
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 1988

A Simulation Study of a Space-Borne Optical Disk Mass Memory A Simulation Study of a Space-Borne Optical Disk Mass Memory

System System

Kenny G. Chen
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer and Systems Architecture Commons, and the Data Storage Systems Commons

Recommended Citation Recommended Citation
Chen, Kenny G.. "A Simulation Study of a Space-Borne Optical Disk Mass Memory System" (1988). Thesis,
Old Dominion University, DOI: 10.25777/xxza-0192
https://digitalcommons.odu.edu/ece_etds/310

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fece_etds%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.odu.edu%2Fece_etds%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/310?utm_source=digitalcommons.odu.edu%2Fece_etds%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A SIMULATION STUDY OF A SPACE-BORNE

OPTICAL DISK MASS MEMORY SYSTEM

by

Kenny G. Chen
B.S. May 1986, Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment

of the Requirements for the Degree of

MASTER OF ENGINEERING

OLD DOMINION UNIVERSITY
April, 1988

Approved b

David L. Livingston

ABSTRACT

A SIMULATION STUDY OF A SPACE-BORNE
OPTICAL DISK MASS MEMORY SYSTEM

Kenny G. Chen
Old Dominion University, 1988

Director: Dr. David L. Livingston

Issues concerning space-borne applications of an

optical disk mass memory system (ODMMS) are investigated
through computer simulation. The simulation model is
developed according to a current description of the ODMMS

with certain application constraints. The results are

examined in terms of system modularity, multi-user data

rate buffering, disk module access, and read/write file
management. The conditions and requirements for future
disk controller designs are indicated in the simulation
results.

ACKNOWLEDGEMENT

I would like to acknowledge Dr. D. L. Livingston for
his persistence and inspiration and Dr. T. A. Shull for his
technical help. This research was sponsored by the

National Aeronautics and Space Administration under

contract NAS1-17993-62.

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER

1V

1. INTRODUCTION

BACKGROUND

3. DISCUSSION OF ISSUES 15

SIMULATION MODEL STRUCTURE 25

5. SIMULATION RESULTS 40

CONCLUSIONS 50

APPENDIX A. SIMULATION PROGRAM IISTING

APPENDIX B. PROGRAM INPUT DESCRIPTION

APPENDIX C. PROGRAM OUTPUT DESCRIPTION

53

63

66

SELECTED BIBLIOGRAPHY 87

LIST OF FIGURES

Figure

2.1

2.2

2.3

2.4

2.5

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

High Level ODMMS Architecture

Conceptual Configuration of the ODMMS

Illustration of Disk Track

Magneto-Optic Recording Process

ODMMS Aboard EOS Platform

Circular Buffer Concept

Program Algorithm

Sample Data from EOS Platform

Approximation of EOS Data Distribution
Disk Module Write Algorithm

Disk Module Read Algorithm

Disk Module Status Scheme

Disk Surface Status Scheme

Disk Module Access Algorithm

Seek Time vs. Number of Tracks Traversed

Page

19

27

28

29

32

33

35

35

36

37

4.10

5. la.
5. lb.

Rate Buffering Algorithm

Efficiency vs. Time (12 Disk Modules)

Efficiency vs. Time (10 Disk Modules)

39

41

42

5.2 Disk Modules Required vs. Initial TDRSS Time . 44

5.3 Effect Of TDRSS Channel Unavailable 45

iv

CHAPTER 1
INTRODUCTION

In future space-borne applications, there will be

increasing demands for data storage and retrieval systems

exhibiting high density, large capacity, fast access, long

storage life, and low bit-error rates. Magnetic recording

technology is not adequate in providing these capabilities.
In order to achieve the projected high density, large
storage capacity, and other operational requirements, newly

available erasable laser recording technology is currently
being integrated into conventional multi-disk storage
systems. The result is a new type of disk storage, called
an optical disk mass memory system (ODMMS) .

The reason for selecting a multi-disk form is that the
systems will be able to accept continuous data at various
rates and play back at a predetermined rate, or to
simultaneously accept input data on some of its surfaces
while reading previously recorded data from other surfaces.
Earlier studies on optical memory system architectures [1],
[2], [3] indicate that the architecture of the ODMMS will
have many similarities to conventional disk storage;
however, the requirements and constraints imposed by

space-borne applications will add more complexity and

special features into the memory system design. Issues such

as I/O rate buffering, disk module access, read/write data

format, system synchronization, and system modularity will
all have a great impact on the structure of the storage
systems. The purpose of this study is to investigate the
overall performance of the ODMMS within these constraints
and suggest possible improvements.

