
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1983

Design of Efficient Algorithms Through Minimization of Data Design of Efficient Algorithms Through Minimization of Data

Transfers Transfers

Yong Mo Chong
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer and Systems Architecture Commons, Signal Processing Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Chong, Yong M.. "Design of Efficient Algorithms Through Minimization of Data Transfers" (1983). Thesis,
Old Dominion University, DOI: 10.25777/0rxd-zy37
https://digitalcommons.odu.edu/ece_etds/315

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fece_etds%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.odu.edu%2Fece_etds%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/315?utm_source=digitalcommons.odu.edu%2Fece_etds%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DESIGN OF FFFICIENT ALGORITHMS THROUGH
MINIMIZATION OF DATA TRANSFERS

by

Yong Mo Chong
B.S.E.E. May 1981 Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
November 1983

Approved by:

Meghanad D. Wagh (D'erector)

Sherad Kanetkar

John W. Stoughton

 Copyright by Yong N. Chong 1983

A11 Rights Reserved

ABSTRACT

'DESIGN OF EFFICIENT ALGORITHMS THROUGH
MINIMIZATION OF DATA TRANSFERS

Yong M. Chong
Old Dominion University

Director: Meghanad D. Magh

This thesis explores the time optimal implementation of

computational graphs on a finite register machine. The implementation

fully exploits the machine architecture, especially, the number of

registers. The derived algorithms allow one to obtain time efficient

implementations of a given graph in machines with a known number of

registers.

These optimization procedures are applied to digital signal

processing graphs. It is shown that the regular structure of these

graphs allows one to identify computational kernels which, when used

repeatedly, can cover the entire graph, The 1- and r-register

implementations of Hadamard and Fast Fourier Transforms using various

computational xernels are studied for their code sizes and time

complexities. The results obtained also allow one to select an optimal

hardware devoted to a particular computational application.

ACKNOWLEDGMENT

I would like to thank Dr. Neghanad D. Wagh for his patience,

guidance, and help during the research. This work would not have been

possible without his enthusiasm, insight and encouragement. In

addition, his assistance during the preparation of this thesis was

appreciated since it was the result of many long nights together.

I would also like to acknowledge the other member s of my thesis

committee, Dr. Sherad Kanetkar and Dr. John W. Stoughton, for their time

and consideration. Thanks are also due to Teri N. Owens for her

assistance in preparing this thesis.

111

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER

1 INTRODUCTION
1. Background
Z. Computer Architecture .
3. Prob)em Identification
4. Unique approach to the Problem
5. Overview

2 COMPUTATIONALLY ORGANIZED BLOCK: 1-DIMENSION
1. Graph Theory Preliminaries
2. Computationally Organized Block (COB)
3. Complexity of 1-Register Implementation
4. Algorithm for Implementation of a 1-Reg
5. Example .

3 COMPUTATIONALLY ORGANIZED BLOCK: R-DIMENSION
1. Time Complexity of R-Dimensional COBs
Z. R-Dimensional COB Algorithm .
3. Example .

APPLICATIONS
1. Primitive COB .

2. Hadamard Transform (HT)
3. Implementation of a Complete HT Through

Primitive COBs
4. Fast Fourier Transform (FFT)

8
5. Implementation of 2 Length FFT .

CONCLUSIONS
1. Summary of Selected Results .
2. Significance of the Results .
3. Suggestions for Further Hork

LIST OF REFERENCES

ister Machine

PAGE

iv

vli

1

1

3

6
7
8

9
10
15
16
18
24

27
27
29
33

42
42
47

65
68

72

75
75
76
77

79

LIST OF TABLES

CHAPTER 1

Execution times (in usec) for various micropro-
cessors .

CHAPTER 4

Dependence of the complexities of two different
implementations upon the number of registers in
the machine .

PAGE

43

4.2

4.3

4.4

Comparison of implementations with and without
primitive COBs

Complexities of various implementations of HT
primitive COBs

Change in the values of Eta for various primitive
COBs

64

65

12
4.5 Implementation of 2 length HT

4.6 Complexities of various implementations of FFT
primitive COBs

8
4.7 Implementation of 2 length FFT

68

72

73

LIST OF FIGURES

CHAPTER 1

1.1 SISD architecture

PAGE

CHAPTER 2

2.1 Graphical and alternate representation of a computation . . 11

2.Z Basic representation of a graph

2.3 Four topological sorts of the graph in Fig. Z.2

2.4 Example of a 1-dimensional COB

2.5 Example of a 2-dimensional COB

2.6 A computational graph and its 1-dimensional COB cover

CHAPTER 3

13

14

17

17

26

3.1 The four basic transformations used to form computable
paths . 31

3.2 Computational graph of 4-point FFT

3.3 1-dimensional COB cover of the 4-point FFT graph

34

35

3.4 Equivalent 1-register COB cover of the 4-point FFT graph . 36

3.5 Z-dimensional COB cover of the 4-point FFT graph

3.6 3-dimensional COB cover of the 4-point FFT graph

40

40

3.7 4- through 9-dimensional COB covers of the 4-point FFT
graph . 41

CHAPTER 4

4.1 A computational graph with 63 points

4.2 Primitive COBs for implementation of the graph in
Fig. 4.1

44

44

4.3 Various implementation of 3- and 7-point primitive COBs . . 45

4.4 Cover of complete graph using 3- and 7-point primitive
COBs

4.5 1-register implementation of HT

4.6 2-register implementation of HT

48

53

CHAPTER 4 (CONTINUED)

4.7 The three types of butterfly implementations prevalent
in the 2-register implementation of HT

4.8 3-register implementation of HT

12
4.9 Time complexity of various implementations of 2 length

HT

4.10 Computational graph of 2-point FFT

4.11 1- and 2-dimensional COB cover of 2-point FFT

8
4.12 Time complexity of various implementations of 2 length

FFT

PAGE

57

59

67

70

71

74

LIST OF SYMBOLS

SYMBOL

Ci

MEANING

i-th Computationally Organized Block (COB)

Computational graph

Number of registers

Set of computational points

Union

i-th computable path

Belong to

Not belong to

Null set

Subset

CHAPTER 1

INTRODUCTION

1. 1 Background

The past two decades have seen rapid strides in the area of digital

signal processing. Nany new signal processing techniques were designed

and many new applications were discovered. However, most of the effort

in this area was concentrated on reducing the complexity of the

algorithms involved. Since signal processing algorithms are used

repeatedly (and in some cases, continuously) for different data sets, a

small reduction in their complexity results in a large saving of

practical resources. In addition, the demanding real time applications

of signal processing techniques are becoming increasingly popular.

A reduction in time complexity may be achieved by employing

hardware techniques such as parallel processing and pipelining, by using

faster technologies, or by restructuring computational algorithms so

that the time intensive operations are reduced. The least expensive of

these, the third alternative, is the subject of this thesis.

Traditionally, only the multiplication was viewed as the time

consuming operation. However, several breakthroughs in technology have

now reduced the multiplication time significantly. As a result, both

the number of multiplications and additions in an algorithm are

generally used to estimate its computational complexity. The

unsuitability of even this complexity measure may be illustrated by

pointing out a case of great practical significance. A Fourier

transform algorithm designed by Winograd (WFTA) in 1976 [lj had a

smaller number of multiplications and additions and was therefore

immediately accepted as a replacement for the fast Fourier transform

(FFT) [Zj. However, an implementation of WFTA on PDP 11/55 and IBM

370/168 was found to be much slower. than that of FFT [3]. This

discrepancy could be explained only after a detailed operation count was

maintained. It was found that on a PDP11/55 (using Assembler), for

example, a 1008 point WFTA required 14.6 msec less time for

multiplications than FFT, but simultaneously, used up 40.1 msec more for

the memory reference operations resulting in an implementation that was

45/ slower than the FFT. The fact that memory referencing is very time

intensive may also be understood by examining Table 1.1 which compares

the times for various operations in many general purpose microprocessors

available today. Even though the importance of reducing the number of

memory reference operations is thus obvious, little has been done about

it to date. There are two main reasons for this. Firstly, the

realization of the importance of these operations is rather recent, and

secondly, there does not exist a mathematical model which may, in rather

systematic manner, pave the way to such optimization.

Table 1. 1. Execution times (in vsec) for various microprocessors [4-8j.

microproc. 8080 6800 2-80 8085A 8086 68000 28000 TMS9900

c)&. cycle 2.0 1.0 0.5 .3Z 0.2 0.125 0.25 .3333

Load
Store
Mop(+,-)
Copy
Rop(+,-)

7 4 4 4.16 2.8 2.0 3.00 7.30
? 4 4 4.16 3.0 2.125 3.50 7.30
7 4 5 n/a 3.0 1.125 3.75 /.32
5 2 1 1.28 0.4 0.5 0.75 4.60
4 2 1 1.ZB 0.6 0.5 1.00 4.60

Compiler designers had realized the importance of reducing memory

fetches as early as in 1964. In that year, Anderson designed an

algorithm for compiling a computation expressed as a tree using a stack

of local registers [9]. His results were later extended by Nakada who

obtained compiling algorithm for arithmetic expressions in computers

with n accumulators [10]. His algorithm generated an object code

which minimized the frequency of storing and was used in a FORTRAN IV

compiler for the HITAC-5020 computer which has 14 accumulators. In a

computer with limited core memory, a large amount of data has to be

stored on a slow, external memory device. Thus while solving problems

on such machines, one needs to minimize the reads and writes to that

slow memory. Specific algorithm implementations which distinguish

between slow and fast memory and reduce references to the slow memory

have also been reported. Both Brenner [ll] and Naidu [12] have studied

computation of FFT of a large sequence resident in an external device

such as disk. Similarly, Eklundh [13] and Naidu [14] have implemented

fast transposition of matrices too large to be stored in fast memory.

More recently, Nawab and McClellan have done a detailed analysis of

implementation of HFTA and FFT on finite register machines and have

found optimum number of registers for different length HFTA [15].

1.2 Computer Architecture

One possible definition of computer architecture is the

characteristics of a machine as seen by a programmer. In general, it is

difficult to categorize different computer architectures because of the

numerous variations. One possible scheme proposed by Flynn [16] is to

divide computer architectures into four distinct categories: SISD

(Single-Instruction-Stream/Single-Data-Stream), SIMD (Single-

Instruction-Stream/Multiple-Data-Stream), MISD (Multiple-Instruction-

Stream/Single-Data-Stream), and MIMD (Multiple-Instruction-

Stream/Multiple-Data-Stream). With the exception of SISD, all

categories use some type of parallel processing with multiple

processors. The SISD architecture has only one processor which uses one

instruction per instruction cycle. Almost all general purpose computers

and microprocessor systems fall in SISD category. For this reason, the

remainder of this thesis addresses only the SISD architecture. A

typical SISD architecture has a local register file and a large main

memory as shown in Fig. l. 1.

The instructions in SISD architecture may be divided in two

categories: memory referenced and local register referenced. A memory

referenced instruction is one in which an operand resides in memory. A

local register instruction, on the other hand, does not access the

memory.

For this study, the set of instructions is restricted to the

following:

Load
Store :

Mop(*):
Copy
Rop(*):

Rn " Mj
Mj Rn
Rn ~ Rn * Mj
Rn Rm

Rn Rn * Rm

(Load
(Store
(+,-,x
(Copy
(+,-,x

Register-n
Register-n
Memory-j
Register-m
Register-m

from Memory-j)
in Memory-j)
to Register-n)
to Register-n)
to Register-n)

The execution times for these instructions are dependent upon the types

of operations and the specific architecture of the machine. Further,

for memory related instructions (Load, Store, and Mop(*)), it also

depends upon the addressing mode. However, in most cases, (see Table

1. 1) the execution of memory refer ence instructions (Load, Store, and

CACHE

MEMORY

LOCAL

REGISTERS

Fig. 1.1 SISD architecture.

