddo
if(sum .ne. O)then

segment.centroid.xpix(object index) • ixx/sum
segment.centroid.ypixtobject-index) • iyy/sum

else -
write(S,•) 'centroid singularity, object' ,object index
write(l3,*) 'centroid singularity, object' ,object index

endif -

xmax•jminO(SO,segment.img_size.xcell)

if{segment.img_size.xcell .gt. 80) write(l2,•) 'image truncated to fit b

do y•l,segment.img size.ycell
write(l2,200) (sigment.image.bigcell(x,y),x•l,xmax)

enddo

format(<segment.bound.right(object index)-segment.bound.left{object inde
', I3 l) - -
format(' ', <segment. img_size.xcell>(Il))
return
end

67

10

20

JO

40

50

C

subroutine track

none implicit
include
integer
integer
logical

'img seq.def'
x,y,iteSt,ytest,count,edgecount.case,xmax
xlast,ylast,xstart,ystart,threshold,theta
flag

flag• .true.
edgecount • 0
x • segment.centroid.xcell(object index)
y • segment.centroid.ycell(object-index)
do while(((segment.image,bigcell(X,y-1).gt. O) .or.
1 (segment.image.bigcell(x,y-2).gt. O)).and.(y

y - y - 1
end do
xlast • x - 1
ylast • y
xstart • x
ystart,. y

. gt. 2 I I

do while(((x .ne. xstart)
1

.or. (y .ne. ystartJ .or.(edgecount .eq, 0))

.and. (flag .eq .. true.)l
count• l
flag • . false.
if(x .eq. xlast) then

if(y .lt. ylast)then
case• 1

else
case• 3

endif
else

if(x .gt. xlast)then
case• 2

else
case• 4

endif
endif

xla.st,. x
ylast,. y
do while((count ,le, 4) .and. (flag .eq .. false.))

count• count+ l
x • xlast
y • ylast

go to (10,20,30,40), case
x • xlast-1
goto 50
y • ylast-1
goto 50
x • xlast+l
goto 50
y • ylast+l

case• jmod(case,4)+1
if(segment.image.bigcell(x,y).gt. 0) then

flag• .true.
edgecount•edgecount + 1
segment.contour.x(object index,edgecountl • x
segment.contour.y(object=index,edgecount) • y
segment.image.bigcell(x,y) • jmod(edgecount,9)+1
segment.image,bigcell(x,y) • 8

endif

68

c type*,'xlast,ylast,flag,count,case:' ,xlast,ylast,flag,count,case-1
end do

end do
segment.contour.count(object indexl • edgecount
if{flag .eq .. false.) write(S',*) 'tracking error at x,y • ',x,y,', objec

t' ,object index
iI(flag .eq .. false.) write{13,*) 'tracking error at x,y • ',x,y,', obje

ct' ,object index
xmix•j minO (80, s_egment. img size. xcel l)
write (12,"') 'object: ',o5ject index
if{segment.img_size.xcell .gt,-80) write(l2,*) 'image truncated to fit b

uffer'
do y•l,segment.img size.ycell

write(12,100) (s'egment. image. bigcell { x, y J, x•l, xmax l
enddo
write(l2,*l ' '

100 format(' ',<xmax>(Il))
return
end

69

subroutine
implicit
include
integer
real

outl
none
'img seg,def'
threShold,count
theta(p_maxobj)

write(lS,22) object_total

do object index•l,object total
write{l5,22} seqment.cOntour.count(object index)
do count•l,segment.contour.count(object index)

write(lS,24) {segment.contour.x(object index,count},
1 segment.contour.ytobject_Index,count)l

enddo
enddo

22 format(1 7)
24 formatl2 7)

