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ABSTRACT

MULTIPLE POINT CONSTRAINT (MPC)-BASED VARIABLE NODE SUPER-

 ELEMENT

 Mohamad Eftekharjoo
Old Dominion University, 2015

 Director: Dr. Gene J.W. Hou

The multiple point constraint (MPC)-based variable node element is introduced in 

this study to handle mismatched meshes between sub-domains in finite element analysis. 

The MPC-variable node element is a collection of a group of elements. The compatibility 

condition along the interface boundary is imposed along the edge of these elements through 

Lagrange multipliers. The Elimination method is then used to remove the effects of the 

dependent nodes in these elements to produce a single MPC-based variable node element. 

The derived variable node elements are applied to solve two plane strain problems in order 

to validate the accuracy of the proposed MPC-based variable node element. 
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CHAPTER 1 

INTRODUCTION 

The complexity of engineering applications has increased the level of difficulty for 

finite element modeling. The irregularities in the geometry and in the material distribution 

in these applications usually require multi-scaled and multi-phase modeling. It will 

therefore be convenient in these cases to divide the analysis domain into sub-domains and 

discretize the sub-domains independently based upon their specific features and 

requirements.  The challenge is then laying on the afterward integration process for finite 

element analysis. This study will focus on one aspect of such a challenge: integration of 

two independently discretized finite element meshes together for a united finite element 

analysis. 

When two independently meshed finite element models are assembled together, 

gaps and overlaps may be present between their meshed boundaries as shown in Figure 2-

1. The boundary elements may be divided and the boundary nodes may have to be relocated

so as to merge the meshed boundaries to become one that is close to the common interface 

boundary. This process may generate variable node elements adjacent to the interface 

boundary. These variable node elements play a transient role in connecting one finite 

element in the foreign domain to the one in the home domain. Notice that the order of the 

shape functions and the number of numbers in these elements can be different. Therefore 

the compatibility between the variable node elements and the connected elements becomes 

a concern for investigation. 

In 2002. Park et al., introduced the displacement along the interface boundary as a 

new state variable. The compatibility condition between the boundary displacement of each 
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sub-domain and the newly introduced interface displacement was treated as an equality 

constraint which was enforced by the method of Lagrange multipliers. The newly 

introduced interface displacement and two sets of Lagrange multipliers were considered as 

unknown and discretized in accordance with the standard finite element procedure. The 

final system matrix equation will include the nodal values of the Lagrange multipliers and 

the interface displacement. The proposed approach was validated by analyzing a solid with 

non-matching interfaces. The method can be simplified by imposing the compatibility 

condition directly between the boundary displacements of the connected sub-domains 

without introducing the interface displacement as unknown. Panteno and Averill (2002) 

followed the same procedure introduced by Park et al. (2002), but replaced the method of 

Lagrange multipliers by the penalty function method. As a result, their proposed approach 

maintained the positive definite of the system equation, which can be easily incorporated 

into the commercial FEA codes. Their paper suggested ways to select the value of the 

penalty coefficients. Aminpour et al. (2001) directly treated the compatibility condition 

between the involved boundary displacements as linear multipoint constraints (MPC) 

which can be directly incorporated into the existing commercially available FEA codes. 

Kim (2002) designated a buffer zone that covers the last layer of the discretized 

elements on both sides of the interface boundary. The interface elements were then 

developed to solve the unknown displacement in the buffer zone.  These interface elements 

are the moving least square (MLS)-based meshless elements. Pseudo nodes were added 

along the common interface boundary as well as the boundary connecting the interface 

elements and the discretized elements in the parental sub-domain. The values at the pseudo 

nodes placed along the boundaries between the interface elements and the discretized 
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elements of the parental sub-domains were interpolated based upon shape functions used 

in the parental sub-domain elements. Thus, no new degrees of freedom associated with 

these pseudo nodes were added to the system equation. The same could not apply to the 

pseudo nodes added along the common interface boundary. Their associated degrees of 

freedom will be part of the unknown in the assembled finite element equation. The 

objective of such an arrangement is to ensure that the number of nodes along these 

boundaries is the same within an interface element. This led to a convenient way to describe 

the weighting functions as bilinear polynomials in the interface element. The compact 

support domain was tailored to fit into the domain of the interface element with zero values 

outside and along its boundaries.  

Cho et al. (2005) later introduced the MLS-based (n+4)-variable node element as 

the interface element. The 4 refers to the 4 corner nodes of the element, while n are the 

additional nodes added along one edge of the element. For a two dimensional element, the 

weighting function defined at these (n+4)-nodes are the product of two quartic splines 

defined along each of the local coordinates. The value of the weight function is 1 at the 

associated node and non-zero along the edges that connect to the associated node. The 

resultant shape functions yield linear displacement along the edges divided by the n nodes. 

The same concept was extended to the more general (k+l+m+n+4)-variable node element 

where each edge is added with k, l, m and n nodes, respectively. This special MLS-based 

(n+4)-variable node element was later extended by Cho and Im (2006) to quadratic variable 

node elements in which the shape functions will produce quadratic displacement along 

every 3-node segment of an edge.   

The MLS-based variable node elements mentioned above were derived by selecting 
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more particles or nodal points where the weighting functions are defined than the number 

of base functions. As a result, the shape functions are rational in the element interior, which 

requires a high number of Guassian quadrature points, in order to ensure the quality of 

integration. Lim, Im and Cho (2007) and Lim and Im (2007) carefully selected the 

weighting function along its base of integration to produce a new class of MLS-based 

variable node elements in 2007. The number of nodal points in these new variable node 

elements is the same as that of the base functions. The resultant shape functions are 

polynomials which can be accurately integrated with 22  or 23  Gaussian quadrature

points. They later extended the new variable node element to three dimensional 

applications [Lim, Im and Cho, 2007]. 

Lim et al. (2010) replaced the Gaussian quadrature integration used in their MLS-

based variable node elements by the cell-smoothed integration technique. The goal here 

was to avoid numerical stability encountered by Gaussian quadrature integration and 

improve the quality of the solution. The revised variable node elements were successfully 

applied to solve two-dimensional multi-scale mechanics problems and three-dimensional 

elastic-plastic analysis [Lee, Son and Im, 2015].    

In this study, the compatibility condition between the mismatched elements was 

treated as a linear multipoint constraint. This compatibility condition was enforced directly 

in the element level to generate a variable node element which can serve as a transition 

between mismatched elements. This study is different from the previous work done by Park 

et al. (2002), Panteno and Averill (2002) and Aminpour et al. (2001), in which such a 

compatibility condition was enforced on the system level. 

The derivation of the constrained super-element are presented in Chapter 2. The 
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demonstrative examples are presented in Chapter 2 to illustrate the use of the derived super-

element as a variable node element to transmit the analysis domain from the fine mesh to 

the coarse mesh zone. Two plane strain problems, a cantilever beam and a plate with a 

hole, are used in Chapter 3 to validate the use of the variable node elements. The exact 

solutions of these two problems are compared to those of the finite element models with 

and without the use of the derived variable node elements.  The concluding remarks are 

presented at the end of this report. 
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CHAPTER 2 

BASIC DERIVATION AND THEORY 

In this chapter, the Elimination methods will be introduced. This method is used to 

show how a model with different mesh resolutions can merge. The Elimination method 

derives new stiffness matrixes by eliminating unconnected and interior nodes in the 

transition zone. This method is derived in this chapter. Also, at the end of this chapter, a 

simple cantilever beam with a tip load will be analyzed to demonstrate the validity of the 

Elimination method. 

2.1 Variable Node Super-element 

A given structure, as shown in Figure 2-1’ is discretized into a set of finite elements 

and nodes. A sub-set of the discretized finite elements and nodes is collected to form a 

super-element, as shown in Figure 2-2. A set of forces, f ’is applied to the nodes of this 

super-element and a set of interaction forces R ’are applied to the boundary nodes, 

imposed by the adjacent elements connected to this particular super-element. Furthermore, 

a group of the boundary nodes are subjected to a set of self-imposed linear multipoint 

constraints, 0qC , where q  is the displacement vector collected from nodes associated 

with the super-element.  
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Figure 2-1. A discretized structure domain with mismatched elements 

 

 

 
 

Figure 2-2. One variable node element from the model: (a) : the connected node, (b) : 

the interior node, and (c) : the unconnected node 
 

 

 The solution of the finite element equation defined in this super-element can be 

casted as that of the following minimization problem Eq. (2.1): 

qλRqfqqq
2

1
CK TTTT 

 
(2.1) 

where  is the Lagrange multiplier. The necessary condition of minimization leads to 

Eq. (2.2): 
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λRfq TCK   (2.2) 

 

Next, a typical super-element divides the nodal degrees of freedom, q  into the 

interior and the boundary nodes; the nodal degrees of freedom are divided into interior or 

boundary nodes, which are appropriately noted by the subscripts “I” and “B”, respectively. 

Thus, one has  BI

T qqq  .  

Now, plugging in Eq. (2.2): 
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 00

   (2.3) 

Since the MPC constraints and the reaction force are all associated with the 

boundary nodes, they can be further specified as 𝐶𝐵𝑞𝐵 = 0 and 𝑅𝐵 = 0, respectively. Static 

condensation can then be applied to Eq. (2.3) to eliminate 𝐶𝐼 from the equation. Therefore, 

the equation for the boundary of degrees of freedom will be shown below: 

  BBBIIIBIBIBIIBIBB CRKKKKKK λffq T

B   11
  (2.4) 

The boundary nodes are further divided into “connected” and “non-connected” 

categories based upon whether they are connected to the adjacent elements or not. If the 

boundary nodes are connected to the adjacent parental elements, then they are considered 

to be connected. While, unconnected nodes are the boundary nodes not connected to a node 

of parental elements on any side. The displacement of each of the unconnected nodes is a 

linear function of those of the connected nodes. Consequently, the interface reaction forces 

are applied only to those nodes which are considered connected. 

Moreover, due to the fact that boundary nodes are divided into “connected” and 

“unconnected” nodes, the displacements can be realized in Eq. (2.5): 
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C

C
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C

U

B
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C
q

q

q
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




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
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


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

   (2.5) 

Therefore, Eq. (2.6) provides the relation between boundary node displacements. 

 𝑞𝑢 = 𝐶𝑢𝑐𝑞𝑐 (2.6) 

Also, constraints are applied to the unconnected nodes that are simply part of the 

boundary nodes. So, in Eq. (2.7), the unconnected displacements are considered zeros.  
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UCUBB CIC
q

q
q 0   (2.7) 

It should be noted that by substituting the transpose coefficient matrix, it will end 

up as the following equation: 
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By comparing Eq. (2.4) with Eq. (2.8), it is clear that both equations can be 

combined and extended into the expression in Eq. (2.9) 

  

      
    

 UIIIUIU

T

UCCIIICIC

B

T

UCCIIIBIB

T

UCC

BB

T

UCCB

T

UCCIIIBIB

T

UCC

BC

C

UC

IBIIBIBB

T

UCC

KKCKK

CIKKCI

CCICIKKCI

I

C
KKKKCI

RffRff

Rff

λRff

q

T






































11

1

1

1

 .  (2.9) 

Alternatively, it can be directly assumed that only the connected nodes of the 

variable-node element will be connected to the adjacent elements. Consequently, 0U R  

and Eq. (2.3) is repeated below as: 
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Eq. (2.10) is a further expanded based upon Eqs. (2.3) and (2.6): 
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The last two rows of the above equation can be rearranged in terms of the boundary 

degrees of freedom by imposing the boundary condition in Eq. (2.11): 
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Replacing Uq  with Cq to Eq. (2.6) and pre-multiplying  T

UCU CI  by Eq. (2.11), 

will be demonstrated in Eq. (2.12): 
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Note that 0UR . Eq. (2.13) can be represented in terms of a new stiffness matrix 

for the variable node super-element to solve for Cq  as: 

CCCCCK Rfq  **
 (2.13)  

where the stiffness matrix 
*

CCK  and the force vector 
*

Cf  for the variable node super-element 

are given below: 
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  II

*

C fffff
11   IICICIIUIU

T

UC KKKKC   (2.15) 

Because each variable node super-element contains one interior node, three 

unconnected nodes, and five connected nodes in the following derivation, the connected 

and unconnected displacements will be written as: 
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Besides, 𝐶𝑈𝐶
𝑇  is the coefficient matrix, which demonstrates the relationship between 

unconnected and connected variable node super-element nodal displacements. Since three 

unconnected and five connected nodes are placed in each element by considering two 

degrees of freedom at each node, a coefficient matrix will be constructed below as six by 

ten. Moreover, the coefficient matrix can be modified in a manner for more boundary and 

interior nodes. So, in this case, the average of two connected neighboring nodes is: 
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Also, Eq. (2.6) can be readily expanded below as: 
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Furthermore, from Eq. (2.10) the stiffness matrix of each interior node is derived. 

  CICUCIUI

CICUIUIIII

KCK

KKK

qf

qqfq




 (2.16) 

The relative interior displacements vector is derived in Eq. (2.17): 
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11
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 . (2.17) 

Alternatively, the penalty method can be used to enforce the MPC constraints of Eq. (2.6) 

into the super-element. In this case, the minimization problem of Eq. (2.1) is reformulated 

with the introduction of the penalty coefficient, α, as: 

qqRqfqqq
2

1
CCK TTTTT min  . (2.18) 

The necessary condition of minimization leads to Eq. (2.19) 

qRfq CCK T
 (2.19) 

which can be explicitly spelled out with the help of Eq. (2.6),  
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Static condensation can be applied here as well to eliminate the degrees of freedom, Iq

and Uq to form a reduced matrix equation, similar to Eq. (2.13).

