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The photosynthetic ciliate Mesodinium rubrum is a common member of coastal
phytoplankton communities that is well adapted to low-light, turbid ecosystems.
It supports the growth of, or competes with, harmful dinoflagellate species for
cryptophyte prey, as well as being a trophic link to copepods and larval fish. We
have compiled data from various sources (n ¼ 1063), on the abundance and distri-
bution of M. rubrum in Chesapeake Bay and its tributaries. Because M. rubrum

relies on obtaining organelles from cryptophyte algae to maintain rapid growth,
we also enumerated cryptophyte algae in the portion of these samples that we col-
lected (n ¼ 386). Mesodinium rubrum occurred in oligohaline to polyhaline regions of
Chesapeake Bay and throughout the year. Blooms (.100 cells mL21) primarily
occurred during spring, followed by autumn. When compared across all seasons,
M. rubrum abundance was positively correlated to temperature and cryptophytes,
and negatively correlated with salinity. However, more focused analyses revealed
that M. rubrum abundance during spring was associated with surface layer
warming and decreased salinity, while early autumn assemblages were associated
with surface cooling. These results imply that there are distinct seasonal niches for
M. rubrum blooms. Blooms were more common in tributaries than in the main
stem Bay and tended to be restricted to salinities under 10 PSU. Despite the rarity
of “red water” events, M. rubrum is a ubiquitous mixotroph in Chesapeake Bay
and at times likely exerts a strong influence on cryptophyte algal abundance and
hence planktonic food web structure.
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I N T RO D U C T I O N

Mesodinium rubrum (¼Myrionecta rubra) is a mixotrophic
estuarine and neritic Litostome ciliate that occurs nearly
year round in plankton assemblages and is capable of
forming red tides (Taylor et al., 1971; Crawford, 1989;
Stoecker et al., 2009). Mesodinium rubrum has been a
subject of interest due to its phycoerythrin-rich crypto-
phyte plastids and its ability to form spectacular
reddish-pink blooms (Powers, 1932; Ryther, 1967;
Taylor et al., 1969; Crawford, 1989). However, in recent
years, it has received greater attention due to the discov-
ery of its reliance on ingestion of cryptophytes and es-
tablishment of stable cultures (Gustafson et al., 2000),
and the initial discovery of its trophic link to the
harmful dinoflagellate, Dinophysis acuminata (Park et al.,
2006). Herein, we have compiled data on M. rubrum

spanning 22 years, in order to evaluate seasonal popula-
tion dynamics in the Chesapeake Bay ecosystem. Our
use of data from a variety of sources, including monitor-
ing programs, maximizes the scope of our investigation
of M. rubrum’s ecology in a large, spatially diverse, tem-
perate estuary. We use these data to test the hypotheses
that (i) M. rubrum is more abundant during “wet”
(higher rainfall) years, (ii) it can exploit distinct hydro-
dynamic seasonal niches and (iii) its abundance is posi-
tively related to cryptophyte algae.

Blooms of M. rubrum are common in temperate estuar-
ies, on continental shelves and in upwelling regions, and
are usually ephemeral and highly productive events
(Crawford, 1989). These blooms often occur in thin layers
and may have diel cycles of vertical migration within the
water column (Dale, 1987; Crawford and Purdie, 1992;
Crawford and Lindholm, 1997; Sjöqvist and Lindholm,
2011). The vertical distribution of M. rubrum within the
water column is highly variable, and may be governed by
factors such as light, nutrients and tidal cycles (Crawford
and Purdie, 1992; Crawford and Lindholm, 1997). Red
tides of M. rubrum are typified by high primary productiv-
ity, with reports as high as 2187 mg C m23 h21, or 16 pg
C (pg chl a)21 h21 recorded in the Peruvian upwelling
zone, which is one of the highest productivity measure-
ments recorded for phytoplankton (Smith and Barber,
1979). However, productivity of M. rubrum in a temperate
estuarine habitat (salt pond) are more modest, measuring
between 1.8 and 8.6 pg C (pg chl a)21 h21 (Stoecker et al.,
1991). Mesodinium rubrum blooms have a profound
effect on the action and absorption spectra of

phytoplankton communities due to their phycobillin-
containing plastids, and coincide with dramatic increases
in community maximum quantum yields of photosyn-
thesis (Kyewalyanga et al., 2002). Field populations of M.

rubrum also have high nitrate reductase activity (Packard
et al., 1978). Nitrogen uptake rates within M. rubrum

blooms have measured between 2 and 5 mg-at
N L21 h21, with estimates of integrated nitrate uptake in
vertically migrating populations of 24 mg-at m22 day21

(Packard et al., 1978; Wilkerson and Grunseich, 1990).
Blooms of M. rubrum off Peru can be massive, with patches
measuring .250 km2 (Ryther, 1967). Such blooms gener-
ally occur during periods of calm, warm weather follow-
ing upwelling events (Ryther, 1967; Dugdale et al., 1987).
Most blooms of M. rubrum are associated either with a
sudden increase in water column stability (Kyewalyanga
et al., 2002), fronts in upwelling zones (Packard et al. 1978)
or estuarine plumes (Crawford et al., 1997).