Mop(*)) is slower than the equivalent local register instructions (Copy

and Rop(*)). This time difference between the two types of instructions

is inherent to SISD architecture and may be attributed to the

comparatively large access time of memory.

The following normalized times (suggested by actual times listed in

Table 1.1) are used in this work to denote the relative time complexity

of these instructions.

Tload
Tstore
Tmop(+,-)=
Tmop(x)
Tcopy
Trop(+,-)=

2 units
2 units
2 units
4 units
1 unit
1 unit

It should be noted that the time differences (Tload-Tcopy), (Tstore-

Tcopy), and (Tmop(+,-,x)-Trop(+,-,x)), are chosen to be exactly equal,

because they all are identical to the memory access delay of the

architecture.

1.3 Problem Identification

Recalling the disscussion in earlier sections, two problems faced

by digital signal processing engineers can be easily identified.

Firstly, given a machine, how best to exploit its architectural features

in order to obtain an efficient implementation of any signal processing

algorithm. Since signal processing algorithms are used over and over

again, any small improvement in their complexity without calling for an

improved hardware is immensely useful.

Secondly, given an algorithm, if one is to construct a special

purpose hardware for its implementation, what should be the

architectural features that be built in the hardware. Since the cost of

the hardware increases with every new feature added, one must have a

clear understanding of the advantages this new feature wi 11 provide.

The results obtained in this thesis are first steps towards the

solution to these problems. For example, by exploiting the two

accumulator feature in a machine (say a 6800 microprocessor) as shown

herein, one may improve the computational time of the Fast Fourier

Transform by 35.29/. Similarly, the results obtained here demonstrate

that a hardware for implementing the Hadamard Transform need not have

more than three accumulators, since the gain due to more registers is

marginal.

1.4 Unique Approach to the Prob1em

A directed graph is used here to model a computational algorithm.

The nodes of the graph represent actual computations and the edges

represent the order between various computations. Since the aim here is

to minimize the memory reference operations, the graph is partitioned

into subgraphs (called COBs) each of which may be evaluated without any

memory reference on a given hardware configuration. This enables one to

identify the memory reference operations with the graph edges not

included in any COB. In order to minimize such edges, a two step

approach is used. First, the given graph is partitioned into COBs

suitable for a one accumulator architecture. Next, an accumulator is

added to the machine and the COB cover is modified to take into account

the availability of the extra register. This second step is repeated

until all available registers are used. In addition, the regularity in

a signal processing graph is exp'loited to identify the computational

&ernels and to imp')ement the graph by repeating the implementation of

the xernel.

1.5 Overview

Chapter 2 of this thesis reviews some graph theoretic preliminaries

required later. It also defines the Computationally Organized 8)ock

(COB) of arbitrary dimension and presents an algorithm to partition the

given graph into 1-dimensional COBs. A procedure to cover the graph

using r-dimensional COBs (r & 2) is presented and illustrated in Chapter

3. Using the algorithms, Chapter 4 explores the implementation of

efficient algorithms for Hadamard Transform(HT) and Fast Fourier

Transform(FFT). This chapter also defines and uses the concept of a

primitive COB. Finally, Chapter 5 concludes this thesis by summarizing

the results obtained and pointing out directions for future research.

CHAPTER 2

COMPUTATIONALLY ORGANIZED BLOCK: 1-DIMENSION

As has been stated in Chapter 1, the major thrust of this thesis is

the establishment of a mathematical model appropriate for description

and implementation of a signal processing algorithm on a finite register

machine. Computational graphs for signal processing algorithms are

unlike the computational graphs studied in earlier literature in that

they do not have the tree structures and instead have feed-forward

paths. This chapter is devoted to the investigation and modelling of

such graphs.

Section 2.1 describes the nomenclature and the basic properties of

signal processing graphs. Based on these properties, Section 2.2 then

derives the mathematical models for such computations in a finite
register machine. The basic approach here consists of partitioning the

graph into modules, each of which may be computed independently in a

machine with 'r'egisters without making a reference to the memory

external to the CPU. These modules are designated herein as

COMPUTATIONALLY ORGANIZED BLOCKS (COBs) of dimension r. Since the

computations within a COB do not require any memory fetches or stores,

the complexity of the algorithm in terms of the number of memory

references, then, is determined solely by the number of graph edges

joining different COBs. This is shown in Section 2.3. An algorithm to

obtain an implementation in terms of 1-dimensional COBs is presented in

Section 2.4. and illustrated through an example in Section 2.5.

10

2.1 Graph Theory Preliminaries

A computational algorithm can always be represented as a directed

graph. Points in such a graph stand for computational nodes and a

directed edge from Pl to P2 indicates the involvement of the result at

Pl in the computation P2. A'Iternately, a directed graph G=(P,E) can be

represented by a set of points P and a set of ordered pairs, E=((x,y)j

x,y ~ P) as Figure 2. 1 illustrates. Note that in this figure, points

A,B,C,D and the dotted lines shown in the graphical representation are

not really part of the computational graph and will not be shown in

gr aphs encountered later. We now give some basic definitions and

results from graph theory, which would be used later.

Partial Order:

A set E ~ P x P of ordered pairs is said to be a partial order if
it is weax)y antisymmetric (i.e., if (x,y) ~ E, then (y,x) j E for

x $ y} reflexive (i.e., (x,x) c E for all x c P) and transitive

(i.e., if (x,y},(y,z) ~ E then (x,z) ~ E for all x,y,z ~ P). In

representing computational graphs we will relax the reflexivity

requirement which implies a loop at every computational node. Every

computational graph is then a partial order.

Total Order:

In addition to the partial order, if the set E ~ P x P is such that

for any x,y c P either (x,y) c E or (y,x) E E or x=y, then E is

called a total order. We will show that 1-dimensional COBs are

subgraphs with total order.

E = At C

F=A-C

G = 8 t 8 P = i E,F,G,H,N,X,Y,Z)

H=O-8

N=EtG

X=E-G

A, C 8 '8

~ P
Y

E ' (E.HI,(E.X),(F.YI,(F.ZI,

(G.HI.(G.X),(H,YI,(H.Z))

Y=FtH

Z=F-8

CONFUTATION GRAPHICAL R E P RE 5 E N T A'T I 0 N

ALTERNATE

REPRESENTATION

Fig. 2.1. Graphical and alternate representation of a computation

12

Indegree, Outdegree:

Let ly=} x I (x,y) ~ E} and Oy=} x I (y,x) E E} . Then (Iyl and (Oy) are

called the indegree and the outdegree of point y respectively. In a

computational graph, indegree of a point can only be 0, 1 or 2 since

we deal only with the binary operations.

Minimal, Maximal points:

Points in a graph with indegree zero are called minimal points.

Similarly points with outdegree zero are called maximal points.

Path:

An ordered n-tuple (Xl,XZ,...Xn) with (Xi,Xi+1) ~ E for i=1,,2..N-1,

is called a path of length n-1 in the graph G=(P,E).

Acyclic Graph:

A graph with no path with idendical first and last points and length

& 2 is called an acyclic graph. A computational graph is always

acyclic for the following simple reason. (Xi,Xi+1) ~ E implies the

computation of point Xi+1 requires the result from point Xi. Now if
a sequence (Xl,X2,X3....Xn-l, Xn=X1) with (Xi,Xi+1) ~ E for

i=1,2,3,...,n-l exists, then it implies that the computation of Xn

requires Xn-l, which in turn requires Xn-2... . Proceeding in this

manner, we conclude that computation of Xn, which is really Xl,

requires X2. But since (Xl,XZ) ~ E computation of X2 requires Xl

and thus this computation cannot be carried out.

Basic Representation of a Graph:

A subgraph obtained by eliminating from the original edge set every

pair (X,Y) for which there is a path between X and Y of length & 2

is known as the basic representation of the graph. Figure 2.2 shows

a graph and its basic representation.

ORIGINAL GRAPH BARIC REPRESENIAIIDN

Fig. 2.2. Basic representation of a graph.

Topological Sort:

Topological sort of a graph G=(P,E) is a graph G =(P,E) such that G

has only one minimal point of outdegree one, only one maximal point

of indegree one, indegree and outdegree of all points except these

are one, and a path from X to Y (X,Y E P) in G implies a path from X

to Y in G . Figure 2.3 illustrates topological sorts.

A 8 E 0 C H G J K I F L

A 8 E D I G C J F K H L

8 A E D G C I J H K L F

8 A E D I F G J C K L H

Fig. 2.3. Four topological sorts of'he graph in Fig 2.2.

The following results from graph theory are required in this thesis

f)8j.

Theorem 2.1
The restriction of any partial order is itself a
partial order.

Theorem 2.2
In a finite nonempty partially ordered set, there is
at least one maximal and one minimal element.

TheoreDI 2.3
If graph 6 is acyclic, then there exists a unique
basic representation.

Theorem 2.4
Topological sort of a finite graph G=(P,E) exists if
and only if G is acyclic. Further, this topological
sort is unique if and only if E is a total order
relation, in which case this sort is the basic
representation of G.

15

2.2 Computationally Organized Block(COB)

In this section, the concept of Computationally Organized Block

(COB) is defined. Then, the computational complexity of an algorithm is

related to the partitioning of its graph into various COBs.

Definition of an r -dimensional COB:

Let G=(P,E) be an acyclic computational graph. Let Gy=(Y,Ey) denote

the subgraph obtained by restricting the set of points to Y ~ P.

Then, COB Gy of dimension r is a subgraph Gy = (Y,Ey), Ey" ~ Ey

with the following property:

The computation represented by Gy can be performed in a SISD

architecture machine with 'r'egisters without any store

operations.

For later use, for every COB, we define an integer function n(.) with

domain Y such that

(i) n(A) & n(B) if there exists a path from point A to point 8 in

graph G.

(ii) n(A)/n(8) if ApB.

Since 1-dimensional COBs are paths in the original gr aph and a path

in an acyclic graph is a total order, the points in every 1-dimensional

COB form a total order.

Example of a COB of dimension 1:

In graph G of Fig. 2.4, the subgraph Gy =(Y,Ey) is a COB of

dimension 1, where Y ={A,B,C,D) and Ey =f(A,B),(B,C),(C,D)}. It may be

implemented as Rl ~ F, Rl ~ Rl+G, Rl ~ Rl+E, Rl ~ Rl+J, Rl ~ Rl+Ml.

Example of a COB of dimension 2:

In graph G of Fig. 2.5, the subgraph Gy =(Y,Ey) is a COB of

dimension 2, where Y= (A,B,C, ..., H) , and Ey = f(A,B), (B,C), (B, D),

(D,E), (E,F), (E,H), (E,G)]. It may be implemented as Rl ~ L, Rl~ Rl+M,

Ml +. Rl, Rl +- Ri+K, R2 ~ Rl, Rl ~ Rl+Ml, RZ ~ R2+N, R2 ~ R2+0, Rl +. R2,

R2 +. RZ+J, RZ ~ Rl, R2 ~ RZ+P, Rl ~ Rl+I.

2.3 Complexity of 1-Register Implementation

As can be noted from Fig. 2.4, a one register COB is a total order

and except for the minimal(first) point which needs to be evaluated

through a Load and a Mop(+), all other points in the COB are computed

only through a Mop(+) each. Similarly only the maximal(last) point and

points with outdegree & 2 need to be stored in the memory. If a

computational graph is covered by 1-register COBs, the complexity of the

complete graph may be obtained by summing the complexity associated with

the points in each COB. This immediately gives following complexity of

1-register implementation of the total graph.

Number of Loads = Number of COBs

Number of Mop(+)= Total number of points in the graph

Number of Stores= Number of points in the graph with outdegree & Z

+ Number of COBs with last point outdegree & 2

8 '. I

HI

ORIGINAL GRAPH ONE D IRENE IONAL EOS

Fig. 2.4. ExaNIple of a 1-disIensiona't COB.