The MPC-penalty is given in Eq. (2.19) with the coefficient matrix consisting of  

𝛽1, 𝛽2, 𝛽3 and 𝛽0. These are the known constants. The first and the third coefficients are

0.5; the second coefficient and the fourth coefficients are -1 and 0, respectively, since nodes 

within the super-element consists of four individual elements.  

0332211   qqq (2.21) 

Such boundary conditions are referred to as “Multi Point Constraints” in the 

literature. The penalty approach will now be elicited in order to understand what happens 

when this type of boundary condition is applied. As is shown next in Eq. (2.22) the 

modified total potential-energy expression must be considered: 

 20321 3212
  pppp qqq

C
(2.22)   

where C is a large number. Since C is a large number, p takes a minimum value only

when Eq. (2.22) is set. In other words, Eq. (2.23) will further be expressed as: 
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In this case, since each unconnected node is placed between two connected nodes, 

the unconnected node is the average of two neighboring nodes within the variable node 

element. Based on Eq. (2.21), the following MPCs will be: 
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2.2 Demonstrative examples 

The cantilever beam challenge will be exemplified to show how it will be solved 

in an effort to validate the displacements and Von-Mises stresses. The beam’s length, 

depth, and thickness are 12, 2, and 0.1 meters. Additionally, it is also assumed that force 

is applied at the top end of the beam with +100 N in a standard coordinate system. The 

modulus of elasticity is 7 × 104 𝑃𝑎 as well. 

Moreover, the “Plane Stress” condition is assumed, and the portrait of this 

example is shown in Figure 2-3 below.  

 

Figure 2-3. A simple cantilever beam with a tip load 
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2.2.1 Analytical solution 

The cantilever beam is loaded with a point load P at the free end. The length and 

the depth of the beam are set to L and D, respectively. The Young’s modulus is E and the 

Poisson’s ratio ,𝑣. The displacement fields, [𝑈𝑥(𝑥, 𝑦), 𝑈𝑦(𝑥, 𝑦)] of the plane stress problem 

are given by: 

𝑈𝑥(𝑥, 𝑦) = −
𝑃𝑦

6𝐸𝐼
{(6𝐿 − 3𝑥)𝑥 + (2 + 𝑣) × (𝑦2 −

𝐷2

4
)}  (2.24) 

 

𝑈𝑦(𝑥, 𝑦) =  
𝑃

6𝐸𝐼
{3𝑣𝑦2(𝐿 − 𝑥) + (4 + 5𝑣)

𝐷2𝑥

4
+ (3𝐿 − 𝑥)𝑥2} . (2.25) 

 

Since the aim here is to provide the displacements along the tip load (x=l), the simplified 

equations are displayed below: 

𝑈𝑥(𝑦) = −
𝑃𝑦

6𝐸𝐼
{(6𝐿2) + (2 + 𝑣) × (𝑦2 −

𝐷2

4
)} (2.26)   

 𝑈𝑦(𝑦) =  
𝑃

6𝐸𝐼
{(4 + 5𝑣)

𝐷2𝐿

4
+ 2𝐿3} . (2.27) 

Eqs. (2.24-2.25) will provide the elongations and deflections of the two 

dimensional beams, respectively, in terms of plane stress. Besides, the neutral axis should 

be considered regarding the exact solution [Timoshenko, 1970]. 

Also, the following Eqs. (2.28-2.31) are given so that the stresses in a two 

dimensional cantilever beam can be computed as [Timoshenko, 1970]: 

𝜎𝑥𝑥 = −
𝑃(𝐿−𝑥)𝑦

𝐼
  (2.28) 

𝜎𝑦𝑦 = 0  (2.29) 

𝜎𝑥𝑦 =  
𝑃

2𝐼
(

𝐷2

4
− 𝑦2) . (2.30) 

Finally, the Von-Mises stress equation will be:  

 𝜎𝑣 =  √𝜎𝑥𝑥
2 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎𝑦𝑦

2 + 3𝜎𝑥𝑦
2  . (2.31) 
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The results of the displacements are given in Table 2-1, according to the analytical 

solutions that resulted, in terms of plane stress: 

 

Table 2-1. Results for analytical solution for the cantilever beam 
X=L Analytical-solutions   

X Y Ux-disp Uy_disp 𝜎𝑣  

0 -1 0 0.0424 18000 

0 0 0 0 18000 

0 1 0 0.0424 18000 

12 -1 1.5429 12.585 0 

12 0 0 12.585 0 

12 1 -1.5429 12.585 0 
 

 

The results above signify elongation and deflection of the beam when X=L along 

the Y-axis, and has symmetric and constant values of elongation and deflection. At this 

time, the analytical values will be compared with various finite element methods.   

2.3.2 The cantilever beam with a tip load no transition zone 

In the four-node quadrilateral element, known as QUAD, each element has four 

nodes and each node has two degrees of freedom. In this mesh, the number of nodes and 

number of elements are 18 and 10 respectively. Since the number of division on the vertical 

axis is 2, and it is constant over the entire domain, merging in the domain will not be 

present. In other words, all the nodes in the domain are connected and there are no meshes 

with different resolutions. 
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Figure 2-4. Four-noded quadrilateral element (QUAD) initial mesh 
 

 

In Figure 2-4, it can be readily seen that meshes are consistent over the entire 

domain. Let’s assume the number of divisions of a domain vertically is “W-span”, and 

horizontally is “S-span.” As a result, in terms of domain divisions, “W-span” is equal to 

two’and “S-span” is equal to five.  

By comparing displacement values at the end of a beam with analytical solutions, 

the error might seem to be large; however, nodes 16 and 17 follow the identical format by 

having symmetric values as analytical solutions. Also, nodes 1 and 7 not only have the 

highest Von-Mises stresses but they also have the highest stresses within the entire domain, 

regardless of negligible error presence. Basically, the nodal stresses are derived by method 

of curve fitting. To state it differently, the Von-Mises stresses will be computed at four 

Gaussian points of each element. Afterwards, nodal stresses will be readily generated by 
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using curve fitting. Nodal stresses are not very close to the exact solution since the method 

of curve fitting is implemented to provide the approximate values. So, nodal Von-Mises 

values are used for plotting the Von-Mises contour plot, given in Figure 2-5. 

 

 

Figure 2-5. Von_Mises contour plot for cantilever beam with a tip load with no transition 

zone 
 

2.3.3 The cantilever beam with a tip load with one variable node super-element  

In Figure 2-6 the same cantilever beam has been used, with the only difference 

being that it has a transition element. The transition element contains 9 nodes which 

illustrated by hatch lines within the domain. This transition element contains four elements 

such as 5, 6, 7, and 8. In this case, since two fine elements merge with one coarse element, 

the Elimination method is implemented for variable node super-element construction. 

Basically, based upon the derivation shown earlier, it is needed to maintain the connected 

nodes in order to provide a merging mechanism for different mesh resolutions. In Figure 

2-6 the connected nodes are:  3, 11, 6, 9, and 15, which are each maintained to provide the 
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variable node super-element. However, the unconnected nodes are 10, 13, and 14, and the 

interior node is 12. In Chapter 2, the derivation of connected nodes is discussed, and the 

relative unconnected and interior node displacements revived. 

 

 

Figure 2-6. Initial mesh plot for the cantilever beam with a tip load with one variable 

node super-element 

After maintaining connected nodes, the overview of the model with a variable 

node element is shown in Figure 2-7 all five connected nodes are maintained to connect 

the elements. 
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Figure 2-7. Mesh plot Cantilever beam with a tip load after maintaining connected node 

with a new variable node super-element 
 

 

Two methods, the penalty method and the Elimination method, are used for Figure 

2-7.  Both resulted in the same displacements at the end of the tip beam reactions and Von-

Mises stresses over the support. Therefore, their contour plots, in terms of Von-Mises 

stresses, are identical. Figure 2-8 shows the contour plot for Von-Mises stress in the entire 

domain. Figure 2-8 follows the same format as Figure 2-5; however, there might be some 

discrepancies within the desired coordinates and Von-Mises stresses possibly due to coarse 

meshes that have settled over the domains. If finer mesh is plotted in the domain, closer 

output values can be expected in terms of data validation. 
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Figure 2-8. Von_Mises contour plot for cantilever beam with a tip load with one variable 

node super-element  
 

 

2.3.4 The cantilever beam with a tip load with two variable node super-

elements   

Figure 2-9 shown below for the cantilever beam with a tip load at the end is 

demonstrated to provide more than one variable node super-element in the domain. In this 

case, two variable node elements have been settled in the domain and compared with 

previous examples in which there was only one variable node element. The purpose of 

having two transition elements within the domain is to increase the precision of validation 

of output data. The first variable node element which contains four elements such as 9, 10, 

11, and 12 have connected nodes such as 3, 17, 6, 9 and 21; unconnected nodes such as 16, 

19 and 20; and a single interior node, being 18. The first variable node element will be 

merging two element numbers, 2 and 4, to the element number 17. The second variable 
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node element’ which is located above the first variable node element’ is the combination 

of element numbers such as 13, 14, 15, and 16. The second variable node element has 

connected nodes such as 9, 21, 22, 15, and 25. The connected nodes will remain in domain 

to build up the variable node element. Due to the fact that the second variable node element 

contains element numbers 13, 14, 15, and 16, maintaining connected nodes with element 6 

and 8 allows them to merge to element 18. 

 

 

Figure 2-9. Initial mesh for the cantilever beam with a tip load with two variable node 

super-elements 
 

 

After constructing the two variable node elements (which had been discussed earlier) and 

maintaining the desired nodes, the domain will come up with two five-noded variable node 

elements. This situation is illustrated in Figure 2-10.   
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Figure 2-10. Cantilever beam with a tip load after maintaining connected node in two 

variables node super-elements 
 

 

By generating output data such as displacements, nodal reactions, and Von-Mises 

stresses, all results such as the nodal displacements, nodal reactions, and elemental Von-

Mises stresses can be generated by using Elimination matlab code in Appendix 1. Due to 

the fact that all the output values, in terms of the Elimination approach, are the same as the 

MPC approach, Von-Mises contour plots are identical. The Von-Mises contour plot is 

shown in Figure 2-11. The figure below is for two variable node super-elements using a 

cantilever beam, conveying that the highest stress is on the fixed points marked with a red 

coloration. The top half is compressional Von-Mises stress and the bottom half is tensional 

Von-Mises stress. The figure below portrays this. 
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Figure 2-11. Von Mises contour plot for cantilever beam with a tip load with two variable 

node super-element  
 

 

2.3.5 The cantilever beam with a tip load with three variable super-elements  

Figure 2-12 is shown below for the cantilever beam, with a tip load at the end. This 

figure provides more than two variable node super-elements in the domain. In this case, 

three variable node super-elements have been located in the domain in order to draw a 

comparison with the previous example with fewer variable node super-elements. The 

purpose of having three variable node elements within the domain is to increase the 

precision of validation for the output data. The first variable node super-element contains 

four elements such as 3, 4, 7, and 8, and has connected nodes such as 3, 5, 8, 13, and 15. 

Unconnected nodes are realized in 4, 10, and 14, and one interior node in 9. The first 

variable node element will be merging two elements, numbers 2 and 6, to the element 

number 25. The second variable node super-element located above the first variable node 
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element is the combination of element numbers such as 11, 12, 15 and 16. The second 

variable has connected nodes such as 13, 15, 18, 23, and 25. The connected nodes will 

remain in the domain to build up the variable node super-element. The unconnected nodes 

are identified in 14, 20, and 24, and the interior node is found in 19 within the second 

variable node element. The third and the last variable node super-element, above the second 

variable node super-element, contains elements 19, 20, 23, and 24. This variable node 

super-element has five connected nodes - 23, 25, 28, 33, and 35. In addition, the 

unconnected nodes are 24, 30, and 34. Here, the interior node is 29. The three variable node 

elements are to merge two elements to one element in the set of transition elements.  

 

 

Figure 2-12. Initial mesh plot for the cantilever beam with a tip load with three variable 

node elements 

 

Figure 2-13 shows that each variable super-element retains its five connected nodes and 

will be considered as one variable element. As a result, Figure 2-12 can be extended to 

Figure 2-13. 
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Figure 2-13. Cantilever beam with a tip load after maintaining connected node in three 

variable node super-elements 
 

 

Figure 2-14 illustrates the contour plot for Von-Mises stress in the three variable 

node elements. Also, it can be seen that the stress contour plot follows the same format as 

the preceding variable super-elements; however, three variable node super-elements will 

provide a better approximation as opposed to using one variable node super-element, or 

even two variable node super-elements. The output result for displacements and stresses 

can be generated with the matlab program in Appendix 1.  
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Figure 2-14. Von_Mises contour plot for cantilever beam with a tip load with three 

variable node super-elements  

 

In this chapter, the basic derivation and the problem of a simple cantilever beam with a 

tip load at the end have been discussed.  
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CHAPTER 3 

EXAMPLES AND VERIFICATIONS 

Two plane strain examples are presented here to demonstrate the use of the MPC-

based variable node super-element. One example is a cantilever beam loaded at the free 

end’ and the other is a problem with stress concentration. Exact solutions are available in 

the literature for these two problems, which will be used to verify the numerical results. 

Each problem is discretized into four different mesh patterns. Two are using the standard 

quadrilateral elements; one with coarse mesh, the other with fine mesh. The other two 

meshes include mismatched elements transient from fine to coarse mesh. One has only one 

such transient zone and the other has two. 

3.1 Cantilever beam with a tip load 

A cantilever beam is treated to check the performance under generic loading. The 

solutions for the plane strain are given by Eqs. (3.1-3.2) [Lim, 2010,& Timoshenko, 1970]. 

Since the plane strain condition is considered in this example, E is substituted with E/(1-

v2) and v with v/(1-v), respectively. The parameters such as L = 8 mm, D = 1mm, E = 

200000 Mpa., v=0.3 and P = 1N  are chosen where D and L are the depth and length of the 

beam.  