Research on cultures of M. rubrum has shown that
they require the ingestion of cryptophyte algal prey in
order to survive (Gustafson et al., 2000). The role of
feeding on cryptophytes by M. rubrum is complex; while
the ciliate sequesters foreign organelles from crypto-
phyte algae, it differs profoundly from kleptoplastidic
ciliates. Mesodinium rubrum can only utilize certain cryp-
tophyte species as a source of organelles (e.g. plastids,
mitochondria, nucleus) and it maintains the plastids and
mitochondria in a quasi-symbiotic state, having the
ability to divide these organelles (Johnson, 2011).
Studies on a strain of M. rubrum from Antarctica suggest
that feeding on cryptophyte prey is most important to
replace the cryptophyte nucleus, which remains tran-
scriptionally active, but is incapable of division (Johnson
et al., 2007). The presence of this foreign nucleus coin-
cides with maximum plastid activity and division, and
allows the ciliate to function as a phototroph (Johnson
et al., 2007). Studies of an Antarctic culture of M. rubrum

have also demonstrated the resilience of the photo-
system in the ciliate and its ability to harvest light under
exceedingly low irradiance levels (Moeller et al., 2011).

While M. rubrum will ingest a variety of cryptophyte
species, all cultured and field populations only possess
plastids from the Geminigera/Teleaulax clade (Park et al.,
2007; Myung et al., 2011; Hansen et al., 2012).
Laboratory studies on multiple M. rubrum strains indi-
cate that its reliance upon mixotrophic ingestion of
carbon for growth is minor (Yih et al., 2004; Johnson
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and Stoecker, 2005; Smith and Hansen, 2007). The re-
cently described M. chamaeleon, however, has much
higher ingestion requirements for cryptophyte algae to
maintain growth, and their sequestered organelles are
less stable and organized differently compared with
M. rubrum (Moestrup et al., 2012).

Estuarine blooms of M. rubrum have been widely
reported and, like all red tides, their causes appear to
vary. Recent studies of M. rubrum blooms in the
Columbia River Estuary, a salt wedge system, have pro-
vided intriguing insights into the dynamics of M. rubrum

bloom initiation and its genetic diversity within a popu-
lation (Herfort et al., 2011a, b). Blooms of M. rubrum in
the Columbia River first develop near the mouth of the
estuary, coinciding with maximum in situ growth rates,
while later the bloom becomes more apparent within
the open channel of the estuary (Herfort et al., 2011a).
This shift in population distribution may have been due
to flanking M. rubrum populations becoming entrained
within the main estuary channel and coincided with
neap tides and increased salt wedge intrusion into the
river (Herfort et al., 2011a). Interestingly, of five identi-
fied M. rubrum variants (A–E), based on partial18S–28S
rDNA sequences, only one (variant B) was associated
with red-water events (Herfort et al., 2011b).

Chesapeake Bay is a partially mixed estuary formed
from a drowned river valley (Pritchard, 1967) (Fig. 1). It
is the largest estuary in the USA, at 320 km long and
40 km at its widest point, but is relatively shallow
(,18 m) (Hack, 1957). Chesapeake Bay has numerous
tributaries that empty along both shores, with the
Susquehanna River at its northern boundary being the
largest. These tributaries form sub-estuarine systems
that frequently host independent phytoplankton bloom
events (Glibert et al., 2001). Circulation within
Chesapeake Bay is mostly two-layer and partially
mixed, and is influenced most strongly by river flow
(Pritchard, 1952). While M. rubrum is common within
Chesapeake Bay, it has rarely been reported as a
red-tide forming species. Perhaps this explains why pre-
vious studies of ciliates within the system have focused
on heterotrophic species (Dolan and Coats, 1990).

M E T H O D

Acquisition of historical and monitoring
program data

The Rhode River M. rubrum abundance data set (in-
cluding temperature and salinity) was collected by Dr.
D.W. Coats between 1992 and 1994. Cell counts for the
Rhode River were conducted using quantitative

Protargol staining from surface samples (,1 m), as
described previously (Montagnes and Lynn, 1993).

The Chesapeake Bay M. rubrum counts were acquired
from R.V. Lacouture and S.G. Sellner and were gener-
ated through the Chesapeake Bay Water Quality
Monitoring Program. These counts represent a compos-
ite sample of the surface-mixed layer by the combin-
ation of two independent samplings from five depths
above the pycnocline. Subsamples from these compo-
sites were preserved with 1.5% acid Lugol’s solution
(final concentration by volume, BV) and with 2% (BV)
buffered formalin. Corresponding salinity, temperature,
dissolved inorganic nitrogen (DIN) and Susquehanna
River flow data were acquired from the Chesapeake
Bay Program Data Hub (www.chesapeakebay.net).

Data from the southern Chesapeake Bay come from
a broad phytoplankton monitoring program of Virginia
tidal rivers and streams from April 1998 through
December 2009 that was sponsored by the Virginia
Department of Health (VDH) and the Center for
Disease Control and Prevention. The emphasis in this
program was on the identification and distribution of
potentially harmful species and the presence of harmful
algal blooms in Virginia waters (Marshall et al., 2009).
Over 400 water samples were collected annually by the
VDH Division of Shellfish Sanitation. Although the
presence of M. rubrum was not specifically monitored in
the Virginia Study, their occurrence in bloom concen-
trations (.100 cells mL21) was recorded using light
microscopy.

