Old Dominion University

ODU Digital Commons

Bioelectrics Publications Frank Reidy Research Center for Bioelectrics

2021

Growth in a Biofilm Sensitizes Cutibacterium acnes to
Nanosecond Pulsed Electric Fields

Asia Poudel
Old Dominion University, apoudel@odu.edu

Adenrele Oludiran
Old Dominion University, aoludira@odu.edu

Esin B. Sozer
Old Dominion University, esozer@odu.edu

Maura Casciola
Old Dominion University, mcasciol@odu.edu

Erin B. Purcell
Old Dominion University, epurcell@odu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/bioelectrics_pubs

b Part of the Digestive, Oral, and Skin Physiology Commons, Medical Biochemistry Commons, and the
Medical Biotechnology Commons

Original Publication Citation

Poudel, A., Oludiran, A., Sozer, E. B., Casciola, M., Purcell, E. B., & Muratori, C. (2021). Growth in a biofilm
sensitizes Cutibacterium acnes to nanosecond pulsed electric fields. Bioelectrochemistry, 140,
107797-107805, Article 107797. https://doi.org/10.1016/j.bioelechem.2021.107797

This Article is brought to you for free and open access by the Frank Reidy Research Center for Bioelectrics at ODU
Digital Commons. It has been accepted for inclusion in Bioelectrics Publications by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.


https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/bioelectrics_pubs
https://digitalcommons.odu.edu/bioelectrics
https://digitalcommons.odu.edu/bioelectrics_pubs?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/967?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/666?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/989?utm_source=digitalcommons.odu.edu%2Fbioelectrics_pubs%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.bioelechem.2021.107797
mailto:digitalcommons@odu.edu

Authors
Asia Poudel, Adenrele Oludiran, Esin B. S6zer, Maura Casciola, Erin B. Purcell, and Claudia Muratori

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/bioelectrics_pubs/304


https://digitalcommons.odu.edu/bioelectrics_pubs/304

Bioelectrochemistry 140 (2021) 107797

Bioelectrochemistry

Contents lists available at ScienceDirect

Bioelectrochemistry

journal homepage: www.elsevier.com/locate/bioelechem

Growth in a biofilm sensitizes Cutibacterium acnes to nanosecond pulsed R
electric fields Rt
Asia Poudel ?, Adenrele Oludiran?, Esin B. Sozer°, Maura Casciola ™, Erin B. Purcell **, Claudia Muratori **

20ld Dominion University, Department of Chemistry and Biochemistry, USA
b0ld Dominion University, Frank Reidy Research Center for Bioelectrics, USA
€ Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA

ARTICLE INFO ABSTRACT

Article history:

Received 28 September 2020

Received in revised form 24 February 2021
Accepted 26 February 2021

Available online 9 March 2021

The Gram-positive anaerobic bacterium Cutibacterium acnes (C. acnes) is a commensal of the human skin,
but also an opportunistic pathogen that contributes to the pathophysiology of the skin disease acne vul-
garis. C. acnes can form biofilms; cells in biofilms are more resilient to antimicrobial stresses. Acne ther-
apeutic options such as topical or systemic antimicrobial treatments often show incomplete responses. In
this study we measured the efficacy of nanosecond pulsed electric fields (nsPEF), a new promising cell
and tissue ablation technology, to inactivate C. acnes. Our results show that all tested nsPEF doses (250
to 2000 pulses, 280 ns pulses, 28 kV/cm, 5 Hz; 0.5 to 4 kJ/ml) failed to inactivate planktonic C. acnes
and that pretreatment with lysozyme, a naturally occurring cell-wall-weakening enzyme, increased C.
acnes vulnerability to nsPEF. Surprisingly, growth in a biofilm appears to sensitize C. acnes to nsPEF-
induced stress, as C. acnes biofilm-derived cells showed increased cell death after nsPEF treatments that
did not affect planktonic cells. Biofilm inactivation by nsPEF was confirmed by treating intact biofilms
grown on glass coverslips with an indium oxide conductive layer. Altogether our results show that, con-
trary to other antimicrobial agents, nsPEF kill more efficiently bacteria in biofilms than planktonic cells.
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© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cutibacterium acnes (C.acnes), formerly known as Propionibac-
terium acnes, is a Gram-positive, non-spore forming, facultative
anaerobic bacterium that colonizes human skin [1-2]. While C.
acnes is a largely commensal bacterium that coexists in homeosta-
sis with the rest of the skin microbiota, it can act as an opportunis-
tic pathogen whose overgrowth and dominance within the dermal
microbiome contributes to the pathophysiology of the skin disease
acne vulgaris [3-4]. C. acnes is capable of adhering to surfaces,
including human skin, in structured microbial communities known
as biofilms; cells in biofilms are more resilient to antimicrobial
stresses than free-living, or planktonic, cells [5-6]. Acneic strains
of C. acnes form biofilms inside skin-gland hollows, leading to the
formation of follicular plugs and inflammation [7].