HI

ORIGINAL GRAPH TNO DINENEIONAL COS

Fig. 2.b. ExaIople of a 2-diRIensional COB.

18

From the assumptions in Chapter 1, each of these operations take exactly

two units of time, and hence the total time complexity of computation

T =(0 of Loads)+(0 of Mop(+))+(0 of Stores)

=[(total number of points in the graph)
+(number of points with outdegree & 2 in the graph)]
+[(number of COBs)+(number of COBs with last point

outdegree & 2)].

It should be noted here that both the terms in the first square bracket

are totally dependent on the given computational graph. On the other

hand, the terms in the second square bracket, namely, the number of COBs

and number of COBs with last point' outdegree & 2 are dependent upon

the manner in which the COBs are chosen.

2.4 Algorithm for Implementation of a One Register Machine

It was shown in Section 2.3 that the time complexity of an

implementation on a 1-register machine is large)y dependent upon the

number of one dimensional COBs covering the graph. In this section, we

present a heuristic algorithm which partitions the original graph into

one register COBs in a manner which minimizes the total number of COBs.

This partitioning would be referred to as a 1-dimensional COB cover of

the graph. Since all points within a COB are evaluated consecutively,

computability of the implementation for the entire algorithm demands

that the graph obtained by replacing every COB by a point should still
be acyclic. Following algorithm guarantees this property of the COB

cover.

19

Step 1(Initialization)

Set i=1 and let G =(P,E) be the Basic Representation of G.

Step 2(Computable path determination)

Find all computable paths in O'. A path (Xl,X2. ..Xt) is a

computable path if

a. Xl is a minimal point of G .

b. (Xj,Xj+1) c E , j= 1,2, ,t-l.
c. Xj has indegree one for j=2,3, ,t.
d. Either Xt is a maximal point of G or, ior every X a P

such that (Xt,X) c E , there exists Y e P such that

(Y,X) c E and Y g Xi for i=1,2,...,i-l.
Step 3(Choosing a COB)

(a). If a computable path has a maximal point, choose the path as

COB Ci = (Pi,Ei) and go to step 4. (If there is more than one

computable path with maximal point, one may choose any of

them.)

(b). Generate graph G" from G by deleting all points on all

computable paths. Let S denote the set of minimal points

of G". Find, if possible, computable paths Vl,V2,...,Vn with

terminal points Xl,XZ,...,Xn respectively such that for

i=1,2,...,n there exist (not necessarily distinct) Yi e S

satisfying (Xi,Yi) e E and for any X j Vl U V2 U ... U Vn,

(X,Yi) g E . Choose the path Vl as COB Ci=(Pi,Ei) and go to

step 4.

(c). Find computable paths Vl, VZ,..., Vn with terminal points

Xl,XZ,...,Xn respectively such that for i=2,3,...,n there

exist Yi P S and Yl e S satisfying (Xi,Yi), (Zi-l,Yi),

20

(Xl,Y1) e E where Zi is the non-terminal point of path Vi.

Choose the path Vl as COB Ci=(Pi,Ei).

Step 4(Deleting a COB from the graph)

Let Pl=(X),X2,...,Xt) and Ei = I(Xi,Xi+1)I 1=1,2,...,t-l]. Modify

E " E - f(X,Y) IX e Pl} and P ~ P - Pi. If P = 8, the procedure

ends. Otherwise, i ~ 1+1 and go to step 2.

The reason for using the basic representation (as per step 1) in

the algorithm is to eliminate all extraneous edges from a given

computational graph. The edges removed by basic representation are

those that can never be part of a computable path. This can be proved

as follows:

Let there exist edge (A,B) and path (A,...,C,B) of length & 2 in graph

G. Suppose V=(X1,X2,...,Xn,A,B,...) is a computable path. Since both

(A,B) and (C,B) E E, 8 uses results of both the computations at A and C.

Thus point C should also be on the path V before point B i.e., C=Xi,

l&i&n. The total order of the points on the path implies that there

exists a path from C to A in G. But since (A,...,C,B) is also a path in

G, G has a cycle (A,...,C,...,A) and hence is not acyclic. Thus our

assumption that edge (A,B) is on a computable path is wrong.

Conditions a. through c. listed in step 2 of the algorithm ensure

that every path is computable. Condition d. allows one to choose the

longest possible chain of computable points as a computable path.

We now show that the step 3 of the algorithm always allows one to

choose a COB. Note that if there is no path with terminal point as a

maximal point of G , then the graph G" is not empty and is acyclic

21

because of Theorem 2.1. Furthermore, the set S/8 because of Theorem

Z.2. Finally, notice that any s e S has an indegree 2 in G and

indegree 0 in G". This follows from the fact that s e S, being a

minimal point, has indegree 0 in G". If s had indegree 0 in G , then a

path (s) would have been a computable path and s g G". Finally if s

had indegree 1 in G , then for some X on a computable path, Y, (X,s)e

E and s would be on another computable path identical to V till X and

containing s. Thus even in this case s lt G".

There are at least two computable paths left after eliminating some

computable paths which have no points X e V, s e S such that (X,s) e E

(The reason why there are at least two and not just one computable paths

left is as follows: if the point s e S gets both of its inputs from the

same computable path, V, in G , i.e., (Xi,s), (Xj,s) e E , i & j, with

both Xi, Xj e V, then there is a path of length & Z between Xj and s,

namely, the path (Xj,...,Xi,s). Therefore, presence of the edge (Xj,s)

in G contradicts the fact that G is a basic representation).

To justify the weighing scheme outlined in step 3, suppose that the

last node of every COB is colored red. To minimize the number of COBs,

one shouId thus have as few red points as possible in the final graph.

All maximal points of G must be red, since COBs computing these must end

there. For this reason, if one finds a path with its last point, a

maximum point, then one may safely choose it as a COB since no other

choice of a COB may ever save the last point of this path from being

red.

All points X of the graph for which there exist some indegree one

points Y such that (X,Y) e E , are definitely not red, since any

computable path containing X can always be extended to Y; and thus, X is

22

never the last point of any COB. Thus the only points which may be

affected by choice of COBs are those X e P for whom every Y with

(X,Y) e E has an indegree Z.

At any stage (any i value) in the algorithm, no point Y with

indegree 2 in G of that stage can belong to any computable path because

of condition c. of step 2. Thus a point Y e P of indegree 2 with

(X,Y), (Z,Y) e E can occur only in following configurations:

i) X, Z ~ G".

i i) X g G" and X is non-terminal point of a computable path.

Z e G".

iii) X, Z j G". Neither X nor Z are terminal points of their

respective paths Vl and V2.

iv) X, Z g G". X is a terminal point of path Vl and Z is a

terminal point of path V2. (Vl 9 V2, as has been shown

earlier).

v) X, Z g G". X is a terminal point of path Vl, but Z is not a

terminal point of path V2.

Me now determine the ef'feet of choosing a particular path as COB at

a given stage on X and Z. In case i), choosing a particular path as a

COB at this stage clearly has no effect on the color of X and Z.

To deal with the remaining cases, note that a computable path at

any stage, if not chosen as a COB, stil'(remains as a computational path

at the next stage. There are only two exceptions to this. Firstly,

some initial portion of the path and the chosen COB may be same. In

this case, those initial points already computed by the chosen COB will

no longer be on the path. Secondly, let X be the terminal point of the

computable path and (X,Y) g E for some indegree 2 point Y e G".

23

The chosen COB might convert Y to a point of indegree l. In this case,

the computable path will be appended at least by point Y.

From the disscussion above, the point X in case ii) and points X

and Z in case iii) cannot be painted red regardless of choice of COB.

The point Z in case ii) is also obviously not affected by this choice.

Regarding case iv), note that choice of a computational path other

than Vl and VZ as a COB does not in any way affect paths Vl and V2.

Choosing Vl or VZ as COB has the same effect of painting exactly one of

the points X or Z red. Thus at the present stage or some time in

future, one of these two points wi 11 be painted red. In this case, one

can choose one of the paths as a COB since any other choice wi 11 not

save both the points from being red. The situation described in part

(b) of step 3 of the algorithm is a generalization of this case.

Finally, in case v), choosing a computational path other than Vl or

V2 has no effect on the two paths as before. If Vl is chosen as a COB,

then X becomes a red point, however, choice of V2 as a COB reduces the

indegree of Y to one thus implying that X will now never be red. Note

that in both cases, point Z is not red, since it is not a terminal point

of any COB. One should, in this case, choose V2 as the COB to save one

red point. The situation described in part (c) of step 3 of the

algorithm is a generalization of this case.

These arguments also allow one to find the bounds on the number of

1-dimensional COBs required to cover a given graph. Minimum number of

red points in a graph is equal to the number of maximal points and

maximum number of red points equal the maximal (certainly red) points

plus indegree two (potentially red) points in the graph. Using the

normalized execution times assumed in Section 1..2, one may also get

upper and lower bounds on the time complexity. For example, in the

graph of Fig. 2.6, there are only 2 maximal points and 5 points with

indegree 2. Thus, for this graph,

2 & Number of COBs & 7.

Using the time complexity expression in Section 2.3, and the fact that

maximal points have outdegree 0 one gets the time complexity of this

graph as:

46 & Time Complexity & 66.

2.5 Example

The following is an example to find implementation of the graph G

in Fig. Z.6 on 1-register machine.

Step 1: Basic representation of G = (P , E) is G = (P , E) where

P = P = }A,B,...,N} and E = E - ((A,B),(K,M)}. Set i=1.

Step 2: The computable paths are Vl = (A,B,C,D), V2 = (A,B,C,J), and

V3=(A,E,F).

Step 3: Since Yl has a maximal point, it is chosen as the first COB

based on condition (a). Cl=(P1,E1) where P 1
= (A,B,C,D) and

El = {(A,B),(B,C),(C,D)}.

Step 4: Modified P = (E,F,...,N} and

E = }(E,F),(F,G),(G,H),(G,K),(H,I),(I,N),(J,K),(K,L),(L,N)}

2.

Step 2: The computable paths are Yl=(E,F,G,H, I), and V2=(J).

Step 3: In the present case, (J,K), (I,N), (G,K) c E , I and J are

terminal points of Vl and V2 respectively, K e S and N p'.
Hence, based on condition (c) of step 3, the second COB C2 is

chosen as Vl, CZ=(PZ,E2) where PZ = [E,F,G,H, I} and

25

E2 = {(E,F),(F,G),(G,H),(H,I) }.

Step 4: Modified P = {J,K,...,N} and E = {(J,K),(K,L),(L,M),(M,N)}.

1~3.
Step 2: The only computable path is Vl=(J,K,L,M,N).

Step 3: Choosing the th1rd COB C3 as Vl, C3=(P3,E3) where P3= {J,K,L,M,N}

and E3 = {(J,K),(K,L),(L,M),(M,N)}.

The implementation of the computation of F1g. 2.6 in a one register

mach1ne will need (from Section 2.3) only 3 Loads, 14 Mop(+,-) and 8

Stores requiring a total of 50 units of t1me. On the other hand, if

each point had been evaluated independently through a Load, Mop(+,-) and

Store, then one would have required 84 units of time.

original graph 1-dimensional COB cover

Fig. 2.6. A computational graph and its 1-dimensional COB cover.

CHAPTER 3

COMPUTATIONALLY ORGANIZED BLOCK: R-DIMENSION

As has been shown in Chapter Z, the number of edges between COBs

bas1cally determines the efficiency of 1mplementation of the algor1thm.

The 1mplementation on an r-register machine thus should be based on

cleverly formed r-dimens1onal COBs with as few interconnect1ons as

possible. This would in general be a very difficult task, even for

algor1thms of moderate complex1ty. In this thesis we adopt an approach

which allows us to design an implementat1on for an r reg1ster mach1ne

from that of an r-1 register machine.