close(un tmlS,dispose•'save•)
return
end

70

C PROGRAM CHECK_REPEAT

C THg INPUT FILE TO THIS PROGRAM IS 'B IMAGE.OAT'. THE PURPOSE OF
c THIS PROGRAM TO CHECK IF REPEAT VALUES EXIST IN CONTOUR DATA,
C ANY POINT THAT REPEATS, IS REMOVED. THIS DATA IS STORED IN A FILE
C 'B IMAGEl,DAT'. THE SECOND HALF OF THIS PROGRAM USES THIS FILE
C '8-IMAGEl.DAT' ANO DELETES ALL SINGLE POINTS AND POINTS WHICH FORM
C AN-UNCLOSED CURVE, A NEW FILE B IMAGE2,DAT IS CREATED WHICH STORES
C THE REFINED FORM OF THE CONTOUR DATA.
C THE FIRST INTEGER IN THE FILES B IMAGE*.DAT INDICATES THE NUMBER OF
C OBJECTS WHICH IS INVARIABLY IN THIS CASE. THE SECOND INTEGER INDICATES
C THE NUMBER OF POINTS IN THE FIRST OBJECT, THE PAIR OF INTEGERS WHICH
C FOLLOW, DENOTE THE X ANO Y COORDINATES OF THE OBJECT ~ONTOUR. THE PAIRS
C OF INTEGERS IS FOLLOWED BY A SINGLE INTEGER WHICH INDICATES THE NUMBER OF
C POINTS IN THE SECOND OBJECT AND SO ON.

integer i,j,k,ptl(2,1000),tot ptsl,d,m,n,l,t pt
integer tptl,tpt2,count(lOOO)~pt 1(2,1000),pt 2(2,1000)
integer lx,rx,ty,by,pt2(2,1000J,tot pts2 -
integer flagl,flag2,any nl,any n2 ~
open(unit•l,file•'b image.dat•~status•'old' J

open(unit•2,file•'b-imagel.dat' ,status••new' J

read(l,20) (il -
if (i.ne.2) then

go to 50
end if
write(2,20) (i)

20 format(li7)
22 format(2i7l

readll,20) (tot ptsll
do j•l,tot ptsl-

read(l,2!1 lptlli,jl,i•l,2)
enddo
readll,201 (tot pts21
do j•l,tot pts2-

read(l,2!) (pt21i,jl,i•l,2)
enddo
do k•l,tot ptsl-1

t pt•tot-ptsl
d;;;O -
j•k+l

do i•j,t pt
l•i-d -
if llptlll,k).eq.ptlil,l)).ANO.(ptll2,k).eq.ptli2,llll then

do m•l+l,tot ptsl
ptl(l,m-l);;;ptl(l,m)
ptl(2,m-l)•ptl12,m)

enddo
tot ptsl•tot ptsl-1

c write { 6, •) (tot ptsl)
d•d-1 -

end if
enddo

enddo
write(2,201 (tot ptsl)
do n•l,tot ptsl -

write(2,Z2l (ptl(i,n),i•l,2)
enddo

C
do k•l,tot pts2-1

t pt•tot-pts2
a;o -
j•k+l

do i•j,t_pt

71

lsi-d
if I I pt2 I 1, k I. eq. pt2 I 1,111 .AND, I pt2 I 2, k I. eq. pt2 I 2, l I I I then

do m•l+l,tot pts2
pt2(1,m-l)~pt2(1,m)
pt2(2,m-ll•pt212,mJ

enddo
tot pts2•tot pts2-l

c wri'te(6,*) (tot pts2)
d•d-1 -

end if
enddo

enddo
write(2,20) (tot pts2)
do n•l,tot pts2

write(2,12) (pt2{i,nl,i•l,2)
enddo
close(unit•l,disoose•'save•)
close(unit•2,disPose•'save•)

c THIS PART OF THE PROGRAM REMOVES SINGLE POINTS AND UNCLOSED CURVES

open(unit•l,file•'b imagel.dat' ,status•'old' l
open(unit•2,file••b-image2.dat• ,status••new')
read(l,20) (i) -

if (i . ne. 2 l then
go to SO

end if
write(2,20) (i)
read(l,20) (tptl)

c write(6,*) {tptll
do j•l,tptl

read(l,221 (pt l(i,jl,i•l,21
enddo -

read(l,20) (tpt2)
c write (6, *) (tpt2)

do j•l,tpt2
read(l,22) (pt_2(i,j),i•l,2)

enddo

any nl,.O
52 flagl•O

do i•l,tptl
count(i)•O

enddo
do i•l,tptl

do j•l,tptl
lx•pt 1(1,i)-l
rx•pt-1(l, i)+l
ty•pt-1(2,i)-l
by•pt-1(2,i)+l
if (ITlxl.eq,(pt 111,j))l,AND.