Choptank, Patuxent and Pocomoke river
samples

Cell counts for M. rubrum and cryptophyte abundance
for the Choptank (2002–2004), Patuxent (2002–2004)
and Pocomoke (1999–2001) Rivers were generated
from archived preserved samples at Horn Point
Laboratory, and represent surface (,1 m) samples.
Sampling methods for water collection and salinity and
temperature data in these tributaries have been
described previously (Stoecker et al., 2000, 2008;
Reaugh et al., 2007). Briefly, the samples from the
Choptank, Patuxent and Pocomoke Rivers were fixed in
1% (BV) gluteraldehyde and refrigerated until used for
making slides. Slides were made by gently (,10 PSI) fil-
tering 3–5 mL of sample onto a 2.0 mm polycarbonate
filter and mounting the filter on a glass microscope slide
with emersion oil and a coverslip. All slides were frozen
until enumeration, which was conducted on a Nikon
Eclipse inverted microscope using fluorescence filter sets
B-2A (band pass, BP, excitation: 450–490 nm; long-
pass, LP, dichromatic beam splitter, DM, 500 nm; LP

M. D. JOHNSON ET AL. j MESODINIUM RUBRUM IN THE BAY

879

Downloaded from https://academic.oup.com/plankt/article-abstract/35/4/877/1526943
by Old Dominion University user
on 21 May 2018

www.chesapeakebay.net
www.chesapeakebay.net
www.chesapeakebay.net


Fig. 1. Occurrence of M. rubrum blooms (.100 cells mL21) within the Chesapeake Bay system (gray circles); stations where data were obtained
from the Chesapeake Bay Water Quality Monitoring Program are labeled with a black dot; inset: table showing the years and seasonal resolution
of sampling from various data sources; VDH, Virginia Department of Health.
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barrier filter, BA, 515 nm) and G-1A (BP excitation:
541–551 nm; LP DM, 575 nm; LP BA, 580 nm). Cell
counts were conducted by making four or two transects
on archived slides at 400–1000� magnification for M.

rubrum and cryptophyte algae, respectively. Cells were
identified based on their morphology and phycoeryth-
rin fluorescence.

Statistical analysis

Normality of all data was tested using the Shapiro–Wilk
test. Data with non-parametric distributions were log-
transformed prior to statistical analysis in order to
stabilize the mean/variance relationship and to create a
more uniform distribution. Mesodinium rubrum cell count
data were log(x þ 1) transformed, where x ¼ cells mL21,
in order to retain counts with a value of zero within the
data set. In cases where normality was achieved, data
were analyzed using analysis of variance (ANOVA) and
the Tukey–Karmer minimum significant difference pro-
cedure to determine significance between annual cell
abundance and river flow data for various tributaries.
However, in most cases, normality was not achieved and
a non-parametric analysis, Kruskal–Wallis ANOVA on
ranks with Dunn’s method for pairwise comparisons of
groups, was used to determine significance. ANOVA was
used to test the hypothesis that M. rubrum is more abun-
dant during wet years. In order to test the hypothesis
that M. rubrum can exploit distinct hydrodynamic
regimes and that it is positively related to cryptophyte
abundance, we used Spearman’s rank correlation ana-
lysis to test the statistical dependence between cell abun-
dance and environmental variables. All data were
analyzed using Sigma Plot and Sigma Stat software
(Systat Software, Inc.).

R E S U LT S

Overall data set

We compiled 1063 observations of M. rubrum and 386
observations of cryptophyte algal abundance from four
Chesapeake Bay tributaries and portions of the main
bay (Tables I and II; Fig. 1). Most of the samples were
collected during spring or summer, 54 and 28%, respect-
ively, while autumn and winter comprised �10 and 8%,
respectively (Table I). The Rhode River is the only data
set that includes observations from all seasons. The ma-
jority of samples (76%) were from mesohaline regions of
Chesapeake Bay, which is the dominant salinity class
within the system (Table I). Very few samples (2.3%)
were from polyhaline regions of Chesapeake Bay, and

thus our analysis of M. rubrum bloom conditions are
most representative of oligo- and mesohaline regions.
Mesodinium rubrum occurred within a broad temperature
and salinity range, with a central tendency of 18.8+
6.78C and 10.6+ 4.3 PSU (n ¼ 1063; Table II).

“Blooms” of M. rubrum, defined here as a concentra-
tion .100 cells mL21, occurred on average at 19.4+
4.48C and 6.9+ 3.3 PSU (n ¼ 128), while the highest
concentrations (.1000 cells mL21) of the ciliate oc-
curred on average at 18.1+ 2.2 8C and 6.1+ 2.5 PSU
(n ¼ 16). Most blooms of M. rubrum were associated
with salinity levels that fell below the central tendency
of their distribution (Fig. 2). Overall M. rubrum abun-
dance was positively correlated with temperature,
r(900) ¼ 0.285 (P , 0.0001), and negatively correlated to
salinity, r(929) ¼ 20.400 (P , 0.0001). Spring and
summer M. rubrum abundance was associated with
declines in surface salinity and surface water warming,
while autumn production was related to declines in
surface temperature (Table III).

