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INTRODUCTION

Trichodesmium spp. fix dinitrogen (N2), and thereby
introduce new nitrogen (N) in regions where they
occur. While this capability precludes N limitation of
Trichodesmium growth and biomass accumulation, it is
unclear how inputs of new N from N2 fixation affect
nutrient cycling and productivity in the oligotrophic
ocean in general. It has been reported that Tri-
chodesmium spp. release upwards of 50% of recently

fixed N2 as dissolved organic N (DON) (Glibert &
Bronk 1994); largely, it appears, as amino acids
(Capone et al. 1994). In natural systems, this recently
fixed N may provide combined N to support produc-
tion by associated auto- and heterotrophs.

In culture systems, ammonium (NH4
+) appears to be

the primary recycling intermediate for recently fixed
N2 (Mulholland & Capone 2001). While N2 fixation
accounted for the net production of new biomass,
release and uptake of NH4

+ fueled additional and rapid
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ABSTRACT: Two methods used to measure dinitrogen (N2) fixation (acetylene reduction and 15N2

uptake) often result in different N2 fixation rates. Part of the discrepancy may arise from the obser-
vation that Trichodesmium can release a fraction of their recently fixed N2 as dissolved organic nitro-
gen (DON) and/or ammonium (NH4

+). To resolve outstanding issues regarding N2 fixation and the
production of dissolved combined nitrogen (N) by Trichodesmium, we conducted a comprehensive
analysis of N2 fixation and the production of DON and NH4

+ in cultures of Trichodesmium IMS101.
We performed 15N2 uptake experiments in parallel with acetylene (C2H2) reduction assays, and mea-
sured production of 15NH4

+ and DO15N from 15N2, and 15NH4
+ uptake and regeneration by isotope

dilution. Four main results are highlighted. First, 15N2 uptake appears to provide a better approxima-
tion of net N-specific growth rates than N2 fixation estimates made using C2H2 reduction. Second, the
C2H2 reduction method provides a closer approximation of gross N2 fixation.  Third, simultaneous
measurements of relevant N pools and pathways by several methods enabled us to rigorously evalu-
ate deviations from theoretical conversion factors and to interpret the basis for those deviations. Our
results suggest that a conversion ratio (mol C2H2 reduced: mol N2 reduced to PON, ammonium and
DON) of 4:1 may be more appropriate for total N2 fixation. Fourth, the difference between estimates
of gross N2 fixation, made using the C2H2 reduction technique, and net 15N2 uptake into particulate
N may be a good indicator of N release from N2 fixation.
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turnover of this pool. Previous research demonstrated
that both dissolved free amino acids (DFAA) and NH4

+

accumulate in the culture medium during growth
(Mulholland et al. 1999, Mulholland & Capone 2001),
but only NH4

+ is simultaneously taken up under these
conditions (see also Mulholland & Capone 1999). Sub-
sequent results from kinetic experiments that exam-
ined NH4

+ uptake using incubation times of various
lengths diverged widely; Trichodesmium showed a
high affinity for NH4

+, but the longer the incubation
time, the lower the apparent maximum specific uptake
rate (Vmax) (Mulholland et al. 1999; our Fig. 1). These
results suggest that for NH4

+, isotope dilution could be
substantial (e.g. King & Berman 1984).

Though these earlier results indicated the potential
importance of rapid NH4

+ release and uptake by Tri-
chodesmium, not all relevant pools and processes were
measured, e.g. direct release of DON and NH4

+. The
objective of this study was to obtain a more compre-
hensive picture of the fate of recently fixed N2. To
accomplish this, another series of culture experiments
were conducted in which we directly measured NH4

+

uptake as well as the production of dissolved NH4
+ and

DON from recently fixed N2 and NH4
+ regeneration by

isotope dilution.
While culture systems do not mimic the complexity

of population interactions observed in nature, we
chose them as an effective tool to better understand
and complement field estimates and to identify and
isolate relevant pathways affecting the cycling of
nutrients under defined physiological conditions. In
nature, the prior physiological history and status of
freshly collected Trichodesmium colonies or cells is
generally unknown and biomass constraints often pre-
vent the simultaneous measurement of relevant N
cycling pathways.