+ ((pt 1(2,ill,eq,lpt-112,j)lll then
- count(i)•count(i)+l

end if
if I I (rx I, eq. (pt l I 1, j I I I . AND.

+ ((pt 1(2,i)).eq,(pt-112,jlll I then
- count(i)•count{i)+l

end if
if (((ty).eq,(pt 1(2,jlll,AND,

+ I I pt l I 1, i I I . eq. I pt-1 I 1, j I 111 then
- count(il•count(i)+l

end if
if (((byl.eq,(pt_l(2,j))l,AND.

72

+ llpt 111,i)).eq.{pt 111,j)II) then
- count{i)•count(il+l

end if
enddo

enddo
d•O

do i•l,tptl
if (count{i).le.l) then

do j:ai, t,ptl-1
pt 111,j+di•pt 111,j+d+ll
pt-112,j+d)•pt-112,j+d+ll

enddO -
flagl•l
d•d-1

end if
c write(6,*) (d)

enddo
if (flagl.eq.l) then

any nl•l
end if-

c write(6,*) (d)
tptl•tptl+d

if (flagl.eq.ll then
go to 52

end if
if (any nl.eq.OJ then

type*, 'NO NOISE IN STRIPE l l'
else

type•, 'NOISE REDUCTION IN STRIPE l COMPLETE'
end if

write(2,20) (tptl)
do i•l,tptl

write(2,22) (pt_Ul,i),pt_1(2,i)l
enddo

any n2•0
5 3 flag2•0

do i•l, q:it2
count(i)•O

enddo
do isl,tpt2

do j•l, tpt2
lx•pt 211,i)-l
rx•pt-2(1,il+l
ty•pt-212,l)-l
by•pt-2(2,i)+l
if l(Tlx).eq.{pt 2(1,j)II.ANO.

+ ((pt 2 (2, i) I . eq. (pt-2 I 2, j I I I I then
- count{il•count(i)+l

end if
if l((rx).eq.(pt 211,j)l).ANO.

+ ((pt 2(2,l)) .eq.(pt-212,j)l)I then
- count(i)•count(i)+l

end if
if (((ty).eq.(pt 212,j))).ANO.

+ ({pt 211,il).eq.{pt-211,j)lll then
- count(i)•count(il+l

end if
if ({(by).eq.(pt 212,j))).ANO.

+ {(pt 211,i)).eq.lpt-211,j)l)l then
- count(i)•count(i)+l

end if
enddo

73

enddo
d•O

do i=l,tpt2
if (count(i).le.l) then

do j•i.,tpt2-l
pt 2(1,j+d)•pt 2{1,j+d+l)
pt-2(2,j+d)apt-2(2,j+d+l)

endd0 -
flag2•1
d•d-1

end if
c write(6,*l (d)