In the first sect1on of th1s chapter, the time complexity of the

implementation of a graph using r dimensional COBs is derived. In

Section 3.Z, an algorithm 1s presented to merge (r- I)-dimensional COBs

to form r-dimensional COB cover 1'r the graph. Using this algorithm

repeatedly, any d1mensional COB cover may be constructed. In order to

illustrate the COB merging process, 4-point Fast Fourier transform

algorithm 1s presented as an example in Section 3.3.

3.1 Complexity of r Register Implementation

In this section, time complexity of an arbitrary computational

graph covered by r-dimensional COBs 1s der 1ved. The der1vation is

constrained to graphs with points with maximum outdegree 3 points. This

limitation does not impose a s1gnificant handicap for a realistic

computational graph.

27

Suppose the given computational graph is partitioned in r-

dimensional COBs. The following notation is used in the time complexity

derivation.

En : number of edges outside of COBs, which start from the points with

outdegree (not including the outdegree due to the edges within

COBs) of n.

En : number of edges outside of COBs, which end at the points with

indegree (not including the indegree due to the edges within COBs)

Pn : number of points with outdegree n in the original graph.

Pn : number of points with indegree n in the original graph.

Following operation counts based on an implementation of the graph

in terms the r-dimensional COBs are easy to obtain.

g of Store : El + EZ/2 + E3/3
0 of Loads : PO + E2 /2
I) of Mop(*): PO + Pl + El + E2 /Z
9 of Copies: PZ + P3 - El - E2/2 - E3/3
0 of Rop(*): P2 - El - E2 /2

If all arithmetic operations are assumed to be (+,-) and the normalized

times for various operations given in Section 1.2 are used,

Total Time = [4PO + ZP1 + P2 + P2 +P3]
+ [El + E2/Z + E3/3 + El + 1.5 E2].

The quantities in the first bracket are constants, since they are

related to the original graph. However, the quantities in the second

bracket are dependent upon the way the graph is partitioned in r-

dimensional COBs and are therefore related to the particular choice of a

r-dimensional COB cover. Thus, reduction of time complexity of an

implementation in a machine with r registers implies proper selection of

29

a r-dimensional COB cover for the graph which minimizes the number of

edges outs1de the COBs.

3.2 r-Dimensional COB Algorithm

Follow1ng algorithm may be used to obtain a r-dimensional COB cover

for a graph from a (r-l)-d1mensional COB cover.

Step I(Initialization)

Let C 'e the set of (r-1)-dimensional COBs. Ass1gn an 1nteger

function n1 to points in each COB Ci e C having the property that

ni(x) & ni(y) ; x,y e Ci 1ff computation of x is done before the

computat1on of y, Let E" denote the set of edges in the original

graph G, not included in any of the COBs in C . Set m = l.

Step 2(F1nding all computable paths)

A computable path 1s a sequence of points of C along w1th a subset

E &= E". A computable path is generated using the following four

transformations:

Tl: Let Ci be the last COB of the current path. COB Cj may be

appended to the path iff the only inputs to Cj are from COBs on

the path, and if Ck preceeds Ci on the path, for some x e Ck,

y e Ci, (x,y) a E , then there should exist (z,w) c E" such that

z a Ci and w e Cj and ni(y) & ni(z). If Cj is added to the

path, set E = E U (z,w).

T2: COB Ck 1s 1nserted between two consecutive COBs C1 and Cj on

the path iff the only inputs to Ck are from the COBs on the

path upto Ci, and if for some x ~ C1, y e Cj, (x,y) e E , then

there exists (x,z) e E", z a Ck. If Ck is added to the path,

set E = E U (x,z).

30

T3: COB Ck is inserted between two consecutive COBs Ci and Cj on

the path iff the only inputs to Ck are from the COBs on the

path upto Ci, there is no edge on the path going from Ci to Cj,

and for some x e Ci, y a Ck, (x,y) e E", such that the function

ni has its maximum value at x and the function nk has its

minimum value at y. If Ck is added to the path, set E

= E U (x,y).

T4: COB Ck is inserted between two consecutive COBs Ci and Cj on

the path iff the only inputs to Ck are from the COBs on the

path upto Ci, for some x e Ci, y c Cj, (x,y) e E , function ni

has its maximum value at x, and for some z a Ci, w e Ck,

(z,w)a E", such that the function nk has its minimum value at

w. If Ck is added to the path, set E = E U (x,y).

These transformations are illustrated in Figure 3.1.

A computable path is generated as follows:

a. Set E = 8 and choose a COB with no input edges as the first
point of the path.

b. Let (Cl,C2,...,Ct) be the current path. Insert a COB after Ci

in the path by applying rules Tl,T2,T3 and T4 above iff no COB

can be inserted after Cl,CZ,...Ci-l.

c. The path is completed when rules Tl,T2,T3 and T4 can no more be

applied to add COBs to that path.

Step 3(Choosing an r-dimensional COB)

(a) For each computable path, find the number of COBs which can be

attached to a path if input edges of attached COBs coming from

COBs not on the path are disregarded. If there exists a path

T1: ..CkCi .CBCTCJ

Tiu ...cfcj.

Ck

Tiu ...cicj... ...cickcj...

CI(

Tts ...Citj.

CI(

fp: The first paint af COB

LP The 1ast point of COB

Fig. 3.1. The four basic transformations used
to form computab1e paths.

32

with 0 attachable COBs, then choose the path as the m-th COB of

dimension r and go to step 4.

(b) Find if possible, computable paths Vl,V2, ,Vn such that more

COBs can be attached to path Vi if input edges of attached COBs

coming from COBs on path Vi-1 are disregarded for i = 2, ,n-1

and more COBs may be attached to path Vl if the input edges of

attached COBs coming from COBs on the path Vn are disregarded.

Choose path Vl as the m-th COB of dimension r.

(c) Find computable paths Vl,V2, ,Vn such that more COBs can be

attached to path Vi if input edges of attached COBs coming from

COBs on path Vi-1 are disregarded for i = Z, ,n-1. Choose

path Vl as the m-th COB of dimension r and go to step 4.

Step 4(Deleting a r-dimensional COB)

Delete from set E" edges originating from the COBs on the chosen

path. If E"= 8, then the procedure terminates, otherwise, let m

= m + 1 and go to step 2.

The assignment of the integer function n(.) in step 1 ensures the

computational ordering within a COB.

The four transformations used to obtain a computable path in step Z

of the algorithm basically gurantee the computability of each path and

also ensure that each path absorbs as many edges in E" as possible. It

may also be noted that the four transformations are mutually exclusive.

Tl is the only transformation which adds a new COB at the end of the

current path. Only in T3, new COB is inserted between two unconnected

COBs on the current path which are not connected. Transformations T2

and T4 would be identical only in the case when x is the last point of

33

Ci, y c Cj, z is the first point of Ck, and (x,y) E E', (x,z) ~ E". But

in this case, since the only inputs to Ck are from the COBs on the

current path till Ci, COBs Ci and Ck would not be separate COBs of

(r-l)-dimension.

Step 3 of this algorithm may be reasoned out in exactly the same

manner as step 3 of the algorithm for 1-dimensional COBs.

3.2 Example

In this section, implementations on various machines of the 4 point

Fast Fourier Transform (FFT) graph shown in Fig. 3.2 are sketched. The

1-dimensional COB cover of this graph shown in Fig. 3.3 is obtained by

the algorithm of Chapter 1 and used as an input for the algorithm of the

earlier section. The following steps describe the formation of Z-

dimensional COBs derived through the application of this algorithm.

Step 1: Graph G
'

(C ',E ') is constructed as shown in Fig. 3.4.

Integer function ni is assigned to each point for every COB. E

is set of edges remaining outside of COBs in Fig. 3.4.

Steps 2 and 3 are shown in the following table for brevity.

Step 2
Computable Path *

Path COB Sequence set E

Step 3
Number of

Attachable COBs

Vl C1C2 (1,1;2,Z) 3
V2 C3 1

V3 C5C6C9 (5,1;6,2), (6,Z;9,1) 2
V4 C10 1

* Notation (a,b;c,d) stands for an edge from the point b of COB a
to the point d of COB c.

There is no path with 0 attachable COBs. But path VZ may be extended by

COB C4 if inputs to C4 from path Vl ((2,4;4,5)) is disregarded.

34

Fig. 3.2. Computationa1 graph of 4-point FFT.

35

18

19

20

Fig. 3.3. 1-dimensional COB cover of the 4-point FFT graph.

36

CZO

Fig. 3.4. Equivalent 1-register COB cover of the 4-point FFT graph.

37

Similarly path V4 may be extended by COB Cll if inputs to Cll from path

V3 ((9,2;11,5)) are disregarded. Thus from condition (b) of step 3,

one may choose either Vl or V3 as the first COB. Let V3 be the first
2-dimensional COB.

Step 4: All edges originating from C5, C6, and Cg are deleted from E".

Steps 2 and 3:

Step 2
Computable Path

Path COB Sequence set E

Vl C3
V2 C1C2 (1,1;2,2)
V3 C10C11C14C15 (10,1;11,2),(11,3;14,1),(14,1;15,2)

Step 3
Number of

Attachable COBs

There is no path with 0 attachable COBs. But path V2 may be extended by

COB C13 if the input to C13 from the path V3 ((11,5;13,2)) is

disregarded. Thus from condition (b) of step 3, V3 is chosen as the

second 2-dimensional COB.

Step 4: Edges originating from C10, Cll, C14 and C15 are deleted from

E
II

Steps 2 and 3:

Step 2
Computable Path

Path COB Sequence set E

Step 3
Number of

Attachable COBs

Vl C3
VZ C1C2C13CZO (1, 1;2,2),(2,2; 13, 1),(13, 1;20, 1)

VZ is chosen as the third 2-dimensional COB from condition (a) of step

Step 4: Edges originating from Cl, C2, C13 and CZO are deleted from E".

38

Steps 2 and 3:

Step 2
Computable Path

Path COB Sequence set E

Step 3
Number of

Attachable COBs

Vl C3C4C12C17 (3, 1;4,2),(4,5; 12,2),(4,5; 17, 1) 1

VZ C3C4C7CBC18 (3, 1;4,2), (4,3; 7, 1), (7, 1;8,2), (8,2; 18, 'I
) 0

V3 C3C4C16C19 (3,1;4,2),(4,2;16,1),(16,1",19,1) 0

V2 is chosen as the fourth 2-dimensional COB from condition (a) of step

Step 4: Edges originating from C3, C4, C7, CB and C18 are deleted from

E
I I

Steps 2 and 3:

Step 2
Computable Path

Path COB Sequence set E

Vl C12C17 (12,1;17,1)
V2 C16C19 (16,1;19,1)

Step 3
Number of

Attachable COBs

Vl is chosen as the fifth 2-dimensional COB from condition (a) of step

Step 4: Edges originating from C12 and C17 are deleted from E".

Steps 2 and 3:

Step Z

Computable Path
Path COB Sequence set E

Step 3
Number of

Attachable COBs

Vl C16C19 (16, 1;19, 1)

Vl is chosen as the sixth 2-dimensional COB.

Step 4: After edges originating from C16 and C19 are deleted from E",

39

E" = 8. Therefore procedure terminates.

The resultant 2-dimensional COB cover is shown in Fig. 3.5. In order to

obtain 3-dimensional COB cover, the r-register algorithm is applied to

Fig. 3.5. The result is 3 3-dimensional COBs, as shown in Fig. 3.6.

Applying the r-register algorithm repeatedly, 4 to 9-register COBs are

found, as shown in Fig. 3.7.

40

C5

C4

C6

Fig. 3.5. 2-dimensiona1 COB cover of the a-point FFT graph.

Fig. 3.6. 3-dimensiona1 COB cover of the a-point FFT graph.