MATERIALS AND METHODS

Rates of N2 fixation were measured by 2 methods:
(1) using 15N-labeled N2, which estimates net N accu-
mulation into particulate organic nitrogen (PON); and
(2) using the acetylene (C2H2) reduction method,
which estimates total N2 fixation. Likewise, NH4

+

regeneration was measured in 2 ways: (1) by adding
15N-labeled N2 gas and quantifying the appearance of
15N in the NH4

+ pool; and (2) by adding 15N-labeled
NH4

+ and measuring the degree of isotope dilution
over time (Glibert et al. 1982). DON was also isolated
at the end of the 15N2 incubations so that rates of DON
release could be measured directly. These measure-
ments were made periodically over an entire growth
cycle to quantify the effect of the population’s chang-
ing physiological state.

Batch cultures of Trichodesmium IMS101 were
grown on an artificial seawater medium without added
N (Chen et al. 1996). While cultures were not entirely
free of contaminating bacteria, their numbers were
kept low by maintaining cultures in exponential phase
growth and performing transfers using sterile tech-
niques. Cultures were grown at 27°C on a 12:12 h
light:dark cycle under cool, white fluorescent lighting,
supplied at between 55 and 65 µmol quanta m–2 s–1

PAR. Cells were routinely mixed to prevent their adhe-
sion to the sides of the culture vessels.

Experiments were initiated by inoculating 34 repli-
cate culture vessels containing N-free medium with
equal volumes of an exponentially growing Tri-
chodesmium parent culture. Trichodesmium filament
counts, PON and chlorophyll a (chl a) biomass were
used to establish growth rates of the culture during the
18 d experiment. At each sampling point (about every
2 d), samples were preserved with Lugol’s solution and
the number of filaments (or trichomes) enumerated
microscopically. Concentrations of PON were mea-
sured on an ANCA GSL interfaced with a Europa GEO
20/20 isotope ratio mass spectrometer (IRMS) at the
end of 15N experiments. Another set of samples were
filtered onto pre-combusted (450°C for 2 h) GF/F filters
and frozen for chl a analysis (spectrophotometric deter-
mination after extraction in methanol; Mackinney
1941); the filtrates were frozen for analysis of NH4

+

concentrations (autoanalyzer; Friederich & Whitledge
1972), DFAA (high performance liquid chromatogra-
phy [HPLC]; Cowie & Hedges 1992) and total dissolved
nitrogen (TDN) (persulfate oxidation; Bronk et al.
2000). DON was calculated as the difference between
TDN and NH4

+. Instrument error based on repeat
injection was less than 10% for NH4

+ and DFAA analy-
ses. Nitrate concentrations were always undetectable
in previous culture experiments using media without
added N, and so it was not measured during this study.
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Prufert-Bebout et al. (1993) observed nitrate concen-
trations of about 0.5 µM in cultures; however, these
were grown on seawater-based media rather than the
defined medium used for this study. 

At each time point, samples for intracellular pools of
NH4

+ and DFAA were also collected. For these mea-
surements, an aliquot of culture was filtered through a
3.0 µm filter and the retained Trichodesmium filaments
and filters were rinsed with fresh medium. The filter
tower was then placed onto an acid-cleaned filter flask
and 25 ml of boiling deionized and distilled water was
added to the filter tower (combined heat and osmotic
shock; see Thoresen et al. 1982). The resulting filtrate
was collected and frozen for analysis of dissolved NH4

+

and DFAA using the methods described above.
Over the course of the 18 d experiment, replicate cul-

tures were sacrificed for rate measurements. All mea-
surements were made simultaneously at mid-day
because rates of N2 fixation are restricted to the light
cycle and are maximal at or near mid-day. Rates of N2

fixation, NH4
+ uptake, and 15NH4

+ and DO15N produc-
tion from 15N2 were measured using highly enriched
(96 to 99%) 15N2 and 15NH4

+ substrates as described
below (Mulholland et al. 1999, Mulholland & Capone
2001). A previous study indicated that Trichodesmium
might have significant intracellular pools of NH4

+ and
DFAA (Mulholland et al. 1999). If this is the case, then
NH4

+ and DON production from 15N2 might be under-
estimated. So, in addition, independent estimates of
15NH4

+ uptake and regeneration were made using the
isotope dilution technique (Glibert et al. 1982).
Because of culture volume constraints, isotope dilution
experiments were not replicated.