One way to estimate the performance of a mass memory

architecture is to build a hardware model which is
proportional to the actual size of the ODMMS. The model

can be run under various test conditions to provide an

insight into the system operation. However, the idea is
unrealistic due to the unavailability of technologies to be

employed in the system design and the expensive cost. An

alternative cost-effective approach is through computer

simulation.
Simulation has been widely used in computer system

evaluation. Examples include main memory partitioning, CPU

scheduling in a multiprogramming system, computer system

design optimization, and resource management in a

time-sharing system [4]. The case in this study is an

example of memory management and I/O service under a

typical workload. Running the computer model by using
sampled data from projected real-time operation, we are
able to obtain information about the system at any time

instant during its simulated operation. Thus, the
real-time performance of the system can be analyzed from

this information.

I

I

I

I I

MASS MEMORY SYSTEM

CONTROLLER

L

FIGURE 2.1 HIGH LEVEL ODMMS ARCHITECTURE

ROt
Sh

Disk Electro-Optical ModU)e

t

(1 of 12) (1 pf 24)

Drlvs Assembly~ I
10 m~

E)ectronlcs

1.0 m~

FIGURE 2.2 CONCEPTUAL CONFIGURATION OF THE ODMMS
REPRODUCED WITH PERMISSION FROM SHULL [5]

read/write head on each disk surface. To avoid possible
confusion, we define a track as consisting of eight data

sub-tracks and one permanent pilot sub-track as illustrated
in Figure 2.3 [6]. The pilot sub-track contains track
number identification data, which could be processed by the

controller at a separate low rate, to provide optical head

control information. Instead of using a conventional

concentric track format, it has been changed to a spiral
track format. As will be discussed in the next chapter,

the spiral track format requires less amount of disk access

time than the concentric track format in processing

continuous and long stream type of data. Solid state
lasers, implemented in a nine-diode array positioned on a

read/write head, can read or write eight data sub-tracks

simultaneously to achieve a desired surface I/O rate of 150

megabits per second. The projected data storage capacity

(24 surfaces) is on the order of 10 bits [5].
The magneto-optical recording process used for

disk-write and disk-read is illustrated in Figure 2.4 [6].
At normal ambient temperature, the bias magnetic field has

no effect on disk medium. An increase of temperature

caused by a focused laser beam results in a local reversal
of magnetization; information is thus written on the medium

surface. The read operation is performed via a phenomenon

known as the Kerr effect, i.e., the polarization angle of

the reflected laser beam is rotated according to the

orientation of the magnetic field on the medium. To erase

DATA SUB-TRACKS

ENT PILOT SUB-TRACK

FIGURE 2.3 ILLUSTRATION OF DISK TRACK

A. Blank Disk C. Read

N N N N N N N N N-0 medium

Bias
magnetic field

N N N S S N N N

B. Record
D. Erase

Focused laser beam

N N N S S N N N N N N N N N N N

FIGURE 2.4 MAGNETO-OPTIC RECORDING PROCESS

the information, or to recover the original uniform

magnetic pattern, the bias field is reversed and the

vicinity temperature is raised by the laser. The erase

operation has to be executed before the medium can be used

for further recording.

As shown in later simulation results, the dynamic

capacity of the ODMMS is limited primarily by the
transmission channels available for reading data from the

memory. It is desired to read as much data off the disk
surfaces as possible during the limited transmission time;

meanwhile, the disk system can accept more input data.
This will increase the dynamic capacity of the ODMMS.

However, the concurrence of erase and read operations on a

same disk surface would cause the read/write heads to move

back and forth and increase the disk access time for the
read operation. The actual time available for data reading

would be reduced. To avoid the access conflict, a proper

scheduling of erase operations is required. We assume that
an erase operation can occur only after all the data on a

disk surface has been read. The erase operation takes the

same amount of time as a disk read.