Acne vulgaris is an inflammatory disease of the human seba-
ceous follicle. It involves the interplay of four main factors: patho-
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logical overproduction of sebum, abnormal follicular
keratinization, colonization of the pilosebaceous duct by C. acnes
colonies and biofilms, and inflammation [8]. Acne is a very com-
mon skin disorder especially in adolescents and young adults [9].
It affects approximately 85% of adolescents but can persist also
in adulthood with prevalence increasing especially in adult women
25 years and older [9-10]. The direct cost of acne treatment in the
United States is $846 million per year [11].

There are two main classes of topical monotherapies for acne
treatment: vitamin A derivatives called retinoids and antimicrobial
agents such as antibiotics. Topical retinoids bind to various sets of
retinoid acid receptors thereby conferring differences in activity,
efficacy and tolerability [12]. Although retinoids are the core of
topical acne treatment, their main drawback is that they are asso-
ciated with a range of cutaneous side-effects in up to 75% of
patients such as scaling, erythema, dryness and irritation [13].

Both topical and systemic antibiotics, most commonly clin-
damycin and erythromycin, are used in combination with benzoyl
peroxide or retinoids to treat all grades (mild, moderate to severe)
of acne [14]. The use of antibiotics to reduce the bacterial burden
often show incomplete responses and may alter the composition
of the skin microbiota in unfavorable ways. Following treatment
failure, there is a recurrence of inflammation. The failure of antibi-
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otic therapy has been associated with the emergence of antibiotic
resistance in clinical isolates [15-17]. Studies have shown that up
to 94% of acne patients have C. acnes strains on their skin that are
resistant to at least one antibiotic [18].

From the above discussion it is clear that current acne therapy
can be complicated by antibiotic resistance and adverse side
effects.

In the present study we measured the efficacy of nanosecond
pulsed electric fields (nsPEF), a new promising cell and tissue abla-
tion technology, to inactivate C. acnes. The ability of pulsed electric
fields (PEF) to inactivate microorganisms has been known for over
60 years [19]. Indeed, PEF are among the most promising microbial
inactivation methods for liquid food [20] and wastewater [21-22].
Conventional PEF treatments use pulses of millisecond or
microsecond duration to compromise the integrity of the cell
plasma membrane, a process referred to as electroporation.
Depending on the pulse parameters, electroporation can be rever-
sible or irreversible. Reversible electroporation denotes the forma-
tion of pores in the cell membrane which can reseal after a specific
time, while irreversible electroporation indicates a permanent
damage which leads to cell death. Compared to conventional PEF,
nsPEF utilizes much shorter pulses (down to 10 ns) to target not
only the plasma membrane but also intracellular structure such
as the endoplasmic reticulum (ER) and mitochondria [23-27]. Kill-
ing of eukaryotic cells with nsPEF has been extensively explored
in vitro [28-35], followed by successful tumor ablation trials in ani-
mals [34-38] and in humans [39-40], without recurrence and with
minimal side effects.

Recent literature has shown that nsPEF also affects bacterial cell
viability [41-47]. Most studies used 10 ns pulses to treat E. coli. For
instance, Guionet et al. observed a 1.5 log10 decrease in E. coli via-
bility with 500, 10 ns pulses at 100 kV/cm, 1 Hz while Perni et al.
reported a 2 log10 reduction with 9000 pulses at 100 kV/cm,
30 Hz [43-44]. These studies used different pulse parameters,
exposure solutions and methods, highlighting the importance of
these factors for bacterial inactivation by PEF. As with mammalian
cells, the current dogma is that bacterial inactivation by PEF occurs
through irreversible electroporation of the plasma membrane.
However, Pillet et al. have recently shown that PEF exposure causes
a structural disorganization of the cell wall and partial destruction
of the spore coat architecture of Bacillus pumilis [48]. Furthermore,
Chalise et al. have recently reported that E. coli inactivation by
32 ns pulses may occur as a result of damage to intracellular com-
ponents [49].

