
We next evaluate the performance of DeepPOSE by feeding different
types of sensor data. We� nd the accelerometer itself has a good esti-
mation of the vehicle speed and direction. Adding gyroscope data can
improve the overall performance because it measures the rotation speed
of an object. But the gyroscope measurement alone is not enough to es-
timate the vehicle speed. Moreover, it is not surprising to � nd that
applying the Kalman � lter can improve performance by eliminating
additional noise introduced by the vehicle, such as the engine vibration
and road feedbacks. The performance of our custom dataset has
decreased due to a relatively small amount of the driving data compared
with the BDD-100K dataset. But it still reaches an acceptable error rate.

7.2.2. Accuracy of position estimation
Once we have the vehicle speed and direction information, we can

reconstruct the position for a moving vehicle. Now we examine the
overall performance of the vehicle position estimation.

7.2.2.1. Displacement error of each trip . Table 2 shows the displace-
ment error measured by the difference between the ground truth
displacement of each trip and the values integrated from the vehicle
speed obtained via DeepPOSE and Sensor Fusion. We noticen� ¼ 10 has
the best performance for vehicle speed reconstruction inTable 1.Hence
we � x n� to 10 in the rest of the experiments. Results inTable 2 reveal that
DeepPOSE can achieve an average error of 26.8 m with a standard de-
viation of 5.2 m in the selected 10k validation trips from the BDD-100K
dataset. Sensor Fusion results in a mean error of 902 m. This result beats
the benchmark model [27], which can achieve a mean error of 40.43 m
with a standard deviation of 5.24 m. The mean displacement error of our
custom dataset is slightly higher than that of BDD-100K, which is about
36 m.

Once we combine the displacement and direction values, we can
reconstruct the real vehicle trajectory as illustrated in Fig. 12.

7.2.3. Impact of sequence control variables
In the estimation of vehicle speed and direction by using the

sequence-to-sequence model, two control variables affect the perfor-
mance signi� cantly, i.e., the length of the sequence, and the length of
sliding windows. These two factors re� ect two different degrees of
cyclicality. The following discussion explains whether our sequence-to-
sequence-based model is capable of capturing the periodic patterns in
driving behaviors from the empirical results revealed in Section 4.1.3.

7.2.3.1. Estimation error versus length of sequence. Table 1 re� ects
how the choice of the length of the sequence,n� , affects the estimation
accuracy. The shorter sequence length is helpful for direction estimation.

Table 2
Average displacement error per trip with standard deviation.

Mean Absolute Error (meter)

BDD-100K Custom Dataset(Urban Area)

DeepPOSE-KM 26.8� 5.2 36 � 6.1
DeepPOSE-RAW 32.2� 6.7 40 � 7.6
DeepPOSE-KM-noConv 48.4� 10.2 52 � 13.9
DeepPOSE-RAW-noConv 53.6� 12.5 58 � 15.7
SensorFusion 902� 63 1014 � 70

Fig. 12. A reconstruction sample from BDD-100K dataset. This trip segment lasts 35s and starts from the bottom of this� gure. Red dots reveal the vehicle's trajectory
computed from the GPS coordinates of the trip, while the white dots represent the estimated trajectory from the motion sensor of the trip.
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This finding matches our discussion in Section 4.1.3 regarding the
different cyclical levels of driving patterns, i.e., the state transitions time
for speed change actions such as accelerating and decelerating. If nτ for
the speed estimation is too small, DeepPOSE may not learn the complete
state transition of a vehicle in the training process, and vice versa. Too
many repeated features may eventually degrade the performance.
However, different from the speed change, subtle maneuvers such as lane
turning, passing, and changing use less time. Thus, as reflected in the
results, the optimal nτ for the direction estimation is smaller than the
value for the speed estimation.

7.2.3.2. Displacement error versus sliding window (ω). We consider
how the reconstruction accuracy is affected by the sliding window ω, a
control variable that determines how many useful sensor measurements
should be considered in one input data, which shows another type of
periodic pattern that reflects the subtle change of vehicle in each time
sequence. Based on the distribution of the drivers’ average time for each
individual action (Fig. 4(c)), we choose 3s, 5s, and 7s, which account for
60%, 85%, and 90% of the evaluation distribution. When the width of the
sliding window increase more sensors measurements will be used to
compose one single input X . Table 3 shows the mean error of each trip in
the BDD-100K dataset when we increase the length of the sliding win-
dows, with nτ set to 10 s. We observe that when we increase the width of
the window width from 1 s to 5 s, the performance increases. This is
because the more sensor measurements we consider in one input, the
more detailed operational measurements will be included. However, the
performance stops increasing when the width of the sliding window is
over 7 s because this model is overwhelmedwith toomuch repeated data,
including noises. On the other hand, increasing the width of the sliding
windows also increases the model training time. Considering the training
efficiency and performance, a sliding window of 3 s is the best choice in
our scenario.