Rhode River

The Rhode River data set is the most comprehensive
(n ¼ 540), spanning 3 years and a portion of all seasons.
While each year was unique, a general pattern included
a large spring bloom of M. rubrum between May and
early June when the temperature averaged 18.3+
2.48C and salinity averaged 6.0+ 3.1 PSU. Spring
blooms resulted in .100 cells mL21 throughout the
River sampling area during all 3 years (Fig. 3). A
second smaller peak around October appeared when
surface temperatures cooled below 188C in all 3 years
(Fig. 3A–C). Lesser sporadic peaks also occurred in
summer, usually July, when temperature averaged
27.7+ 1.78C and salinity averaged 9.2+ 2.4 PSU. The
first of the 3 years (1992) was a dry year compared with
the 20 year (1990–2010) annual mean (40 834 ft3 s21)
for Susquehanna River discharge, while the next 2
years were the third and second wettest, respectively
(Table IV, Fig. 3D–F). During the first year (1992), the
spring bloom was the smallest and shortest of the 3
years and occurred later (Fig. 3), while the annual mean
level of M. rubrum in the river was the lowest (Table IV).
The annual mean concentrations of M. rubrum during
1994 were the highest of the 3 years, with the ciliate
rarely ,10 cells mL21 throughout the Rhode River
sub-estuary (Fig. 3C).

Choptank and Patuxent Rivers

Sampling of the Choptank and Patuxent Rivers was
between April and June during three consecutive years,
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and includes counts for total cryptophyte abundance in
addition to M. rubrum. River flow was greater in both
systems during 2003 and 2004; however, no pattern was
discernible between river flow and M. rubrum abun-
dance over the 3 years (Table IV). Cryptophyte abun-
dance was similar in both sub-estuaries, with surface
concentrations typically near 1000 cells mL21 through-
out much of the sampling area (Table IV; Figs 4 and 5).
The Patuxent River had the greatest mean abundance
of cryptophyte algae during the wettest of the 3 years
(2003), while no difference was observed for crypto-
phyte levels during the 3 years within the Choptank
River (Table IV).

Blooms of M. rubrum occurred during two of the
three years within the upper portion of the Patuxent
River, and were generally at temperatures above 108C
(Fig. 4B, E and H) and salinity below 15 PSU (Fig. 4C,
F and I). Mesodinium rubrum abundance in the upper
Patuxent River appeared to coincide with high levels of
cryptophytes (Fig. 4A, D and G) and inputs of fresh-
water to the system (Fig. 4C, F and I). During spring
2002, M. rubrum abundance increased at the upper
Patuxent River sampling stations along a steeply declin-
ing salinity gradient, which remained a consistent
feature throughout most of the sampling period
(Fig. 4C). A 2004 bloom of M. rubrum in the upper

Patuxent River occurred during a period of pronounced
surface water warming and slight salinity decline
(Fig. 4G–I).

Mesodinium rubrum distribution within the Choptank
River differed over the 3 years, with short-lived blooms
restricted mostly to the upper Choptank Stations
(Fig. 5). In 2002, a small bloom of M. rubrum coincided
with an increase in cryptophyte abundance throughout
the sampling region, water column warming and a
slight decline in surface salinity (Fig. 5A–C). In 2003, a
bloom of M. rubrum occurred amid relatively low crypto-
phyte concentrations, when water temperature exceeded
168C and within a strong salinity gradient (Fig. 5D–F).
During spring 2004, an intense bloom occurred in the
upper Choptank, with elevated cell numbers throughout
the sampling region. This bloom peaked at
3200 cells mL21, and was associated with a reduction
in cryptophyte abundance within the entire river, water
column warming and with freshwater input (Fig. 5G–I).
Overall M. rubrum abundance in both rivers was posi-
tively correlated with cryptophyte abundance,
r(df¼383) ¼ 0.141 (P ¼ 0.0056), while cryptophyte abun-
dance was positively correlated to temperature, r(303) ¼

0.289 (P , 0.0001), but did not reveal a relationship
with salinity.

Open bay stations

Mesodinium rubrum abundance was about one order of
magnitude lower at open Chesapeake Bay stations than
in the tributaries, averaging 7.2 cells mL21. Bloom-like
concentrations of M. rubrum were in only a few samples
from Chesapeake Bay (Table I). However, because open
bay station counts were integrated composites of the
entire surface layer (see the Method section), and all
other cell counts represented discrete samples from the
upper 1 m of surface water, direct comparisons are mis-
leading. Furthermore, sampling resolution in the open
Chesapeake Bay was much lower (n ¼ 68) than within

Table I: Description of data used in this study by season and salinity with the occurrence of M.
rubrum blooms

System Total (n)
Bloomsa

Samples by season (n) Samples by salinity (n)

n (%) Winter Spring Summer Fall ,0.5 0.5–5 5–18 18–30 ND

Rhode River 540 66 (12) 30 168 234 108 2 59 435 0 44
Choptank River 285 21 (7.4) 27 153 5 0 0 8 140 1 36
Chesapeake Bay 68 3 (2.2) 12 66 58 1 0 0 97 40 0
Patuxent River 127 15 (12) 14 113 0 0 2 4 99 0 22
Pocomoke River 74 24 (32) 0 74 0 0 7 10 33 1 23
Sum (n) 1063 129 (12) 83 574 297 109 11 81 804 42 125
Blooms [n (%)] 0 (0) 104 (18) 15 (5.1) 10 (9.2) 0 (0) 35 (43) 78 (9.7) 0 (0) 16 (13)

aBloom: .100 cells mL21; ND, not determined.