41

4-dimensional COB cover

C1 C1

5-dimensional 6-dimensional

C1 ca sl C1 0
7-di1.1ens iona 1 8-dimensional 9-dimensional

Fig. 3.7. 4- through 9-dimensional COB

covers of the 4-point FFT graph.

CHAPTER 4

APPLICATIONS

The intent of this chapter is to illustrate the concept of a

primitive COB and its integration with the principles developed in

earlier chapters. A primitive COB is defined and illustrated by an

example in Section 4.1. In Sections 4.2, various primitive COBs

suitable for Hadamard transform (HT), and their codes using the

algorithms developed in Chapters 2 and 3 are obtained. In Section 4.3,

HT implementations using these primitive COBs are investigated.

Sections 4.4 and 4.5 repeat this exercise for fast Fourier transform

(FFT).

4.1 Primitive COB

Many signal processing a'lgorithms have graphs which may be

partioned into a set of identical subgraphs. This property greatly

simplifies the software implementation of signal processing algorithms.

As Morris illustrates in [19], automatic generation of digital signal

processing software is possible by making use of the regular structure

of the algorithm. In such software generation, a computational kernel

is identified and is used repeatedly to compute the complete algorithm.

This computational kernel is usually the smallest repeatable subgraph

possible.

A primitive COB is a computational kernel, but not necessarily the

smallest repeatable subgraph. A given graph may be covered using many

42

43

different primitive COBs. A computational graph may also be implemented

using different primitive COBs simultaneously. The following example

illustates this idea through the implementation of a binary

computational graph of 63 points (shown in Fig. 4.1) using a set of

primitive COBs.

The procedure begins by finding a set of primitive COBs as shown

in Fig. 4.2. The complete graph can be implemented in two different

ways. One way is to use the primitive COB of 3 points and another way

is to use the primitive COB of 7 points. The results of these two

different implementations are shown in Fig. 4.3. In addition to

different implementations, each primitive COB can be implemented on

machines with different numbers of registers to compare the execution

time for the complete graph. These implementations and their

complexities are shown in Fig. 4.4 and Table 4.1.

Table 4.1. Dependence of the complexities of two different
implementations upon the number of registers in the machine.

Implementation using 3 point primitive COB

¹ of registers Time/COB Eta ¹ of COBs Total Time for the graph

16 5.33 21 336
13 4.33 21 273
13 4.33 21 273

Implementation using 7 point primitive COB

36 5.14 9 324
30 4.29 9 270
27 3.86 9 243

'n implementation of the complete graph may also be devised using

the algorithm developed earlier. The time complexity of this

44

Fig. 4. 1. A computational graph with 63 points.

COO OF 3 POINTS COO OF 7 POINTS

Fig. 4.2. Primitive COBs for implementation of
the graph in Fig. 4.1.

45

REGISTER 2 REGISTER REGISTER

REGISTER 2 REGISTER 3 REGISTER

s of 3- and 7-point primitive COBsFTg.. 4.3. Various implementations o

I NG 7 POINT PRINITITE COOSPR INI TIVE CO8SUSING 7USING 3 POINT

h usin 3- and 7-point primitive COBsFig.. 4.4. Cover of complete graph using 3- an

46

implementation will generally be smaller than those with primitive COBs.

This is because the usage of the primitive COBs artificially severs some

links in the graph without caring for its global implications. However,

the increase in time is marginal as Table 4.2 shows.

Table 4.2. Comparison of implementations with and without primitive COBs.

P of registers Time for implementation 5 increase in time using COB of
without primitive COBs 3 points 7 points

1 316 6. 33 2.53
2 264 3.41 2.27
3 241 13. 28 0.83

One may note that increasing the number of registers generally reduces

the time gap between the implementations with and without primitive

COBs. The only exception to this occurs when the primitive COB is too

small to fully utilize all the available registers.

In actual software implementation, time complexities due to

decision-making and arithmetic operations for loop control are assumed

to be eliminated by the use of in-line-code. Therefore, whether

primitive COB approach is used or not, the code sizes are approximately

the same. However, the design of a large non-structural errorless

software for an algorithm may be a time consuming task without primitive

COBs. With primitive COBs, the software can be generated automatically

and with ease since the portion of the software related to the primitive

COB can be used repeatedly to form a complete code.

47

4.2 Hadamard Transform(HT)

In this section, a description of efficient 1-,2-, and 3-register

implementations for primitive COBs of 2X2, 4X3, BX4, and 16X5 points

useful for computation of HT is presented. These primitive COBs are
12

then used to compute a 2 -point HT.

4.2.1 I-Register Implementation of Primitive COBs

Primitive COBs of ZXZ, 4X3, BX4, and 16X5 points which would be

used here for implementing the Hadamard transform are shown in Fig. 4.5.

These primitive COBs were chosen for their superior performance (with

reference to their time complexity) from many different primitive COBs

that might be useful for implementing a Hadamard transform. Figure 4.5

also shows a 1-dimensional COB cover obtained through algorithm of

Chapter 2 and lists the associated codes for a machine with only one

accumulator. Using the formula derived in Chapter 2, one obtains the
n

total number of operations in the case of a 2 length HT as:

Total () of operation= 0 of COBs +)) of points + ((of points with

outdegree & Z + 8 of COBs with terminal

point outdegree & 2
n-1 n n n

= (2+n)2 + (n+l)2 + n2 + 2
n-1

=(5n+6)2.

Since execution time for Tload, Tmop(+,-), and Tstore are assumed to be

2 units each, total execution time is

n-1 n
Total Time=(5n+6)2 x 2 = (5n+6)Z.

48

computation

Rl
Rl
TS
Rl
Rl
Tl
Rl ~

00
Rl
Rl
01

11
Rl + 13
Rl
IS
Rl + 12
Rl
Rl + TS
Rl
Tl
Rl - TS
Rl

code

ZXB primitive COB

Rn: n-th register
In: n-th input data from memory
On: n-th output data to memory
Tn: n-th temporary scratch pad memory 1ocation

computation

Rl
Rl
TS
Rl
Rl
Tl
Rl
T2
Al
Rl
TS
Rl
Rl
Tl
Rl
Rl
T3
Rl
T4
Rl
00
Rl
Rl
01
Rl
Rl
T2
Rl
02
Rl
Rl
03

13
Rl + 11
Rl
II
Rl + 16
Rl

« Rl + TS
Al
Tl

~ R I TS
Rl
12

~ Rl+ 16
~ Rl

IS
Rl + 14
Rl
Rl + Tl
Rl
Rl + T2
Rl
T4
Rl - T2
Rl
T3
Rl - Tl
Rl
Rl + TS
Rl

~ Tl
Rl - TS
Rl

code

4X3 primitive COB

Fig. 4.5a. 1-register imp1ementation of HT.

49

computation

Rl
Rl
TS
It I

Rl
Tl
Rl
T2
Rl
Rl
TS
Rl
Rl
Tl
Rl
Rl
T3
Rl
T4
Rl
T5
Rl
Rl
Tl
Rl
T3
Rl
Rl
TS
Rl
Rl
Tl
Rl
Rl
T6
Rl
T7
Rl
Rl
Tl
Rl
Rl
T6
Rl
Rl
T8
Rl
T9
Rl
Tl ~
Rl
OS
Rl
Rl

17
Rl + 115
Rl
13
Rl t 111
Rl
Rl + TS
Rl
Tl
Rl - TS
Rl
15
Rl + 113
Rl
11

Rl + 19
Rl
Rl + Tl
Rl
Rl T2
Rl
T3
Rl - Tl
Rl
Rl + TS
Rl
Tl
Rl - TS
Rl
16
Rl + 114
Rl
12
Rl + 119
Rl
Rl + Tl
Rl
T6
Rl - Tl
Rl
14
Rl + 112
Rl
18
Rl + 18
Rl
Rl + T6
Rl
Rl + T7
Rl
Rl + T5
Rl
T IP
Rl-T5

01 R I

Rl ~ T4
Rl ~ Rl - T2
T2 » Rl
Rl 79
Rl Rl - T7
T4 - R I

Rl - Rl + T2
02 Rl
Rl ~ T4
Rl - Al - T2
03 - Rl
Rl TB

Rl - Rl - T6
T2 Rl
Rl Rl + Tl
T4 - Rl
Rl Rl + T3
04 - Rl
Rl - T4
Rl Rl - T3
05 - Rl
Rl T2
Rl Rl - Tl
Tl Rl
Rl Rl + TS
06 Rl
Rl - Tl
Rl Rl - TS
07 ~ Rl

code

Fig. 4.5b. 1-register imp1ementation of HT(continued).

50

16X5 primitive CCB ccmputation

Fig. 4.5c. 1-register implementation of HT (continued).

Rl
Rl
18
Al
Rl
TI
Rl
T2
Rl
Rl
TS
Rl
Rl
TI
Rl
Rl
T3
Al
T4
Rl
T5
Rl
Rl
T2
Rl
RI
TI
Rl
T3
Rl
Rl
TS
Rl
Rl
I'I
Rl
RI

4
Rl
T6
RI
Rl
Tl
Rl
RI
74
Rl
Rl
T7
Al
TS
Rl
T9
Rl

115
RI + 131
Rl
17
Rl + 123
Rl
RI + TP
Rl
Tl
Rl + TS
Rl
111
Rl + 127
Rl
13
Rl + 119
Rl
Rl + Tl
Rl
Rl + T2
Rl
T4
RI "TZ
81
T3
Rl - Tl

~ Rl
RI + TS
Rl
Tl
Rl "TS
Rl
113
RI + 129
Rl
t5
Rl + 121
61
Rl ~ Tl
Rl

-, 74
Rl - Tl
Rl
f9
Rl ~ 125
11
11

R I 117
Rl
R I T4
Rl
Rl + T6
Rl
Rl T5

T I 8
Rl
RI
T5
Rl
Rl
TS
Rl
T8
Rl
Rl
T2
RI
Rl
T4
Al
T6
Rl
T7
Rl
Rl
T3
Rl
Rl
Tl
Rl
T4
Rl
Rl
TS
RI
Rl
Tl
Rl
Rl
T6
Rl
T9
Rl
Rl
Tl
Rl
Rl
TS

RI
Rl
TII
Rl
112
Rl
T13
Rl
Rl
T9

Rl
T9
Rl - TS
Rl
T8
Rl - T6
Rl
Rl + T2
Rl
T6
Rl - TZ
Rl
TI
Rl - T4
Rl
RI + Tl
Rl
Rl + T3
Rl
TS
Rl - T3
RI
T4
Al - Tl
Rl
Rl + TS
Rl
Tl
Rl + TS
Rl
114
Rl + 134
Rl
16
Rl + 122
Rl
Rl + Tl
Rl
T6
R I — I'I
Rl
I IS
Rl & 126
Rl
:2
R I ~ I I 8
Rl
Rl + 16
Rl
R I ~ T9
Rl
T 12
Rl - T9
Rl

Rl ~

RI
T6
Rl
Tl I
RI
Al
Tl
Rl
Rl
T6
Rl
Rl
T12
Rl
T14
Rl
Rl
T6
81
Rl
T12
Rl
Rl
TI 5
Rl
T16 ~

Rl
T17
Rl
T18
Rl
08
Al
Rl ~

01
Rl
Rl
", IO
Ql
02
Rl
Rl
03
RI
Rl
T5
RI
I I 8
Rl
04
Rl
Rl
05

T I I

RI-T6
Rl
Rl + Tl
Rl
T6
Rl "Tl
Rl
112
Rl + 128
Rl
14
Rl + 128
Rl
Al + T6
Rl
TI 2
Rl - T6
Rl
18
R I + 124
Rl
18
Rl + 116
Rl
Al + T12
Rl
Rl + T14
Rl
Rl + T13
Rl
Rl + TIP
Rl
T18
Rl - TIS
Rl
T17
Rl - TI3
RI
Rl ~ 75
Rl
T I 8
Rl - TS
Rl
T16
Rl - T14
R!
RI + 19
Rl
Rl ~ T8
Rl
T 1 8
RI - IS
Rl

Rl TS
Rl ~ Rl - T9
T5 R I
Al - Rl + TZ
06 R I
Rl "T5
RI Rl -T2
07 R I
Rl T15
Rl T12
12 Rl
Rl Rl + T6
T5 Al
Rl - Rl + Tll
18 R I
Rl «Rl + TT
IAI R I
Rl ~ T8
Rl Rl - T7
09 - R I

Rl T5
Rl Rl - Tll
T5 Rl
Rl Rl + T3
O'I~ R I
Rl T5
Rl Rl - T3
011 Rl
Rl T2
Rl ~ Rl - T6
T2 - R I
RI Rl + Tl
T3 Rl
Rl Al + T4
012 R I
Rl T3
Rl Rl + 74
013 R I
Al T2
Rl ~ Rl + Tl
Tl ~ Rl
Rl Rl + TS
014 - Rl
Rl - Tl
R'I Rl + TS
015 - Rl

15X5 prinlitive COB code

Fig. 4.5d. 1-register imp1ementation of HT (continued).

