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ABSTRACT 
The interaction of Pb and Zn with Al20 3 in aqueous solution was studied as 
a function of pH and metal ion concentration. Results indicated the complexa­
tion of metal ions by oxide surfaces is strongly pH dependent; the extent of 
adsorption is a function of pH with an abrupt change within approximately 2 
pH units. The adsorption of Pb and Zn on aluminium oxide can be interpreted 
in terms of a smface complexation formed by association with one surface 
AlOH foup, thus releasing one bound hydrogen ion. -AIOH + M2

+ = 
-AIOM + H+. It is suggested that the major surface reaction is the formation 
of a monodentate inner-sphere complex. 

INTRODUCTION 
Metallic oxides and silicas are abundant components of the earth's crust. Adsorp­

tion of metals from aqueous solution onto oxide surfaces is considered to be an 
important process in natural environments and in many industrial systems. Examples 
include the interactions between sediments and the water column, the mobility and 
transportation of trace metals in natural waters, leaching of metals from landfills, and 
the use of adsorption for removal or recovery of trace metals in wastewater and water 
treatment operations. It is therefore of practical and theoretical interest to obtain a 
detailed understanding of the sorption process at the oxide-water interface. This 
understanding hinges to a great extent upon elucidation of the nature of particulate 
surface, and the effects of pH, ionic strength, and metal concentrations. pH is probably 
the single most important factor influencing metal behavior in aqueous systems. 
Typically adsorption of metals on oxides increases from near zero to nearly 100% as 
pH increases through a critical range of 1-2 units wide (Lion et al., 1982; Benyahya 
and Gamier, 1999). 

The mobility of metal ions in aquatic environment is often characterized by a 
distribution coefficient Kd defined as the ratio of the concentration of metal adsotbed 
on the solid phase (r) to that in solution at equilibrium (Cr). High values of Kd indicate 
that the metal has been retained by the solid through sorption reactions, while low 
values ofKd indicate that most of the metal remain in solution where it is available for 
transportation and geochemical reactions. Trace metal ion adsorptions at oxide/natural 
waters interfaces are often better described by a distribution coefficient, since their 
concentrations in natural aquatic systems are usually low. 

Several mechanisms and models have been developed for metal ion adsorption 
reactions at the oxide-water interface. (1) James and Healy (1972) proposed an 
ion-solvent interaction model, which considers electrostatic, solvation, and specific 
chemical energy interactions as the ion approaches the interface and which implies 
that a lowering of the ionic charge of the metal species ( e.g., by hydrolysis) decreases 
the ion-solvent interaction which presents a barrier to close approach of multiple 
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charged ions to the surface. The pH at which adsorption of metal ions becomes 
significant is the pH at which the dissolved cations undergo hydrolysis to hydroxy 
complexes. It is because the hydrolyzed species do not have a strongly held hydration 
shell to prevent adsorption. (2) The ion exchange model suggested by Dugger ( 1964 ), 
according to which metallic cations upon adsorption on the hydrous oxide surface 
replace protons from hydroxyl groups -AlOH. And (3) Schindler-Stumm surface 
complex formation model (Stmmn et al., 1970; Huang et al. , 1973; Schindler et al., 
1987~ Hohl et al. , 1976; Schindler, 1981) hypothesizes that complexes are formed at 
the surface of the oxide, which is composed of a hydroxyl species bound to a central 
cation. In this model the hydrous oxide surface groups, -AlOH, -Alff, or -Al-OH2+ 
are treated similar to amphoteric functional groups in polyelectrolytes, as complex 
forming species. The fundamental concept is that adsorption takes place at defined 
coordination sites (the surface hydrox)'l groups are present in finite number). The 
surface complexation model permits us to handle adsorption equilibria in the same way 
as equilibria in solution~ adsorption is thus closely analogous to complex formation in 
solution, and can be described by similar equations. · 

Accordingly, we interpret our results of adsorption of metal ions (M2+) on Ati03 
in tenns of this latter model and characterize the amphoteric and complex forming 
properties by the acid-base reactions: 

+H+ +H+ 

Alff <===> AlOH <===> AlQH2+ 

and the following coordination reactions, (thus leading to the formation of either 
monodentate or bidentate surface complexes.) 