A possible space-borne application of the ODMMS is
aboard an Earth Observing System (EOS), where the memory

system will function as a data reservoir [5j. This is
illustrated in Figure 2.5. The EOS is used to collect a

large quantity of image data and transmit it down to earth

stations through the Tracking and Data Relay Satellite

FIGURE 2.5 ODMMS ABOARD EOS PLATFORM
REPRODUCED WITH PERMISSION FROM SHULL 1'5]

12

System (TDRSS). The EOS moves about the earth orbit and

transmits data only when it is in line of sight with the

TDRSS, which is in a geostationary orbit. During the time

when the TDRSS is out of transmission sight, data from

different sources have to be temporarily stored in the

memory system. A scenario provided by NASA Langley and

used in this study makes the available time for data

transmission using the TDRSS, 33 minutes out of an

100-minute EOS orbit time. If the simulation data is run

over an eight-hour period, the TDRSS will be available
approximately four times, which accounts for a total
data-read time of 132 minutes. This puts a significant
constraint on the dynamic storage capacity of the ODMMS.

So far, the discussion of the ODMMS architectures has

been limited to the conceptual level. In estimating the

performance of a memory system that does not yet exist,
Lucas [7] points out that the most potentially powerful and

flexible evaluation techniques are computer simulations,

which provide a testing ground for, and insight into, the

functioning of the system. This has been verified through

various simulation studies, and their results are

consistent with later actual system measurements [7]. In

general, there are two basic types of simulation that have

been used to evaluate computer systems. One type of

simulation uses empirically-derived data which are

manipulated to correspond with a specific system

configuration and workload; the other type models the

actual operations of a system for which a schedule of

events is maintained. Probability distributions are

generally used to describe the system performance. The

boundaries between these two types of modeling are often

overlapping. Because systems differ so much in their
organization and operation, there is no standard way of

modeling a complex system for either type of simulation. A

common practice is to design a simulation model following

the individual needs and particular structure of a system.

Since a simulation model is never a complete

representation of the real system, we have to validate the
model after it has been established. Several standard

validation procedures, such as verifying the program,

comparing model data with real system data, and sensitivity
analysis, are commonly used in practice [8]. The purpose

of verifying the program is to determine whether or not the

program implements the model as intended. This is simply

part of what is commonly known as the "program-debugging"

process.

Comparing model data with real system data is one of

the primary approaches used in the model-validation

process. The usual condition for this type of testing is
that both the test data from the real system and the
model-generated data will be stochastic variables. Thus,

the problem of comparing this data corresponds to so-called
two-sample statistical testing. A further discussion on

this procedure is presented and illustrated by Payne [8].

Sensitivity analysis views the model as an input-output
process. The basic idea is to vary input variables to the

model, by using incremental changes, and observe the

incremental changes in the output variables. The ratio of

these changes is referred to as the sensitivity of the
outputs to the specified inputs. It is reasonable for the
sensitivity of a model to be approximately constant for

small changes in the input variables. In this study,

unfortunately, no real data from the ODDS can be measured

to compare with the model-generated data. Thus, we have

to mainly rely on the two validation procedures: program

verification and sensitivity analysis.
Through the above discussion of the configurations of

optical disk mass memory systems and possible applications,
we intend to provide an overall picture of the systems.

This leads us to further investigate the design

considerations of such systems.

CHAPTER 3
DISCUSSION OF ISSUES

In the use of disk storage memory, the disk access time

is always one of the main drawbacks. As defined by Baer

[9], the disk access time T, in the case of movable head

disks, is of the form:

T = Ts + Tr + Tt

where Tr is the rotation time, Tt is the data transfer
time, and Ts is the seek time, or time required to reach

the right track. The rotation time and data transfer time

are determined by the physical constraints of the systems,

and are not related to the disk format. However, the
amount of track seek time can be reduced by changing a

conventional concentric track format to a spiral one. In

the case of concentric track format, extra seek time is
required when heads move from one track to the next. The

exact amount of this time is determined by the mechanical

structure of the drive and varies from system to system,

usually between 10 to 20 milliseconds for magnetic disk

systems [10]. If thousands of tracks need to be accessed

continuously, the amount of delay could reach the order of

tens of seconds. Under the circumstances, a huge data

buffer would be required to temporarily store the

accumulated data. This situation is more likely to occur

15

when a long stream of high-rate data needs to be retrieved
or written onto disk surfaces. With the spiral track
format, heads can move from track to track in a smooth

manner so that the delay between the consecutive tracks is
actually eliminated.