𝑈𝑥(𝑥, 𝑦) = −
𝑃𝑦

6
𝐸

(1−𝑣2)
𝐼

{(6𝐿 − 3𝑥)𝑥 + (2 +
𝑣

1−𝑣
) × (𝑦2 −

𝐷2

4
)} (3.1) 

 

𝑈𝑦(𝑥, 𝑦) =  
𝑃

6
𝐸

(1−𝑣2)
𝐼

{3(
𝑣

1−𝑣
)𝑦2(𝐿 − 𝑥) + (4 + 5(

𝑣

1−𝑣
))

𝐷2𝑥

4
+ (3𝐿 − 𝑥)𝑥2}  (3.2) 

 

Since the aim is to provide the displacements along the tip load (x=l), the simplified 

equations are given below: 

𝑈𝑥(𝑦) = −
𝑃𝑦

6
𝐸

(1−𝑣2)
𝐼

{(6𝐿2) + (2 +
𝑣

1−𝑣
) × (𝑦2 −

𝐷2

4
)} (3.3) 
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𝑈𝑦(𝑦) =  
𝑃

6
𝐸

(1−𝑣2)
𝐼

{(4 + 5(
𝑣

1−𝑣
))

𝐷2𝐿

4
+ 2𝐿3} . (3.4) 

The results based upon the exact solution for elongation over the nodes at the end 

of the cantilever beam, can be found in the Table 3-1. 

The error norms can be calculated for the nodes along with tip load by the Eq. (3.5): 

𝑅𝑒𝑑 = (∑ ((𝑢𝑖
ℎ − 𝑢𝑖

𝑒𝑥𝑎𝑐𝑡)/(𝑢𝑖
𝑒𝑥𝑎𝑐𝑡))2𝑛𝑛𝑜𝑑𝑒

𝑖=1 / ∑ 𝑛𝑛𝑜𝑑𝑒𝑛𝑛𝑜𝑑𝑒
𝑖=1 )

1
2⁄  . (3.5) 

Basically, the error norm is used to compare the displacements in a desired area. 

3.1.1 Coarse mesh 

Figure 3-1 displays a coarse mesh model. In this model, the division of “W-span” 

and “S-span” are 8 and 10 respectively while the number of nodes and elements are 99 and 

80 respectively. Figure 3-2 displays a contour plot for Von-Mises stress which technically 

shows where the highest stress is concentrated. By the way, since the Von-Mises stresses 

are symmetrically distributed, it can be obvious that they can be reliable results. However, 

in terms of coarse mesh since displacements are not very accurate due to the small stiffness 

matrix size and insufficient degrees of freedom in the domain, the stress contour plot will 

not be smooth enough. 
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Figure 3-1. Coarse mesh plot for the cantilever beam with a tip load  

 

 

The elongation output values are available in Table 3-1. The corresponding error 

norm in terms of coarse mesh is the largest value compared to the rest of the methods, 

although the number of nodes at the end of beam are less than the exact solution. In other 

words, if the number of “S-span” was less, and the number of “W-span” was more than the 

number of “S-span,” error norm in terms of elongation would have been a higher value. 

The Von-Mises stress can also be found at the constraint point at top left and bottom left 

where the support is located. In addition, in Figure 3-5 the fourth node of element 71 at the 

integration point has the highest Von-Mises stress. Also, since the method of curve fitting 

is used to convert stresses at Gaussian points of each element to the nodal points, the 

highest stress is at node 89. The results for Von-Mises stresses are in Table 3-2. Moreover, 

the curve fitting values will not be a very well-estimated method for the Von-Mises stress 

because the method is used for plotting the contour plot. However, consideration of nodal 

stresses will prove to be the closest to the exact solution. 
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3.1.2 Fine mesh 

Figure 3-2 displays a fine mesh model. In this model, the division of “W-span” and 

“S-span” are 16 and 128. Also, the number of elements and number of nodes are 2048 and 

2193, respectively. The Von-Mises contour plot in Figure 3-6 is shown; however, the finer 

the mesh the better the solution. By this it means that, in Figure 3-6, the maximum Von-

Mises stress is 42.14 at node number 2065 by means of the curve fitting method. On the 

other hand, the fourth node of element 1921 is at the Gaussian point. So, in this case the 

fine mesh solution is much closer to the reference solution explained in Section 3-1. Nodal 

displacements are in Table 3-1 for elongation and Table 3-3 for deflection. 

 
Figure 3-2. Fine mesh plot for a cantilever beam with a tip load 

3.1.3 Quadrilateral elements with transition zones 

In Figure 3-3 and Figure 3-4 it can be noticed that not only have transition zones 

been presented within the models but also the computational time will be reduced by using 
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fewer total degrees of freedom in a model. In Figure 3-3, the fine mesh subdomain merges 

with the coarse mesh and in Figure 3-4 there are three different mesh resolutions 

considered: fine level, intermediate level, and coarse level.  

In Figure 3-3, the number of nodes and elements are 1342 and 1240, respectively. 

Basically, eight variable node elements are located in the domain; each transition element 

contains four elements which, after derivation, will come up with one new variable node 

element. Therefore, every two fine elements on one side of a variable node element can 

merge with one coarse element. .  

In the MPC-elimination method, every element has a 10 by 10 stiffness matrix after 

derivation’ and that will be combined with regular quadrilateral elements which are 8 by 8 

in size. In this method, only the element numbers within each variable node super-element 

will be given to the input’ and the program will be deriving the Kcc stiffness matrix for each 

variable node element. Due to the presence of eight variable node elements in Figure 3-3, 

eight Kcc stiffness matrixes are constructed. Afterwards, by choosing the proper element 

identifier’ which is used in the matlab code in Appendix 1, the new global stiffness matrix 

can be formed. Technically, the unconnected nodes and interior nodes of each variable 

node element will be constrained and the new global stiffness matrix size will be reduced. 

Then, unconnected nodes and interior nodes will be re-derived which has been previously 

discussed in Chapter 2.  

In the MPC-penalty method, the global stiffness matrix will be formed by plugging 

the proper coefficient into the connected and unconnected degrees of freedom in the global 

stiffness matrix. Thus, a new stiffness matrix will be formed. In this method, the 

unconnected and interior node will be retained. The coefficients corresponding to 
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connected and unconnected nodes in each variable node element will be 0.5 and -1, 

respectively. In each variable node element, there are three unconnected nodes, each of 

them being between two connected nodes. Since each node has two degrees of freedom, 

each variable node element should have six MPC inputs. However, the common MPCs in 

between two adjacent variable node elements will not be counted twice. As a result, 34 

MPC inputs are considered for Figure 3-3.  

 
Figure 3-3. Mesh plot of cantilever beam with one transition zone 
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In Figure 3-4, the number of nodes and elements are 1395 and 1284. Basically, 

three different mesh resolutions are constructed within the domain such as fine mesh, 

intermediate mesh, and coarse mesh. In other words, the fine mesh level will merge with 

the intermediate mesh level with eight transition elements. In addition to this, the 

intermediate mesh level will merge with four transition elements. Therefore, all the 

transition elements will be 12. In the Elimination method, only 12 variable node super-

elements will be constructed to provide a new global stiffness matrix, however, in the 

penlaty method 52 MPCs will be possessed in the input data.  

 

Figure 3-4. Mesh plot of cantilever beam with two transition zones 
 

 

Generally, the penalty method is used to validate the Elimination method. Since, 

based upon the derivation, both methods are constructed to evaluate the unconnected nodes 

which are located in between two neighboring connected nodes in each variable node 
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element, the unconnected node displacements will be the average of two neighboring 

connected nodes. 

The stress contour plots of these four cases are listed in Figure (3-5) to Figure (3-

10). It was the Von-Mises stress plotted here. The matlab code given in the textbook of 

Chandrupatla and Belegundu (2002) was modified to support the current study. The von 

Mises stress was reported at the four Gaussian integration points in each element. The nodal 

stresses were obtained through a curve fitting process in which the stress is assumed to be 

linearly distributed in an element. The nodal stresses so obtained were then used for the 

stress contour plot. The maximal stress happened at the top and the bottom corners of the 

beam at the fixed end. The maximal stresses reported in different cases were listed in Table 

3-2 in comparison with the exact solution. The maximal displacements reported in different 

cases were also listed collectively in Table 3-3, along with the exact solution for 

comparison. 
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Table 3-1. The total Ux-displacement values at the end of beam in mm 
 

 Exact_sol QUAD QUAD MPC_elim MPC_elim. MPC_pen. 

Y Ux Fine Coarse 1_Trans. 2_Trans. 1_Trans. 

-0.5 -8.736E-04 -8.73E-

04 

-7.14E-04 -8.64E-04 -8.66E-04 -8.64E-04 

-0.4375 -7.638E-04 -7.62E-

04 

      

  

  

  

-0.375 -6.543E-04 -6.53E-

04 

-5.34E-04 -6.47E-04 -6.47E-04 

-0.3125 -5.449E-04 -5.44E-

04 

      

-0.25 -4.358E-04 -4.35E-

04 

-3.56E-04 -4.31E-04 -4.32E-04 -4.31E-04 

-0.1875 -3.267E-04 -3.26E-

04 

      

  

  

  

-0.125 -2.178E-04 -2.17E-

04 

-1.78E-04 -2.15E-04 -2.15E-04 

-0.0625 -1.089E-04 -1.09E-

04 

      

0 0.000E+00 2.43E-15 1.01E-17 1.33E-16 1.16E-16 1.43E-09 

0.0625 1.089E-04 1.09E-04       

  

  

  

0.125 2.178E-04 2.17E-04 1.78E-04 2.15E-04 2.15E-04 

0.1875 3.267E-04 3.26E-04       

0.25 4.358E-04 4.35E-04 3.56E-04 4.31E-04 4.32E-04 4.31E-04 

0.3125 5.449E-04 5.44E-04       

  

  

  

0.375 6.543E-04 6.53E-04 5.34E-04 6.47E-04 6.47E-04 

0.4375 7.638E-04 7.62E-04       

0.5 8.736E-04 8.73E-04 7.14E-04 8.64E-04 8.66E-04 8.64E-04 

Error  Norm with 

respect to exact sol. 

     

2.28E-03 7.33E-02 7.17E-03 1.20E-04 1.72E-04 

 

 

Table 3-2. Maximal Von-Mises stresses for cantilever beam 
Different Mesh 

Model 

Exact-sol. Gaussian_point Nodal_value 

Exact Solution 48.01920768  

Fine mesh  40.9600 42.1436 

Coarse mesh 34.1900 37.0010 

MPC-elim._1 40.9710 42.1502 

MPC-elim._2 40.9710 42.1502 

MPC-pen._1 40.9590 42.1377 

MPC-pen._2 40.9630 42.1419 
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Table 3-3. Maximal Uy-displacement at the free end in mm 
Differnet Mesh Model Uy 

Exact Solution -9.43E-03 

Fine mesh -9.41E-03 

Coarse mesh -7.71E-03 

MPC-elim._1 -9.38E-03 

MPC_elim_2 -9.40E-03 

MPC_pen._1 -9.38E-03 

MPC_pen_2 -9.40E-03 

 

 

Figure 3-5. Von_Mises stress contour plot for the coarse mesh 
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Figure 3-6. Von-Mises contour plot for the fine mesh 

Figure 3-7. Von-Mises contour plot for MPC-elimination with one transition zone 
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Figure 3-8. Von-Mises contour plot for MPC-elimination with two transition zones 
 

 

Figure 3-9. Von-Mises contour plot for MPC-penalty with one transition zone 
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Figure 3-10. Von-Mises contour plot for MPC-penalty with two transition zones 
 

 

3.2 Infinite plate with a circular hole  

Figure 3-11 represents an infinite plate with a central circular hole where the radius 

is  𝑎 = 1 𝑚, and is subject to an unidirectional tensile load of 𝑇 = 1.0 𝑁
𝑚⁄   at infinity in 

the x-direction. The plate is now set as a LL  square for finite element analysis. Due to its 

symmetry, only the upper right quadrant of the plate is modeled. Figure 3-12 represents the 

quadrant plate with a hole which is set to be a 1212  meter square. In this circumstance, 

the plane strain condition is considered. Moreover, the modulus of elasticity and passion 

ratios are  𝐸 = 103  𝑁 𝑚2⁄  and 𝑣 = 0.3, respectively. Symmetric conditions are imposed 

on the left as well as the bottom edges, while the inner boundary of the hole is traction free. 

[Lui, 2009, & Timoshenko 1970].   

𝜎𝑟 = 1 −
𝑎2

𝑟2 [
3

2
cos 2𝜃 + cos 4𝜃] +

3𝑎4

2𝑟4 cos 4𝜃  (3.6) 

𝜎𝜃 = −
𝑎2

𝑟2 [
1

2
cos 2𝜃 − cos 4𝜃] −

3𝑎4

2𝑟4 cos 4𝜃 (3.7) 
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𝜏𝑟𝜃 = −
𝑎2

𝑟2
[

1

2
sin 2𝜃 − sin 4𝜃] +

3𝑎4

2𝑟4
sin 4𝜃 (3.8)  

 

where (𝑟, 𝜃) are the polar coordinates and 𝜃 is the measured counterclockwise from the 

positive x-axis. Traction boundary conditions are imposed on the right and top edges based 

on the exact solutions. 