Our results show that C. acnes in biofilm is much more sensitive
to nsPEF than planktonic cells in exponential growth phase as mea-
sured by increased cell death at consistent nsPEF treatments (up to
2000 pulses, 280 ns pulses, 28 kV/cm, 5 Hz; 4 kJ/ml). Moreover, we
found that pretreatment with lysozyme, a naturally occurring cell-
wall-weakening enzyme found in bodily secretions (tears, saliva,
and milk), increased planktonic C. acnes vulnerability to nsPEF.

2. Materials and Methods:
2.1. Bacterial strains and growth conditions

The bacterial strain used in this study is C. acnes ATCC 29,399
(American Type Culture Collection, Manassass VA). All anaerobic
bacterial culture took place at 37 °C in a Coy anaerobic chamber
(Coy Laboratory Products, Grass Lake, MI) with an atmosphere of
85% N,, 10% CO,, 5% H,. Cell growth was monitored by measuring
the optical density at 600 nm using an Ultraspec 10 Biochrom cell
density meter (Biochrom, Cambridge, United Kingdom) for up to 3
d. All plastic consumables were allowed to equilibrate in the anaer-
obic chamber for a minimum of 72 h prior to use. Unless otherwise
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noted, all reagents and supplies were purchases from Fisher Scien-
tific (Fisher Scientific, Waltham MA).

Bacterial cultures were grown in TY medium containing 3% pep-
tone, 2% yeast extract and 0.1% sodium thioglycolate and colonies
were maintained on TY plates with 3% agar. To avoid contamina-
tion, liquid TY media was supplemented with 20 pg/ml of metron-
idazole (TY-Met) (Beantown Chemical, Hudson NH). Other culture
media utilized in this study are 2.5% Brain-Heart Infusion supple-
mented with 0.5% Bacto-BD yeast extract (BHIS) and 3% agar,
chocolate agar plates (Thomas Scientific, Swedesboro NJ), and
anaerobic blood agar plates (Thomas Scientific, Swedesboro NJ).

C. acnes biofilm were grown for 72 h in plastic 24 well plates,
either directly on the plate wells bottoms or on glass coverslips.
Growth surfaces were coated with 100 ul of 0.1% fibronection (Tho-
mas Scientific, Swedesboro NJ), poly-D-lysine (Millipore Sigma,
Burlington MA), or poly-L-lysine (Thomas Scientific, Swedesboro
NJ) and dried for 4 h before equilibrating for another 72 h in anaer-
obic chamber prior to usage. Exponentially growing C. acnes cul-
tures at ODggp between 0.5 and 0.8 were diluted at 1:3 into fresh
TY-Met media and 2 ml of the diluted culture were directly applied
on to the plates which were further incubated for 72 h for the bio-
film formation. To visualize biofilm formation, liquid cultures were
removed by pipetting and surfaces were washed with phosphate
buffered saline (PBS) at pH 7.0. 0.1% crystal violet was applied for
30 min and washed twice with PBS.

2.2. Pulsed electric field exposure methods.

C. acnes samples were prepared by inoculating single colonies
into 3 ml of TY-Met medium and growing for 48 h at 37 °C. Starter
cultures were diluted 1:10 into TY-Met medium to reach
ODggp = 0.5-0.8. One hundred pl samples of this suspension were
loaded into 1 mm gap electroporation cuvettes (BioSmith, San
Diego, CA), which were closed, sealed with parafilm and brought
outside of the anaerobic chamber for nsPEF treatments. In each
experiment, samples were kept outside of the chamber for a max-
imum of 1 h. Samples were exposed to either nsPEF or sham expo-
sure in TY medium with a conductivity of 0.73 S/m at room
temperature (22 = 2 °C). Trapezoidal pulses of 280 ns duration
(100 to 2000, 5 Hz, 28 kV/cm; 0.2-4 k]/ml) were produced by a cus-
tom pulse generation system (Fig. 1A) with an adjustable pulse
amplitude (up to 15 kV), duration (200 to 1000 ns) and frequency
(1-100 Hz; Pulse Biosciences, Inc., Hayward, CA). The waveform of
a 280 ns pulse, 28 kV/cm is reported in Fig. 1B.