7.3. GPS spoofing detection

7.3.1. Effect of map alignment on trajectory estimation
As illustrated in Fig. 12, the proposed vehicle position estimator can

reconstruct the vehicle trajectory from the motion sensor measurements.
Next, we examine the estimation error range of the trajectory computed
from motion sensor data, with and without the map alignment. We select
10,000 trips from the BDD-100K dataset, as well as all the trips from our
custom dataset, which have longer trip duration. For each trip, we first
get the ground truth trajectory Tg from the GPS coordinates, and the
trajectory Tr computed based on the sensor measurements, with and
without using the map alignment. We use (9) to get the normalized
trajectory differences between Tg and Tr in each set. Fig. 13(a) shows the
difference between the trips selected from BDD-100K, and Fig. 13(b)
shows the same results from our custom dataset when there is no
spoofing attack. It is clear that the trajectory estimation error from the
motion sensor data increases when the trip duration is longer due to the
error accumulation in trajectory estimation. However, after we have
applied the map alignment on the motion sensor data of the trips and

Table 3
Displacement error for different sliding window size ω in BDD-100K dataset.

Windows Size Input Shape Kernel Size Mean Absolute Error (m)

1 10 � 6 � 50 [1,5] 29.7
[1,15] 27.6

3 10 � 6 � 150 [1,5] 26.4
[1,15] 24.9

5 10 � 6 � 250 [1,5] 25.5
[1,15] 24.9

7 10 � 6 � 350 [1,5] 26.1
[1,15] 25.8

Fig. 13. The average difference between the reconstructed trajectory and the
ground truth trajectory on (a) BDD-100K and (b) custom dataset, with and
without the assistant of the map.

Fig. 14. The CDF of the difference between the “Spoofed” trajectory and the
“Real” trajectory in the spoofing set.
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then computed the trajectory similarity, the error accumulation of the
trajectory reduces significantly, especially for long-duration trips.

7.3.2. Detection for threat model case 1
To simulate the GPS attack, we randomly select 5000 trips of various

length from the BDD-100K dataset and keep the GPS coordinates and the
sensor measurements of each trip as the input to the spoofing detection
algorithm. That is, those trips are unspoofed trips. The objective of using
the unspoofed set is to obtain the false alarm rate. We then select another
10000 trips and create two spoofing sets as follows. Each time, we pick
two trips from the trip pool with the same length, and this action repeats
5000 times. Those 5000 pairs constitute the spoofed set in the experi-
ment. For each pair of trips, we use TREAL to denote the true trip, and the
other trip as the spoofed route, which is denoted as TSPOOF. We keep the
sensor measurements of the true route TREAL and the GPS coordinates of
the spoofed route TSPOOF, and use them as the input to the spoofing
detection algorithm. The second spoofing set is created in a similar
manner. The only difference between these two sets is the driving
pattern. The trip pairs in the first spoofing set have smaller turning an-
gles, while the second spoofing set pairs contain wider or larger turning
angles. Fig. 14 plots the CDF of the trajectory difference between the
spoofing and the real routes, TREAL and TSPOOF, in both sets. We notice
that trips in set 1 have a smaller trajectory difference. For the GPS
spoofing detection, we set the parameter nτ of the vehicle position esti-
mator to 10 or 5 for speed and direction estimation.

We apply the proposed spoofing detector to two spoofing sets
(marked in grey and orange) and the unspoofed set (marked in blue) in
Fig. 15. Besides the detection accuracy, the false alarm rate is also an
important factor affecting the system performance. The false alarm rate is
the percentage of unspoofed trips being misclassified as spoofed trips by
the detection algorithm. Certainly, a good threshold should achieve a
high detection accuracy while suppressing false alarms.