Al-OH+ M2+ = Al-OM++ H+ 

or 2Al-OH + M2+ = (Al-0)2M + 2H+ 

where M2+ is either Pb2+ or Zn2+ in this study. 
Competitive complex formation equilibria (metal ion versus H\ or anion versus 

Off) explain the strong dependence of metal ion (as well as anion) binding on pH. 
Hence uptake and release of H+ ions in solution can be described by the acidity 

constants. Similarly, adsorption equilibria involving metal ion are conveniently char­
acterized by stability constants for the formation of surface complexes. According to 
the above equations, we assume that among other species in solution at the pH studied 
only free cations (Pb2+ or Zn2+, and not another species such as PbOH+ or ZnOH+) 
form surface complexes (i.e. adsotbed) and that the pH-dependence of the association 
of metal ions can be explained by the pH-dependence of the surface concentration of 
the Alff group and the affinity of this group to the free metal ion. 

Although experimental studies on adsorption conducted to date represents a con­
siderable increase in knowledge, a quantitative application oftlris knowledge to natural 
aqueous environments is still inadequate. The binding stoichiometry of metal ions to 
the solid and suspended phase is not yet resolved satisfactorily. The focus of this study 
was (1) to study the effect of pH on the adsorption of metal ions (lead and zinc) on 
aluminium oxide, and (2) evaluate quantitatively the interaction of these cations with 
the surface hydroxy 1 group on aluminium oxide in tenns of proton stoichiometry. 
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MATERIALS 
A commercial product, Aluminium Oxide C (Fumed Alumina), supplied by 

Degussa Corporation (N.J.) was used without further treatment. The surface properties 
of this sample have been reported previously (Hachiya et al., 1979). It has a pHzpc of 
8.3 and a specific surface area of 100 m2 /g, with a particle sire smaller than 1 µm and 
apparently uniform. 

All chemicals used were reagent grade, and together with the reference standard 
solutions of Pb and Zn for atomic absoiption were purchased from Fisher Scientific 
(NJ.). Solutions of0.1 M NaOH and HCl were prepared and used in adjusting the pH 
of the experimental samples. 

METHODS 
Our study is aimed at: (1) The extent of cation (Pb and Zn) interactions with the 

AI203 surface at various pH evaluated from direct measurements of the cation uptake 
by the surface. And (2) the studies of proton release and stoichiometry at aluminium 
oxide/water interface during metal ion adsorption through a titration of suspended 
aluminium oxide particles with cation (lead and zinc), and the plots of Kd versus pH. 
Pb or Zn bound to the surface is calculated from the difference between the total Pb or 
Zn added to the system and that remaining in solution using AAS (Atomic Absoiption 
Spectrophotometer, SpectrAA 20, Varian Instrument) for the measurements. The pH 
of the suspension is monitored as cations are titrated with the suspension of aluminium 
oxide using an Orion research digital ionalyzer (Model 701A) with an Orion Combi­
nation electrode. 

(1) Adsorption of Lead and Zinc on Aluminium oxide - Effect of pH 
(a) In the first set of adsotption runs, 0.1 g of aluminium oxide was weighed into 

a 250mL polycarbonate erlenmeyer flasks containing lOOmL of lead of concentration 
1.0-14 mg/L or0.4 - 4.0 mg/L of zinc. The pH was adjusted to the required value. pH 
values of 5-8 were studied. Samples were sealed in nitrogen, and then shaken overnight 
in a shaker at 150 revolutions per minute and 25°C. After this period the pH of the 
samples was readjusted, equilibrated and then filtered. The filtrate was retained for 
metal analysis. The difference between the initial and final concentration was taken as 
the amount adsorbed. 

(b) In the second set of adsoiption runs, the adsotption edges (the pH region in 
which adsorption increases rapidly ) of lead and zinc on aluminium oxide were 
determined. A suspension containing 0.5 g/L of the adsorbent (aluminium oxide) was 
placed in a 500mL flask and equilibrated for 1 hour under nitrogen atmosphere at pH 
2 where no adsorption was anticipated. After 1 hour a 50mL aliquot was removed as 
a blank, and then 10 mg/L lead or 6 mg/L zinc was added. A 50mL aliquot containing 
the adsorbate was removed and transfered to a clean 250mL polycarbonate erlenmeyer 
flask. Then the pH was adjusted upward (2-11 ), 50mL aliquots being drawn at each 
pH. Samples were sealed under nitrogen, and then shaken overnight in a shaker at 150 
revolutions per minute and 25°C. After this period the pH of the samples was 
readjusted, equilibrated and then filtered. The filtrate was retained for metal analysis. 