enddo
if lflag2.eq.l) then

any n2•1
end if-

c write(6,*) (d)
tpt2•tpt2+d

if {flag2.eq.l) then
go to 53

end if
if (any n2.eq.OJ then

type*, 'NO NOISE IN STRIPE 2 !'
else

type*, 'NOISE REDUCTION IN STRIPE 2 COMPLETE'
end if

writel2,20) ltpt21
do i•l,tpt2

writel2,221 (pt 211,11 ,pt 212,111
enddo - -

close(unit•l,dispose•'save')
close(unit•2,dispose•'save')
go to 51

50 type*, 'NUMBER OF OBJECTS NOT TWO, CHECK THRESHOLD'
51 isl

end

74

C PROGRAM FINO CORNER

C THIS PROGRAM FINDS THE PERPENDICULAR DISTANCE FROM EACH POINT IN THE
C OBJECT CONTOUR DATA TO THE LINE PASSING THROUGH TWO POINTS ON EITHER
C SIDE OF THE CONCERNED POINT. THE DISTANCE AT WHICH TWO POIN~S ARE
C CHOSEN ON EITHER SIDE OF THE CONCERNED POINT IS ENTERED BY THE USER
C WHEN THE PROGRAM PROMTS TO ENTER THIS SPAN, THE INPUT FILE IS
C 'B IMAGE2.DAT' AND THE OUTPUT FILE CREATED IS 'CORN.OAT'. THE FIRST
C INTEGER IN THIS FILE INDICATES THE NUMBER OF OBJECTS WHICH IS TWO HERE.
C THE SECOND INTEGER INDICATES THE THE TOTAL NUMBER OF POINTS IN THE
C FIRST OBJECT CONTOUR DATA, THE INTEGERS THAT FOLLOW REPRESENT THE
C ABOVE MENTIONED 'PERPENDICULAR DISTANCE'. THE NEXT INTEGER THAT
C FOLLOWS, INDICATES THE NUMBER OF POINTS IN THE SECOND OBJECT CONTOUR
C DATA, AND SO ON.

integer i,j,k,tot_obj,tot_ptsl,tot_pts2,ptl(2000,2l ,pt2(2000,2),sp
integer vl,v2,xol,xo2,yol,yo2,xtl,xt2,ytl,yt2,nll,nl2
real disl(l000),dis2(l000),dll,dl2
apen(unit•l,file•'b image2.dat• ,status•'old')
open(unit•2,file••c0rn.dat' ,status•'new')
read(l,22) (tot obj)

22 format(li7) -
if (tot obj.ne.2) then

go tO 30
end if
write(2,22l (tot obj)
read(l,22) (tot Ptsl)

do 40 i•l,tot-ptsl
read(l,24) Tptl(i,j},j•l,2)

40 continue
write(2,22) (tot ptsl)

24 format(2i7l -
read(l,22) (tot pts2)

do 41 i•l,tot-pts2
read(l,24) Tpt2(i,j),j•l,2)

41 continue
type*, 'ENTER SPAN IN PIXEL UNITS -
read(S,*) (sp)

do 42 i•l,tot ptsl
vl•i-sp -

if (vl.le.Ol then
vl•tot ptsl+vl

end if -
v2•mod(i+sp,tot_ptsl)

if (v2.eq,Ol then
v2•tot ptsl

end if -
yol•ptl(i,21
xol•ptl(i,11
ytl•ptl(vl,2)-ptl(v2,21
xtl•ptl(vl,l)-ptl(v2,l)
nll•xol*ytl - yol*xtl - ptl(vl,l)*ytl + ptl(vl,2l*xtl
nll•abs(nlll
dll•sqrt(real(ytl••2 + xtl**2))
disl(il - nll/dll

write(2,26) (disl(i))

42 continue
write(2,22l (tot pts2)
do 43 i•l,tot pti2

vl•i-sp -
if (vl.le.Ol then

75

43
26

C

C

C

C

C

C

C
c45
C

C

C

C

C

C

C

JO
35

vl•tot i;>ts2+vl
end if -

v2•mod(i+sp,tot pts2)
if (v2.eq.O) then

v2•tot pts2
end if -

yo2•pt21i,2J
x.o2•pt2{i,l)
yt2•pt2(vl,2)-pt2(v2,2)
xt2•pt21vl,1J-pt2(v2,l)
nl2•xo2•yt2 - yo2•xt2 - ~t2(vl,ll•yt2 + pt2(vl,2)•xt2
nl2,.abs(nl2)
dl2•sqrt(real(yt2**2 + xt2**2))
dis2(i) • nl2/dl2

write(2,26) (dis2(i))
continue

format{el8,6)
aminl•angl(l)
imin•l
do 45 i•2,tot ptsl

if (ang(il.It.aminl) then
aminl•ang(i)
imin•i

end if
continue
dif2•angl(ll-aminl
do 46 i•l,tot ptsl

if ((angl(iT-aminl).lt.dif2l then
dif2•angl(i)-aminl
imin2•i

end if
dif3•ang

go to 3S
type•, 'NO. OF OBJECTS IS NOT TWO CHECK THRESHOLD'
i,.l
close(unit•2,dispose•'save' l
close(unit•l,dispose•'save')
end