In Fig. 13, we can find the average reconstruction error for the trip of
different lengths in the unspoofed sets. That is, the reconstruction error in
the figure is between the trajectory of sensor measurements and the
trajectory of the unspoofed GPS coordinates of the same trip. The
reconstructed errors can be expressed as a normal distribution, Ebdd �
Nð0:026; 0:002Þ, as shown in Fig. 13. Hence, in order to suppress the
false alarm caused by the reconstruction error, the threshold α should be
set to 0.03. To see this, in the experiments, we change the threshold
value, α, from 0.02 to 0.04. From the results in Fig. 15, setting α to 0.03
achieves a good balance where we can have an acceptable detection rate
(88%) as well as a low false alarm rate (4%). Compared to with perfor-
mance of the two spoofing sets, set 2 has better detection rate because the
larger turning angles of the trips give more useful information for the

detection algorithm resulting in a higher trajectory difference.
In the real world scenario, the application server usually does not

need to wait until the trip completes to validate the trip authenticity.
Furthermore, the server may not even need the entire data from the
origination point of the trip to detect spoofing. In other words, the
application server can carry out dynamic spoofing detection based on the
current GPS and motion sensor data within an interval from a recent time
point to the current time, as discussed in Section 6.2. To evaluate
spoofing detection in such scenarios, we divide 24-h driving data in the
customized set into intervals of the following lengths: 40s, 60s, 120s,
180s, and 300s. Thus we have obtained about 2100, 1400, 700, and 200
trip segments, respectively, in each subset for the corresponding interval
duration above (40s–300s). The reconstructed errors of the unspoofed set
can be expressed as a normal distribution, Ecus � Nð0:037; 0:004Þ, as
shown in Fig. 13. Hence, to suppress the false alarm, the threshold α
should be set to 0.045.

To test GPS spoofing, we use 80% of trip segments in each subset to
create a spoofing trip set in a manner similar to the previous section. The
remaining 20% of trip segments serve as an unspoofed trip set to obtain
the false alarm.Fig. 16 shows the results for different values of α for all
trip segments created previously. The black plot represents the detection
accuracy, and the orange bar plot shows the false alarm rate when the
threshold increases. The detection rate and false alarm vary with

Fig. 15. Detection rates and false alarm rates for BDD-100K dataset.

Fig. 16. Detection and false alarm rate for the custom dataset.

Fig. 17. Performance for trips with different durations in the custom dataset, α
¼ 0.045.
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different α. Overall, α ¼ 0.045 or 0.05 results in a good balance between
the detection rate and false alarm.

The BDD-100K dataset only includes short trip segments. Next, we
evaluate the performance of the spoofing detector for the trip segments
with longer durations in the custom dataset. The results are shown in
Fig. 17. We observe that the detection rate increases with the increase of
the travel distance.This is not surprising because a longer trip contains
more information, which makes it possible to better detect the spoofing
attack.

7.3.3. Detection for threat model case 2
To simulate the live spoofing attack as illustrated in Fig. 1, the

attacker may initial the attack from the corner of an intersection or in the
middle of a street. We decompose the subset of the custom dataset into
edge level road segments, which are the traveling records between two
connected edges on the road map. It is used to represent a special
connection, i.e., the intersection. Fig. 18 shows the trip distribution of the
dataset that includes 10,000 trips. We use 80% of them to create the
spoofing set, and the remaining 20% remains as the unspoofed set.
Finally, we create the spoofing set with 5,000 spoofing trips by randomly
pairing one trip's GPS with the motion sensor measurements of other
trips.

We apply Algorithm 4 to the datasets. The reconstruction errors of the

unspoofed dataset can be expressed as a normal distribution Einst �
Nð0:014;0:004Þ. Hence, we set the parameter β to 0.02. The trip progress
indicates the percentage of distance the vehicle has traveled on the last
road segment of the pre-planned path in a trip. The GPS spoofing is
assumed to start at the beginning of this last road segment. From Fig. 19,
we observe that when the vehicle reaches 30% of a road segment, the
detection accuracy is about 80% while the false alarm rate is less than
8%. The detection rate is further improved when the vehicle runs further
on the road. Overall, our algorithm can quickly detect a spoofing attack
within a short time after the launch of the GPS spoofing attack.

8. Conclusion

In this paper, we introduce a novel DeepPOSE framework for
detecting GPS spoofing attacks. DeepPOSE includes two components: a
vehicle position estimator and a spoofing detector. The vehicle position
estimator integrates convolutional and sequence-to-sequence recurrent
neural networks to capture the vehicle driving speed and direction from
the motion sensor data. The vehicle speed and direction are then used to
calculate the trajectory of the vehicle. The spoofing detector compares
the trajectory with the one reconstructed from the GPS coordinates re-
ported by the user to detect if there is a GPS spoofing attack. We have
used two datasets to evaluate DeepPOSE. The experiment results indicate
that DeepPOSE can effectively detect spoofing attacks in both cases of the
threat model.URL https://github.com/osqzss/gps-sdr-sim.
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