Table II: Descriptive statistics for M.
rubrum, cryptophyte algae, salinity and
temperature for all Chesapeake Bay and
tributary stations used in this study

n Mean Median SD
CI of
mean Range

Mesodinium
rubruma

1063 76.7 8 254 15.5 3300

Cryptophytesa 386 1432 908 1880 191 15,720
Temperature (8C) 956 18.8 19 6.7 0.43 31.3
Salinity (PSU) 951 10.6 10.7 4.3 0.28 22.7

aCells mL21.
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the various tributaries. Water column profiles compared
before and during spring blooms of M. rubrum in the
Potomac River and upper Chesapeake Bay revealed
increases in surface layer stratification and a decrease in
DIN levels during bloom events (Fig. 6). Observations
of water column profiles before and during autumn
blooms in southern Chesapeake Bay, however, show a
decline in temperature and little change in salinity, or
DIN preceding a bloom event (Fig. 7).

Southern bay tributaries

No quantitative or systematic sampling for M. rubrum in
the southern Chesapeake Bay was available for this
study. However, a qualitative phytoplankton monitoring
program in the Virginia (southern) portion of
Chesapeake Bay noted where samples had bloom-like
concentrations (.100 cells mL21) of M. rubrum (Fig. 1,
Table V). In contrast to other data sources, blooms
were reported most often during summer in southern

Fig. 2. Abundance of M. rubrum versus (A) temperature and (B) salinity. The horizontal dashed line indicates “bloom” levels of M. rubrum (100
cells mL21). The vertical dashed line represents the median and the gray box indicates the inter-quartile range (25th–75th percentiles) for
temperature and salinity values, respectively, corresponding to M. rubrum abundance.
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Bay tributaries and were associated with higher salinity
and temperature values (Table V).

D I S C U S S I O N

Due to our use of archived samples that were either
taken from the upper 1 m or which were integrated
water column samples, we may have missed thin, sub-
surface accumulations of M. rubrum if they were present.
This may have resulted in an underestimation of
maximum abundances, particularly under highly strati-
fied conditions and, in the case of surface samples, may
have also resulted in a biased estimate of average water
column abundance. However, by using archived
samples and historical data, we were able to assess the
occurrence of M. rubrum over a wide spatial area (from
the Bay mouth to the upper Bay) and in major tributar-
ies as well as in the main stem Bay. It also allowed us to
use samples and data from many years, so that both wet
and dry years were included. However, this wide cover-
age of necessity results in a lack of detailed information
on vertical distribution, such as has been addressed in
more spatially and temporarily restricted studies
(Crawford and Purdie, 1992; Crawford and Lindholm,
1997; Herfort et al., 2011a, b).

Physical factors that influence M. rubrum
abundance in Chesapeake Bay

We have shown that M. rubrum abundance in
Chesapeake Bay is related to temperature and salinity,
but that the strength and direction of this correlation
varies with season. As in previous studies of M. rubrum

blooms (Crawford et al., 1997), we also found a relation-
ship between increased water column stability and
M. rubrum abundance during spring. This was manifested
by increased surface water temperature and lowered
salinity (Table III). This water column pattern was asso-
ciated with several May “blooms” (.100 cells mL21) in
Chesapeake Bay (CB3.3C) and the Potomac River
(LE2.2), where, from April to May, the surface layer

increased to above 158C and became more stratified,
while DIN declined (Fig. 6). In the Newport River
estuary in North Carolina, spring blooms of M. rubrum

follow Heterocapsa triquetra blooms within the mesohaline
frontal region of the estuary, and also coincide with
increases in water temperature above 158C (Litaker et al.,
2002). In the Columbia River estuary, M. rubrum abun-
dance during summer coincided with neap tides,
increases in salt wedge intrusion and decreases in river
flow, suggesting that declines in turbulence during other-
wise favorable growth conditions allow M. rubrum to
grow and accumulate in the surface layer (Herfort et al.,
2011a). During summer in the Chesapeake Bay, M.

rubrum abundance was associated with increased tem-
perature and lower salinity, indicating that periodic rain
events may stimulate production (Table III). During
autumn, M. rubrum abundance was related to surface
water cooling (Table III), with blooms generally occur-
ring between 16 and 208C. This pattern occurred during
a large M. rubrum red tide in autumn 1995 in southern
Chesapeake Bay, where the water column cooled to
around 208C from September to October and became
increasingly mixed (Fig. 7). Seasonal blooms in
Chesapeake Bay are mainly restricted to tributaries, and
appear to be driven by different hydrodynamic regimes
in spring and fall, suggesting that the ciliate is either
highly opportunistic or that cryptic species or strains may
have distinct seasonal niches.