For nsPEF exposure of biofilms-derived cells, samples were har-
vested by scraping the biofilm from the growth surface. Cells were
suspended in 1 ml TY medium and vortexed to disrupt clumps [50]
before being aliquoted into electroporation cuvettes for the treat-
ment described above. Samples from each experiment were
diluted to the same optical density (ODggo = 0.5-0.8). Exposure of
intact biofilms was accomplished by growing C. acnes biofilms on
glass coverslips with an indium tin oxide (ITO) conductive layer
and placing these coverslips into 1 mm gap electroporation cuv-
ettes filled with 100 pl of TY medium. The ITO layer was deposited
on one side of the glass coverslips by Diamond Coatings (Hale-
sowen, UK). During nsPEF exposure, the glass surface of the cover-
slip was resting on the anode and the ITO surface with cells was
facing the cathode. The electric field (E) distribution was calculated
with Sim4Life light (ZMT ZurichMedTech AG, Zurich, Switzerland)
in ohmic quasi-static conditions similarly to what was previously
described [51-52]. Two parallel electrodes (20.55 x 12.00 x 1.58
mm?, perfect electric conductors) mimicking the electroporation
cuvette were filled with medium (0.73 S/m). The coverslip was
modeled as a dielectric cylinder of 8.2 mm diameter, 125 pm thick-
ness with conductivity 0.0043 S/m and coated with a 25 um think
layer of ITO (1.3 MS/m). The coverslip was placed in contact with



A. Poudel, A. Oludiran, E.B. Sozer et al.

Bioelectrochemistry 140 (2021) 107797

1pus

Fig. 1. Pulsed electric field exposure system. A. Trapezoidal pulses of 280 ns duration were produced by a custom pulse generation system and delivered to 1 mm
electroporation cuvettes. A digital oscilloscope was used to monitor the pulse amplitude and shape at the cuvette. B. The shape of a 280 ns, 28 kV/cm electric pulse.

the anodic electrode with the ITO layer facing the cathode. A
50 x 50 x 50 mm> cube of air surrounded the electroporation
cuvette.

The mesh chosen to discretize the domain of simulation
resulted in 6. 6.762 MCells elements. For every 100 V applied
across a 1 mm gap cuvette, the simulated E field at the ITO surface
was 0.37 kV/cm. Considering variation in the cuvette gap and in
the coverslip thickness the E field was rounded to 0.4 kV/cm. Since
in this study 900 V were applied during the experimental proce-
dure, the E field applied to the bacteria was 3.6 kV/cm.

Treatment energies are reported based on estimation of the
total energy (W) delivered to the electroporation cuvettes using
the equation W =¥ x t, x n, , where V is the voltage across the
cuvette (2.8 and 0.9 kV for suspension and ITO coverslips, respec-
tively), Z is the impedance of the cuvette containing the samples
(~10 Q),t, is the pulse duration (280 ns) and n, is the number of
pulses (100 to 2000).

In selected experiments, both planktonic cells and biofilm-
derived cells were incubated anaerobically with lysozyme (1 to
10 mg/ml; MP Biomedicals, Santa Ana, CA) for 1 h at 37 °C prior
to nsPEF treatment.

Sample heating was measured using a thermocouple ther-
mometer (Physitemp, Clifton, NJ).

2.3. Determination of inactivation rates

Immediately after treatment, both planktonic and biofilm bac-
teria samples were returned to the anaerobic chamber. Nine
hundred pL of TY medium was added to each cuvette mixed
by pipetting. The resulting 1 ml samples were serially diluted
to 10, 100 ul of each sample was plated on triplicate TY-met
plates and colonies were enumerated after 72 h. Only counts
between 0 and 300 CFU per plate were considered. Inactivation
rates are expressed as log;o CFU/ml differences between sham
and nsPEF exposure samples. All experiments were performed
in triplicates and repeated at least three times unless otherwise
stated.

2.4. Statistical analyses

Data are presented as mean + SE for n independent experi-
ments. Statistical analyses were performed using a two-tailed t-
test where p less than 0.05 was considered statistically significant.
Statistical calculations, including data fits, and data plotting were
accomplished using Grapher 11 (Golden Software, Golden, CO).