52

Me denote the time complexity of a COB implementation per point by

Eta. Eta is a measure of the efficiency of the implementation. A

smaller Eta indicates a better implementation. In a 1-register
n

implementation of a primitive COB of 2 X(n+1) points, Eta = 5 + I/(n+1).

4.2.2 2-Register Implementation of Primitive COBs

Primitive COBs shown earlier may also be covered using 2-

dimensional COBs and implemented on a machine using 2 accumulators

efficiently. The results, obtained from the algorithm of Chapter 3, are

shown in Fig. 4.6. To compute the execution time of these

implementations, an inspection of their structure is in order. The odd

and even indexed points of the first n-1 stages of these highly regular

implementations are mere duplicates of one lower size implementation.

The last stage of the implementation is made up of three different types

of butterflies shown in Fig. 4.7. These butterflies occur in a regular

cycle of Types-1,2,1,3,1,2,1,3,... A Type-1 butterfly computation

involves only one Load, but two Mop(+) and Stores each. Its complexity

(complexity of computing the two end-points) is thus 10 time units.

Type-2 butterfly involves a Rop(+), a Mop(+) and two Stores. It also

saves the storage of one of the source points. Its effective complexity

is thus 5 time units. Finally, the Type-3 butterfly involves two Mop(+)

and Stores but it converts the Store of source point into a Copy thus

having an effective complexity of 7 time units.
n

From the above discussion, the time complexity of Z X (n+1) point

primitive COB, C(n), is given by:

n-2 n-3 n-3
C(n) = ZC(n-1) + 10xZ +5x2 +7x2 n& 2.

53

computation

Rl 11

Rl R'I t 13
R2 - IP
R2 - RZ+ 12

TS - R2
R2 RZtRI
00 R2
Rl - Al - TS
01 Rl

code

2 X 2 primitive COB

/
/ /// /

/

computation

Rl 13
Rl - Rl + 17

RZ - 11

R2 - A2 + 15
TS RZ

R2 - R2 + Rl
Tl - R2
Rl - Rl - TS
Tl - Al
Rl - 12
Rl - Rl + 16
R2 IS
R2 - RZt 14
T2 - R2
RZ - R2 +Rl
Rl - Rl - T2

TZ - R2
R2 - R2 + Tl
00 - RZ
R2 " T2
R2 - R2 - Tl
01 - R2
RZ R I

Rl Rl + TS
02 -' I

R2 - RZ - TS

03 - R2

code

4 X 3 primitive COB

Fig. 4.6a. 2-register imp1ementation of HT.

54

I
I

/
/

I /
I

I I
/ /

I /
I

/
/ I I'

/ I, I

/ I

0

'O
TT

cor'/putat ion

Rl
Rl
R2
RZ

TP
R2
Rl
Tl
TP
Rl
Rl
52
92
T2
82
Rl
T2
RZ
T3 ~

RZ

Rl ~

R2 ~

TP
T4
Rl
Rl
R2
R2
T5
R2
Rl
T5
1'6

Rl
Ri
R2 ~

R2
TT
R2
Rl ~

Tj
R2
T8 ~

R2
06
R2
Rl
82
T5
Al
/14
Rl
R2 ~

06
Rl
07 ~

Al
Rl ~

01
Al
Rl
R2 ~

82
Tl
Rl ~

02
R2
03
RI
Rl
05

17
Rl + 115
13
R2 / 111
R2
R2+ Rl
Al+ TP
R2
Rl
15
Rl + 113
11
R2 + 19
RZ

R2 + Rl
Rl - TZ
R2
RZ / Tl
R2
Rl
Rl + TP
R2 " TP
Rl
AZ

16
Al + 114
12
R2 + 11P
RZ
R2 + Al
Rl - T5
Rl
R2
14
Rl + 112
18
RZ/18
R2
R2+ Rl
Rl " TT
R2
RZ+ T6
RZ

R2 T3
R2
Rl
Rl + T5
R2- T5
Rl
Rl ~ TP
Rl
R2
R2+ T4
82
Rl - T4
Rl
T8
61- T3
Rl
T7
Rl - T6
T2
R2 + Tl
Rl
R 1 ~ RZ
Rl
R2 - Tl
AZ

T5
Rl - TP
Rl

code

BX4 primitive COB

Fig. 4.6b. 2-register implementation of HT (continued).

55

/ / /
/ /

/

/ / / //
v // / / / /

/ / / / /

/ /

/ / f
0

16X5 primitive COB computation

Fig. 4.6c. Z-register implementation of H, (continued).

Rl
Rl
82
RZ

TP
RZ

Rl
TP
Tl
Rl
Rl
82
A2
T2
R2
Rl
T2
R2
TS
R2
Rl
$2
Tl
T3
Rl
Rl
RZ

R2
T4
R2
Al
T4
T5
Rl
51
12

42
T6
42
41
T6
82
TT

RZ

T9
RZ

Rl
R2
T5
Rl
Tll
Rl
42

I 15
Rl + 131
ll
R2 + 123
R2
R2+ Rl
Al - TS
A2
Rl
! 11
R'I + l27- 13
RZ + 119
R2
RZ+ Rl
Rl - T2
R2
42+ TS
R2
Rl
Rl + Tl
RZ " Tl
Rl
R2
113
Rl + 129

" 15
"R2+ 121

R2
RZ + Al
Rl - T4
42

- Rl
19

- Rl+ 125
Il

- 42 ~ 117
AZ

R2+ Rl
Rl- T6
42
RZ + T4
R2
R2+ Te
R2- Al
Rl + T5
RZ - T5

- Rl
Rl + Tl
Rl
R2

R2 ~ T3

Rl
73
T12
Rl
Rl
R2
82
T13
AZ

Rl
T13
T14
Rl
Rl
R2
R2
T15
82
Rl
T15
R2
T16-
R2
R2
Rl
T14
T17
Rl
Rl
RZ

R2
T18
RZ

Rl
T18
T19
Rl
Rl
R2
R2
TZS-
R2
Rl
120
R2
TZI
RZ

T22
82
0$
R2
R2

Rl
T19

Rl - T3
R2
Rl
114
Al + 130
16
R2 + 122
R2
R2+ Rl
RI - T13
AZ

Rl
I IS
Rl + 126
12
R2 + 118
R2
R2 + RI
Rl - T15
RZ
R2 + T13
R2
Rl
R2 + T14
Rl - T14
R2
Rl
112
Rl + 128
14
R2 + 120
R2
R2+ Rl
Rr - Tle
R2
Rl
18
Rl t 124
le
R2 + 116
R2
R2+ Rl
Rl - T2$
R2
R2 + T18
R2
R2+ T8
R2
RZ+ T9
R2
Rl
RZ + T19
Rl - T19
R2

$2 RZ + Tl
T23 R2
R2 R2 + Tll
08 AZ

R2 Rl
Rl Rl + T17
R2 R2 - T17
T17 Rl
Rl Rl + T3
012 R I

Rl RZ

R2 R2 + T12
Rl Rl - 712
014 A2
015 Al
Rl T21
Rl Rl-T16
R2 T7
R2 R2 - TS
T7 Rl
Rl Rl + R2
R2 R2 - T7
02 " Rl
03 R2
Rl T2
RI Rl - TP
R2 " T6
R2 R2 - T4
TZ R2
R2 R2&RI
Rl Rl - T2
T2 " R2
T4 Al
R I T15
Rl " Rl - TI3
R2 - T28
R2 R2 - T18
T6 R2
R2 R2+ RI
Rl Rl - T6
T6 R2
R2 " R2 + TZ
04 " R2
R2 RI
Rl Rl + T4
R2 " R2 - T4
06 Rl
07 " R2
Rl T5
Rl Rl - Tl
R2 T19
R2 R2 - T14
Tl R2
R2 R2+ Rl

Rl
01S
011
Ri
Rl
01
Rl
Al
05
Rl
Al
09
Rl
Rl
013

Rl - TI
R2
Rl
T22
Rl - T9
Rl
T6
Rl - 72
Rl
T23
RI - Tll
Al
T17
Rl . T3
Rl

16X5 pril.litive COB code

Fig. 4.6d. 2-register implementation oi'T (continued).

57

M.SO

TYPE 1

OL,M,S

r
gr

TYPE 2

M,CEM—~~ M,S

OM,S

TYPE 3

Fig. 4.7. The three types of butterfly implementations prevalent
in the 2-register implementation of HT.

58

The solution of this difference equation yields the following closed

form expression for the time complexity of the two register

implementation.

C(n) = (4n + 4.75)2 n & 2 ~

Also in this case, Eta = 4 + 0.75/(n+1).

4.2.3 3-Register Implementation of Primitive COBs

The 3-dimensional COB cover of the primitive COBs under

consideration and the associated implementations on a machine with 3

accumulators are shown in Fig. 4.8.

4.2.4 0-Register and Infinite-Register Implementations

If an implementation computes each graph point independently,

without any regard for the graph structure, we call it a 0-register

implementation here. Each HT computational point is calculated by first
loading an operand, then adding to or subtracting from it an operand

located in memory, and storing the result back into the memory, taking a

total of 6 units of time. Each computational point, in this case, is a

COB. Since a 0-register implementation is constructed without any

effort to minimize memory related operation, its execution time is the

worst possible.

Since every computational point takes 6 units of time, total time

for a computational graph may be obtained by merely multiplying the

number of computational points in the graph by 6.

59

cotlputation

Rl 11
Rl Rl + 13
R2 TS
R2 R2 + 12
R3 ~ AZ
RZ RZ + Al
Rl Rl -A3
0S R2
01 R 1

code

ZXZ primitive COB

computation

Rl
Rl
RZ

R2
R3
R2
Rl
TS
Tl
Al
Rl
62
R2
tl3
R2
Al
R3
R2
R3
06
01
R3
Rl
tl3
02
03

13
Rl + 17
11
R2+ 15
R2
R2+ Rl
Rl + R3
R2
Rl
12
Rl + 16
lS
R2+ 14
R2
Rl + Rl
Rl - R3
62
R2tTS
R3-TS
22
R3
Rl
Rl + Tl
Rl + Tl
Rl
R3

4X3 primitive COB

code

Fig. 4.8a. 3-register implementation of HT.