Rates of N2 and NH4
+ uptake were measured using

tracer additions (<10%) of highly enriched (99%) 15N2

and 15NH4
+ (Montoya et al. 1996, Mulholland &

Capone 1999, 2001, Mulholland et al. 1999). For 15N2

uptake experiments, combusted (450°C overnight)
Pyrex bottles (159 ml total volume) were filled to over-
flowing before being sealed with a septum cap (Teflon-
lined butyl rubber). A gas-tight syringe was used to
inject 160 µl of 15N2 (Cambridge Isotopes Laboratories)
into each incubation bottle as described by Montoya et
al. (1996). Sample bottles were then replaced in the
incubator. Ambient N2 concentrations in the culture
bottles were calculated using the equations of Weiss
(1970), assuming that cultures were at equilibrium
with the atmosphere at the start of incubations. The
resulting 15N2 additions were about 10%. 15NH4

+

uptake experiments were done in combusted 25 ml
glass scintillation vials. Twenty ml of culture was
placed in each vial and 0.03 µM 15NH4

+ (<10% of the
ambient pool) was added to initiate incubations.

An advantage of measuring N2 fixation using 15N2

is that dissolved NH4
+ and DON pools can be isolated

and the production of dissolved 15NH4
+ and DO15N

can be measured in the sample filtrate from uptake
experiments. The DON pool was isolated using ion
retardation resin (Bronk & Glibert 1993, Bronk et al.
1998). The manufacturing process of the resin for-
mally used in this isolation, BioRad AG 11 A8 (Bronk
& Glibert 1991), changed in the early 1990s. As a
result of the change, the resin now retains a variable
amount of DON (Bronk 2002). The resin used in this
study was manufactured in the Bronk lab by chemi-
cally altering another resin (Dowex anion exchange
resin, BioRad AG1-X8) to produce AG 11 A8 using
the method of Hatch et al. (1957). The resin produced
in the lab did not retain DON, but had an isolation
efficiency comparable to the original BioRad AG 11
A8 resin as described in Bronk & Glibert (1991). The
NH4

+ pool was isolated with solid phase extraction
(Dudek et al. 1986). The recovery from solid phase
extraction was, on average, 35%. The low recovery is
a result of the inefficiency in transferring the column
eluate to a glass fiber filter prior to mass spectromet-
ric analysis. Because the loss of sample does not
result from a chemical reaction, there is no dis-
cernible isotopic fractionation. As in previous studies,
rates of 15NH4

+ and DO15N production from 15N2 were
calculated using N2 as the source pool (Eq. 1; Glibert
& Bronk 1994). This assumes that intracellular pools
of NH4

+ and DON are minimal and that release of
these compounds occurs prior to their assimilation
into particulate N.

(1)

Uptake of 15N2 and production of 15NH4
+ and DO15N

were measured in 2 h incubations that were initiated
with the addition of 15N2 gas (99% enriched) and
terminated by gentle filtration through pre-combusted
(450°C for 2 h) GF/F filters. NH4

+ uptake and isotope
dilution incubations were 1 h. Both were in the linear
range of uptake during time courses conducted sepa-
rately (data not shown). All 15N rate samples were ana-
lyzed on a Europa Geo 20/20 mass spectrophotometer
as described above.

N2 fixation rates were also estimated using the C2H2

reduction technique (Capone 1993). Assays were initi-
ated by adding 1 ml of C2H2 to the headspace of serum
vials containing 10 ml of culture. Immediately after the
C2H2 addition and at 30 min increments over 2 h,
500 µl of headspace was removed and the production
of ethylene was measured using a Shimadzu gas chro-
matograph. Ratios of 3:1 and 4:1 were used to convert
rates of ethylene production (C2H2 reduction) to N2 fix-
ation (Montoya et al. 1996). Both of these ratios have
been used in previous studies. While 3:1 is the theoret-
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ical ratio of mol C2H2 reduced per mol N2, the 4:1 ratio
is often considered more appropriate (see Capone
1988, 1993, Montoya et al. 1996, Postgate 1998). For
Trichodesmium, average deviations in the C2H2:N2

reduction ratio range from 3:1 to 9.3:1 in 3 to 6 h incu-
bations of natural populations (Montoya et al. 1996).
Deviations between C2H2 reduction and 15N2 uptake-
based estimates of N2 fixation were assessed relative to
measured rates of N release and N regeneration by
isotope dilution.