76

C PROGRAM CORNER

c THIS PROGRAM FINDS THE FOUR CORNERS TN THE CONTOUR OF THE TWO OBJECTS,
C THIS IS DONE BY FINDING THE FOUR PEAKS IN THE 'PERPENDICULAR DISTANCE'
C DATA FORM THE FILE 'CORN.DAT'. FROM THE FOUR CORNER POINTS THE CENTER
C OF THE QUADRILATERAL IS FOUND, WHICH IS THE POINT OF INTEREST, THE
C FOUR POINTS AND ITS CENTER FOR BOTH OBJECTS IS STORED IN A FILE CALLEO
C 'POINTS.DAT'.

integer i,j,k,t ptl,t pt2,iil{4),ii2{4) ,m,i2,sml
integer ptl(l001r,2),pt2(l000,2),prl 1121,prl 2(21
integer pr2 1(2] ,pr2 2{2),clx,cly,clx,c2y -
real disl(lijOQ),dis2(1000),tdl,td2,sm,ndisl(4),ndis2(4)
real ppl 1(21,ppl 212),pp2 l(2),pp2 2121
real ccli,ccly,cc!x,cc2y - -
open(unit•l,file•'corn.dat' ,status•'old')
open(unit•2,file•'b image2.dat• ,status•'old' l
open(unit•3,file• 1 pOints.dat 1 ,status•'new•)

20 format{li7l
22 format(e18.6J
24 format(2i7)

read(2,20) (ii
cead(2,20) (i)

do j•l.i
cead{2,24J (ptl(j,kl,k•l,2)

enddo
read(2,20l (i)

do j•l,i
read(2,24l (pt2(j,k),k•l,2)

enddo

read(l,201 (ii
read(l,20) It ptll

do i•l,t ptI
read(I.22) (disl(ill

enddo
read (l, 20) (t pt2)

do i•l,t pt2"
read(I,221 (dis2(i))

enddo
do j•l,4
tdl•disl(ll

do i•2,t ptl
if (dfsl(i) .gt.tdll then

tdl•disl(il
end if

enddo
do i•l,t ptl

if (dTsl(i).eq.tdll then
iil(j)•i
go to 50

end if
enddo

50 k•lillj)
disl(k)•O
do i•l,8

m•mod(k+i,t ptll
if (m.eq.0)-then

m•O
end if
disl(m)•O
m•k-i
if (m.le.O) then

m•t_ptl+m

77

end if
disl(m)•O

enddo
endrio
write(6,•J {iil(il,i•l,4)
do j•l,4
td2•dis2(1)

do i,.2,t pt2
if (dis2(i).gt.td2) then

td2•dis2(i)
end if

enddo
do i•l,t pt2

if {dis2{i}.eq.td2J then
ii2(j)•i
go to 51

end if
enddo

51 k•ii21jJ
dis2(kJ•O
do i•l,8

m•mod(k+i,t pt2)
1.£ (m.eq,0) then

m•O
end if
dis2(ml•O
m•k-i
if (m.le.O) then

m•t pt2+m
end i!
dis2(m)•O

enddo
enddo
write(6,•) (ii2(i),i•l,4J

do i•l,3
do j•i+l,4

if (iil(i).gt.iillj)) then
k•iil{i)
iil{ i l•iil(j)
iil(j l•k

end if
enddo

enddo
do i-1,3

do j•i-t-1,4
if (ii2(il .gt.ii2{j)) then

k•ii2Ci)
ii2(i)•ii2(j)
ii2(jl•k

end if
enddo

enddo
write(6,•) (iil(il,i•l,4)
write{6,•) (ii2(il,i•l,4)

do i•l,4
i2•mod(i+l,4)