Tracks, in a conventional disk storage system, are

further divided into sectors. The size of a sector is
determined by the type of data the memory system is
accommodat.ing, i.e., small sectors work best. with small

data files but require more overhead information; and large
sectors require less overhead but leave large portions of

sectors unused when data files are small. The question is
often resolved through simulation. Conceptually, the ODNNS

uses one track (one complete revolution of the disk) as a

sector. As shown later in the simulation results, this is
a reasonable choice for the long stream type of image data

processed by the EOS platform.

In addition to the physical configuration of the ODNNS,

its environmental and operational requirements also need to
be considered. In a space platform, the mass memory system

usually works over extended periods with infrequent
visitation for maintenance. This requires that the memory

system be able to detect failures and, if possible,
reconfigure or map out failed elements. Reconfiguration

may reduce the system capacity, resulting in a degraded

performance [5j. This suggests the idea of disk

modularity. By partitioning the memory drive into several

independent modules, a malfunctioned module can be easily
mapped out, or be replaced by a spare module. We consider

one double-sided disk as a module. There are three main

reasons behind this consideration. First, it combines two

disk surface I/O rates of 150 megabits per second together
to produce a net modular I/O rate of 300 megabits per

second, which matches the projected maximum user data rate.
The condition of modular I/O rate greater than the input

user rate ensures that data will not overflow into a

circular buffer, which is defined later in this chapter.
Second, it requires a minimum size circular buffer. Third,

a module containing a small number of disk surfaces has

less effect on the overall dynamic capacity of the memory

system after a malfunctioned disk module is mapped out.
This is justified in the simulation results.

In the applications to the Earth Observing System

described in Chapter 2, incoming data from different
sources is usually large guantit.ies of image data,
contained in a long stream file at a relatively high rate.
Any transmission delay, including hand-shaking and disk
access, could imply the loss of information unless a

temporary buffer is used. On the other hand, physical
constraints on the ODMMS require the size of this buffer be

kept at a minimum. To reduce the amount of delay, it
becomes the responsibility of users to notify the disk

controller, so the controller has enough time to complete

the hand-shaking process and place the optical heads on the

18

right tracks before an actual I/O operation takes place.
In any case, the disk rotation delay, which occurs when

writing a new data file or writing data on a blank disk

module, cannot be eliminated. We will consider disk

rotation delay as the only disk access time for the write

operation under the condition of the controller being

notified beforehand.

The actual amount of rotat.ion delay (usually a random

parameter) is determined by the optical head position on a

track. We assume that the head position is represented by

a uniform distribution. The maximum delay is then one disk

rotation with an average of a half disk rotation.
Certainly other types of distributions can also be used for
analysis, but we will see that the difference is insignifi-
cant in the way the rotation delay is actually handled.

From the view of system modularity, the ODMMS should

maintain a modular I/O rate of 300 megabits per second,

providing that the disk rotation rate is fixed. Different
user data rates have to be converted to the rate of 300

megabits per second. A circular buffer which is twice the
size of one modular track (two tracks) is suggested to
perform the rate conversion, as shown in Figure 3.1. The

circular buffer uses two pointers; one for the read

operation and one for the write operation. Initially the
pointers address the same position. Incoming user data is
first written into the buffer and causes the write-pointer
to move away from the read-pointer. Once the difference

A. INITIAL POSITION OF READ-, WRITE-POINTERS.

B. WRITE-POINTER MOVES AWAY FROM READ-POINTERS

FIGURE 3.1 CIRCULAR BUFFER CONCEPT

20

C. READ-POINTER STARTS MOVING WHEN THEY ARE 180'PART.

READ-POINTER

D. READ-, WRITE-POINTERS BOTH MOVE AROUND THE BUFFER.

FIGURE 3.1 (CONTINUED)

between two pointers indicates a full modular track size of

data (equivalent to 16 data sub-tracks), information is
written to the disk module after the read/write heads reach

the beginning of a pilot sub-track. Meanwhile, the
read-pointer moves toward the write-pointer. Since