Recovery of 15N2 in particulate and dissolved pools
(NH4

+ and DON) was measured to determine whether
the ratio of C2H2 reduction to total 15N2 uptake could
serve as a secondary measure of the release of recently
fixed N2 (see Fig. 2 for measured pools/pathways). If
there were significant short-term release of recently
fixed N2, 15N2 uptake to PON would underestimate
total N2 fixation.

RESULTS

Biomass and cellular pools

The doubling time for these cultures was about 5 d,
which is similar to growth rates reported in previous
studies (see Mulholland & Capone 2001 for a sum-
mary). Growth rates were estimated using 3 indices of
biomass: chl a, number of filaments and PON (Fig. 3).
All the indices had the same temporal pattern and cul-
tures achieved their peak biomass at 15 d. NH4

+ accu-
mulated to concentrations of up to 1.5 µmol l–1 in the
medium during the first 5 d of growth, but by Day 15
concentrations were comparable to those measured at
the outset of the experiment (0.6 µmol l–1) (Fig. 4).
DFAA concentrations remained low (<0.2 µmol l–1)

during the 15 d that culture biomass increased.
DON concentrations, however, increased after
Day 11.

Intracellular concentrations of NH4
+ and

DFAA ranged from 0.07 to 0.74 nmol filament–1

(≈ 0.7 to 7.4 pmol cell–1, based on an average of
100 cells filament–1) and 0.13 to 1.5 nmol fila-
ment–1 (≈ 1.3 to 15 pmol cell–1, based on an
average of 100 cells filament–1), respectively
(Fig. 4). There was a declining trend in intra-
cellular NH4

+ concentrations over the growth
period, while intracellular DFAA pools were
higher during early and mid-exponential
growth phases.

N2 fixation and release of recently fixed N2

Rates of N2 fixation estimated using the C2H2 reduc-
tion assay and the conventional conversion factor of 3:1
exceeded rates of net 15N2 uptake during most of the
growth cycle (Table 1, Fig. 5). During the outset of the
experiment, when biomass was very low, C2H2 reduc-
tion estimates were slightly less than or about equal to
rates of net 15N2 uptake into particulate matter
retained on the GF/F filter (and presumably in cells) at
the end of the incubation. These estimates diverged
later in the growth cycle with C2H2 reduction, based on
a constant 3:1 ratio, exceeding net 15N2 uptake by a
factor of 2 to 3.

Divergences between estimates of nitrogenase activ-
ity measured by C2H2 reduction and 15N2 uptake have
been previously related to the fact that the natural
hydrogenase activity of nitrogenase while fixing N2 is
greatly reduced in the presence of C2H2, resulting in
reducing equivalents being shunted to C2H2 reduction
(Scranton 1984, Scranton et al. 1987, Postgate 1998).
The divergence in rate estimates for N2 fixation esti-
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mated using C2H2 reduction versus 15N2 uptake meth-
ods might also be due to the release of recently fixed
N2 as DON or NH4

+. However, estimated rates of NH4
+

and DON production from 15N2 were also low com-
pared with net 15N2 uptake and C2H2 reduction
throughout the growth cycle (Table 1) and relative to
previous field estimates (Capone et al. 1994, Glibert &
Bronk 1994). When rates of NH4

+ and DON production
were added to net 15N2 uptake, to estimate total 15N2

uptake, this value was generally still much lower than
estimates of C2H2 reduction when assuming a 3:1 ratio
throughout the experiment (Fig. 5). However, using a
4:1 ratio brings the C2H2 reduction and 15N2-based
estimates much closer in line with total 15N2 fixation for
Days 3 through 18 (Fig. 5, Table 1).