if li2.eq.O) then
i2•4

end if
ndisl(i l•I ptl I ill Ii), 1 J-ptl(ill(i2), l)) **2 +

+ (ptl (i il I i) , 2 I -ptl \ i il I i 2 I , 2 I I** 2

78

ndisl(i)•sqrt(ndisl(i))
enddo

do i"'l,4
i2•mod(i+l,4)

if (i2.eq.O) then
i2•4

end if
ndis2(il•(pt2(iil(il,ll-pt2(iil(i2),1))"'"'2 +

+ {pt2(iil(iJ,2l-pt2(iil(i2J,21)"'*2
nd i s2 (i) •sqrt { nd is 2 (i))

enddo

sm-ndisl(l)
do i•2,4

if (sm.gt.ndisl(i)) then
sm•ndisl(i)

end if
enddo
do i•l,4

if (sm.eq.ndisl(i)) then
sml•i

end if
enddo

prl l(l)•sml
i;:mod{ sml+l ,_4 l

if {i.eq.O) then
i•4

end if
prl 112l•i
p,l-21ll•modlp,l 1121+1,4)

-if {prl 2(1J~eq.0) then
p<l !11)•4

end if-
prl 2(2)•mod(prl 2(1)+1,4)

-if lprl 212)7eq,0) then
prl 112)•4

end if-

sm•ndis2(l l
do i•2, 4

if (sm.gt.ndis2(i)J then
sm•ndis2(i)

end if
enddo
do i•l,4

if lsm.eq.ndis2(i)) then
sml•i

end if
enddo

pr2_11ll•sml
i•mod(sml+l,4)

if (i.eq.01 then
i•4

end if
pr2 112)•i
p,2-21ll•modlp,2 1(2)+1,4)

-if (pr2 2il)7eq.O) then
pr2 "2'11)•4

end if
pr2_2(2)•mod(pr2_2(1)+1,4)

if (pt2 2(2).eq.0) then
pt2_!(2)•4

79

end if

ppl lill•lptll
ppl=l 12 l•I ptl(
ppl 2(l)•(ptl(
ppl=2121•1ptl(

l(prl llll 1,11 + ptlli l(prl 1(211 ,lll/2
l(prl-11111,21 + ptl(i l(prl-112)1,211/2
l(prl-2111),1) + ptlli llprl-21211,11)/2
l(prl=21111,21 + ptlli llprl=2(2)),2))/2

pp2 llll•lpt2(ii21pr2 111)1,l) + pt21ii2(pr2 1(2)1,111/2
pp2-1(21•1pt2(ii2(pr2-l(ll),2) + pt2(ii21pr2-li2)),2))/2
pp2-2(l)•lpt2(ii2(pr2=21111,ll + pt2(ii21pr2-2(2)),lll/2
pp2=2(2)•1pt2(ii2(pr2_2(l)) ,2) + pt21ii21pr2=2(2)) ,211/2

cclx • (ppl llll + ppl 2(111/2
ccly • (ppl-112) + ppl-2121)/2
cc2x • (pp2-lil) + pp2-2ill)/2
cc2y • (pp2=112) + pp2=2(2)1/2

clx•int(cclx)
cly•int(ccly)
c2x•int(cc2x)
c2y•int(cc2y)

write(3,201 121
write(3,201 (51
write(3,24) lptlliil(prl l(ll),),i•l,2)
write(3,241 (ptlliil(prCl(211, l,i•l,21
write(3,24) (ptl(iil(prl-2(1)),),i•l,2)
write(3,24) (ptl(iil(pcl-2(2) I, I ,i•l,2)
write(3,241 (clx,cly) -

wcite(l,201 (51
write(l,241 (pt2(ii2(pc2 1(1)1,),i•l,2)
wcite(3,241 (pt2(ii2(pc2-1(211,),i•l,2)
wcite(3,241 lpt2(ii2(pc2-2(11), l,i•l,2)
wcite(3,24) (pt2(ii21pc2-2(2)), l,i•l,21
write(3,24) {c2x,c2y) -

close(un t•l,status•'save')
close(un t-2,status-•save•)
close(un t•3,status••save')