The displacement components corresponding to the stresses in terms of polar 

coordinate are given in the equations below [Lui, 2009, & Timoshenko 1970]:  

𝑈𝑟(𝑟, 𝜃) =
𝑎

8𝜇
[

𝑟

𝑎
(𝑘 + 1)𝑐𝑜𝑠𝜃 + 2

𝑎

𝑟
((1 + 𝑘)𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠3𝜃) − 2

𝑎3

𝑟3
𝑐𝑜𝑠3𝜃]  (3.9) 

 

𝑈𝜃(𝑟, 𝜃) =
𝑎

8𝜇
[

𝑟

𝑎
(𝑘 − 3)𝑠𝑖𝑛𝜃 + 2

𝑎

𝑟
((1 − 𝑘)𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛3𝜃) − 2

𝑎3

𝑟3 𝑠𝑖𝑛3𝜃]  (3.10) 

 

where  
 





1

E
 and 𝑘 = 3 − 4𝑣 are defined in terms of Poisson’s ratio for “plane 

strain” condition. In theory, the stress concentration factor is a function of the ratio, 

(𝑎/𝐿). For an infinite plate, the stress concentration factor is 3, as (𝑎/𝐿) approaches to 

zero. Roark’s formulas [Young and Budynas, 2002] gives the following curve-fitting 

equation for the stress concentration,  

𝜎

𝑇
= 3.0 − 3.13 (

𝑎

𝐿
) + 3.66 (

𝑎

𝐿
)

2

− 1.53(
𝑎

𝐿
)3      (3.11) 

which yields a maximal stress of 2.763 for (𝛼/𝐿).=1/12. 
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Figure 3-11. Infinite plate with a circular hole subjected to unidirectional tension  
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Figure 3-12. Quadrant of an infinite plate with a hole 

 

 

3.2.1 Coarse mesh 

Figure 3-13 represents the coarse mesh of the quadrant plate. In the figure below, 

the “W-span” and “S-span” divisions are equal to 12 and 6. In this case, the numbers of 

nodes and elements are 91 and 72, respectively.  
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Figure 3-13. Coarse mesh for a plate with a hole 

 

 

Figure 3-14 presents the Von-Mises contour plot for a coarse mesh. On the left 

bottom of the circular hole the highest Von-Mises stress can be seen. The Von-Mises 

stress for coarse mesh is given in Table 3.5. The nodal value is slightly larger than the 

integration value due to the fact that the nodal point is closer to the high stress area by the 

method of curve fitting. 
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Figure 3-14. Von-Mises contour plot for a coarse mesh 

 

 

3.2.2 Fine mesh 

Figure 3-15 represents the fine mesh of a plate with a hole. The total number of 

nodes and elements are 1221 and 1152 respectively. Also, the forces and boundary 

conditions are distributed more than the coarse mesh. 
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Figure 3-15. Fine mesh for a plate with a hole 

 

 

After solving the problem, Figure 3-16 shows the Von-Mises contour plot in terms 

of nodal Von-Mises stress values. However, in comparison to the coarse mesh in Figure 3-

14 the highest Von-Mises stress in the fine mesh has a closer value to the Von-Mises 

analytical solution. 
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Figure 3-16. Von-Mises contour plot fine mesh for a plate with a hole 

 

 

3.2.3 Quadrilateral elements with transition zones 

Figure 3-17 shows a plate with a hole which is divided into two subdomains. The 

first subdomain has fine elements’ and the second subdomain consists of coarse elements. 

The total number of nodes and elements are 818 and 752, respectively. 18 variable node 

elements are considered for one set of transition elements problem and each variable node 

super-element comprises 4 elements. In all variable node super-elements in Figure 3-17, 

33 unconnected nodes are available; since each node has two degrees of freedom, there 

will be 66 MPCs.   
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Figure 3-17. Plate with a hole with one transition zone 

 

 

Figure 3-18 shows a plate with a hole which is divided into three subdomains. The 

first subdomain has fine elements and the second and third subdomains consist of 

intermediate and coarse elements. The total number of nodes and elements are 644 and 

584, respectively. 24 variable node elements are considered for two transition zones 

problem and each variable node element includes 4 elements. In all variable node super-

elements in Figure 3.18, 50 unconnected nodes are available; since each node has two 

degrees of freedom, there will be 100 MPCs.   
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Figure 3-18. Plate with a hole with two transition zones 

 

 

Figure 3-19 represents the Von-Mises contour plot in terms of Elimination which 

is very similar to Figure 3-21. Both Figures are the result of one transition problem. In 

Table 3-5 the Von-Mises stress in the MPC-elimination method and the MPC-penalty 

method are identical. Also, according to displacement values in Table 3.4 over the right 

boundary of a plate with a hole, both methods have ended up with the same solutions. 
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Figure 3-19. Von-Mises stress contour plot for MPC-elimination with one transition zone 

 
 

 

Figure 3-20. Von-Mises stress contour plot for MPC-elimination with two transition 

zones 
 

 

Figure 3-20 represents the Von-Mises contour plot in terms of Elimination which 

is pretty similar to Figure 3-22. Both figures are the result of two transitions. In Table 3.5 
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the Von-Mises stress in the MPC-elimination method and the MPC-penalty method are 

identical. Also, according to displacement values in Table 3.4 over the right boundary of a 

plate with a hole, both methods ended up with the same solutions. 

 

 

Figure 3-21. Von-Mises stress contour plot for MPC-penalty with one transition zone 
 

 

Figure 3-22. Von-Mises stress contour plot for MPC-penalty with two transition zones  
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Table 3-4. Uy -displacements at the end of the plate 

Y 

(X=12m) 

Exact-

sol. 

Fine Coarse MPC-elim-

1 

MPC-elim-2 MPC-pen-1 

0 0.011125 0.011307 0.011265 0.01130717 0.01130837 0.011307171 

0.75 0.011124 0.011303     

1.5 0.011119 0.011291 0.010429 0.0112906 0.011290604 

2.25 0.011111 0.011271    

3 0.011101 0.011245 0.011209 0.01124512 0.011247231 0.011245123 

3.75 0.01109 0.011214     

4.5 0.011077 0.011181 0.011152 0.01118094 0.011180939 

5.25 0.011063 0.011145    

6 0.01105 0.011109 0.011088 0.01110904 0.011111923 0.011109035 

6.75 0.011037 0.011072     

7.5 0.011024 0.011037 0.011025 0.0110371 0.011037098 

8.25 0.011013 0.011002    

9 0.011002 0.010968 0.010964 0.01096841 0.010970017 0.010968406 

9.75 0.010992 0.010935     

10.5 0.010983 0.010903 0.010906 0.01090294 0.010902944 

11.25 0.010976 0.010871    

12 0.010969 0.01084 0.01085 0.01083916 0.010837824 0.010839164 

       

Error_Norm 0.000104 0.000482 0.00011036 0.000125041 0.000110357 

 

Table 3-5. Maximal Von-Mises stresses for the plate  
Different Mesh Model Exact_Solution Gaussian_point Nodal_value 

Exact_solution for an 

infinite plate 

3   

Analytical solution for  

(𝑎/𝐿)=1/12 

2.763  

Fine mesh   2.5632 2.670481 

Coarse mesh 1.6291 1.829874 

MPC_elim_1 2.5136 2.642626 

MPC_elim_2 2.5091 2.637845 

MPC_pen_1 2.5136 2.642626 

MPC_pen_2 2.5091 2.637845 

 

Considering Table 3-5, it can be concluded that the MPC-elimination elicits the 

same solutions exactly. Not only is the fourth node at Gaussian integration of the 

corresponding element close to the exact solution within an error of less than 8 percent, but 
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also the nodal value will be a good estimate for the Von-Mises stress, with the error within 

3 percent.  

 

 

Figure 3-23 Uy along the left edge of the plate model 
 

 

Figure 3-23 shows that by progressing along the left boundary, the deflection will 

be reduced. However, their absolute values will be incremental. In other words, the closer 

a point is to the central hole, the less displacement will be expected. Basically, all the finite 

element method solutions in terms of Uy nearly fall on each other. The maximum error for 

Uy between the finite element methods and reference solution according to the figure above 

is 0.5 percent. 
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Figure 3-24. Ux along the bottom edge of the plate model 
 

 

Figure 3-24 signifies the elongation over the lower boundary which starts at the 

central hole and goes to the coordinate of X=12 and Y=0. This demonstrates that by 

continuing to make progress along the X axis, the Ux-displacements increase. All the finite 

element method solutions in terms of Ux are nearly fall on each other. The Maximum error 

for Ux between the finite element methods and reference solution the according to the 

Figure above is less than 0.5 percent. 
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CHAPTER 4 

CONCLUDING REMARKS 

In this chapter, the work performed in this study, and the ideas behind it, will be 

summarized. Also, the efficiency and priority of the method will be discussed here.  

4.1 Summary of the work 

The MPC-elimination method and the MPC-penalty method were discussed in 

Chapter 2. Both methods are used in the domains with transition elements. The idea driving 

the MPC-elimination method is to construct the variable node super-elements in multi-

scale problems. After conducting and assembling the new global stiffness matrix including 

the connected nodes of variable node super-elements, the interior and unconnected nodes 

were constrained. Then, the displacements of unconnected and interior nodes were revived 

based upon the derivation in Chapter 2. 

4.2 Conclusions 

The derivation of the MPC-elimination method was introduced in Chapter 2. Also, 

several examples were used that revolve around two particularly challenging problems. In 

this study, the cantilever beam with a tip load as well as a plate with a central hole, were 

the challenges addressed and modelled in this work. In addition, the validation of data in 

terms of displacements and Von-Mises stresses were surveyed in the preceding examples 

also. The MPC-variable node super-element was used for the models which comprise any 

four noded quadrilateral elements with transition elements.  

Since the models with transition zones have fewer degrees of freedom compared to 

models that do not have transition elements, the size of the global stiffness matrix of the 

domain was reduced. By reducing the global stiffness matrix size, computational time was 
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reduced. In addition to reducing computational time, the Elimination method can solve 

multi-scale problems by constructing five noded variable node super-elements with the 

connected nodes within transition zones. The MPC-elimination method constructs the local 

stiffness matrix of each local variable node super-element in the model. Typically, the 

stiffness matrix of each variable node super-element is derived, and contains ten degrees 

of freedom due to the elimination of the unconnected and interior nodes. Again, the 

derivation of the stiffness matrix of variable node super-elements was covered in Chapter 

2. As a result, the MPC-elimination method can solve multi-scale two dimensional 

problems with quadrilateral elements.  

4.3 Suggestion for future work 

Only a (1+4)-variable node element with 4-node quadrilateral elements was 

introduced here. The procedure developed in Chapter 2 is simple but quite general and can 

be extended to other types of variable node super-elements.  For example, a (2+4)-variable 

node super-element can be generated by a collection of six 4-node quadrilateral elements 

as shown in Figure 4-1. This (2+4)-node super-element can be used along with a (1+4)-one 

to handle the case even when the corner nodes of the mismatched quadrilateral elements 

don’t join together. This scenario is shown in Figure 4-2. 
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Figure 4-1. (2+4)-node super-element: (a)     : the connected node, (b)     : the 

unconnected node, and (c)      : the interior node 
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Figure 4-2. Combination of (1+4) - and (2+4)-node super-element for transition between 

mismatched elements 
 

 

High order variable node super-elements can also be developed based upon the 

procedure described in Chapter 2. For example, a single 8-node quadrilateral element can 

be a variable node element to connect 8-node quadrilateral element to a 4-node one. This 

is done by imposing a MPC constraint along its edge that is connected to the 4-node 

quadrilateral element.  Similarly, a pair of two 8-node quadrilateral elements can form a 
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variable node super-element which connected two 8-node quadrilateral elements to one. 

These two scenarios are presented in Figure 4-3 and Figure 4-4. 

 

 

Figure 4-3. Constraint 8-node quadrilateral element 
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Figure 4-4. (2+8)-node variable node super-element 
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APPENDIX 1 

The Elimination Matlab Code 

function []=variable_quad() 
clear all 
close all 
global NOC_V V_NOC 
%------------------------ QUAD2  --------------------------- 
disp('=========================================='); 
disp('         Revised form of-PROGRAM QUAD2                    '); 
disp('    2-D STRESS ANALYSIS USING 4-NODE      '); 
disp(' QUADRILATERAL ELEMENTS WITH TEMPERATURE  '); 
disp('   T.R.Chandrupatla and A.D.Belegundu     '); 
disp('=========================================='); 

  
InputData; 
Variable_Node; 
k=1; 
disp('main') 
       for gh = 1 : 4 
           NC1=NOC_V(k,gh,1); 
           NC2=NOC_V(k,gh,2); 
           NC3=NOC_V(k,gh,3); 
           NC4=NOC_V(k,gh,4); 
           disp(sprintf('k, ele, NC1, NC2, NC3, NC4, %d %d %d %d %d %d', k, gh, NC1,NC2, 

NC3, NC4)) 
       end 
Bandwidth; 
Stiffness; 
ModifyForBC; 
BandSolver_VarNode; 
StressCalc; 
ReactionCalc; 
Output; 
%------------------------  function InputData  --------------------------- 
function [] = InputData(); 
% add a global statement for variable-node element 
% global NVE NE_VarNode NE_V NE_Eliminat 
%------------------------------ 
% NE_VarNode --- Number of Variable-Node Elements 
% NVE --- Number of QUAD elements in a variable-node element 
% NE_V(i,j); i = 1, NE_VarNode, j = 1, NVE ( Element ID included in 
%                                      a variable-node element 
% NE_Eliminate(i)=1 or -1, i = 1:NE---- = 1, regular CQUD 
%                                       = -1, as a part of nodal 
%                                             variable element 
% NOC_V(i,j,k)---- i = 1, NE_VarNode, j = 1 : NVE (element), k = 1 : NEN (node) ( Mapping 
%   between global node numbers to the local one ( 1 to 9 ) in the ith  
%   variable-node element) 
% V_NOC(i,j) --- i = 1, NE_VarNode, j = 1 : 9, ( Mapping the local 
%   nodal number 1-9 to the global ones for the ith variable-node element 
%------------------------------ 
global NN NE NM NDIM NEN NDN 
%--------------------- 
% newly added for variable node elements 
%--------------------- 
global NVE NE_VarNode NE_V NE_Eliminate 
global I_Node CC_Node UU_Node 
global NOC_V V_NOC 
global No_I 
%------------------------------ 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 FILE3 
global LINP LOUT LOUT2 
global NQ 
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global LC IPL 