simultaneous I/O is allowed, the write-pointer keeps moving

away from the read-pointer. At the end of a disk track,
the controller again needs to examine the difference
between two pointers. If the difference is larger than, or

equal to, the size of one modular track, data is written on

the next consecutive disk track without delay; otherwise,

the optical heads will rotate above the next consecutive

track waiting for the controller's go-ahead signal.
When the distance between two pointers reaches the size

of one modular track, the optical heads may or may not be

at the beginning of a pilot sub-track. That is, the heads

are not synchronized with the tracks. Additional buffer
space is required to postpone the data transmission unt,il

the optical heads again reach the beginning of the tracks.
In the worst case, it requires a full modular track. For

this purpose, the size of the circular buffer is maintained

as two modular tracks. We eventually overcome part of the
disk rotation delay problem.

We have seen that the disk module access conflict
between the read and erase operations increases the access

time. The other disk module access conflict caused by read

and write operations can also have significant effects on

22

the access time. Because user data has to be stored
immediately after being transmitted in order to keep the
circular buffer to a minimum size, we assume that the write
operation has a high priority over the read operation. To

keep the seek time at a minimum, the optical heads should

be maintained on the last tracks they served. This is not

always the case if read and write operations are allowed on

the same disk module. For example, while reading data off
a disk module, a disk module write request could occur.

The optical heads then have to be moved to the current
available tracks. At the worst, the optical heads would

step from the innermost track to the outermost track, or

vice versa. If extra disk module access time has to be

included, one way of handling this is to increase the
circular buffer size. We are aware that a trade-off
between the physical size of the buffers and the complexity

of the controller always exists.
The file management of a memory system takes various

forms depending on design choices. The foremost criteria
are whether a file is to be partitioned into fixed or

variable memory areas, and whether replacement algorithms

are to be local; i.e., involving only the memory allocated
to a particular file; or global, i.e., taking into account

the history of all resident files [9]. A replacement

algorithm is the policy used to determine which file stored

earlier in the memory system needs to be erased when the

full capacity of the memory is reached. The newly

23

available memory space is reserved for accepting new data
files. Some of the most often used replacement algorithms

are first-in, first-out (FIFO) replacement,
first-in-not-used-first-out (FINUFO) replacement, and

least-recently-used (LRU). Originally, these concepts were

discussed in reference to paging memory systems. At this
early stage of discussion we have no intentions to restrict
the ODMMS to a paging organization. Thus, we consider
files as basic memory blocks.

The FIFO policy stores files in a sequential order.
The space allocated to the first file becomes the first one

to be replaced. FINUFO keeps a FIFO queue as before, but

it associates with each file in the queue a "use" tag which

will be turned on when the corresponding file is referenced
after its initial loading. When memory space is full, the
new file will replace the first file not referenced in the
queue. This algorithm has been used in MULTICS and the IBM

System/360 Model 67 [9]. The disadvantages of FIFO and

FINUFO are that they both have no reordering of files
according to the number or recentness of references. This

constraint is implemented in the LRU algorithm, which uses

a stack to record the references instead of usinq a queue

and reference tag. If a file is referenced most recently,
it will be placed at the top of the stack, and the file at
the bottom of stack is replaced first.

After examining the potential applications of the

ODMMS, we conclude that the FIFO algorithm is the most

24

simple and effective memory organization technique as

compared to the others. As indicated earlier, the primary

function of the ODMMS is to serve as a temporary buffer.
Data files stored earlier on a disk module are most likely
to be read and transmitted down to an earth station for
further processing. There is no potential need to
reference a particular file. If such occasions do happen

in the future, our circular buffer structure could become

inappropriate or inadequate, and we have to look for other
alternatives.

CHAPTER 4
SIMULATION MODEL STRUCTURE

The simulation model of the ODMMS needs to be

implemented to represent the functions of memory storage

capacities relative to a first-in-first-out read/write file
management system under a given data-load. It also needs

to reflect the condition of I/O requests and input data

rate buffering. A proper representation of these
operational relations is the type of simulation that uses

empirically derived data which are manipulated to
correspond to a specific system configuration and workload

as previously mentioned in Chapter 2. There are no certain
rules as to how to establish such a model. The actual
modeling is dependent on our knowledge and earlier
discussions on the ODMMS. The following conditions and

assumptions are also integrated into the model

establishment.