(2) Proton Release and Stoichiometry during adsorption of metal ions: 
(a) Titration - proton release during adsotption 
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Suspended particles were titrated with cations (lead and zinc) while pH change as 
a result of titration was measured. 0.1 g of aluminium oxide was weighed into a 250mL 
flask containing 1 OOmL of distilled deionized water. The solution of metal ion whose 
pH was adjusted to the same as that of the aluminium oxide suspension was introduced 
through a burette while the suspension was stirred using a Teflon-coated magnetic 
stirrer. The pH change of the suspension was measured using a glass electrode as the 
cations were titrated with the suspension. A blank titration containing no metal ion was 
performed for comparison 

(b) Proton stoichiometry estimated from the plots of Kd versus pH. 
We assume that surface complexation is the major interaction during adsorption. 

The association of aluminium oxide with metal ions (M2+) can be represented in a 
general form as follows: 

(AlOH)a + M2+ = (AlO)aM2-a + c:xH+ 

where M2+ is a divalent aqueous metal ion such as Pb2+ or Zn2+ in this study. a is the 
number of hydrogen ions replaced from surface hydroxy 1 groups. This equation implies 
generally that one metal ion can associate with one or more surface AIOH groups, 
where (AlO)aM2-a denotes bound metal ion. The value of a can be obtained from the 
equilibrium of the mass action law reaction. 

K = ((AlO)aM2-a)(H+)a/((AlOH)a)(M2+) (1) 

where K is the equilibrium constant of the smface interaction. And 

Kd = ((Al0)a.M2-a)/(M2+) = f'/Cr (2) 

where r is the amount of adsotbate adsmbed per gram of adsorbent, and Cr is the 
equilibrium solution concentration. Kd is, therefore, equal to the slope of a straight line 
on a r versus Cr plot. As seen in the Fig. 1 and 2, the plots of r versus Cf are nearly 
linear in the portion where the concentrations of metal ions (Cr) in solution are low. 
Thus, Kd values at various pH can be derived by linear regression from the measure­
ments made at low concentrations. 

Therefore, K = Kd(H+f/(AlOH)a 

log Kd = c:xpH + log(K(AIOH)a) (3) 

From the above equation a plot of log Kd versus pH should give a positive slope a . 

RESULTS AND DISCUSSION 
In all cases, the data represent a measurement precision of ±2 relative standard 

deviation. 

(1) Effect of pH on Adsorption of Lead and Zinc 
As seen from Figures 1-3, adsorption of lead and zinc is strongly pH dependent~ 

adsorption increased matkedly as pH increased. For the pH range (5-8) studied the 
adsorption of Pb (Fig. 1) and Zn (Fig. 2) was highest at pH 8. 

The pH region in which adsorption increases rapidly (the "adsorption edge") for 
lead and zinc is demonstrated in Fig. 3. The abscissa is the pH of the suspension and 
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FIGURE 3. Plot of% metal adsorbed versus pH of the suspension for the adsorption of Pb (o) and Zn(.) on 
aluminium oxide at 25°C. ll1e initial concentration of Pb used was 10 mg/L and that of Zn was 6 mg/L. 

the ordinate is the percentage metal (lead or zinc) adsmbed. From Fig. 3 adsorption of 
lead increased from about 7% at pH 4 to almost 98% at pH 8, while it increased 
markedly between pH 5 and 7. At approximately pH 6.2 the adsorption of lead on 
aluminium oxide was 50%. Adsorption of zinc increased from about 4% at pH 4 to 
nearly 95% at pH 8, while a marked increased occurred between pH 6 and 8. At 
approximately pH 6 .5 the adsorption of zinc on aluminium oxide was 50%. Both results 
show the bulk of the adsorption occurring over a relatively narrow pH range of 
approximately 2 unit wide where fractional adsorption increases from near nil to near 
100%, and are in good agreement with literatures results (Lion et al., 1982; Benyahya 
and Garnier, 1999; Johnson, 1990; Tewari and Lee, 1975 ). 

These results conform with the trend of increasing adsorption with increased pH 
and suggest further that adsorption of metal ions on oxides is pH dependent. This 
dependence can be attributed to the properties of both, the oxide surface ( charge, 
potential, and/or surface composition) and the solution composition (e.g. metal ion 
speciation) change with pH. In aquatic environments, oxides and oxide minerals are 
covered with surface hydroxyl groups, AlOH. The presence of two lone electron pairs 
and a dissociable hydrogen ion indicates that these groups are ampholytes. As men­
tioned above, depending on the pH of the system, the surface of the oxide exists in the 
following forms. 