We derived an empirical conversion ratio for each
time point by comparing the C2H2 reduction rate
directly to the net 15N2 uptake and total 15N2 uptake
(the sum of net 15N2 uptake and 15NH4

+ and DO15N
production) (Table 1). In general, estimates were rela-
tively close to the theoretical 3:1 ratio only on Day 1. In
late exponential and early stationary phase, the 2 esti-
mates likely diverge because of considerable release of
NH4

+ and DON.
A summation of total N accumulated in the particu-

late and dissolved pools was also calculated for the cul-
tures. There was an accumulation of 162 µmol l–1 total
N (PON, DON and NH4

+) over the 18 d experiment
based on changes in these concentrations. Rates of net
15N2 uptake and 15NH4

+ and DO15N production were

89

Day C2H2 reduction Net 15N2
15NH4

+ DO15N Total 15N2
15NH4

+ IDC 15NH4
+ Ratio of AR to

3:1 ratio 4:1 ratio uptake production production uptake uptake uptake regen- net N2
a total N2

a

(A) (B) (C) (A+B+C) eration

0 48.7 (17) 36.5 (13) 84 (4.6) 5.3 (1.1) 6.4 (3.1) 95.7 489 (65) 1.74 1.53
1 249 (7.4) 187 (5.6) 246 (117) 7.0 (0.8) 6.2 (1.5) 259.2 561 (336) 708 (na) 1564 3.04 2.88
3 479 (36) 359 (27) 319 (22) 25.7 (25) 10.9 (5.1) 355.6 402 (56) 457 (63) 479 4.50 4.04
5 672 (101) 504 (76) 401 (72) 21.3 (4.5) 6.9 (0.9) 429.2 925 (381) 1120 (462) 1937 5.03 4.70
9 2087 (267) 1565 (200) 875 (246) 14.0 (5.7) 13.2 (0.5) 902.2 817 (535) 2982 (1950) 3015 7.16 6.94
11 1356 (97) 1017 (73) 620 (51) 10.7 (1.2) 11.8 (6.5) 642.5 641 (566) 1642 (1450) 3335 6.56 6.33
12 1572 (298) 1179 (224) 624 (278) 9.2 (0.2) 99.7 (1.4) 732.9 399 (na) 756 (na) 2048 7.56 6.43
14 918 (13) 689 (10) 786 (335) 8.2 (0.1) 57.5 (19.4) 851.7 497 (141) 647 (184) 841 3.50 3.23
15 791 (42) 593 (32) 349 (25) 9.3 (3.3) 198 (86) 556.3 436 (114) 595 (155) 695 6.80 4.27
18 879 (213) 659 (160) 269 (237) 72.9 (na) 42.2 (na) 384.1 1315 (69) 3584 (187) 7428 9.80 6.87
amol C2H4 formed:mol N2 fixed

Table 1. Comparison of rates of N2 fixation estimated using acetylene (C2H2) reduction, and conversion factors of 3 or 4, with rates
of 15N2 uptake, 15NH4

+ and DO15N production, and 15NH4
+ uptake with estimates of NH4

+ regeneration from isotope dilution cor-
rected (IDC). Units are nmol N l–1 h–1. The ratios of N2 fixation estimated by the acetylene reduction (AR) method and net or total
15N2 uptake are also compared. Standard deviation of replicate measurements in parentheses; na: no standard deviation was 
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integrated over the growth curve, interpolating be-
tween days on which no measurements were made
and assuming these rates occurred over the 12 h light
period (Fig. 6). Total 15N2 uptake (into particulate mat-
ter and recovered in the dissolved NH4

+ and DON
pools) could account for 125 µmol l–1 N of this accumu-
lation. The rate measurements likely underestimate
net N accumulation, but they were within the com-
bined error of measurements made on replicate cul-
tures, suggesting that 15N2 uptake and release of
recently fixed N2 could account for N dynamics in cul-
tures. Integrated N2 fixation, estimated using C2H2

reduction with a 3:1 ratio, introduced 225 µmol N l–1

new N to the culture system during this experiment,
whereas assuming a 4:1 ratio yielded a value of
169 µmol N l–1, very close to that observed (Fig. 6).

Accumulation of PON estimated using total 15N2

uptake closely paralleled the observed growth rates in
the cultures, while C2H2 reduction-based estimates of
PON accumulation were faster than the observed
growth rates during most of the experiment (after
Day 3).