We observed lower concentrations of M. rubrum at the
open Chesapeake Bay stations relative to tributaries,
which is consistent with its absence from previous
studies of ciliates in surface waters of the main estuary
(Dolan and Coats, 1990). The cause of lower M. rubrum

abundance within the open Bay is uncertain, and most
tributary-associated blooms appear to remain within
these sub-estuaries. Within tributaries, stronger riverine
influence on water column stratification and decreased
light penetration probably help to structure the distribu-
tion of M. rubrum within the upper surface layer.
Mesodinium rubrum may also become more easily
entrained within tributary circulation systems by
responding to tidal flow and riverine nutrient inputs.

Table III: Spearman’s rank correlation results for seasonal M. rubrum abundance with temperature
and salinity

Season Samples (n) Mean (cells mL21) Median (cells mL21) Max (cells mL21) Bloomsa (n) Temperature (r) Salinity (r)

Spring 574 111 7.6 3300 104 0.402*** 20.388***
Summer 297 29 11.3 694 15 0.268* 20.382***
Autumn (all dates) 109 69 21.7 1351 10 20.096 20.280
Autumn (through

October)
75 95 31.1 1351 9 20.455** 20.172

***P , 1026, **P , 1025, *P , 1024.
aDays where bloom (.100 cells mL21) conditions were encountered.
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Fig. 3. Abundance of M. rubrum (gray scale contours) in the Rhode River by year with temperature (A–C) and salinity (D–F) line contours
overlaid. Numbers on plots refer to levels salinity or temperature along line contours. Legend indicates M. rubrum abundance in cells mL21.
Y-axis indicates distance from mouth of river (km) and black dots indicate sampling stations.
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Such behavior has been demonstrated in Southampton
Water, where during flood tide, the ciliate aggregated
near the surface, while being dispersed away from the
surface during ebb tide (Crawford and Purdie, 1992). In
the open Chesapeake Bay, the most favorable physical
conditions for M. rubrum blooms to develop may occur
during periods of strong neap tides when turbulence
declines and strong stratification can occur (Li and
Zhong, 2009). However, the availability of nutrients,
light and optimal cryptophyte prey are also important
factors. In most regions of the main stem of Chesapeake
Bay, bloom levels of M. rubrum would likely become dis-
persed due to tidal mixing and a general lack of a pro-
nounced near surface physical structure to retain
populations within a given area.

Possibility of a species complex

Previous studies on M. rubrum have noted distinct cell
size classes (Lindholm, 1978; Montagnes et al., 2008)
raising the possibility that there may be a complex of
cryptic species. Evidence supporting this hypothesis
comes from the Columbia River Estuary and Oregon
coastal margin, where at least five variants (A–E) of
M. rubrum were identified during spring and summer
(Herfort et al., 2011b). Interestingly, only one of these
variants (B) was associated with red-water events in the
Columbia River (Herfort et al., 2011b). A detailed inves-
tigation of the Mesodinium genus using cultures and iso-
lated cells from coastal Denmark identified at least one
novel species within this complex (variant D),
Mesodinium major and a new variant (F) of the species
complex (Garcia-Cuetos et al., 2012). We observed a

wide size range for M. rubrum in this study, but cell mea-
surements were not made. Cryptic strains, or species in
Chesapeake Bay and other coastal ecosystems, may
explain why blooms of the ciliate have been reported
under such a wide gradient of temperature and salinity
(Figs 1 and 2) and at different times.

Trophic factors that may influence
M. rubrum abundance in Chesapeake Bay

Cryptophyte algae are abundant in estuaries (Mallin
et al., 1991; Marshall et al., 2005; Adolf et al., 2006) and
thrive in turbid, low light conditions (Marin et al., 2011).
Their exploitation of this niche is likely due both to their
ability to absorb light in the blue–green portion of the
spectrum (Marin et al., 2011), which generally penetrates
deeper than blue light in turbid or brackish estuarine
waters, and to their ability to utilize dissolved organic
carbon for mixotrophic growth (Lewitus et al., 1991). In
North Carolina estuaries, abundance of cryptophyte
algae has been linked to rainfall events and they are one
of the dominant phytoplankton classes in cool-weather
blooms (Mallin et al., 1991). In the Neuse River Estuary
(North Carolina) stratified, turbid and low nitrate condi-
tions favor cryptophyte biomass (Pinckney et al., 1999).
Likewise, M. rubrum frequently occur in low light habi-
tats, such as in deep layers in the Baltic Sea (Setälä et al.,
2005) and in turbid estuaries (Crawford et al., 1997;
Herfort et al., 2011a). In this and past studies of
Chesapeake Bay (Li et al., 2000; Adolf et al., 2008), cryp-
tophyte abundance was high, periodically exceeding
1000 cells mL21. In the main stem of Chesapeake Bay,
cryptophyte-associated alloxanthin pigments had a