+H+ +H+ 

Alff <===> AlOH <===> AlOH2+ 

BINDING OF Pb A 

The pH dependent charge of a hydrous oxide 1 

surface. The zero point of charge (pzc) of the alumi1 
as stated above. At pH values well below the pzc, tl 
be positively charged (AlOH2+). As the pzc is ap~rc 
neutralized, forming Al OH, and a small number will 
Alff before the pzc is reached. At higher pH valu 
sites for metals increases. Given that the adsmbed s 
and zinc adsorption will occur most readily on ne1 
However, cations of Pb and Zn can be strongly adso 
as illustrated in this study, whereby adsorption of 11 

solution even below the pH . Therefore, the in1 pzc. . 
minium oxides cannot be explamed by electrostatic 
tions have been inteipreted in recent years in tenns o 
functional groups, -AlOH, whose acid-base and 
similar to their countetparts in soluble compom 
therefore considered as competitive complex fonna 
hydroxyls. 

(2) Proton Release and Stoichiometry during I 
Oxide. 

(a) Results from titration of aluminium oxide s1 
In this study surface complexation process in 

through a titration of suspended aluminium oxide 
zinc). The pH of the suspension is monitored as tht 

A plot of pH versus cumulative volume of the 
reflects the interactions of Pb and also Zn with the 
be seen the pH of the aluminium oxide suspension 
was added through a burette. The decreasing pH < 

process occurred which decreased the pH (increase, 
containing no metal ions, which remained essenti 
titration. The results support the interpretation 1 

aluminium oxide can be represented in terms of, 
association of Pb or Zn ion with a number of surfac 
or more bound H+ ions (a). 

(AlOH)a + Pb2+ = (AlO)aP 

and 

(AlOH)a + Zn2+ = (Al0)a2 

(b) Plots of Kd versus pH - Proton Stoichiomet 
The resulting plots of log Kd versus pH (Eq. 3 

these cmves demonstrated that a which give the eq 
metal ion adsorbed was determined and found to b 
for each metal ion adsorbed, approximately one H+ 1 



BINDING OF Pb AND Zn 45 

The pH dependent charge of a hydrous oxide results from proton transfer at the 
surface. The zero point of charge (pzc) of the aluminium oxide used in this study is 8.3 
as stated above. At pH values well below the pzc, the majority of the surface sites will 
be positively charged (AlOH2+). As the pzc is approached, increasing numbers will be 
neutralized, fonning AlOH, and a small number will acquire a negative charge, forming 
Alff before the pzc is reached. At higher pH values, the number of available active 
sites for metals increases. Given that the adsorbed species are positively charged, lead 
and zinc adsorption will occur most readily on neutral and negatively charged sites. 
However, cations of Pb and Zn can be strongly adsorbed against electrostatic repulsion 
as illustrated in this study, whereby adsorption of lead and zinc occurred at the pH of 
solution even below the pHpzc· Therefore, the interactions of metal ions with alu­
minium oxides cannot be explained by electrostatic interaction only~ specific interac­
tions have been interpreted in recent years in terms of surface coordination with surface 
functional groups, -AlOH, whose acid-base and other coordinative properties are 
similar to their counterparts in soluble compounds. Adsorption of metal ions is 
therefore considered as competitive complex formation involving one or more surface 
hydroxyls. 

(2) Proton Release and Stoichiometry during Metal Adsorption on Aluminium 
Oxide. 

(a) Results from titration of aluminium oxide suspension with metal ions. 
In this study surface complexation process in aluminium oxide is investigated 

through a titration of suspended aluminium oxide particles with metal ions (lead and 
zinc). The pH of the suspension is monitored as the suspension is being titrated. 

A plot of pH versus cumulative volume of the cations is shown in Fig. 4, which 
reflects the interactions of Pb and also Zn with the Al20 3 surface. From Fig. 4 it can 
be seen the pH of the aluminium oxide suspension decreased as lead or zinc solution 
was added through a burette. The decreasing pH of the suspensions indicated that a 
process occurred which decreased the pH (increased H+), as compared with the blanks 
containing no metal ions, which remained essentially at the same initial pH during 
titration. The results support the interpretation that lead and zinc adsorption on 
aluminimn oxide can be represented in terms of a surface complexation formed by 
association of Pb or Zn ion with a number of surface AlOH groups thus replacing one 
or more bound H+ ions (a). 