1. The disk module write has higher priority over the
disk module read to eliminate the track-seek time.

2. Disk rotation delay is considered as the only disk
access time for the disk module write. It has a

uniform distribution with a maximum delay of one

disk rotation and an average of a half-disk
rotation.

25

26

3. Track-seek time is included for the disk module

read. The heads are assumed to be positioned at
the last tracks served from the previous operation.

4. Disk module reads and writes cannot occur on the
same module. This eliminates a possible access

conflict between these two operations.
5. A disk module is erased only after all the data on

that module has been read. A disk module erase
takes the same amount of time as the disk module

read.

Figure 4.1 illustrates the overall program algorithm.

The initialization routine at the beginning establishes
system parameters, such as the number of disk modules, the
starting time of the TDRSS for reading data from the disk
memory system, the number of input files, etc. These are
the basic elements which will affect the overall system

performance once the test ground (simulation model) is
established. The simulation is then started by the arrival
time of the first input file. In Appendix A the program

listing is presented, which consists of five subroutines:
data file schedule, disk module write, disk module read,
disk module access, and rate buffering. The main program

corresponds to the initial routine in Figure 4.1, and also
controls the program flow.

NASA Langley has provided a sample data distribution
over an eight-hour time period from a typical EOS

application, as shown in Figure 4.2. Figure 4.3 is a

FIGURE 4. 1 PROGRAM ALGOBITHM

2SO

200

240

220

200

1$0

120

20

00t00 01t00 02t00,. 03t00 04:00 05:00
FIGURE 4.2 SAMPLE DATA FROM EOS PLATFORM

Od:00 07t00
11ms af Day

320

300

280
260

240
220

200

180
160
140

120

100

80

60

40

20

DATA RATE (MBITS/S)

00:00 Ols00 02:00 03:00 04:00 05:00 06a00 07c00
TIME OF DAY

FIGURE 4.3 APPROXIMATION OF EOS DATA DISTRIBUTION

30

numerical interpretation of this data, where it is packed

into approximate discrete data blocks to match the discrete
simulation structure. By doing so we assume that the
dynamic capacity of the disk systems depends on the amount

of data transmitted during certain time periods, not the
data rates, since different data rates can be converted to

a constant rate through the circular buffers. Each

constant rate data-block is considered as a file. Data

rates below ten megabits per second have been either
disregarded or included into previous high-rate data

blocks; however, they could also be separated and

considered as individual data files. This information is
then used in the data-file schedule subroutine to schedule

the occurrences of all the disk-module writes.
The overall simulation timing is controlled by the disk

writing time. A separate read-time pointer is used to
control the execution of disk reads. Upon the completion

of writing a file or the condition of disk module full, the
read-time pointer is checked against the schedule of the
TDRSS channel availability. If the system is available for
data transmission, the disk-module read subroutine is
initiated and data written on previous disk modules can be

read and erased; otherwise, the read-time pointer is
elapsed to the point equal to the overall system time,
which implies a disk module access conflict. The I/O

operations are then resumed.

The detailed block diagrams of disk-module read and

disk-module write are illustrated in Figures 4.4 and 4.5.
At the beqinning of a disk-module write, the current disk

space availability is checked against the required data

space. If the condition is false, a data overflow message

is issued and the simulation halts. The disk-module access

subroutine and rate buffering subroutine are executed next;

one determines the current head position above the tracks
and the disk access time, and the other determines the size
of the circular buffer and describes rate buffering.

After each disk-module write or disk-module read, the
overall system status is updated. We have used the scheme

shown in Figure 4.6 to keep tracking the system status,
where WR-pointer points to the current writing disk module,

Length 1 is the number of blank disk modules at the right
of WR-pointer, RD-pointer points the first blank module at
the left of WR-pointer, and Length 0 is the number of blank

modules at the right of RD-pointer. For example, in Figure

4.6, the values of WR-pointer, Length 1, RD-pointer, and

Length 0 are equal to 6, 5, 0, and 4, respectively. The

numbers also imply that module 6 is the current writing
module, 5 blank modules are at the right of the WR-pointer,

module 0 is the first blank module at the left of the

WR-pointer, and module 4 is the current reading module.