  
% disp('  1) Plane Stress Analysis'); 
% disp('  2) Plane Strain Analysis'); 
% LC = input('  Choose 1(default) or 2 :'); 
LC = 1; 
if isempty(LC) | LC<1 | LC>2  
   LC = 1; 
end 

  
disp(blanks(1)); 
FILE1 = '9_elem.m';  
LINP  = fopen(FILE1,'r'); 
FILE2 = '9_elimination.doc';  
LOUT  = fopen(FILE2,'w'); 

  
DUMMY = fgets(LINP); 
TITLE = fgets(LINP); 
% NVE: Number of QUAD elements in a single variable-node element 
% NE_VarNode: Number of variable-node element 
DUMMY = fgets(LINP); 
TMP = str2num(fgets(LINP)); 
[NN, NE, NM, NDIM, NEN, NDN, NVE] = deal(TMP(1),TMP(2),TMP(3),TMP(4),TMP(5),TMP(6), 

TMP(7)); 
NQ = NDN * NN; 
% Indicate the connected CQUAD elements made of a variable-node element 
DUMMY = fgets(LINP); 
TMP = str2num(fgets(LINP)); 
[ND, NL, NMPC NE_VarNode]= deal(TMP(1),TMP(2),TMP(3),TMP(4)); 
%----- Connectivity for Elements of Variable Node ----- 
DUMMY = fgets(LINP); 
NVE 
for I=1:NE_VarNode 
   TMP = str2num(fgets(LINP)); 
   [N,NE_V(N,:)] = ... 
      deal(TMP(1),TMP(2:1+NVE)); 
end 
NVE 
NE_V 
NE_VarNode 

  
NPR=3; %E, NU, ALPHA 

  
% Dimensioned for minimum 3 properties 
% disp(blanks(1)); 
% disp('PLOT CHOICE'); 
% disp('  1) No Plot Data'); 
% disp('  2) Create Data File for in-plane Shear Stress'); 
% disp('  3) Create Data File for Von Mises Stress'); 
% IPL = input('  Choose 1(defalut), 2, or 3 :'); 
%     --- default is no data 
IPL = 1; 
if isempty(IPL) | IPL<1 | IPL>3 
   IPL = 1; 
end 
if IPL > 1  
    disp(blanks(1)); 
    FILE3 = input('Give Data File Name for Element Stresses ','s'); 
    LOUT2  = fopen(FILE3,'w'); 
end 

  
%----- Coordinates ----- 
DUMMY = fgets(LINP); 
for I=1:NN 
   TMP = str2num(fgets(LINP)); 
   [N, X(N,:)]=deal(TMP(1),TMP(2:1+NDIM)); 
end 
%----- Connectivity ----- 
DUMMY = fgets(LINP); 
for I=1:NE 
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   TMP = str2num(fgets(LINP)); 
   [N,NOC(N,:), MAT(N,:), TH(N,:), DT(N,:)] = ... 
      deal(TMP(1),TMP(2:1+NEN), TMP(2+NEN), TMP(3+NEN), TMP(4+NEN)); 
end 

  
%----- Specified Displacements ----- 
DUMMY = fgets(LINP); 
for I=1:ND 
   TMP = str2num(fgets(LINP)); 
   [NU(I,:),U(I,:)] = deal(TMP(1), TMP(2)); 
end 
%----- Component Loads ----- 
DUMMY = fgets(LINP); 
F = zeros(NQ,1); 
for I=1:NL 
   TMP = str2num(fgets(LINP)); 
   [N,F(N)]=deal(TMP(1),TMP(2)); 
end 

  
%----- Material Properties ----- 
DUMMY = fgets(LINP); 
NPR 
for I=1:NM 
   TMP = str2num(fgets(LINP)); 
   [N, PM(N,:)] = deal(TMP(1), TMP(2:NPR+1)); 
end 

  
PM 
%----- Multi-point Constraints B1*Qi+B2*Qj=B0 
if NMPC > 0 
   DUMMY = fgets(LINP); 
   for I=1:NMPC 
    TMP = str2num(fgets(LINP)); 
      [BT(I,1), MPC(I,1), BT(I,2), MPC(I,2), BT(I,3)] = ... 
                    deal(TMP(1),TMP(2),TMP(3),TMP(4),TMP(5)); 
   end 
end 
fclose(LINP); 
%----------- function Re-connectivity for Variable-Node Element ----------- 
function []=Variable_Node(); 
global NN NE NM NDIM NEN NDN 
global ND NL NCH NPR NMPC NBW 
%--------------------- 
% newly added for variable node elements 
%--------------------- 
global NVE NE_VarNode NE_V NE_Eliminate 
global I_Node CC_Node UU_Node 
global NOC_V V_NOC 
global No_INode No_UNode No_CNode 
%------------------------------ 
global X NOC F AREA MAT TH DT S 
% Be sure NU is redefined in the subroutine - The originial NU is defined 
% as NUU here 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
% Assign a negative ID to those QUAD elements made of variable-node 
% elements 
for i = 1 : NE 
    NE_Eliminate(i)=1; 
end 
for i = 1 : NE_VarNode 
    for j = 1 : NVE 
        IJ=NE_V(i,j); 
        NE_Eliminate(IJ)=-1; 
    end 
end 
NE_Eliminate 
% Set up the connectivity table for a variable-node element 
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if NVE == 4 
    Nnode=9; 
end 
for i = 1 : NE_VarNode 
    for j = 1 : NVE 
        IE=NE_V(i,j); 
        for k = 1 : NEN 
            jk=(j-1)*NEN+k; 
            VE(i,jk)=NOC(IE,k); 
        end 
    end 
end 
    NOC_V=zeros(NE_VarNode,NVE,NEN) 
    NOC_V 
%----------------------------------------------------------- 
% Identify the connected, the unconnected and the interior points 
% Total number of nodes per variable-node element 
% k index is reserved for NE_VarNode 
NT=NEN*NVE; 
for k = 1 : NE_VarNode 
 disp(sprintf('ID of Var Node element = %d', k))  
 Node_Count=zeros(NVE*2,4); 
for j = 1 : NVE 
    for jj = 1 : NEN 
        jjj=(j-1)*NEN+jj; 
        Node_Count(jjj,1)=1; 
        Node_Count(jjj,2)=NE_V(k,j); 
        Node_Count(jjj,3)=0; 
        Node_Count(jjj,4)=VE(k,jjj); 
    end 
    % Node_Count(1) : # of repeatness , Node_Count(2): QUAD element ID 
end 
Node_Count 
    for j = 1 : NT 
        Nstart=VE(k,j); 
        Ncount=1; 
    for kkn = 1 : NT 
        if kkn ~= j 
        JJ=VE(k,kkn); 
        if Nstart == JJ 
            Node_Count(j,1)=Node_Count(j,1)+1; 
            Node_Count(j,3)=Node_Count(kkn,2); 
        end 
        end 
    end 
    end 
%end - for i = 1 : NE_VarNode 
    Node_Count 
    [B,BI]=sort(Node_Count(:,1)) 
    maxN=B(NT); 
    I_Node(1)=Node_Count(BI(NT),4); 
    icount=0; 
    ucount=1; 
    for i = 1 : NT 
        if B(i)==1 
            icount=icount+1; 
            C_Node(icount,1)=Node_Count(BI(i),4); 
            C_Node(icount,2)=Node_Count(BI(i),2); 
            C_Node(icount,3)=0; 
        end 
        if B(i)== 2 
            if ucount == 1 
            U_Node(ucount,1)=Node_Count(BI(i),4); 
            U_Node(ucount,2)=Node_Count(BI(i),2); 
            U_Node(ucount,3)=Node_Count(BI(i),3);  
            ucount=ucount+1; 
            else 
                UNode=Node_Count(BI(i),4); 
                UNode 
                double=0; 
                for iii = 1 : ucount-1 
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                    if UNode == U_Node(iii,1) 
                        double=double+1; 
                    end 
                end 
                double 
                if double == 0 
                    BI(i) 
            U_Node(ucount,1)=Node_Count(BI(i),4) 
            U_Node(ucount,2)=Node_Count(BI(i),2) 
            U_Node(ucount,3)=Node_Count(BI(i),3) 
            ucount=ucount+1; 
            double=0; 
                end 
            end 
        end 
    end 
    No_UNode=ucount-1; 
    No_INode=1; 
    No_CNode=icount; 
    No_UNode 
    No_INode 
    No_CNode  
    I_Node 
    C_Node 
    U_Node 
    UC_ID=0; 
    for i = 1 : No_UNode 
        NUU=U_Node(i,1); 
         % Check if any internally unconnected node is a connected one 
         % see if the node connected to any CQUAD which is not involved in 
         % variable-node elements 
         if UC_ID == 0 
        for ii = 1 : NE 
            if NE_Eliminate(ii) ~= -1 
            for jj = 1 : NEN 
        NOther=NOC(ii,jj); 
        if NUU == NOther 
            UC_ID=i; 
            break 
        end 
           end 
            end 
        end 
         end 
    end 
    UC_ID 
     % The above is to check if any unconnected node is a connected one. 
    % check if the unconnected node is connected to any boundary nodes 
    if UC_ID == 0 
    for i = 1 : No_UNode 
        NUU=U_Node(i,1); 
        if UC_ID == 0 
        for idof = 1 : 2 
            udof=(NUU-1)*NDN+idof; 
        for ii = 1 : ND 
            gdof=NU(ii) 
            udof 
            if udof == gdof 
            UC_ID=i; 
            break 
            end 
        end 
        end 
        end 
     end 
    end 
    UC_ID 
    for i = 1 : UC_ID-1 
        for j = 1 : 3 
            UU_Node(i,j)=U_Node(i,j); 
        end 
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    end 
    if UC_ID+1 <= No_UNode 
    for i = UC_ID+1 : No_UNode 
        for j = 1 : 3 
            UU_Node(i-1,j)=U_Node(i,j); 
        end 
    end 
    end 
    No_UNode=No_UNode-1; 
    for i = 1 : No_CNode 
        for j = 1 : 3 
        CC_Node(i,j)=C_Node(i,j); 
        end 
    end 
    for j = 1 : 3 
    CC_Node(No_CNode+1,j)=U_Node(UC_ID,j); 
    end 
    No_CNode=No_CNode+1; 
    I_Node 
    CC_Node 
    UU_Node 
    No_CNode 
    No_UNode 
    for iii = 1 : No_CNode 
    for i = 1 : 2 
        NCE(i)=CC_Node(iii, i+1); 
    end 
    NCE_S=sort(NCE) 
    if NCE_S(1) > 0 
        for j = 1 : No_UNode 
            for kp = 1 : 2 
            NUE(kp)=UU_Node(j,kp+1); 
            end 
            NUE_S=sort(NUE) 
            ncount=0; 
            for ijk= 1 : 2 
                for jki = 1 : 2 
                if NCE_S(ijk)~=NUE_S(jki) 
                ncount=ncount+1; 
                end 
                end 
            end 
            ncount 
            if ncount == 4 
                N_CDisconnect=iii 
                N_UDisconnect=j 
            end 
        end 
    end 
    end 
    N_CDisconnect 
    N_UDisconnect 
    I_Node(1) 
    CC_Node(N_CDisconnect,1) 
    UU_Node(N_UDisconnect,1) 
    % Connectivity Table for a Variable_node element 
    NVE 
    % Reorder the interior node 
    Ii=I_Node(1); 
    Ij=CC_Node(N_CDisconnect, 1); 
    Ik=UU_Node(N_UDisconnect, 1); 
    V_NOC(k,5)=Ii 
    V_NOC(k,4)=Ij 
    V_NOC(k,6)=Ik 