3. Results
3.1. Optimization of C. Acnes growth in vitro

C. acnes is a slowly growing bacterium that exists in nature lar-
gely as biofilms; as such, it has been difficult to cultivate clinical
samples in vitro, which has led to underdiagnosis in implant
devices or bone or joint infections [53-54]. Reported cultivation
times range from 7 to 14 d for its isolation and identification
[55-56]. Reported doubling times in vitro are 5-6 h, with liquid
cultures reaching stationary phase in 3-4 d [2]. Such prolonged
cultivation increases the risk of laboratory contamination [57-
58]. Our initial experiments sought to establish optimal laboratory
growth conditions for the planned experiments. Therefore, we
tested different growth media commonly used to culture anaer-
obes and incubation times. Cells were cultured on supplemented
brain heart infusion (BHIS) agar, tryptone yeast (TY) agar, choco-
late agar or anaerobic blood agar [59-61]. All media yielded round,
opaque, and mucoid colonies after 72 h of growth (Fig. 2A). The
chocolate agar plates showed both small and large colonies which
could have been due to C. acnes heterogeneity or contamination
(Fig. 2A). Because TY medium showed high consistent colony
counts and is cheaper than the other options tested, growth in lig-
uid culture was assessed in TY. TY medium contains sodium thio-
glycolate, previously shown to facilitate C. acnes growth by
regulating medium redox potential [56-57]. To avoid contamina-
tion, liquid medium was supplemented with 20 pg/ml metronida-
zole, to which C. acnes is resistant [62-63]. We found that C. acnes
grows at a moderate speed in this medium and reaches a station-
ary optical density of 1.2-1.4 within 72 h (Fig. 2B). 72 h was also
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Fig. 2. C. acnes growth condition optimization: planktonic vs. biofilms. A. C. acnes cells from a frozen glycerol stock were aliquoted into TY medium, let it grow overnight, and
plated on the indicated agar plates. Cells on BHIS, TY, and chocolate agar plates were plated at a 10° dilution while cells on blood agar plates were seeded at a 10° dilution.
Scale bar:5 mm. B. Growth of planktonic C. acnes over 72 h. C. Crystal violet staning of C. acnes biofilms grown for 72 h on glass coverslips with no coating (CTRL) and coated
with 0.1% fibronection (FIB), 0.1% poly-D-lysine (PDL), or 0.1% poly-L-lysine (PLL). D. Biofilm (BF) and liquid culture viability after 60 min incubation in an electroporation

cuvette in anaerobic (black) or aerobic (red) conditions. Mean +/- s.e. for both B and D.

sufficient time for the growth of robust C. acnes biofilms on glass or
plastic (not shown) surfaces. Cellular adhesion to abiotic surfaces
was greatly enhanced by coating with poly-L-lysine while coating
with fibronection or poly-D-lysine had more modest effects
(Fig. 2C). Because C. acnes cultures in electroporation cuvettes
needed to be taken out from the anaerobic chamber for a maxi-
mum of 1 h for the pulse treatment, the effect of oxygen exposure
from seal leakage on cell viability was assessed. Planktonically
growing cells and cells scraped out of biofilms were diluted and
plated for viability after 1 h of incubation at 22 °C in aerobic or
anaerobic conditions. After 1 h, all samples were returned to the
anaerobic chamber, diluted, and plated to assess viability. We
found that 1 h of passive exposure to environmental oxygen had
no meaningful effect on C. acnes viability, consistent with previous
reports of its aerotolerance (Fig. 2D) [56,64].

3.2. Planktonic C. Acnes in exponential growth phase are resistant to
nsPEF

PEF treatments are intended to be a non-thermal method to
inactivate microorganisms. However, it is well known that an
increase in temperature due to Joule heating can be associated
with high pulse doses. To exclude any potential heat inactivation
effect, in preliminary experiments we measured the temperature

increase associated with the pulse treatment. The highest pulse
dose we could test with our exposure system, namely 2000 pulses,
280 ns, 28 kV/cm at 5 Hz, increased the sample temperature from
20.4 + 0.2 to 30.9 £ 0.8 °C. Because C. acnes exhibits maximum
growth at human body temperatures (30 °C and 37 °C) [65],
nsPEF-induced heating was discounted as an inactivating variable.
We then tested the effect of increasing numbers of 280 ns pulses
on the viability of planktonic C. acnes in exponential growth phase.
The viability of the planktonic cells was not meaningfully affected
by any of the pulse doses tested (Fig. 3). Specifically, 2000 pulses,
280 ns pulses, 28 kV/cm at 5 Hz (4 kJ/ml), led to only 0.2 + 0.02
log10 reduction in C. acnes viability.

3.3. Lysozyme increases planktonic C. Acnes sensitivity to nsPEF

Different types of bacteria have different sensitivity to PEF. For
instance, it is well established that Gram-positive bacteria are less
susceptible to electrotransformation than Gram-negative bacteria
due to the structure and density of their cell walls [66]. In many
cases increasing the fragility of the cell wall increases the transfor-
mation efficiency significantly [67]. Among these cell-wall-
weakening agents, lysozyme (LY) is a naturally occurring enzyme
found in bodily secretions such as tears, saliva, and milk, and is
considered a part of the innate immune system in most mammals



A. Poudel, A. Oludiran, E.B. Sozer et al.

1=

0.8

0.6 -

-

0.4

0.2

Inactivation Rate

SR L T T L
0 400 800 1200 1600 2000

Number of pulses

Fig. 3. Effect of nsPEF on planktonic C. acnes viability. Cells in exponential phase
were treated with increasing numbers of 280 ns pulses (250 to 2000 pulses, 28 kV/
cm, 5 Hz; 0.5 to 4 kJ/ml) and viability was measured at 72 h post treatment.
Inactivation rates are expressed as log(CFU/ml)spam — log(CFU/ml),sper. Mean +/- s.
e, n=3-5.