Pointers move from left to the right. When the furthermost

right module is full, the values of each pointer are

updated: WR-pointer becomes zero (writing module 0); Length

32

ACCEPT NEW FILE

IS THERE ENOUGH
DISK SPACE?

NO ERROR MESSAGE

YES

DISK MODULE ACCESS

RATE BUFFERING
DETERMINE WRITE-TIME

UPDATE SYSTEM STATUS

IS TDRSS TRANSMISSION YES
CHANNEL AVAILABLE?

DISK MODULE READ
SUBROUTINE

NO

NEED TO WRITE A
NEW MODULE?

NO

YES

UPDATE FILE LENGTH

FIGURE 4.4 DISK MODULE WRITE ALGORITHM

OBTAIN SYSTEM STATUS

DISK MODULE ACCESS

READ DATA OFF TRACKS
DETERMINE READ-TIME

IS TDRSS TRANSMISSION
CHANNEL OVER?

YES

NO

NO FINISH READING
CURRENT MODULE?

YES

DOES READ/WRITE DISK
MODULE ACCESS CONFLICT?

UPDATE SYSTEM STATUS

RETURN TO DISK MODULE
WRITE SUBROUTINE

FIGURE 4 ' DISK MODULE READ ALGORITHM

I takes the value of Length 0 minus one (number of blank

modules at the right of WR-pointer); RD-pointer takes value

of Length 0 (current reading module); and Length 0 becomes

zero (no blank module at the right of RD-pointer).

Another scheme, used to define the status of blank

tracks on a particular disk module, is shown in Figure 4.7.
Free-track points to the first blank track, and))-track is
the total number of blank tracks, assuming the innermost

track is track 0. Initially, free-track is equal to zero

and ()-track is equal to the total number of tracks on one

disk surface. The pointers rotate from in to out.

The block diagram of disk-module access subroutine is
shown in Figure 4.8. The uniform distribution of head

positions assumed earlier is produced by a pseudorandom

number generator. By assumption, the disk-access time for
disk-module reads also includes the track-seek time.

Usually, the seek time is a non-linear function of the

number of the tracks the heads have crossed as shown in

Figure 4.9. For a small number of tracks crossed, the seek

time consists of linear increments of the step-time from

track to track. The slope of the curve decreases when the
number of tracks traversed becomes larger. The upper bound

of this function is close to the dashed line in Figure 4.9.

Since it is reasonable to evaluate the system capacity as

the access time reaching its upper bound, we assume that
the access time consists of linear increments of the

step-time of one millisecond from track to track.

LENGTH 0

0-TRACK

FIGURE 4.8 DISK MODULE ACCESS ALGORITHM

37

80

60

40

20

0 50 100 150 200 '4 OF TRACKS

FIGURE 4.9 SEEK TIME VS. NUMBER OF TRACKS TRAVERSED

38

Figure 4.10 shows the block diagram of the rate
buffering subroutine. The size of the buffer is determined

by the amount of data accumulated due to disk-module access

delay plus the current buffer status. The rate buffering

is implemented according to the previously discussed

circular buffer concepts. After each disk rotation, a

separate pointer indicates the amount of data in the

buffer, and a time increment equivalent to one disk

rotation is added to the total disk-module write time. If
the pointer exceeds the size. of a modular track, the amount

of data equivalent to one modular track is subtracted from

the pointer. This process continues until the data

transmission is completed. Since the input rate is less
than or equal to the disk-module write rate, the write time

is always behind the user data transmission time.

The level of detail at which the simulation operates is
a macro-level, i.e., the effects of processing complete

jobs are simulated. The simulation model is written in the

C language [11] because it has the capability of hardware

manipulation, an efficient utility for the possible
micro-level simulation of the optical memory system. For

instance, to determine the format of individual

instructions, the number of bits needed as overhead, or the

number and type of redundancy bits used in information

coding, a bit-level simulation may be required.

39

LABEL:
POINT1 — AMOUNT OF DATA IN THE

BUFFER DUE TO DELAY
FL — AMOUNT OF INPUT DATA AFTER

ONE DISK ROTATION
NUMBT — SIZE OF TRACK

POINT1 = POINT1 — NUMBT
POINT = POINT1
K = K + 1

YES IS
POINT1) NUMBT?