60

I

/
/

/
I

p
/

/
/

/

/

/ I

corlputation

0 v

Rl
Rl
RZ
RZ

R3
RZ
AI
TO

RZ

RZ

R3
R3
Tl
R3
R2
Tl
R3
R2
Rl
Tl
T2
Rl
Al
R2
AZ

R3
R2
Rl
T4
R2
RZ
R3
R3
T5
R3
R2
T5
R3
R2
Rl
R3
R2
R3
04
05
R3
Rl
T3
06
07
Rl
Rl
R2

R2
A3
R2
Rl
02
03
Al
Rl
R2
R2
R3
R2
Rl
06
01

17
Rl + 115
13
R2 + 111
RZ
62+ Rl
Rl - R3
R2
15
R2 + 113
11

R2 t 19
R3
R3 + R2
RZ - Tl
R3
R2
R2+ Rl
Rl - R3
RZ

Rl
16
Rl + 114
12
R2 + 110
R2
R2+ Rl
RI "R3
A2
14
R2 + IIZ
IS
R3 + IS
R3
R3 R2
R2 - T5
R3
RZ

R2 + Rl
Rl - R3
R2
62 + I'2
R3" TZ
RZ

R3
Rl
Rl + T3
R3 - T3
Rl
R3

Tl
Rl - TR

T5

RZ - T4
R2
RZ+ Rl
AI - R3
02
Rl
Tl
Rl + Tll
T5
R2t T4
R2
RZ t Rl
Rl - R3
RZ
Rl

SX4 primitive COS
code

Fig. 4.8b. 3-register implementation of HT (continued).

0

16X5 primitive COi3 computation

Fig. 4.8c. 3-register implementation of HT (continued).

62

Rl
Rl
AZ

R2
83
82
Rl
TS
R2
R2
R3
83
Tl
R3
RZ

Tl
R3
T2
R3
82
Rl
T3
T4
Al
Al
R2
AZ

k3
R2
Rl
T5
82
A2
R3
R3
T6
R3
R2
T6
R3
T7
R3
T8
R3
RZ
Al
T9
R2
TIS
R2
Rl
RZ

T4

115
Rl + 131
17
R2 + 123
R2
Rl + Rl
Rl " R3
R2
111
R2 + 127
I3
R3 + 119
A3
R3 + R2
R2 - Tl
R3
R3 + TS
R3
R2
R2+ Rl
Al - R3
R2
Rl
113
Rl + 129
15
R2 + 121
R2
82+ A!
Rl - R3
RZ
19
R2 + 125
11
R3 + 117
R3
R3+ R2
R2- T6
R3
R3 + T5
R3
R3+ T2
R3
R2
RZ + Rl
Rl " R3
R2
R2+ T3
R2
Rl
Rl + T4
R2- T4
Rl

Tll
Al
Al
R2
R2
R3
82
Rl
T12
R2
R2
R3
R3
T13
R3
R2
T13
R3
T14
R3
R2
Rl
T15 "
T16 "
Rl
Rl
R2
R2
R3
R2
Rl
TIT "
R2
R2
R3
R3
T18
R3
R2
T19
R3
T20 "
R3
T21
R3
R2
Al
T22
RZ

R3
R2
R3
08
09

R2
14
Al + 130
16
82 + 122
RZ
R2+ Rl
Rl - R3
R2
110
Rl + 125
12
R3 t 118
R3
R3 + R2
R2 - T13
R3
R3 - T12
R3
R2
R2+ Rl
Rl - A3
A2
Rl
112
Rl + 128
14
R2 + 120
R2
RZ+ Rl
Rl - R3
R2
18
R2 t 124
IS
R3 + 116
R2
R3 + R2
R2 - T18
R3
R3 - T17
R3
R3 " TT
R3
RZ
R2+Rl
R2 - R3
R2
RZ + T15
R2
R2 + TIS
R3 - T18
R2
R3

R2
Al
R2
83
Rl
R3
012
013
R3
R2
R3
014
015
Rl
Rl
R2
R2
A3
R2
Al
R3
R2
RZ
08
01
82
R2
R3
RZ
Rl
02
03
Rl
Rl
R2
R2
R3
R2
Rl
R3
R2
R3
RZ
R2
R3
Rl
R2
06
07
Rl
Rl
R2
R2
R3

Rl
Rl + T16
R2 - T16
Rl
Rl + T4
R3- T4
Rl
R3
RZ
R2 + Tll
A3 - Tll
R2
R3
T13
Rl + T12
T19
R2 + T17
R2
R2+ Rl
Rl - R3
R2
R2 + T8
R3 - TS
RZ
R3
TT
R2- T2
R2
R2- Rl
Rl t R3
Rl
R2
Tl
Rl - TS
T16
R2 + T5
R2
R2+ Rl
Rl - R3
RZ
R2 - T21
R3 + T21
T28
R2 - T14
Rl
Rl - R2
R2+ R3
RZ

Rl
T9
Rl - T3
T22
R2 - T15
RZ

R2 R2+ Rl
Rl Rl-R3
018 R2
011 " Rl

16X5 prinlitive COB code

Fig. 4.Bd. 3-register implementation of HT (contTnued).

63

The time complexity
n

implementation of a 2 X(n+1)

and the Eta value for the 0-register

point primitive COB is given by:

n
Total time = 6(n+1)2 Eta = 6.

Mien an infinite number of registers is available, three different

types of butterfly computations exist. Each initial stage butterfly is

computed using 2 Loads, 1 Copy, and 2 Mop(+,-). Each final stage

butterfly is computed using 1 Copy, 2 Rop(+,-), and 2 Stores. Each of

the remaining butterflies is computed using 1 copy and 2 Rop(+,-).
n

These computations are shown in Fig. 4.9. Thus, for 2 length
n n n (n-1) n

primitive COB, 2 Loads, 2 Mop(+,-), n2 Rop(+,-), n2 Copies, and 2
n

Stores are required. Accordingly, the total time for a 2 X(n+1) point

primitive COB implementation on an infinite accumulator machine is:

n n-1
Total time = 6(2) + 3n(2) , Eta = 1.5 + 4.5/(n+1).

4.2.5 Consolidation of Results

Comparing the Eta values of 1-, 2- and infinite-register

implementations with that of 0-register implementation, one can note

that for large values of n, by merely structuring the order of

computation, one can obtain savings of 16.7/, 33% and 75/ respectively,

in the HT execution time compared to non-structured 0-register case.

Table 4.3 lists the complexities of various implementations of

primitive COBs.

64

Table 4.3 Complexities of various implementations of
HT primitive COBs.

COB Size = 2 X 2 0 of computational points: 4

Load Hop(+,-) Store Copy Rop(+,-) Time Eta

0
1

2
3 o&

4 4 4 0 0 24 6.0
3 4 4 0 0 22 5.5
2 3 3 0 1 17 4. 25
2 2 2 1 2 15 3. 75

0
1

2
3
5- ce

COB Size = 4 X 3 0 of computational points: 12

12 12 12 0 0 72 6
8 12 12 0 0 64 5.33
5 10 9 1 2 51 4. 25
4 8 6 4 4 44 3.67
4 4 4 4 8 36 3.00

COB Size = 8 X 4 () of computational points: 32

0
1

2
3
9 co

32
20
12
12
8

32
32
27
18
8

32
32
24
16
8

0
0
3
8

12

0
0
5

14
Z4

192
168
134
114
84

6
5.25
4. 18
3.56
2.63

0
1

2
3

17-"

COB size= 16 X 5 0 of computational points: 80

80 80 80 0 0
48 80 80 0 0
28 68 60 8 12
24 50 43 20 30
16 16 16 32 64

480
416
332
284
192

6
5.2
4. 15
3.55
2.40

As can be seen from Table 4.3, choosing a larger primitive COB

improves

consider

the efficiency of algorithm. But in practice, one should

both the improvement in time and the incr ease in code (program)

size to determine the appropriate primitive COB. A primitive COB should

be small enough so that the code for it can be generated without

difficulty. At the same time, it should be large enough to utilize all

65

available registers efficiently. The following example illustrates the

choice of a primitive COB in a machine with three accumulators.

Example: Suppose the target CPU contains 3 accumulators. In order to

fully utilize all available registers, 3-register implementations of

primitive COBs should be used. Based on the parameters listed in Table

4.4, an appropriate primitive COB may be chosen as follows.

Table 4.4 Change in the values of Eta for various primitive COBs

primitive COB Time/COB Eta 5 decrease in Eta from previous line

2X2
4X3
BX4

16X5

15 3,75
44 3.67

114 3.56
284 3.55

2. 13
3.00
0.28

The code size for a COB is directly proportional to the execution time

for the COB. Thus as we go down the COBs listed in Table 4.4, the code

size multiplies by a factor of approximate)y 1.5 each time. An

inspection of Table 4.4 now shows that a primitive COB of BX4 points 15

probably the best in these circumstances. If the size of this COB is

further increased, it has a margina) effect on Eta but the code size

increases by 149%,

4.3 Implementation of a complete HT through primitive COBs

This section discusses the issues involved in the implementation of
12

a complete graph through an example of 2 length HT. If the primitive
t

COBs of types discussed earlier with 2 X(t+1) points are used to cover
n (n-1)

a 2 length HT, then a total of n2 /(t+1) primitive COBs would be

66

required. Thus the odd divisors of (t+I) should divide n. In the

present case, it rules out the 16X5 primitive COB. The 2048 X 12 point

primitive COB also need not be considered because of its excessive code

size.

If one uses the 2X2 primitive COBs, the resultant implementation has

six computing stages, each with 2048 COBs. All six stages may be made

identical by rearranging the graph of HT [20],[2lj. Thus the code for

each stage is identical except for the memory locations of input and

output data. Further, every pair of consecutive stages may have an
12

in-place code. Therefore, software for the entire 2 length HT may

consist of the code for the first 2 stages placed in a loop, thus

reducing the code size by approximately 66.7/.

Use of 4X3 primitive COBs similarly results in 4 identical stages,

each with 1024 COBs. Use of a loop reduces the code size by

approximately 50/.

Use of BX4 primitive COBs implies 3 identicaI stages each with 512

COBs. Use of a loop is not beneficial in this case.

Finally, if 32X6 primitive COBs are used for the implementation,

there are only 2 identical stages each with 128 COBs. As in the earlier

case, a loop is not useful.

The execution time of the complete HT depends upon both the size

of the primitive COB used and the number of registers available to

implement each primitive COB. Table 4.5 and Fig.4.9 display the results

obtained. While calculating the code sizes, the possibility of using

the in-place algorithm is kept in mind. One may conclude from these

that the computational time of HT is largely independent of the choice

of primitive COB. Also, using a machine with more than three registers

(1000 tine units)
300

250

150

iree&ste sl

Fig. 4.9. Time complexity of various implementations
of 2 length HT.

68

is not justified in this case. A good trade off between the time and

the code size is obtained when one uses a 3-register machine and a 2X2

primitive COB.

12
Table 4.5, Implementation of 2 length HT

0-register implementation

prim. f of primitive Time per Total Time Eta of Code Size
COB COBs within HT prim. COB for HT Prim. COB for HT

2X2
4X3
BX4

32X6
2048X12

12288
4096
1536
256

2

24
72

192
1152

147456

294912
29491Z
294912
294912
294912

6.00 98304
6.00 147456
6.00 294912
6.00 294912
6.00 294912

1-register implementation

2X2 12288
4X3 4096
BX4 1536

32X6 256
2048X12 2

22
64

168
992

124928

270336
262144
258048
253952
249856

5.50 90112
5.33 131072
5.25 258048
5.17 253952
5.08 249856

2X2 12288
4X3 4096
BX4 1536

32X6 256
2048X12 2

2-register implementation

17 208896 4.25 69632
51 208896 4.25 104448

134 205824 4.18 Z05824
792 202752 4.13 202752

99846 199692 4.06 199692

3-register implementation

ZX2 12288
4X3 4096
BX4 1536

15
44

114

184320
180224
175104

3. 75 61440
3. 67 90112
3.56 175104

4.4 Fast Fourier Transform(FFT)

In this section, two primitive COBs for FFT are presented and

implemented using 0 to infinite number of registers. They are then
8

appIied to implement a 2 length FFT.