NH4
+ uptake, regeneration and isotope dilution

Despite the low estimates of NH4
+ production from

15N2, rates of NH4
+ uptake were comparable to or

higher than rates of 15N2 uptake during exponential
growth (Table 1). When corrected for isotope dilution
(see Glibert et al. 1982, Glibert & Capone 1993),
uptake of NH4

+ exceeded rates of 15N2 uptake and
were often comparable to rates of N2 fixation estimated
by C2H2 reduction (Table 1). Unlike estimates of
15NH4

+ release from 15N2 uptake, rates of NH4
+ regen-

eration estimated using the isotope dilution method
were substantial and exceeded rates of 15NH4

+ produc-
tion from recently fixed 15N2 by up to 2 orders of mag-
nitude. Rates of NH4

+ uptake corrected for isotope dilu-
tion were comparable to rates of regeneration of NH4

+

from isotope dilution (Table 1), indicating rapid
turnover and a tight coupling between NH4

+ uptake
and release and consistent with the observation that
NH4

+ did not accumulate in the culture medium
(Fig. 4).

DISCUSSION

Trichodesmium uptake of NH4
+ and DON

Early tracer studies suggested that Trichodesmium
spp. had a relatively low capacity for uptake of combined
N (Carpenter & McCarthy 1975, Glibert & Banahan
1988) and were primarily dependent upon N2 fixation to
meet their N nutritional needs. Subsequent work, how-
ever, has found a relatively high capacity for NH4

+ as-
similation in field populations and cultures (Mulholland
& Capone 1999, 2000, Mulholland et al. 1999) although
stable isotope (Carpenter et al. 1997) and culture studies
(Mulholland & Capone 2001) still indicate that net
growth is largely supported by N2 fixation. Adding to the
complexity, high rates of DON release from recently
fixed N2 have been observed in field studies (Capone et
al. 1994, Glibert & Bronk 1994) and release of NH4

+ has
been inferred, but not directly measured, in culture stud-
ies (Prufert-Bebout et al. 1993, Mulholland & Capone
2001). In order to obtain a broader understanding of N
dynamics and metabolism by these organisms, we ex-
amined rates of NH4

+ and DON release from 15N2 uptake
experiments, in parallel with estimates of N2 fixa-
tion using the C2H2 reduction technique, and NH4

+

uptake and regeneration from isotope dilution in
Trichodesmium cultures.

Like previous culture and field studies (Mulhol-
land & Capone 1999, 2001, Mulholland et al.
1999), we observed rates of NH4

+ uptake that
were comparable to or higher than rates of N2 fix-
ation estimated by C2H2 reduction. These high
uptake rates are consistent with the stoichiometric
imbalance between CO2 fixation and N2 fixation
over a growth cycle (Mulholland & Capone 2001).
Additional N turnover from NH4

+ regeneration
and uptake within the culture vessels would not
support net growth but could balance CO2 fixation
in excess of that necessary to support the
observed C accumulation as biomass. Alterna-
tively, as we have previously speculated, the
release and subsequent uptake of NH4

+ or other
fixed N compounds may be a mechanism
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whereby fixed N is transferred between cells capable
of fixing N2 and those that are not (Mulholland &
Capone 1999, 2000), as might be required by the
cyanocyte model which argues that only a subset of the
cells of a trichome are induced for N2 fixation (Berman-
Frank et al. 2001).

Based on our results from 15N2 uptake experiments,
the high rates of NH4

+ uptake observed in cultures of
Trichodesmium cannot be supported by the measured
release of recently fixed 15N2 as 15NH4

+. In contrast,
high rates of NH4

+ regeneration from isotope dilution
suggest that in fact, release rates are substantial and
that release and uptake are tightly coupled in these
culture systems. The lack of NH4

+ accumulation in the
growth medium over most of the growth cycle supports
this, and the tight coupling precludes accurate esti-
mates of gross NH4

+ release based on quantifying the
accumulation of 15N label in the NH4

+ pool during 15N2

uptake studies.

Release of NH4
+ and DON

In contrast to 2 field studies (Capone et al. 1994,
Glibert & Bronk 1994, O’Neil et al. 1996), observed
rates of 15NH4

+ and DO15N production from recently
fixed 15N2 were low in the cultures. We discuss
2 potential reasons for these low rates: (1) the absence
of grazers in the cultures; and (2) the presence of large
intracellular pools of NH4

+ and DON in cultured
Trichodesmium.