  
%     for k = 1 : NE_VarNode 
    for i = 1 : NVE 
        IJ=NE_V(k,i); 
        for j = 1 : NEN 
            IJK=NOC(IJ,j);                         
        if IJK == Ii 
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         NOC_V(k,i,j) = 5; 
        end 
        if IJK == Ij 
            NOC_V(k,i,j)=4; 
        end 
        if IJK == Ik 
            NOC_V(k,i,j)=6; 
        end 
        end 
    end 
    i5= N_UDisconnect; 
    ii9(1)=3; 
    ii9(2)=9; 
    ii10(1)=2; 
    ii10(2)=8; 
    GG(1)=1; 
    GG(2)=7; 
        EEU=UU_Node(i5,1); 
        EE(1)=UU_Node(i5,2); 
        EE(2)=UU_Node(i5,3); 
        for i6 = 1 : 2 
            IEL=EE(i6); 
            for i8 = 1 : NVE 
                IVL=NE_V(k,i8); 
                if IVL == IEL 
                    KKKK(i6) = i8; 
                end 
            end 
            for i9 = 1 : No_CNode 
                if i9 ~= N_CDisconnect 
                    FFC=CC_Node(i9,1); 
                    FF(1)=CC_Node(i9, 2); 
                    FF(2)=CC_Node(i9, 3); 
                    count=0; 
                    for i10 = 1 : 2 
                        if IEL == FF(i10) 
                            count=count+1; 
                            EEFF=EE(i6); 
                        end 
                    end 
                    if count == 1 
                    for i11 = 1 : NEN 
                        NEE=NOC(EEFF,i11); 
                        if FFC == NEE 
                            V_NOC(k,ii9(i6))=NEE; 
                            NOC_V(k,KKKK(i6), i11)=ii9(i6); 
                        end 
                    end 
                    end 
                end 
            end 
        end 
        UU_Node 
        for ix = 1 : No_UNode 
            if ix ~= N_UDisconnect 
                IXN = UU_Node(ix,1); 
                IXE(1)=UU_Node(ix,2); 
                IXE(2)=UU_Node(ix,3); 
                for iy = 1 : 2 
                       IXX = IXE(iy); 
                    for iz = 1 : 2 
                       IEN=EE(iz); 
                       if IXX == IEN 
                           for ixy = 1 : NEN 
                               NC4=NOC(IEN,ixy); 
                               if NC4 == IXN 
                                   V_NOC(k,ii10(iz))=NC4; 
                                   NOC_V(k,KKKK(iz),ixy)=ii10(iz); 
                               end 
                           end 
                       end 
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                    end 
                end 
            end 
        end  
        EE 
        NOC(NE_V(1),:) 
        NOC_V(1,1,:) 
        NOC(NE_V(2),:) 
        NOC_V(1,2,:) 
        NOC(NE_V(3),:) 
        NOC_V(1,3,:) 
        NOC(NE_V(4),:) 
        NOC_V(1,4,:) 
        UU_Node 
        count=0; 
        for ia = 1 : No_UNode 
            if count == 0 
            if ia ~= N_UDisconnect 
            ix = UU_Node(ia,1) 
            UA(1)=UU_Node(ia,2) 
            UA(2)=UU_Node(ia,3) 
            for ib = 1 : 2 
                 UAA=UA(ib) 
                     if UAA == EE(1) 
                         IBB=ib 
                         count=count+1; 
                         IAA=ia 
                     end 
            end 
            for ib = 1 : 2 
                if ib ~=IBB 
                    UAEL=UA(ib) 
                    for id = 1 : NVE 
                        if UAEL == NE_V(k,id) 
                            UAID=id                             
                        end 
                    end 
                    for ic = 1 : NEN 
                        NOCU=NOC(UAEL,ic) 
                        if NOCU == ix 
                            V_NOC(k,ii10(1))=NOCU; 
                            NOC_V(k,UAID,ic)=ii10(1); 
                        end 
                    end 
                end 
            end 
            end  
            end 
        end 
        count=0; 
        for ia = 1 : No_UNode 
            if ia ~= IAA 
            if ia ~= N_UDisconnect 
            ix = UU_Node(ia,1); 
            UA(1)=UU_Node(ia,2); 
            UA(2)=UU_Node(ia,3); 
            for ib = 1 : 2 
                 UAA=UA(ib) 
                     if UAA == EE(2) 
                         IBB=ib 
                         count=count+1; 
                     end 
            end 
            for ib = 1 : 2 
                if ib ~=IBB 
                    UAEL=UA(ib) 
                    for id = 1 : NVE 
                        if UAEL == NE_V(k,id); 
                            UAID=id; 
                        end 
                    end 
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                    for ic = 1 : NEN 
                        NOCU=NOC(UAEL,ic); 
                        if NOCU == ix 
                            ix; 
                            ic; 
                            ii10(2); 
                            V_NOC(k,ii10(2))=NOCU; 
                            NOC_V(k,UAID,ic)=ii10(2); 
                        end 
                    end 
                end 
            end 
            end  
            end 

                 
        end 
        V_NOC 
        count = 0; 
        for if3 = 1 : NVE 
            for if2 = 1 : NEN 
            IIN = NOC_V(k,if3,if2); 
            if IIN ==0 
                count = count + 1 
                IINE(count) = if3; 
            end 
            end 
        end 
        IINE 
       for if4 = 1 : count 
           IIN = IINE(if4); 
           for if5 = 1 : NEN 
               if NOC_V(k,IIN,if5) == ii10(1) 
                   INN = IIN; 
               end 
           end 
       end 
       for if6 = 1 : NEN 
           if NOC_V(k,INN,if6) == 0; 
               NELE=NE_V(k,INN); 
               V_NOC(k,1)=NOC(NELE,if6); 
               NOC_V(k,INN,if6)=1; 
           end 
       end 
       IINE 
       INN 
       for if4 = 1 : count 
           IIN = IINE(if4); 
           if IIN ~= INN 
               ANN = IIN 
           end 
       end 
       ANN 
       for if6 = 1 : NEN 
           if NOC_V(k,ANN,if6) == 0; 
               NELE=NE_V(k,ANN); 
               V_NOC(k,7)=NOC(NELE,if6); 
               NOC_V(k,ANN,if6)=7; 
           end 
       end 
       for gh = 1 : 4 
           NC1=NOC_V(k,gh,1); 
           NC2=NOC_V(k,gh,2); 
           NC3=NOC_V(k,gh,3); 
           NC4=NOC_V(k,gh,4); 
           disp('Variable_Node') 
           disp(sprintf('k, ele, NC1, NC2, NC3, NC4, %d %d %d %d %d %d', k, gh, NC1,NC2, 

NC3, NC4)) 
       end 
       V_NOC(k,:) 
    end     
%------------------------  function Bandwidth  --------------------------- 
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function []=Bandwidth(); 
global NN NE NM NDIM NEN NDN 
%--------------------- 
% newly added for variable node elements 
%--------------------- 
global NVE NE_VarNode NE_V NE_Eliminate 
global I_Node CC_Node UU_Node 
global NOC_V V_NOC 
global  No_UNode No_CNode 
%------------------------------ 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
%----- Bandwidth NBW from Connectivity NOC() and MPC 
NBW = 0; 
% Bandwidth for the regular CQUAD 
for I = 1:NE 
    NEI = NE_Eliminate(I); 
    if NEI ~= -1 
   NMIN = NOC(I, 1); 
   NMAX = NOC(I, 1); 
   for J = 2:NEN 
      if NMIN > NOC(I, J); NMIN = NOC(I, J); end 
      if NMAX < NOC(I, J); NMAX = NOC(I, J); end 
   end 
   NTMP = NDN * (NMAX - NMIN + 1); 
   if NBW < NTMP; NBW = NTMP; end 
    end 
end 
% Bandwidth for the variable-node elements 
for I = 1:NE_VarNode 
   NMIN = V_NOC(I, 1); 
   NMAX = V_NOC(I, 1); 
   for J = 2:9 
      if NMIN > V_NOC(I, J); NMIN = V_NOC(I, J); end 
      if NMAX < V_NOC(I, J); NMAX = V_NOC(I, J); end 
   end 
   NTMP = NDN * (NMAX - NMIN + 1); 
   if NBW < NTMP; NBW = NTMP; end 
end 
% Bandwidth for MPC 
for I = 1:NMPC 
   NABS = abs(MPC(I, 1) - MPC(I, 2)) + 1; 
   if (NBW < NABS); NBW = NABS; end 
end 
disp(blanks(1)); 
disp(sprintf('Bandwidth = %d', NBW)); 
kN=1; 
       for gh = 1 : 4 
           NC1=NOC_V(kN,gh,1); 
           NC2=NOC_V(kN,gh,2); 
           NC3=NOC_V(kN,gh,3); 
           NC4=NOC_V(kN,gh,4); 
           disp(sprintf('kB, ele, NC1, NC2, NC3, NC4, %d %d %d %d %d %d', kN, gh, 

NC1,NC2, NC3, NC4)) 
       end 

  
%------------------------  function Stiffness  --------------------------- 
function []=Stiffness(); 
global NN NE NM NDIM NEN NDN 
%--------------------- 
% newly added for variable node elements 
%--------------------- 

  
global NVE NE_VarNode NE_V NE_Eliminate 
global I_Node CC_Node UU_Node 
global NOC_V V_NOC 
global No_INode No_UNode No_CNode 
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%------------------------------ 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
global NQ 
global LC IPL 
global XNI 
global G_KIC 
disp('stiffness') 
NOC_V(1,:,:) 
NOC_V 
size(NOC_V) 
NOC_V(1,1,1) 
NOC_V(1,1,2) 
kN=1 
       for gh = 1 : 4 
           NC1=NOC_V(kN,gh,1); 
           NC2=NOC_V(kN,gh,2); 
           NC3=NOC_V(kN,gh,3); 
           NC4=NOC_V(kN,gh,4); 
           disp(sprintf('kN, ele, NC1, NC2, NC3, NC4, %d %d %d %d %d %d', kN, gh, 

NC1,NC2, NC3, NC4)) 
       end 
       V_NOC 

  
%----- Global Stiffness Matrix 
S = zeros(NQ,NBW); 

  
%----- Corner Nodes and Integration Points 
C = .57735026919; 
XNI(1, 1) = -C; 
XNI(1, 2) = -C; 
XNI(2, 1) = C; 
XNI(2, 2) = -C; 
XNI(3, 1) = C; 
XNI(3, 2) = C; 
XNI(4, 1) = -C; 
XNI(4, 2) = C; 
% Formation of Stiffness Matrices for Regular CQUAD Elements 
for N = 1:NE 
        NEI = NE_Eliminate(N); 
    if NEI ~= -1 
   disp(sprintf('Forming Stiffness Matrix of Regular Element %d', N)); 

    
%--------  Element Stiffness and Temperature Load  ----- 
   TL = zeros(8,1); 
   SE = zeros(8); 
   DTE = DT(N); 
%  --- Weight Factor is ONE 
%  --- Loop on Integration Points 
   for IP = 1:4 
%  ---  Get DB Matrix at Integration Point IP 
        XI = XNI(IP, 1); 
        ETA = XNI(IP, 2); 
        [DJ, D, B, DB] = dbmat(N, LC, MAT, PM, NOC, X ,XI,ETA); 
        THICK = TH(N); 

         
%  --- Element Stiffness Matrix  SE 
       for I = 1:8 
          for J = 1:8 
              C = 0; 
              for K = 1:3 
                 C = C + B(K, I) * DB(K, J) * DJ * THICK; 
              end 
                SE(I, J) = SE(I, J) + C; 
           end 
       end 
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%  --- Determine Temperature Load TL 
       AL = PM(MAT(N), 3); 
     PNU = PM(MAT(N), 2); 
       C = AL * DTE; 
       if (LC == 2); C = (1 + PNU) * C; end 
       for I = 1:8 
          TL(I) = TL(I) + THICK * DJ * C * (DB(1, I) + DB(2, I)); 
       end 
   end  
   disp('.... Placing in Global Locations'); 
   for II = 1:NEN 
      NRT = NDN * (NOC(N, II) - 1); 
      for IT = 1:NDN 
         NR = NRT + IT; 
         I = NDN * (II - 1) + IT; 
         for JJ = 1:NEN 
            NCT = NDN * (NOC(N, JJ) - 1); 
            for JT = 1:NDN 
               J = NDN * (JJ - 1) + JT; 
               NC = NCT + JT - NR + 1; 
               if (NC > 0) 
                  S(NR, NC) = S(NR, NC) + SE(I, J); 
               end 
            end 
         end 
         F(NR) = F(NR) + TL(I); 
      end 
   end 
    end 
end 
for N = 1:NE_VarNode 
   disp(sprintf('Forming Stiffness Matrix of Variable Node Element %d', N)); 
   NOC_V(1,:,:) 
   [KCC, KIC]=Stiffness_Variable(N); 
   % G_KIC * Uc will gives the displacement at the interior node for each 
   % element G_KIC(N,:,:)=KIC(:,:) 
   for nrow = 1 : NDN 
   for nki = 1 : No_CNode    
       for nkj = 1 : NDN 
           I_nk=(nki-1)*NDN+nkj; 
           G_KIC(N,nrow,I_nk)=KIC(nrow,I_nk); 
%            disp(sprintf('N, nkj,I_nk, G_%5d %5d %5d %10.4E', N, nrow, I_nk, 

G_KIC(N,nrow,I_nk)))  
       end 
   end 
   end 
% Place KCC (a 10 x10 matrix for a variable-node element )  
% in the global matrix 
   disp('.... Placing in Global Locations'); 
   No_INode;  
   No_UNode; 
   No_CNode; 
   No_CBoundary = No_CNode; 
   No_UBoundary = No_UNode; 
   No_IBoundary = No_INode; 
  C_Node(1)=1; 
  C_Node(2)=3; 
  C_Node(3)=7; 
  C_Node(4)=9; 
  C_Node(5)=4; 
  U_Node(1)=2; 
  U_Node(2)=6; 
  U_Node(3)=8; 
  I_Node(1)=5; 
   for II = 1:No_CBoundary 
       Node_I=C_Node(II); 
       NRT = NDN * (V_NOC(N, Node_I) - 1); 
      for IT = 1:NDN 
         NR = NRT + IT; 
         I = NDN * (II - 1) + IT; 
         for JJ = 1:No_CBoundary 
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             Node_J=C_Node(JJ); 
             NCT = NDN * (V_NOC(N, Node_J) - 1); 
            for JT = 1:NDN 
               J = NDN * (JJ - 1) + JT; 
               NC = NCT + JT - NR + 1; 
               if (NC > 0) 
%                   disp(sprintf('NVI V_NOC(N,NVI) NVJ V_NOC(N,NVJ) %d %d %d %d', Node_I, 

V_NOC(N,Node_I), Node_J, V_NOC(N,Node_J))); 
%                   disp(sprintf('I J NR NC %d %d %d %d', I, J, NR, NC));   
%                    NR 
%                    NC 
                  S(NR, NC) = S(NR, NC) + KCC(I, J); 
               end 
            end 
         end 
         % No thermal load accepted 
         % F(NR) = F(NR) + TL(I); 
      end 
   end 
%    S 
%    V_NOC 
 % Constrain the displacements at the interior  
 % and the unconnected nodes to be zero  
%  The process is done in the global matrix   
    for II = 1:No_UBoundary 
       Node_I=U_Node(II); 
       NRT = NDN * (V_NOC(N, Node_I) - 1); 
      for IT = 1:NDN 
         NR = NRT + IT; 
         I = NDN * (NR - 1) + IT; 
         S(NR,1)= 100000*100000; 
         % No thermal load accepted 
         % F(NR) = F(NR) + TL(I); 
      end 
    end  
      for II = 1:No_IBoundary 
       Node_I=I_Node(II); 
       NRT = NDN * (V_NOC(N, Node_I) - 1); 
      for IT = 1:NDN 
         NR = NRT + IT; 
         S(NR,1)= 100000*100000; 
         % No thermal load accepted 
         % F(NR) = F(NR) + TL(I); 
      end 
      end   
end 
%------------------------  function ModifyForBC  --------------------------- 
function []=ModifyForBC(); 
global NN NE NM NDIM NEN  
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
global NQ 
%----- Decide Penalty Parameter CNST ----- 
CNST = 0; 
for I = 1:NQ 
   if CNST < S(I, 1); CNST = S(I, 1); end 
end 
CNST = CNST * 1000000; 