[68]. LY degrades peptidoglycan in the bacterial cell wall and is it
used in skin care and as a safe adjunct to antifungals. Incubation
of C. acnes supernatant with LY at various concentrations reduced
the C. acnes activity [69], and LY-triclosan complexes were found
to significantly enhance bactericidal activity against several strains
of Gram-positive and Gram-negative bacteria [70]. We therefore
asked whether destabilizing the cells wall of C. acnes with LY
increased cells sensitivity to nsPEF. Planktonic C. acnes cells were
treated with 0, 1 or 10 mg/ml LY at 37 °C. After 1 h, samples were
either exposed to 280 ns pulses (1000 and 2000 pulses, 28 kV/cm,
5 Hz; 2 and 4 kJ/ml) or left untreated as parallel sham controls, and
colonies were counted at 72 h post treatment. Our results show
that treatment with either nsPEF alone or lysozyme alone did not
affect C. acnes viability (Fig. 4). Indeed, lysozyme increased C. acnes
growth suggesting that perturbation of the cell wall may accelerate
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cell division. However, combining a pretreatment of C. acnes with
10 mg/ml LY with nsPEF significantly increased C. acnes inactiva-
tion. Our results reveal for the first time the synergistic effect
between LY and nsPEF at killing Gram-positive bacteria.

3.4. nsPEF inactivate C. Acnes in biofilms

Recent studies indicate that C. acnes biofilm formation plays a
significant role in the chronic course of acne vulgaris [1]. To mea-
sure the effect of nsPEF on C. acnes biofilms viability, cells were
grown on poly-L-lysine coated plastic well for 72 h. In contrast
to our results with planktonic cells (Fig. 3), Fig. 5 A shows that bio-
films were significantly inactivated by nsPEF (100 to 2000 pulses,
280 ns pulses, 28 kV/cm, 5 Hz; 0.2 to 4 kJ/ml). Because planktonic
cells were collected in exponential growth phase while biofilm
were harvested in stationary phase, we asked whether nsPEF sen-
sitivity correlated with the bacteria growth phase. In Fig. 5 B, C.
acnes cells were grown as biofilm for 3 d and both free-floating
bacteria in the biofilm supernatant and plastic attached biofilms
were treated with nsPEF. Our results show that even when plank-
tonic cells and biofilms were kept under the exact same culture
conditions, nsPEF killed more efficiently bacteria in biofilms
(Fig. 5 B).

Our results show that while all tested nsPEF doses failed to
inactivate planktonic C. acnes, they significantly impaired bacteria
in biolfilms. We therefore tested whether a pretreatment with LY
could further increase biofilm sensitivity to nsPEF. C. acnes biofilms
were pretreated with 10 mg/ml LY for 1 h before nsPEF (500 and
1000 pulses, 280 ns pulses, 28 kV/cm, 5 Hz; 1 and 2 k]/ml) and via-
bility was measured at 72 h post treatment. Fig. 5 C shows that LY
failed to boost C. acnes biofilm sensitivity to nsPEF. Because bio-
films produce a thick extracellular matrix which is highly resistant
to drug penetration, one can speculate that LY in our experiments
did not reach a sufficiently high concentration to affect the bacteria
cell wall.

In Fig. 5 biofilms were disrupted with a scraper in order to
transfer the sample into the electroporation cuvettes. In order to
test intact biofilms on their original substrate, we next grew bio-
films on glass coverslips with an indium oxide (ITO) conductive
layer. When using these coverslips, nsPEF exposures are accom-
plished simply by aseptically placing a coverslip with the adherent

1 E=—J2000p [ 2000p+1mg/ml
8 08 [C]1 mg/mi 1000 p + 10 mg/ml
© [C]10meg/ml [ 2000 p + 10 mg/ml
-
2
5 0.4
2
prer] 2
(8]
©
£ o+ -
B
o4 B
nsPEF + s
LY + +