4.4.1 2-Point Primitive COB

The graph shown in Fig. 4. 10 computes two complex points in the FFT

graph and hence is termed as the 2-point primitive COB. The 1- and 2-

register implementations and the associated codes are shown in Fig.

4.11. The implementation of this small primitive COB does not change if
the number of registers is increased beyond 2.

4.4.2 4-Point Primitive COB

The graph of a 4-point primitive COB is shown in the Fig. 3.2.

Figures 3.3

thorough

3.11 then show its 1- through 9-register

implementations. A further increase in the number of registers does not

affect the implementation of this COB.

4.4.3 Consolidation of Results

The complexities of the two FFT COBs and, in particular, their
dependence on the number of registers in the machine is shown in Table

4.6. These results indicate that while using the 2-point COB, a 2-

register machine wi 11 perform optimally and even for the 4-point COB

increasing the number of registers beyond 5 has very little effect on

the time complexity.

70

Fig. 4.10. Computational graph of 2-point FFT.

Cl

C4

Cl

C4

C2

CS

C3

CP

Rl 12
RI -RI X 14
TP -Rl
Ri [3
Rl AI 3[5
Al Ri - TP
TP -Rl
Rl "Rl + IP
05 -Rl
Rl -Il
Rl -Rl - TP
02 R I
RI - 13
Rl RI X 14
TP .Rl
Rl ~ [2
Rl . Rl X 15
Rl - Rl + TP
TP R I
Rl -Rl + 11
01 ~ R I

Rl 11
Rl Rl - TP
03 ~ R I

code

Cl

C2

OO

Rl "12
Rl ~ Rl X [4
R2 -Al
Rl [3
RI -RI 3[5
Rl Rl - R2
R2.RI
Rl -Rl i CP
05 ~ R I

Rl 11
Rl Rl-R2
02 ~ R I

R[-13
Rl - Rl X 14
22 R I

Rl -12
AI ~ Rl X [5
RI AI WR2
R2 R I
RI - Rl + 11
01 R I
Rl [I
Rl Rl -R2
03 R I

code

Cl C2

1-dilaensional COB cover 2-dimensional COB cover

Fig. 4. 11. 1- and 2-dimensional COB cover of 2-point FFT.

72

Table 4.6 Complexities of various implementations of
FFT primitive COBs.

COB size = 2 X 1 () of complex computational points = 2

R Load Mop(+,-) Mop(x) Rop(+,-) Copy Store Time Eta %%u. dec.in Eta

0 10
1 6
2- 4

6 4 0 0 10 68 34
6 4 0 0 8 56 28 17.65
4 4 2 Z 4 44 22 Z1.43

0 40
1 20
2 13
3 12
4 12
5 12
6 11
7 10
8 9
9- 8

COB size = 4 X 2 I) of complex computational points = 8

24 16 40 272
24 16 32 216
17 16 19
14 16 16 166
11 16 14 159

8 16 12 152
8 16 11 149
8 16 10 146
8 16 9 143
8 16 8 140

0
0
7

10
13
16
16
16
16
16

20.59
18.98
5.14
4.22
4.40
1.97
2. 01
2.05
2.10

8
4.5 Implementation of Z Length FFT

8
An implementation of 2 length FFT using 2-point primitive COBs

results in 8 identical computational stages of 128 COBs each. As for

the case of HT, a pair of these stages may be calculated in-place

[20,21]. The size of code may therefore be reduced by 75%%u by using the

loop as described in Section 4.3. Similarly, use of 4-point primitive

COBs produces 4 identicaI stages of 64 COBs each. Use of a loop, in

this case, will reduce the code size by 50%%u. Table 4.7 and Fig. 4.11

dispIay various factors affected by the choice of a particular

implementation.

73

8
Table 4.7 Implementation of 2 length FFT

0-register implementation

Prim. ¹ of prim.COBs Time per Total time Eta of Code size
COB within FFT Prim.COB for FFT prim.COB for FFT

Zxl
4X2

1024 68 69632 34 17408
256 272 69632 34 34816

ZX1 1024
4X2 256

1-register implementation

56 57344 28 14336
216 55296 27 27648

2-register implementation

2X1 1024 44 45056 22 11264
4X2 256 175 44800 21.875 22400

Zxl
4X2

1024
256

3-register implementation

44 45056 22 11264
166 42496 20.75 21248

Zxl
4X2

1024
Z56

4-register implementation

44 45056 22 11264
159 40704 19.875 20352

'.000 ttee eltsl
70

60

40

4 (registerst

Fig. 4.12. Time complexity of various implementations of 2 length FFT.
8

CHAPTER 5

CONCLUSIONS

This chapter reviews the results obtained during this work. After

summarizing the useful results in Section 5.1, and their applications in

Section 5.2, future research areas are identified in Section 5.3.

5. 1 Summary of Selected Results

This work for the first time provides the means to design an

implementation of a given arbitrary computational graph, while taking

into account the number of accumulators available in the processor. The

1-register algorithm of Chapter 2 can be applied to form a time

efficient algorithm for the graph implemented on a one accumulator

processor. Since most of the general purpose microprocessors available

today have one accumulator, the results obtained here are universally

useful. This 1-register algorithm is extended to r-register algorithm

in Chapter 3. Given a machine containing n general purpose registers,

any computational graph can be subjected to 1- and r-register algorithms

to form a time efficient implementation. Furthermore, since most signal

processing algorithms contain regular structures, a computational

kernel, called a primitive COB here, may be used repeatedly to cover the

complete graph, as shown in Chapter 4. The primitive COB may be

subjected to the algorithms derived in this thesis to obtain its

efficient code for any given processor. By repeating this basic code,

one may then obtain an efficient code for the complete graph.

75

76

The results obtained in Chapter 4 point out several important

facts. First, for a given computational graph, the time complexity

decreases exponentially as the number of registers increases (See Figs.

4.9 and 4.11). This result implies that the increase in the number of

registers after a certain point does not yield a profitable decrease in

time complexity. (For Hadamard transform, this is a modest three

accumulator architecture). Consequently, an arbitrary increase in the

number of accumulators in processor design is not justified since the

cost of hardware inflates very rapidly as the number of accumulators

increases. Another important result obtained is that the size of

primitive COB does not affect the time complexity significantly, as long

as it is large enough to fully utilize all available registers. One may

thus choose a small and efficient primitive COB, so that writing the

code for it is a trivial task.

5.2 Significance of the Results

The importance of this work is mainly due to the wide applicability

of the algorithms developed in Chapters 2 and 3. These a'Igorithms

enable one to design a time efficient code by giving due consideration

to the hardware architecture, in particular, the number of registers

contained in the CPU. These algorithms enable one to utilize the

hardware capabilities to their fullest extent, thus improving the

performance without any additional cost.

Another potential application of this research is to provide means

to evaluate various architectures with respect to a given algorithm.

The procedures of Chapters 2 and 3 allow one to systematically study the

trade offs between various factors such as the time complexity, hardware

77

complexity and code size. This enables one to choose a good engineering

design in most practical situations.

Finally, this work also brings out the concept of a primitive COB.

A primitive COB can be used for automatic generation of software for

large signal processing problems and to reduce the code size of an

algorithm without sacrificing time efficiency. It may also have a

significant impact on the design of special purpose parallel processing

hardware for signal processing applications.

5.3 Suggestions for Further Work

The verification on an actual multi-accumulator machine of the

various implementations obtained here is highly desirable. It was not

possible to carry this out mainly due to the time limitation and also

because of the lack of good multi-accumulator processors. Since most of

the available microprocessors have architectures geared towards high-

level language implementations rather than numerical applications, it is

necessary to design a multi-accumulator hardware for this verification.

Such a hardware design would use bit-slice microprocessors AM2901 or

AM2903 [22-24], since they have a sufficient number of registers for our

purpose and belong to a family that has a large number of support ICs.

Another potential area for future research is the investigation of

the relationship between a graph structure and its ultimate

implementation on a finite register SISD machine. In particular, one

may be able to restructure the computational graph without affecting the

final results, such that the restructured graph may have a highly

efficient implentation.

78

Finally it should be mentioned that the r-dimensional COB model may

not yield optimum results in some cases and merits further attention.

REFERENCES

L'2]

f3]

E4]

C5]

C6]

[7]

[8]

(9]

[10]

S. Winograd, "On computing the Discrete Fourier Transform," Proc.
Nat. Acad. Sci., U.S.A., vol. 73, pp. 1005-1006, Apr. 1976.

J. W. Cooley and J. W. Tukey, "An algorithm for the machine
calculation of Complex Fourier Series," Math. of Com., vol. 19,
pp. 296-301, 1965.

L. R. Morris, "A comparative study of time efficient FFT and WFTA
programs for general purpose computers," IEEE Trans. Acoust., Speech
and Signal Processing, vol. ASSP-26, no.2, pp. 141-150, Apr. 1978.

H. D. Toong and A. Gupta, "An architectural comparison of
contemporary 16-bit microprocessors," IEEE Micro, vol. 1, pp. 26-37,
May 1981.

Component Data Catalog, Intel Corporation, Santa Clara, CA, 1982.

ZBO Microcomputer Data Book, Mostek Corp., Car rollton, TX, 1981.

Electronic Device Division Data Catalog, Rockwell International,
nahesm,

Microprocessor Data Manual, Motorola Inc., Austin, TX, 1981.

J. P. Anderson, "A note on some compiling algorithms," Comm. ACM,
vol. 7, no. 3, pp. 149-150, Mar. 1964.

I. Nakata, "On compiling algorithms for arithmetic expressions,"
Comm. ACM, vol. 10, no. 8, pp. 492-494, Aug. 1967.

N. M. Brenner, "Fast Fourier Transform of externally stored data,"
IEEE Trans. Audio Electroacoust., vol. AU-17, no. 2, pp. 128-132,
June 1969,

[12] P. S. Naidu, "FFT of externally stored data," IEEE Trans. Acoust.,
Speech, and Signal Processing, vol. ASSP-26, no. 5, pp. 473, 1970.

[13] J. 0. Exiundh, "A fast computer method for matrix transposition,"
IEEE Trans. Computers, vol. C-21, no. 7, pp. 801-803, July 1972.

P. S. Naidu, "Fast matrix transpose computer implementation," Signal
Processing, North Holland Publishing Company, pp. 457-459, Mar.
1982.

t15]

[16]

H. Nawab and J. H. McClellan, "Bounds on the minimum number of data
transfers in WFTA and FFT programs," IEEE Trans. Acoust., Speech and
Signal Processing, vol. ASSP-27, no. 4, pp. 394-398, Aug. 1979.

M. J, Flynn, "Very high-speed computing system," IEEE Proc , vol.
54, no. 12, pp. 1901-1909, Dec. 1966.

80

[17] Peter M. Kogge, The Architecture of Pipelined Computers, New York:
McGraw-Hi 11, Inc.,

[18] J. L. Pfaltz, Computer Data Structures, New York: McGraw-Hill,
Inc., 1977.

[19] L. R. Morris, "Automatic generation of time efficient digital
signal processing software," IEEE Trans. Acoust., Speech and
Signal Processing, vol. ASSP-25, no. 1, pp. 74-79, February 1977.

[20] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Englewood Clif'f, NJ: Prentice-Hall,

[21] L. R. Rabiner and B. Gold, Theory and Application of Signal
Processing, Englewood Cliff, : ren Yce- a

[22] J. Mick and J. Brick, Bit-Slice Microprocessor Design,
New York: McGraw-Hill, nc.,

[23] G. J. Myers, Digital System Design with LSI Bit-Slice Logic,
New York: Wiley n ersc~ence,

[24] D. E. White, Bit-Slice Design: Controller and ALIIs, New York:
Garland STPM ress,

	Design of Efficient Algorithms Through Minimization of Data Transfers
	Recommended Citation

	tmp.1721827627.pdf.z0Kfu