(AlOH)a + Pb2+ = (AlO)aPb2-a + aH+ 

and 

(AIOH)a + Zn2+ = (AlO)aZn2-a + aH+ 

(b) Plots of Kd versus pH - Proton Stoichiometry 
The resulting plots of log Kd versus pH (Eq. 3) are shown in Fig. 5. The slope of 

these curves demonstrated that a which give the equivalent number of H+ released per 
metal ion adsorbed was determined and found to be close to unity. This suggests that 
for each metal ion adsorbed, approximately one H+ is released, indicating that the major 
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FIGURE 4. Plot of pH versus cumulative volume for the titration of 10 mg/L Pb(o), 2 mg/L Zn(~) with 
aluminium oxide suspension at 25°C. 

surface reaction is the formation of monodentate inner-sphere complex over the 
experimental pH range. 

Therefore the adsorption of lead and zinc on aluminium oxide in general can be 
represented: 

AlOH + Pb2+ = AlOPb + + H+ 

and 

AlOH + Zn2+ = AlOZn + + H+ 

This is a surface complexation formed by association of one surface AlOH group, 
thus replacing one bound H+ ion. A similar mass action approach to adsorption 
equilibria is outlined in Kurbatov, et al. (1951), and also described for tl1e distribution 
coefficient of trace metals on soils in Anderson and Christensen ( 1988). Based on tl1e 
investigation of Pb(II) complexes at tl1e Al20/water interface, using X-ray absorption 
spectroscopy, Chisholm-Brause et al. (1990) demonstrated that Pb(II) bonded directly 
to the Al20 3 surface as an inner-sphere complex and the adsorption site is monodentate, 
which is in direct support of our results. 

As suggested by Benjamin and Leckie (1981), over a wide pH range extending at 
least ± 3 pH units from the point of zero charge, the surface proton density is 1. 0 ± 0 .1 
proton per smface site on oxides. In other words -Al OH is the most abundant site for 
adsorption over this wide pH range. Thus, if all surface sites are equivalent under the 
condition of low surface coverage, on the average one surface proton would be released 
per site occupied when a trace metal adsotbs. Thus, bidentate or multidentate com-
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FIGURE 5. Plot oflog Kd versus pH for the adsorption of Pb (/1) and Zn (o) on aluminium oxide at 25°C. 

plexes which can not be ruled out are formed only to a very small extent in comparison 
to the 1: 1 compolexes. 

Honeyman (1984) discussed the limitations of this approach, including the require­
ment for an excess of surface binding sites and tl1e dependence of proton release on 
system pH. As we have seen from tl1e above plotted isotherms, Kd is better described 
at low adsorption density where unoccupied sites are in great excess, but not at high 
surface coverage. Below some sufficiently low adsorption density there must exist a 
condition where unoccupied sites of all types are in excess. Under these conditions the 
adsorption density ([) should be a linear function of equilibrium dissolved adsotbate 
concentration. In the region where the surface coverage is high, the tendency for a metal 
ion to adsotb decreases because oftlrree possible reasons (Schindler and Stumm, 1987; 
Benjamin and Leckie, 1981): (1) the coulombic attraction between the solid and the 
adsorbate decreases as the metal ions adsotb, because the surface charge becomes more 
positive. (2) There are unfavorable interactions between adjacent adsotbed species. (3) 
There are a variety of site types on tl1e solid, of varying affinity for the adsotbate. As 
suggested by Chisholm-Brause et al. ( 1990), while Pb(TI) surface complexes on A½03 
were predominantly monodentate, some Pb was sotbed as small multinuclear com­
plexes and the number and size of these complexes apparently increased with increas­
ing surface coverage. 

CONCLUSIONS 
The experimental results obtained in tltis study provide some understanding of the 

nature and extent of adsorption of metal ions (lead and zinc) on aluminium oxide at 
different values of pH. It is interesting to note that the adsorption edges of Pb and Zn 
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occur approximately in the pH range of natural water {pH 5-8). This means that a small 
shift in pH in aqueous system, as may occur in rivers and estuaries, causes a sharp 
increase or decrease in dissolved metal levels. For most natural surfaces, the electro­
static state of the interface is determined primarily by the pH of the solution. High pH 
facilitated the adsorption of lead and zinc. This is in agreement with the pH dependent 
charge characteristics of oxide surface. As the pH decreases, surface protonation will 
create a positively charged entity and thereby allow electrostatic interaction to take 
place in addition to the specific reaction. 

Significant adsorption of Pb and Zn on to hydrous aluminium oxide from aqueous 
solutions is obseived even at pH values far below the zero point of charge. The specific 
binding of Pb or Zn on Al20 3 in aqueous solution is interpreted as surface complex 
formation, which can be quantified by the equation: 

-AlOH + M2+ = -AlOM+ + H+ 
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