  
%----- Modify for Boundary Conditions ----- 
%    --- Displacement BC --- 
for I = 1:ND 
   N = NU(I); 
   S(N, 1) = S(N, 1) + CNST; 
   F(N) = F(N) + CNST * U(I); 
end 
%--- Multi-point Constraints --- 
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for I = 1:NMPC 
   I1 = MPC(I, 1); 
   I2 = MPC(I, 2); 
   S(I1, 1) = S(I1, 1) + CNST * BT(I, 1) * BT(I, 1); 
   S(I2, 1) = S(I2, 1) + CNST * BT(I, 2) * BT(I, 2); 
   IR = I1; 
   if IR > I2; IR = I2; end 
   IC = abs(I2 - I1) + 1; 
   S(IR, IC) = S(IR, IC) + CNST * BT(I, 1) * BT(I, 2); 
   F(I1) = F(I1) + CNST * BT(I, 1) * BT(I, 3); 
   F(I2) = F(I2) + CNST * BT(I, 2) * BT(I, 3); 
end 

  
%------------------------  function BandSolver  --------------------------- 
function []=BandSolver_VarNode(); 
global NN NE NM NDIM NEN NDN 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
%--------------------- 
% newly added for variable node elements 
%--------------------- 
global NVE NE_VarNode NE_V NE_Eliminate 
global I_Node CC_Node UU_Node 
global NOC_V V_NOC 
global No_INode No_UNode No_CNode 
%------------------------------ 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
global NQ 
global G_KIC 
%----- Equation Solving using Band Solver ----- 
disp('Solving using Band Solver(bansol.m)'); 
[F] = bansol(NQ,NBW,S,F); 
F 
  C_Node(1)=1; 
  C_Node(2)=3; 
  C_Node(3)=7; 
  C_Node(4)=9; 
  C_Node(5)=4; 
  U_Node(1)=2; 
  U_Node(2)=6; 
  U_Node(3)=8; 
C_UC(1,1)=0.5; 
C_UC(1,3)=0.5; 
C_UC(2,2)=0.5; 
C_UC(2,4)=0.5; 
C_UC(3,3)=0.5; 
C_UC(3,7)=0.5; 
C_UC(4,4)=0.5; 
C_UC(4,8)=0.5; 
C_UC(5,5)=0.5; 
C_UC(5,7)=0.5; 
C_UC(6,6)=0.5; 
C_UC(6,8)=0.5; 
NUN=NDN*No_INode; 
NCN=NDN*No_CNode; 
%*************************** 
  for i = 1 : NN 
      Node_ID(i)=i; 
  end 
%*************************** 
for N = 1 : NE_VarNode 
    Int_I=V_NOC(N,5); 
   % Recover the displacements at the interior nodes  
  for jt = 1 : NDN 
    Int_II=(Int_I-1)*NDN+jt; 
    sum=0; 
    for i = 1 : No_CNode 
        CI=C_Node(i); 



 

 
78 

        GI=V_NOC(N,CI); 
        for j = 1 : NDN 
            GII=(GI-1)*NDN+j; 
            ij = (i-1)*NDN+j; 
            disp_G(ij)=F(GII); 
            sum=sum+G_KIC(N,jt,ij)*disp_G(ij); 
        end 
    end 
    disp_G; 
    sum; 
    F(Int_II)=F(Int_II)+sum; 
  end 
 % Recover the displacement at the unconnected nodes 
  for i = 1 : No_UNode 
      CoU=U_Node(i); % local nodal number 
      GU=V_NOC(N,CoU); % global nodal number 
      %****************************** 
      NGU=Node_ID(GU) 
      if NGU >= 0 
      %************************* 
      for j = 1 : NDN 
          ij = (i-1)*NDN+j; 
          Gj = (GU-1)*NDN+j; 
          sum = 0; 
           for L = 1 : (No_CNode-1) 
               for M = 1 : NDN 
                   LM = (L-1)*NDN+M; 
                   sum=sum+C_UC(ij,LM)*disp_G(LM); 
               end 
           end 
           sum 
         F(Gj)=F(Gj)+sum; 
      end 
      %******************************* 
      Node_ID(GU)= -1 * GU 
      %******************************* 
      end 
  end      
end 

  

  

  
%------------------------  function StressCalc  --------------------------- 
function []=StressCalc(); 
global NN NE NM NDIM NEN NDN 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS VSTRESS MSTRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
global LC IPL 
global XNI 

  
%-----  Stress Calculations ----- 
%--- Stresses at Integration Points 
fprintf(LOUT,'ELEM#  von Mises Stresses at 4 Integ_points\n'); 

  
for N = 1:NE 
    fprintf(LOUT,'  %d',N); 
    for IP = 1:4 
       XI = XNI(IP,1); ETA = XNI(IP,2); 
      [DJ, D, B, DB] = dbmat(N, LC, MAT, PM, NOC, X ,XI,ETA); 
%     --- Stress Evaluation 
      for I = 1:NEN 
         IN = NDN * (NOC(N, I) - 1); 
         II = NDN * (I - 1); 
         for J = 1:NDN 
            Q(II + J) = F(IN + J); 
         end 
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      end 
      AL = PM(MAT(N), 3); 
      PNU = PM(MAT(N), 2); 
      C1 = AL * DT(N); 
      if LC == 2; C1 = C1 * (1 + PNU); end 
       for I = 1:3 
         C = 0; 
         for K = 1:8 
            C = C + DB(I, K) * Q(K); 
         end 
         STR(I) = C - C1 * (D(I, 1) + D(I, 2)); 
      end 
%     --- Von Mises Stress at Centroid 
      C = 0; 
      if LC == 2; C = PNU * (STR(1) + STR(2)); end 
      C1 = (STR(1)-STR(2))^2 + (STR(2)-C)^2 + (C-STR(1))^2; 
      SV = sqrt(.5 * C1 + 3 * STR(3)^2); 
      VSTRESS(N,IP) = SV; 
%      --- Maximum Shear Stress R 
      R = sqrt(.25 * (STR(1) - STR(2))^2 + (STR(3))^2); 
      MSTRESS(N,IP) = R;    
   end 
end 

  
%------------------------  function ReactionCalc  --------------------------- 
function []=ReactionCalc(); 
global NN NE NM NDIM NEN NDN 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
%----- Reaction Calculation ----- 
disp(blanks(1)); 

  
for I = 1:ND 
   N = NU(I); 
   REACT(I) = CNST * (U(I) - F(N)); 
end 

  
%------------------------  function Output  --------------------------- 
function []=Output(); 
global NN NE NM NDIM NEN NDN 
global ND NL NCH NPR  NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS VSTRESS MSTRESS REACT 
global CNST 
global TITLE FILE1 FILE2 FILE3 
global LINP LOUT LOUT2 
global LC IPL 

  
disp(sprintf('Output for Input Data from file %s\n',FILE1)); 
fprintf(LOUT,'Output for Input Data from file %s\n',FILE1); 

  
disp(TITLE); 
fprintf(LOUT,'%s\n',TITLE); 
if LC == 1; fprintf(LOUT,'Plane Stress Analysis\n'); end 
if LC == 2; fprintf(LOUT,'Plane Strain Analysis\n'); end 

  
disp(' Node#    X-Displ         Y-Displ'); 
fprintf(LOUT,' Node#    X-Displ         Y-Displ\n'); 
I=[1:NN]'; 
% print a matrix 
disp(sprintf(' %4d %15.4E %15.4E\n',[I,F(2*I-1),F(2*I)]')); 
fprintf(LOUT,' %4d %15.4E %15.4E\n',[I,F(2*I-1),F(2*I)]'); 

  
%----- Reaction Calculation ----- 
disp(sprintf('  DOF#     Reaction')); 
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fprintf(LOUT,'  DOF#     Reaction\n'); 
for I = 1:ND 
   N = NU(I); 
   disp(sprintf(' %4d %15.4E',N,REACT(I))); 
   fprintf(LOUT,' %4d %15.4E\n',N,REACT(I)); 
end 

if IPL ==2 
   fprintf(LOUT2,'Max. in-plane Shear Stress\n'); 
elseif IPL ==3 

fprintf(LOUT2,'Von Mises Stress\n'); 
end 

%-----  Stress Calculations ----- 
%--- Stresses at Integration Points 
disp(sprintf('ELEM#  von Mises Stresses at 4 Integ_points')); 
fprintf(LOUT,'ELEM#  von Mises Stresses at 4 Integ_points\n'); 

for N = 1:NE 
disp(sprintf('%5d  %14.4E %14.4E %14.4E %14.4E',N,VSTRESS(N,1:4))); 
fprintf(LOUT,'%5d  %14.4E %14.4E %14.4E %14.4E\n',N,VSTRESS(N,1:4)); 
if IPL == 2 

%--- Maximum Shear Stress R 
fprintf(LOUT2,'%14.4E %14.4E %14.4E %14.4E\n',MSTRESS(N,1:4)); 

   elseif IPL == 3 
%--- Von Mises Stress at Integration Point 

fprintf(LOUT2,'%14.4E %14.4E %14.4E %14.4E\n',VSTRESS(N,1:4)); 
   end 
end 

disp(blanks(1));  
disp('-----    All Calculations are done    -----'); 
disp(sprintf('The Results are available in the text file %s', FILE2)); 
disp('View using a text processor'); 
if (IPL > 1) 
   fclose(LOUT2); 
   disp(sprintf('Element Stress Data in file %s', FILE3)); 
   disp('Run BESTFITQ and then CONTOUR1 or CONTOUR2 to plot stresses'); 
end 
ALPHA=0.5; 
%disp('coefficient of displacement','%d',ALPHA); 
fprintf(LOUT,'DEFORMATION COORDINATE \n') 
for I=1:NN; 

X_DEFORMED(I,1)=X(I,1)+ALPHA*F(2*I-1); 
X_DEFORMED(I,2)=X(I,2)+ALPHA*F(2*I); 
I_DEFORMED=I; 

%     disp(sprintf(' %d  %15.4E  

%15.4E\n',[I_DEFORMED,X_DEFORMED(I,1),X_DEFORMED(I,2)]')); 
fprintf(LOUT,' %d  %15.4E %15.4E\n',[I_DEFORMED,X_DEFORMED(I,1),X_DEFORMED(I,2)]'); 

end 
%----------------------------(ONLY FOR PLOT_2D)----------------- 
%axis off; 
hold on; 
%figure; 
title('Actual-Mesh'); 
for N=1 : NE 
  for j=1 : NEN 

xe(j)=X(NOC(N,j),1); 
ye(j)=X(NOC(N,j),2); 

  end 
  xe(j+1)=xe(1);ye(j+1)=ye(1); 

  line(xe,ye) 
end 
%%--------------------- Calculating the MAX range of X and Y coordinates 
LX = abs(max(X(:,1))-min(X(:,1))); 
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LY = abs(max(X(:,2))-min(X(:,2))); 
LMAX = max (LX,LY); 
epsilon =LMAX*0.001; 
for i=1:NN 
    xc = X(i,1)-epsilon;yc=X(i,2)-epsilon; 
    text(xc,yc,num2str(i),'FontSize',7); 
end 
hold off; 

     
figure; 
title('Deformed-Mesh'); 
for N=1 : NE 
  for j=1 : NEN 
    XE_DEFORMED(j)=X_DEFORMED(NOC(N,j),1); 
    YE_DEFORMED(j)=X_DEFORMED(NOC(N,j),2); 
  end 
  XE_DEFORMED(j+1)=XE_DEFORMED(1);YE_DEFORMED(j+1)=YE_DEFORMED(1); 
  line(XE_DEFORMED,YE_DEFORMED,'linestyle','-','color','m'); 
end 
fclose(LOUT); 

  

  

  

  
%------------------------  dbmat  --------------------------- 
function [DJ, D, B, DB] = dbmat(N, LC, MAT, PM, NOC, X,XI,ETA); 

  
%  --- Material Properties 
   M = MAT(N); 
   E = PM(M, 1); 
   PNU = PM(M, 2); 
   AL = PM(M, 3); 
%  --- D() Matrix 
   if LC == 1 
%  --- Plane Stress 
      C1 = E / (1 - PNU^2); 
      C2 = C1 * PNU; 
   else 
%  --- Plane Strain 
      C = E / ((1 + PNU) * (1 - 2 * PNU)); 
      C1 = C * (1 - PNU); 
      C2 = C * PNU; 
   end 
   C3 = .5 * E / (1 + PNU); 

    
   D(1, 1) = C1; 
   D(1, 2) = C2; 
   D(1, 3) = 0; 
   D(2, 1) = C2; 
   D(2, 2) = C1; 
   D(2, 3) = 0; 
   D(3, 1) = 0; 
   D(3, 2) = 0; 
   D(3, 3) = C3; 