Fig. 4. Synergistic cytotoxicity from combination of LY treatment and nsPEF. Planktonic C. acnes cells in exponential phase were treated with either nsPEF (1000 and 2000
pulses, 280 ns, 28 kV/cm, 5 Hz; 2 and 4 kJ/ml) or LY (1 or 10 mg/ml) for 1 h or both and viability was measured at 72 h post treatment. Inactivation rates are expressed as log

(CFU/ml)sham - log(CFU/ml),spgr. Mean +/- s.e., n = 3-5.
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Fig. 5. Effect of nsPEF on C. acnes biofilms. In A C. acnes cells were grown as biofilms for 72 h and, before nsPEF, rinsed with growth medium to remove planktonic bacteria,
scraped from the plastic surface, and aliquoted in electroporation cuvettes. Samples were treated with increasing numbers of 280 ns pulses (100 to 2000 pulses, 5 Hz, 28 kV/
cm; 0.2 to 4 kJ/ml) and viability was measured at 72 h post treatment. In B C. acnes biofilms were grown for 3 d and both surface attached biofilms and free-floating cells in the
biofilm suspension were treated with nsPEF (500 and 1000 pulses, 300 ns duration, 28 kV/cm, 5 Hz; 1 and 2 kJ/ml). Viability was measured at 72 h post treatment. In C C. acnes
biofilms were treated with 10 mg/ml LY or left untreated (ctrl). After 1 h cells were treated with nsPEF (500 and 1000 pulses, 280 ns duration, 28 kV/cm, 5 Hz; 1 and 2 kJ/ml)
and viability was measured at 72 h post treatment. Inactivation rates are expressed as log(CFU/ml)sham — log(CFU/ml),sper. Mean +/- s.e. n = 5-8, n = 3-8 and n = 3-5 for A, B

and C, respectively.

biofilm into 1 mm gap electroporation cuvette and delivering nsPEF,
thus eliminating the steps of biofilm detachment (Fig. 6 A). Cells
were exposed to 500 or 1000 pulses (280 ns, 5 Hz; 0.1 and 0.2 kj/
ml) at 900 V, which generated a practically uniform electric field
of 3.6 kV/cm at the coverslips surface. Even under these conditions,
which eliminated stressful cell handling and possible confounding
impact of detachment of cells, C. acnes biofilms were efficiently
killed by nsPEF (Fig. 6 B). Notably, our results are in agreement with
previous research showing that nsPEF treatments of cells on ITO
coverslips are highly efficient, requiring about 10-fold lower electric
fields than the one used for cells in suspension [71].

Altogether our results show that, contrary to other antimicro-
bial agents, nsPEF Kkills more efficiently bacteria in biofilms than
planktonic cells.

4. Discussion

Dysbiosis in the growth of C. acnes turns a commensal skin bac-
terium into an opportunistic pathogen whose effects can range
from a decrease in quality of life due to acne vulgaris to life-
threatening deep-tissue infections due to C. acnes biofilm growth
on surgical implants [11,62,72]. Treatment of acne vulgaris with
antibiotics can contribute to the spread of antimicrobial resistance
(AMR) and is frequently unsuccessful due in part to the increased

|
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biofilm

resilience of bacterial cells growing in biofilms [5,73-74]. The need
for new treatment options that are effective against biofilms and
do not contribute to AMR is evident.

The effect of electrical currents and electrical fields on bacterial
biofilm viability has been subject of a limited number of prior
investigations. For instance, long, 50 ps duration electric pulses
were used to measure critical electric fields and number of pulses
needed to kill Pseudomonas aeruginosa (P. aeruginosa) biofilms and
were proposed as a treatment option in combinatory protocols
with systemic antibacterial therapy [75]. Another approach utilizes
continuous DC low electric fields to treat biofilms derived from
multiple bacteria species including Staphylococcus aureus, Staphylo-
coccus epidermidis, and P. aeruginosa, either alone or in combina-
tion with standard biocides [76-78]. While these studies show
promising results, none has directly compared the sensitivity to
electrical stimuli of planktonic cells to that of the same bacteria
strain grown as a biofilm.