The presence of grazers and associated sloppy feed-
ing is an important mechanism for the release of
regenerated N (Bronk 2002). Rates of DON release
were found to be significantly higher in the presence of

grazers in California coastal waters and DON release
rates were closely correlated to NH4

+ regeneration
(Ward & Bronk 2001). One grazer, the harpacticoid
copepod Macrosetella gracilis, has been shown to feed
on Trichodesmium colonies (O’Neil & Roman 1992,
O’Neil 1998). These copepods do not appear to make
solid fecal pellets such that most of the N they release
remains in the dissolved fraction (O’Neil et al. 1996).
Therefore, one likely reason for the lower rates of N
release in this culture study was the absence of
grazers.

Another contributing factor to the low rates of N re-
lease in the cultures may have been the presence of
large intracellular pools of unlabeled NH4

+ and DON
compounds (e.g. DFAA). Initial NH4

+ and DON release
may have been isotopically light material that was pre-
sent in cells prior to the 15N2 addition. Based on rates of
total N2 uptake, it would have taken less than one to
several hours to turn over the intracellular NH4

+ pool
(Table 2) and, in most cases, even longer to turn over
the intracellular DFAA pool. Hence, 2 h incubations
may have been insufficient for the intermediate inter-
nal NH4

+ to reach isotopic equilibrium with the initial
15N2 tracer pool, thereby precluding accurate estima-
tion of 15NH4

+ or DO15N release rate. Similarly, NH4
+ re-

generation based on isotope dilution can also be under-
estimated if the intracellular pools are emptied in less
than the 1 h incubation period because 15NH4

+ taken up
might be released. The total intracellular DON pools
were not measured, but intracellular DFAA pools were
often much larger than intracellular NH4

+ pools (e.g.
Table 2) and so similar problems could have resulted in
underestimates of DO15N release from 15N2 uptake.

While these observations were made in cultured
populations, we previously measured intracellular pools
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Day C2H2 reduction Total 15N2 IN-NH4
+ IN-DFAA PON Turnover of

(nmol N trichome–1 h–1) uptake pool pool pool N-NH4
+ PON 

3:1 4:1 (nmol N (nmol N (nmol N (nmol N poola poolb poola poolb

trichome–1) trichome–1 h–1) trichome–1) trichome–1) (h) (h) (d) (d)

0 0.117 (0.040) 0.088 (0.030) 0.229 0.48 52.2 (3.6)0 4.1 2.1
1 0.359 (0.011) 0.269 (0.008) 0.373 0.74 42.6 (14.9) 2.1 2.0 4.9 4.8
3 0.492 (0.037) 0.369 (0.028) 0.366 0.47 0.74 31.9 (4.4)0 1.0 1.3 2.7 3.6
5 0.404 (0.060) 0.303 (0.045) 0.258 0.45 0.44 33.8 (1.9)0 1.1 1.7 3.5 5.5
9 1.370 (0.175) 1.028 (0.131) 0.590 0.36 1.50 54.8 (11.0) 0.3 0.6 1.7 3.9
11 0.425 (0.030) 0.319 (0.023) 0.201 0.15 0.63 33.1 (6.8)0 0.4 0.7 3.2 6.9
12 0.435 (0.082) 0.326 (0.062) 0.203 0.41 0.49 31.9 (9.8)0 0.9 2.0 3.1 6.5
14 0.138 (0.002) 0.104 (0.002) 0.128 0.27 0.46 22.9 (6.5)0 2.0 2.1 6.9 7.5
15 0.119 (0.006) 0.089 (0.005) 0.083 0.07 0.13 26.7 (8.3)0 0.6 0.8 9.4 13.4
18 0.288 (0.070) 0.126 0.08 0.13 57.8 (15.5) 0.3 0.6 8.4 19.1
aBased on C2H2 reduction
bBased on total 15N2 uptake

Table 2. Comparison of trichome-specific N2 fixation rates, intracellular NH4
+ and PON pools and turnover of intracellular pools of 

NH4
+ (IN-NH4

+) and PON based on N2 fixation estimates. Standard deviations of replicate measurements in parentheses
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of DFAA and NH4
+ in natural populations of Tricho-

desmium (Mulholland et al. 1999). During those studies,
intracellular pool concentrations were much lower (max-
imum of about 0.03 nmol NH4

+ filament–1 and 0.06 nmol
DFAA filament–1) than in this culture study, where the
medium was nutrient replete (with respect to P and trace
elements). However, biomass-specific N2 fixation rates
are often lower and N-based turnover times longer in
field studies (Mulholland & Capone 2000), and so these
pools might still be sufficiently large to cause underesti-
mates in N release from 15N2 uptake experiments for the
reasons discussed above.