end

80

C PROGRAM ORION

C THIS PROGRAM COMPUTES THE ORIENTATION USING THE TWO POINTS
C OBTAINED FROM THE PROGRAM 'CORNER.FOR' 1 THAT IS THE CENTER OF
C THE QUADRILATERAL. THIS DATA IS IN THE FILE 'POINTS.DAT'.
C THE OUTPUT ORIENTATION ANGLES IS SHOWN ON THE SCREEN.
C 'ALPHA' IS THE INCLINATION OF THE CYLINDER AXIS WITH RESPECT TO
C THE HORIZONTAL ABOUT A HORIZONTAL AXIS.
C 'BETA' IS THE ORIENTATION ABOUT THE VERTICAL AXIS.

integer i,j,k,xi,yl,x2,y2
real r,xpl,ypl,xp2,yp2,x apl,y apl,x ap2,y ap2,z0,hyl,hy2
real a_phil,a phi2,th,alPhal,aipha2,inl,ynI,znl,xn2,yn2,zn2
real y pl,y p1,xsl,ysl,zsl,xs2,ys2,zs2,beta,gamma,bnl,bn2,br
real giil,gnl,gr1tP
open(unit•l,file•'points.dat' ,status•'old')

22 format(li7)
24 formatt2i7)

read(l,22) (i)
read(l,22) Iii
read(l,24) {i,j)
cead(l,24) (i,j)
readtl,241 li,jl
read(l,24) (i,j)
read(l,24) (xl,yll
read(l,22) (i)
read(l,24) (i,jl
read(l,241 (i,j)
read(l,24) (i,j)
read(l,24) (i,j)
read(l,24) (x2,y2)

c type*, 'input xl,yl values'
c read{S,•) (xl,yl)
c type*, • input x2, y2 values•
c read(S,*) (x2,y2)

if {xl.gt.x2) then
tp • xl
xl • x2
x:2 • tp
tp • yl
yl • y2
y2 • tp

end if
r • 2.2/80
xpl • -119,5 + yl
ypl • 159,S - xl
xp2 • -119.S + y2
yp2 • 1S9,S - x2
x apl • r•xpl
y-apl • r•ypl
x=ap2 • r"'Xp2
y ap2 • r•yp2
i!! • 2S.4
hyl • sqrt((z0)**2 + Cy apl)**2l
hy2 • sqrt((z0)**2 + (y-ap2)••2)
a phil • atand(y apl/zOT
•-phi2 • atand(y-ap2/z0J
tli • 28 -
alphal - a phil - th
alpha2 • •-phi2 - th
xnl • x apI
ynl • hyl•(sind(alphal)I
znl • -hyl•(cosdlalphalJJ
xn2 • x_ap2

81

yn2 • hy2•{sind(alpha2))
zn2 • -hy2*{cosd(alpha2))
y pl • 359
y-p2 • 359 + 278
ysl • y pl
xsl • (Y_pl/ynl)*xnl
zsl • (y_pl/ynl)*znl
ys2 • y p2
xs2 • (Y p2/yn2J*xn2
zs2 • (y=p2/yn2)*zn2
write(6,*) (xsl,ysl,zsl)
write(6,*) (xs2,ys2,zs2)
bnl • (ysl - ys2)**2 + (zsl - zs2)**2
bnl • sgrt(bnlJ
bn2 • (xsl - xs2)**2 + {ysl - ys2)**2 + (zsl - zs2)**2
bn2 • sqrt(bn2)
br • bnl/bn2
beta• acosd(br)

if (xsl.lt.xs2J then
beta• -beta

end if
gnl • (ysl - ys2)*•2
gnl • sqrt(gnl)
gn2 • (ysl - ys2)**2 + (zsl - zs2)**2
gn2 • sqrt{gn2)
gr• gnl/gn2
gamma• acosd(gr)

if {zsl.lt.zs2) then
gamma• -gamma

end if
write(6,*) ('beta• ',beta)
write(6,*) ('gamma• ',gamma)
close(unit•l,dispose•'save')
end

82

	A Structured Light Method for Sensing Alignment During Automated Truss Assembly
	Recommended Citation

	tmp.1721325994.pdf.AYdCc