  
%  -------  DB()  MATRIX  ------ 
%  --- Nodal Coordinates 
      N1 = NOC(N, 1); 
      N2 = NOC(N, 2); 
      N3 = NOC(N, 3); 
      N4 = NOC(N, 4); 
      X1 = X(N1, 1); 
      Y1 = X(N1, 2); 
      X2 = X(N2, 1); 
      Y2 = X(N2, 2); 
      X3 = X(N3, 1); 
      Y3 = X(N3, 2); 
      X4 = X(N4, 1); 
      Y4 = X(N4, 2); 
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%  --- Formation of Jacobian  TJ 
      TJ11 = ((1 - ETA) * (X2 - X1) + (1 + ETA) * (X3 - X4)) / 4; 
      TJ12 = ((1 - ETA) * (Y2 - Y1) + (1 + ETA) * (Y3 - Y4)) / 4; 
      TJ21 = ((1 - XI) * (X4 - X1) + (1 + XI) * (X3 - X2)) / 4; 
      TJ22 = ((1 - XI) * (Y4 - Y1) + (1 + XI) * (Y3 - Y2)) / 4; 
%  --- Determinant of the JACOBIAN 
      DJ = abs(TJ11 * TJ22 - TJ12 * TJ21); 
%  --- A(3,4) Matrix relates Strains to 
%  --- Local Derivatives of u 
      A(1, 1) = TJ22 / DJ; 
      A(2, 1) = 0; 
      A(3, 1) = -TJ21 / DJ; 
      A(1, 2) = -TJ12 / DJ; 
      A(2, 2) = 0; 
      A(3, 2) = TJ11 / DJ; 
      A(1, 3) = 0; 
      A(2, 3) = -TJ21 / DJ; 
      A(3, 3) = TJ22 / DJ; 
      A(1, 4) = 0; 
      A(2, 4) = TJ11 / DJ; 
      A(3, 4) = -TJ12 / DJ; 
%  --- G(4,8) Matrix relates Local Derivatives of u 
%  --- to Local Nodal Displacements q(8) 
      G = zeros(4, 8); 

       
      G(1, 1) = -(1 - ETA) / 4; 
      G(2, 1) = -(1 - XI) / 4; 
      G(3, 2) = -(1 - ETA) / 4; 
      G(4, 2) = -(1 - XI) / 4; 
      G(1, 3) = (1 - ETA) / 4; 
      G(2, 3) = -(1 + XI) / 4; 
      G(3, 4) = (1 - ETA) / 4; 
      G(4, 4) = -(1 + XI) / 4; 
      G(1, 5) = (1 + ETA) / 4; 
      G(2, 5) = (1 + XI) / 4; 
      G(3, 6) = (1 + ETA) / 4; 
      G(4, 6) = (1 + XI) / 4; 
      G(1, 7) = -(1 + ETA) / 4; 
      G(2, 7) = (1 - XI) / 4; 
      G(3, 8) = -(1 + ETA) / 4; 
      G(4, 8) = (1 - XI) / 4; 
%  --- B(3,8) Matrix Relates Strains to q 
      for I = 1:3 
         for J = 1:8 
            C = 0; 
            for K = 1:4 
               C = C + A(I, K) * G(K, J); 
            end 
             B(I, J) = C; 
         end 
      end      
%  --- DB(3,8) Matrix relates Stresses to q(8) 
      for I = 1:3 
         for J = 1:8 
           C = 0; 
            for K = 1:3 
              C = C + D(I, K) * B(K, J); 
           end  
              DB(I, J) = C; 
         end 
      end 
function [F] = bansol(NN,NBW,S,F) 
% Band Solver 

  
N = NN; 
%----- Forward Elimination ----- 
for K=1:N-1 
   NBK = N - K + 1; 
   if (N - K + 1) > NBW 
      NBK = NBW; 
   end 
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   for I=K+1:NBK+K-1 
      I1 = I - K + 1; 
      C = S(K, I1) / S(K, 1); 
      for J=I: NBK+K-1 
         J1 = J - I + 1; 
         J2 = J - K + 1; 
         S(I, J1) = S(I, J1) - C * S(K, J2); 
      end 
      F(I) = F(I) - C * F(K); 
   end             
end 
%----- Back Substitution ----- 
F(N) = F(N) / S(N, 1); 
for II=1:N-1 
   I = N - II; 
   NBI = N - I + 1; 
   if (N - I + 1) > NBW 
      NBI = NBW; 
   end 
   SUM = 0.; 
   for J=2:NBI 
      SUM = SUM + S(I, J) * F(I + J - 1); 
   end 
   F(I) = (F(I) - SUM) / S(I, 1); 
end 
%------------------------  function Stiffness  --------------------------- 
function [KCC, KIC]=Stiffness_Variable(NN); 
% Construct the 10x10 stiffness matrix for a variable-node element 
global NNODE NE NM NDIM NEN NDN 
%------------------------------ 
% NE_VarNode --- Number of Variable-Node Elements 
% NVE --- Number of QUAD elements in a variable-node element 
% NE_V(i,j); i = 1, NE_VarNode, j = 1, NVE ( Element ID included in 
%                                      a variable-node element 
% NE_Eliminate(i)=1 or -1, i = 1:NE---- = 1, regular CQUD 
%                                       = -1, as a part of nodal 
%                                             variable element 
% NOC_V(i,j,k)---- i = 1, NE_VarNode, j = 1 : NVE, k = 1 : NEN ( Mapping 
%   between global node numbers to the local one ( 1 to 9 ) in the ith  
%   variable-node element) 
% V_NOC(i,j) --- i = 1, NE_VarNode, j = 1 : 9, ( Mapping the local 
%   nodal number 1-9 to the global ones for the ith variable-node element 
%------------------------------ 
% I_Node 
% CC_Node 
% UU_Node 
% No_I 
%--------------------- 
global NVE NE_VarNode NE_V NE_Eliminate 
global NOC_V V_NOC 
%------------------------------ 
global ND NL NCH NPR NMPC NBW 
global X NOC F AREA MAT TH DT S 
global PM NU U MPC BT STRESS REACT 
global CNST 
global TITLE FILE1 FILE2 
global LINP LOUT 
global NQ 
global LC IPL 
global XNI 
% newly added 
% Define Interior, Unconnected and Connected boundary nodes for 
% a standard 9-node variable-node element 
       for gh = 1 : 4 
           NC1=NOC_V(NN,gh,1); 
           NC2=NOC_V(NN,gh,2); 
           NC3=NOC_V(NN,gh,3); 
           NC4=NOC_V(NN,gh,4); 
           disp(sprintf('STIFFNESS-VAR k, ele, NC1, NC2, NC3, NC4, %d %d %d %d %d %d', 

NN, gh, NC1,NC2, NC3, NC4)) 
       end 
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    KCC=zeros(10,10); 
    NOC_V(1,:,:) 
  No_INode=1; 
  No_CBoundary=5; 
  No_UBoundary=3; 
  C_Node(1)=1; 
  C_Node(2)=3; 
  C_Node(3)=7; 
  C_Node(4)=9; 
  C_Node(5)=4; 
  U_Node(1)=2; 
  U_Node(2)=6; 
  U_Node(3)=8; 
  I_Node(1)=5; 
  C_UC=zeros(6,10); 
C_UC(1,1)=0.5; 
C_UC(1,3)=0.5; 
C_UC(2,2)=0.5; 
C_UC(2,4)=0.5; 
C_UC(3,3)=0.5; 
C_UC(3,7)=0.5; 
C_UC(4,4)=0.5; 
C_UC(4,8)=0.5; 
C_UC(5,5)=0.5; 
C_UC(5,7)=0.5; 
C_UC(6,6)=0.5; 
C_UC(6,8)=0.5; 
%----- Global Stiffness Matrix in an Node_Varaible Element 
SN=zeros(18,18); 
%----- Corner Nodes and Integration Points 
C = .57735026919; 
XNI(1, 1) = -C; 
XNI(1, 2) = -C; 
XNI(2, 1) = C; 
XNI(2, 2) = -C; 
XNI(3, 1) = C; 
XNI(3, 2) = C; 
XNI(4, 1) = -C; 
XNI(4, 2) = C; 

  
%for NN = 1:NE_VarNode 
       disp(sprintf('Forming Stiffness Matrix of Var-Node Element %d', NN)); 
    for INN = 1 : NVE 
        N = NE_V(NN,INN); 
    disp(sprintf('Forming Stiffness Matrix of Element %d', N));  
%--------  Element Stiffness and Temperature Load  ----- 
   TL = zeros(8,1); 
   SE = zeros(8); 
   DTE = DT(N); 
%  --- Weight Factor is ONE 
%  --- Loop on Integration Points 
   for IP = 1:4 
%  ---  Get DB Matrix at Integration Point IP 
        XI = XNI(IP, 1); 
        ETA = XNI(IP, 2); 
        [DJ, D, B, DB] = dbmat(N, LC, MAT, PM, NOC, X ,XI,ETA); 
        THICK = TH(N); 

         
%  --- Element Stiffness Matrix  SE 
       for I = 1:8 
          for J = 1:8 
              C = 0; 
              for K = 1:3 
                 C = C + B(K, I) * DB(K, J) * DJ * THICK; 
              end 
                SE(I, J) = SE(I, J) + C; 
           end 
       end 
%  --- Determine Temperature Load TL 
       AL = PM(MAT(N), 3); 
     PNU = PM(MAT(N), 2); 
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       C = AL * DTE; 
       if (LC == 2); C = (1 + PNU) * C; end 
       for I = 1:8 
          TL(I) = TL(I) + THICK * DJ * C * (DB(1, I) + DB(2, I)); 
       end 
   end  
   SE 
   disp('.... Placing in 1-9 Locations in a Variable-Node Element'); 
   NOC_V(1,:,:) 

    
   for II = 1:NEN 

        
       NOCVI=NOC_V(NN,INN,II); 
      NRT = NDN * (NOCVI - 1); 
      for IT = 1:NDN 
         NR = NRT + IT; 
         I = NDN * (II - 1) + IT; 
         for JJ = 1:NEN 
            NOCVJ=NOC_V(NN,INN,JJ); 
            NCT = NDN * (NOCVJ - 1); 
            for JT = 1:NDN 
               J = NDN * (JJ - 1) + JT; 
               NC = NCT + JT ; 
               disp(sprintf('Forming NN, INN, NR NC NOCVI NOCVJ I J %d %d %d %d %d %d %d 

%d %d', NN, INN, NR, NC, NOCVI, NOCVJ, I, J)); 
               SN(NR, NC) = SN(NR, NC) + SE(I, J); 
            end 
         end 
         F(NR) = F(NR) + TL(I); 
      end 
   end 
end 
S 
SN 
%local  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%local  N_edge C_Node U_Node I_Node 
for i = 1 : No_INode 
        NIi=I_Node(i); 
    for j = 1 : No_INode 
        NIj=I_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Irow=(NIi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Icol=(NIj-1)*NDN+m; 
    S_II(irow,jcol)= SN(Irow,Icol); 
            end 
        end 
    end 
end 
S_II_inv=inv(S_II); 
%local  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%local  N_edge C_Node U_Node I_Node 
for i = 1 : No_CBoundary 
        UCi=C_Node(i); 
    for j = 1 : No_CBoundary 
        UCj=C_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Crow=(UCi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Ccol=(UCj-1)*NDN+m; 
    S_CC(irow,jcol)= SN(Crow,Ccol); 
            end 
        end 
    end 
end 
%global  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%global  N_edge C_Node U_Node I_Node 
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for i = 1 : No_UBoundary 
        NUi=U_Node(i); 
    for j = 1 : No_CBoundary 
        NCj=C_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Urow=(NUi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Ccol=(NCj-1)*NDN+m; 
    S_UC(irow,jcol)= SN(Urow,Ccol); 
            end 
        end 
    end 
end 
S_CU=S_UC'; 
%global  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%global  N_edge C_Node U_Node I_Node 
for i = 1 : No_UBoundary 
        NUi=U_Node(i); 
    for j = 1 : No_INode 
        NIj=I_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Urow=(NUi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Icol=(NIj-1)*NDN+m; 
    S_UI(irow,jcol)= SN(Urow,Icol); 
            end 
        end 
    end 
end 
S_IU=S_UI'; 
%global  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%global  N_edge C_Node U_Node I_Node 
for i = 1 : No_CBoundary 
        NCi=C_Node(i); 
    for j = 1 : No_INode 
        NIj=I_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Crow=(NCi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Icol=(NIj-1)*NDN+m; 
    S_CI(irow,jcol)= SN(Crow,Icol); 
            end 
        end 
    end 
end 
S_IC=S_CI'; 
%global  No_INode No_CBoundary No_UBoundary No_Boundary_Segment 
%global  N_edge C_Node U_Node I_Node 
for i = 1 : No_UBoundary 
        UNi=U_Node(i); 
    for j = 1 : No_UBoundary 
        UNj=U_Node(j); 
        for k = 1 : NDN 
            irow=(i-1)*NDN+k; 
            Urow=(UNi-1)*NDN+k; 
            for m = 1 : NDN 
            jcol=(j-1)*NDN+m; 
            Ucol=(UNj-1)*NDN+m; 
    S_UU(irow,jcol)= SN(Urow,Ucol); 
            end 
        end 
    end 
end 
S_UU 
S_II 
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S_UI 
S_CI 
S_UC 
S_CC 
C_UC 
S_II_inv=inv(S_II); 
K_CC_1=S_UU-S_UI*S_II_inv*S_UI'; 
K_CC_2=S_UC-S_UI*S_II_inv*S_CI'; 
K_CC_3=S_UC'-S_CI*S_II_inv*S_UI'; 
K_CC_4=S_CC-S_CI*S_II_inv*S_CI'; 
KCC=KCC+C_UC'*K_CC_1*C_UC; 
KCC=KCC+K_CC_3*C_UC; 
KCC=KCC+C_UC'*K_CC_2; 
KCC=KCC+K_CC_4; 
KCC 
KIC=-S_II_inv*(S_UI'*C_UC+S_CI') 
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