Table IV: A comparison of daily mean river flow data, M. rubrum and cryptophyte algal abundance
for three Chesapeake Bay tributaries across 3-year sampling periods

Tributary Year River flow1 (ft3 s21) Cryptophyte (cells mL21) M. rubrum (cells mL21)

Rhode River2 (annual means) 1992 35 497 (1256)a* NA 48 (10)
1993 52 476 (4008)b* NA 68 (18)
1994 51 700 (3171)c* NA 98 (15)*

Statistical test KW: H ¼ 101.7, 2 d.f, P , 0.001 NA KW: H ¼ 17.9, 2 d.f, P , 0.001
Choptank River (spring means)3 2002 89 (3)a* 1401 (182) 56 (21)a

2003 374 (15)b* 985 (118) 68 (58)
2004 186 (16)c* 1178 (128) 164 (64)a*

Statistical test KW: H ¼ 71.3, 2 d.f, P , 0.001 ANOVA: NS KW: H ¼ 7.787, 2 d.f, P ¼ 0.020
Patuxent River (spring means) 2002 245 (11) 879 (329) 108 (55)a

2003 867 (35)a* 1624 (216)* 47 (29)
2004 515 (16)a* 913 (135) 118 (63)a*

Statistical test KW: H ¼ 90.0, 2 d.f, P , 0.001 KW: H ¼ 22.9, 2 d.f, P , 0.001 KW: H ¼ 16.2, 2 d.f, P , 0.001

All values are mean (+ standard error of the mean).
KW, Kruskal–Wallis one-way ANOVA on ranks; superscript letters indicate data groupings from Dunn’s test and an asterisk indicates a significant
difference (P , 0.05); no letter or the same letter indicates no significant difference; NA, not available; NS, ANOVA not significant.
1USGS Chesapeake Bay River Input Monitoring Program.
2River flow data are for the Susquehanna River (data not available for Rhode).
3Spring river flow data from 1 March to 20 June.
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strong seasonal and regional signature, with populations
peaking during autumn in the upper and lower Bay
(Adolf et al., 2006). While cryptophyte abundance was
positively correlated to temperature but not salinity, our
data were limited only to spring sampling within the
Choptank, Patuxent and Pocomoke Rivers.

The precise nature of the relationship between the
abundance and diversity of free-living cryptophyte algae
and M. rubrum in nature remains obscure. However,
high levels of cryptophytes have been observed prior to
and during M. rubrum blooms in the Columbia River
Estuary during three successive years (Peterson et al.,
2013). While the weak positive correlation between
M. rubrum and cryptophyte algae observed here under-
scores their co-occurrence (see above), we found indirect
evidence to support a grazing impact on spring assem-
blages of cryptophyte algae by the ciliate. During May
2004 in the Choptank River, high abundances of M.

rubrum were found throughout the sampling region and

coincided with a dramatic decline in cryptophyte abun-
dance (Fig. 5G). However, these declines in cryptophyte
populations could be due to other predators or environ-
mental parameters.

Mixotrophic dinoflagellates are abundant in
Chesapeake Bay from early spring through summer
(Stoecker et al., 1997; Li et al., 2000; Adolf et al., 2008),
and are likely one of the main competitors of M. rubrum

for cryptophyte prey. Formation of blooms in Chesapeake
Bay of the toxic dinoflagellate Karlodinium veneficum are
thought to be driven in large part by mixotrophic
grazing on cryptophytes and perhaps other protist
species (Adolf et al., 2008). In culture, K. veneficum can
ingest up to 8 cryptophyte cells21 day21 (Li et al., 1999),
while M. rubrum has been shown to ingest a maximum of
�9 cryptophyte cell21 day21 (Yih et al., 2004), despite
having a low ingestion requirement for sustaining
maximum growth (Yih et al., 2004; Johnson and Stoecker,
2005; Smith and Hansen, 2007). Thus, the ingestion rates

Fig. 4. Abundance of M. rubrum (gray scale contours, all plots) with cryptophyte algae (cells mL21; A, D and G), temperature (8C; B, E and H)
and salinity (PSU; C, F and I) overlaid as lined contours, during spring in the Patuxent River (2002–2004). Numbers on plots refer to levels of
cryptophytes, salinity or temperature along line contours. Gray-scale legend indicates M. rubrum abundance in cells mL21. Y-axis indicates
distance from mouth of river (km) and black dots indicate sampling stations.
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of the dinoflagellate and the ciliate appear to be roughly
similar. However, some populations or strains of the
ciliate may have mechanisms to rapidly exploit high
levels of cryptophyte algae in order to maximize their
growth potential (Peterson et al., 2013). While M. rubrum

appears to have relatively specific requirements for
Teleaulax/Geminigera cryptophyte species for acquiring
organelles, it will ingest a wider range of genera (Park
et al., 2007; Myung et al., 2011; Hansen et al., 2012).
However, unlike mixotrophic dinoflagellates, it is
unknown whether M. rubrum benefits from enhanced
growth by ingesting cryptophyte species from which they
cannot sequester organelles. Thus, while populations of
M. rubrum likely exert a profound impact on overall cryp-
tophyte algal abundance within tributaries, the complete
role of cryptophyte ingestion and diversity in structuring
M. rubrum populations remains to be determined.
Likewise, the effect of M. rubrum’s competition for crypto-
phytes on mixotrophic dinoflagellate populations is
unexplored.