Simultaneous release and uptake of NH4
+ or DON on

time-scales shorter than the incubation period would
also bias both the measurements of 15NH4

+ or DO15N
production from 15N2 uptake and NH4

+ regeneration by
the isotope dilution method because released material
would not accumulate in the growth media. Correcting
uptake calculations for isotope dilution yields much
higher uptake rates than those derived without this
correction (Table 1). NH4

+ uptake was often higher
than total N2 fixation, particularly in the initial growth
phases. Tightly coupled release and uptake of NH4

+ is
supported by the observed NH4

+ concentrations, the
high rates of NH4

+ regeneration from isotope dilution,
and the absence of sustained NH4

+ accumulation over
the growth cycle.

Tightly coupled release and uptake was likely the
case for DON as well; however, no independent mea-
sure of DON regeneration was made. For DON, there
is the additional problem of identifying the relevant
production pool. For example, an earlier study sug-
gested that the primary organic compounds released
by Trichodesmium were DFAA (Capone et al. 1994).

Comparing 15N2 uptake with C2H2 reduction

One important component of the present study is the
comprehensive analysis of 15N products from 15N2

uptake done in parallel with C2H2 reduction determi-
nations. As has been previously suggested (Carpenter
1973, Karl et al. 2002), we submit, and provide evi-
dence to support, that C2H2 reduction provides an esti-
mate of gross N2 fixation, as it should assay all nitroge-
nase activity, whereas 15N2 uptake into particulate
matter provides an estimate of net N2 fixation. Having
simultaneous determination of 15NH4

+ and DO15N
production, we can rigorously evaluate deviations
from theoretical conversion factors and interpret the
basis for those deviations.

The relationship between 15N2 fixation and C2H2

reduction is dependent upon a number of factors. For
one, nitrogenase-dependent H2 release, which is
inhibited by C2H2, results in a theoretical stoichiomet-

ric ratio of C2H2 reduction to 15N2 fixation of 3:1
(mol:mol) (Postgate 1998). However, many cyanobac-
teria, including Trichodesmium (Saino & Hattori 1982,
Scranton 1984, Scranton et al. 1987), have efficient
uptake hydrogenases to recoup H2 lost during natural
N2 fixation. This would drive the ratio closer to the the-
oretical 4:1 ratio.

Ratios of C2H2 reduction to net 15N2 uptake greater
than that theoretically predicted may also be indicative
of substantial N release from N2 fixation. High rates of
NH4

+ regeneration from isotope dilution in this study
suggests that the release of recently fixed N2 is more
substantial than production of 15NH4

+ from N2 would
predict (for the reasons discussed above). Therefore,
divergence of the C2H2 reduction:net 15N2 uptake ratio
from the theoretical ratio of 3:1 in the field studies may
indicate that there was release of recently fixed N2,
especially where incubations were long. Extensive
field studies (191 paired comparisons) suggest a mean
ratio of C2H2 reduction to net 15N2 uptake of about 3.6:1
(D. G. Capone et al. unpubl.). This is consistent with
the observations that recently fixed N2 is released as
DON (e.g. Capone et al. 1994, Glibert & Bronk 1994).
In contrast, in an earlier culture study, N2 fixation esti-
mated using C2H2 reduction and a ratio of 3:1 more
closely predicted the increase in PON (Mulholland &
Capone 2001). Similarly, Orcutt et al. (2001) reported
an average ratio of about 3:1, with considerable vari-
ance around that mean, for a multi-year study at the
Bermuda Atlantic Time Series station.

CONCLUSION

The current findings suggest that 15N2 uptake
approximates net N-specific growth rates (Table 2,
Fig. 6) while the C2H2 reduction technique is a good
estimator of gross N2 fixation. When considering total
15N2 fixation (sum of PON plus released DON and
NH4

+), a conversion ratio of 4:1 is more appropriate for
quantification of total N2 fixation when measured by
C2H2 reduction than that derived using the theoretical
3:1 conversion factor. Indeed, the difference between
estimates of gross N2 fixation, made using the C2H2

reduction technique and the theoretical 3:1 conversion
factor, and net N2 fixation, made using 15N2, is a good
indicator of N release from N2 fixation.
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