Our results show that C. acnes cells growing planktonically in
liquid culture are minimally affected by nsPEF even though the
estimated induced membrane potential based on Schwan equation
[79] exceeds the commonly accepted irreversible electroporation
threshold of 1 V for most of the cell surface except the equatorial
regions (cell radius is assumed to be 1 pm). This estimation, how-
ever, does not account for the effect of the cell wall and non-
spherical shape of the bacterial cells, which can be significant.
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Fig. 6. Effect of nsPEF on undisrupted biofilms. A. Schematic explaining nsPEF delivery to biofilms on ITO glass coverslips in an electroporation cuvette (I). Panel Il shows the
enlarged view of the gap between the two electrodes (E) with the electric field lines. In B biofilms were exposed to either 500 or 1000 pulses (280 ns, 5 Hz, 3.6 kV/cm; 0.1 and

0.2 kJ/ml) and viability was measured at 72 h post treatment. Inactivation rates are expressed as log(CFU/ml)sham —

6

log(CFU/ml)psper. Mean +/- s.e, n = 9.
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Notably, our results are consistent with prior studies using Gram-
positive bacteria [47,80-81]. For instance, using nsPEF doses simi-
lar to the one utilized in this study, namely 1000, 300 ns pulses at
20 kV/cm, Vadlamani and colleagues reported a 0.2 log10 reduc-
tion of Staphylococcus aureus viability [81]. Moreover, Martens
and colleagues measured less than 0.4 log10 reduction in Lacto-
bacillus acidophilus viability when using 1000, 600 ns pulses at
13.5 kV/cm [80]. Altogether these results are consistent with pre-
vious literature showing that bacteria are far more resistant to
PEF treatments than mammalian cells with Gram-positive bacteria
being the most resilient.

Surprisingly, and contrary to the effect of any other antimicro-
bial agent, nsPEF appear to affect the viability of C. acnes in biofilms
more effectively than that of cells growing in suspension. A biofilm
is defined as a microbial aggregate embedded in an extracellular
matrix (ECM) which protects cells from harmful environmental
challenges, such as UV exposure, metal toxicity, acid exposure,
dehydration, phagocytosis and several antibiotics and antimicro-
bial agents [82]. The ECM is composed of polysaccharides, proteins,
nucleic acids, lipids and other biomolecules [83-84]. These compo-
nents serve as key structural elements but also support other func-
tions such as serve as signals, promote migration and genetic
exchange, and serve as ion reservoirs. It is therefore reasonable
to assume that the damage caused by intense electric fields to
the structure and biological processes associated with the ECM
can explain our results. For instance, damage to the dielectric com-
ponents of the ECM may contribute to nsPEF cytotoxic effects. Elec-
tric fields are well known to cause structural defects in lipid
bilayers [85]. Therefore, in addition to the cell membrane, nsPEF
exposure may cause disruptions to extracellular lipidic structures
in the ECM such as outer membrane vesicles (MVs). Both Gram-
negative and Gram-positive bacteria including C. acnes produce
extracellular MVs. These vesicles have been shown to contribute
to diverse biological processes, including biofilm development,
electron transfer, virulence, quorum sensing, phage decoy and
horizontal gene transfer [86-89]. MVs contain peptidoglycan,
virulence factors, cytoplasmic proteins, as well as DNA and RNA
[86-87]. In biofilms MVs interact with eDNA in the ECM to
enhance structural integrity and to serve as decoys to protect bio-
film cells from antibiotics [90-91]. Moreover, intense electric fields
could potentially affect the conformation and function of the ECM
associated proteins [92-93] as well as the highly negatively
charged phosphate backbone of DNA in extracellular DNA (eDNA).

Compared to planktonic cells, bacteria in biofilms are well-
organized communities capable of coordinated behavior. In plank-
tonic populations, danger and chemical signals produced by the
cells are simply not concentrated enough when passed through
the medium to be sensed by nearby cells. However, in biofilms,
the ECM holds cells close together allowing concentrations of
cell-produced chemical signal molecules to build up in sufficient
quantity to cause changes in cellular behavior. Therefore, one can
speculate that the damage caused by nsPEF to both the bacteria
plasma membrane and ECM components can be sensed and com-
municated via cell-to-cell signaling in bacteria in biofilms much
more effectively than in planktonic cells thus resulting into an
enhanced collective cytotoxic response.

Considering that 60 to 80% of bacterial infections in humans are
believed to be caused by bacteria growing in biofilms, our findings
warrant further research into the effects of PEF treatments on
microbial communities.

5. Conclusion

Our results show for the first time that bacteria growing as bio-
films are more sensitive to PEF treatments than their planktonic

Bioelectrochemistry 140 (2021) 107797

counterpart. Future work will focus on extending our findings to
other species of bacteria biofilms, assessing the relevance of pulse
parameters such as pulse width and amplitude as well as measur-
ing potential synergistic effects between PEF treatments and stan-
dard biocides.
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