With such high levels of cryptophyte abundance in
Chesapeake Bay (Table II), it is perhaps surprising that
greater levels of M. rubrum are not encountered more
frequently. Factors that may constrain the production of
M. rubrum, such as cryptophyte diversity, or physical
structure within the water column, and grazing pressure
by micro- or mesozooplankton need to be investigated
further. Dilution experiments in the Rhode River
Estuary have shown that M. rubrum growth rate
increases with dilutions (Dolan et al., 2000), which is
consistent with in situ microzooplankton grazing pres-
sure constraining the net growth of M. rubrum. Among
the mixotrophic dinoflagellates, both toxic Dinophysis

spp. (Park et al., 2006) and Neoceratium furca (Stoecker,
personal obs.) are known to feed on M. rubrum.
Estuarine and marine copepods are important predators
of ciliates (Stoecker and Capuzzo, 1990), including
M. rubrum (Merrell and Stoecker, 1998; Fileman et al.,
2007), while studies of copepod nauplii have revealed
minimal grazing on the ciliate (Turner et al., 2001).

Fig. 5. Abundance of M. rubrum (gray scale contours, all plots) with cryptophyte algae (cells mL21; A, D and G), temperature (8C; B, E and H)
and salinity (PSU; C, F and I) overlaid as lined contours, during spring in the Choptank River (2002–2004). Legend indicates M. rubrum
abundance in cells mL21. Y-axis indicates distance from mouth of river (km) and black dots indicate sampling stations.
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Fig. 6. Temperature, salinity and DIN levels during three M. rubrum blooms in the upper Chesapeake Bay and Potomac River. A–C are Station
CB3.3C (upper bay) in spring 1998, stations D–F are CB3.3C during spring 2001 and stations G–I are LE2.2 (Potomac River) during spring
1998. Figures A, D and G show integrated surface layer abundance of M. rubrum (cells mL21; bars; upper x-axis) and temperature (8C; circles;
lower x-axis), B, E and H show salinity (PSU) and figures C, F and I show DIN (mg L21).
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The impact of M. rubrum on Chesapeake
Bay

The contribution of M. rubrum to phytoplankton commu-
nity chlorophyll and primary production is high in many
coastal and estuarine ecosystems (Smith and Barber,
1979; Stoecker et al., 1991). In Chesapeake Bay, M. rubrum

biomass can be on par with small blooms of red tide
forming dinoflagellates, and capable of exceeding
100 mg L21 chlorophyll a (calculated from published cel-
lular chlorophyll levels and observed abundance).
However, M. rubrum blooms in Chesapeake Bay are

usually restricted to relatively small regions within tribu-
taries. While blooms of M. rubrum may be conspicuous in
other ecosystems and may exceed densities of
104 cells mL21 (Taylor et al., 1971), such events have not
been reported in Chesapeake Bay. In a eutrophic ecosys-
tem such as Chesapeake Bay (Kemp et al., 2005), blooms
of M. rubrum may largely go unnoticed due to high levels
of phytoplankton community chlorophyll and colored dis-
solved organic matter (CDOM). Another possibility is that
varieties of M. rubrum in Chesapeake Bay grow less prolif-
ically than those elsewhere. One bloom recorded near the

Fig. 7. Temperature, salinity and DIN levels during two M. rubrum blooms in lower Chesapeake Bay. A–C are Station CB6.1 in fall 1995, and
stations D–F are CB7.4 during autumn 1995. A and D show integrated surface layer abundance of M. rubrum (cells mL21; bars; upper x-axis)
and temperature (8C; circles; lower x-axis), B and E show salinity (PSU) and C and F show DIN (mg L21).
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mouth (368 590 3600, 2768 000 3800) of the bay in October
1995 exceeded 500 cells mL21 (Marshall, 1996) and was
noted for producing visible red water (L. Harding, person-
al communication), perhaps due to lower community
chlorophyll and CDOM levels in this region. This is the
only documented polyhaline (22.7–28.5 PSU) bloom of
M. rubrum in the main stem of Chesapeake Bay.
Monitoring blooms of M. rubrum in meso- and polyhaline
regions of Chesapeake Bay may be useful as an early indi-
cator of potentially toxic Dinophysis spp. (Campbell et al.,
2010), which have been reported at high levels in the
Potomac River (Tango et al., 2004). This is particularly
relevant to the shellfish industry in meso- and polyhaline
regions of Chesapeake Bay, due to potential accumulation
of Dinophysis toxins in bivalves. The low number of
observed M. rubrum red tides within the main body of the
bay, despite high nutrients and an abundance of crypto-
phyte algae, is enigmatic and could point to generally un-
favorable hydrodynamic conditions for this species or
high losses to grazers. Despite their lack of numerical
dominance, M. rubrum remains a nearly ever-present part
of the plankton community throughout the year in most
regions of Chesapeake Bay.
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