NO

TRACK BUFFER SIZE = K

DETERMINE TIME OF TRANSFERRING
DATA IN THE BUFFER ONTO DISK
UNTIL POINT & NUMBT

RATE BUFFERING

RETURN TO CALLING MODULE

FIGURE 4.10 RATE BUFFERING ALGORITHM

CHAPTER 5
SIMULATION RESULTS

Before analyzing the simulation results, it is
necessary to validate the simulation model. Efforts have

been made in the program debugging to ensure an error-free
program. As mentioned in Chapter 2, due to the lack of

actual system measurements, the usual probability analysis
procedure does not seem applicable. We have to rely on the

sensitivity analysis. In Figure 5.1a, the function of

system efficiency vs. time is shown for TDRSS transmission

channel starts at 0, where the system efficiency E is
defined as:

Number of Disk Modules Used

X 100

Total Number of Modules

If considering the number of disk modules as input to

the model and the system efficiency as output, from the

point of sensitivity analysis, we expect the ratio of

output vs. input to be constant. To reflect this condition

in the graph, for a fewer number of disk modules, the

curves in Figure 5.1a will keep approximately the same

shape but be shifted upward. That is, reducing the system

capacity causes an increase of system efficiency under a

constant data-load. In Figure 5.1b, the curve is plotted
40

100

80

60

40

20

100 200 300 400 500 TIME (MIN.)

FIGURE 5.1A EFFICIENCY VS. TIME (12 DISK MODULES)

100

80

60

20

100 200 300 400 500

FIGURE 5.1B EFFICIENCY VS. TIME (10 DISK MODULES)

for the total number of modules equal to ten. The results
meet our prediction.

After the model verification, the following results
need to be drawn from the simulation:

1. the number of disk modules required without data

loss,
2. the size of the circular buffer for different input

rates, and

3. the effects of TDRSS starting transmission times on

the system capacity.
Figure 5.2 shows the number of disk modules required

for different available starting transmission times.

Naturally, the memory system can start when the TDRSS

transmission channel has already been available. The

system status of this situation is examined by extending

the same data distribution used in Figure 4.3 to a 24-hour

period. In this case, the curve tends to flatten. Under

normal operation ten disk modules are required in active
mode.

The effect of missing the TDRSS transmission window

once during an 100-minute EOS orbit can be seen in Figure

5.3. The performance degradation of the ODMMS is severe if
missing the TDRSS channel occurs after 200 minutes.

Because of a heavy data-load, the ODMMS reaches its full
storage capacity before the next consecutive TDRSS

transmission channel is available, and data overflows. The

problem cannot be overcome by just simply increasing the

12

10

10 20 30 40 50 60 TDRSS STARTING
TIME (MIN.)

FIGURE 5.2 DISK NODULES REQUIRED VS. INITIAL TDRSS TIME

OF DISK MODULES

100 200 300 400 ODMMS OPERATION
TIME (MIN.)

FIGURE 5.3 EFFECT OF TDRSS CHANNEL UNAVAILABLE

46

number of disk surfaces in each disk module. The increase

of the number of disk surfaces in each disk module creates

a gain in I/O rate but not in the overall system capacity.

Examining the detailed simulation results, we find that the

earlier two TDRSS orbits have not been fully utilized;
i.e., input data-load is very light and the TDRSS channel

availability is used at a low percentage (refer to Fiqure

5.1). Thus the capacity of the ODMMS is limited mainly by

the I/O activities occurring during the later two TDRSS

orbits.
The above discussion does not favor a module consisting

of more than two disk surfaces. We next examine the system

modularity from a different aspect. We have seen that ten

disk modules are required under normal operation. For a

total of 12 disk modules, there are two extra modules which

can be considered as redundant. If the number of disk

surfaces in each module is increased to three, for example,

the disk system is partitioned into eight modules. In

order to reach the capacity of 20 disk surfaces (ten

modules) in the previous case, seven modules (consisting of

21 disk surfaces) are required, leaving one redundant

module. To leave two modules as redundant, the system

capacity will be reduced to six modules (ls disk surfaces),
which obviously cannot meet the storage capacity required.

Again, from the point of system modularity, a system

partition containing more than two disk surfaces is not

favorable.

47

As was previously discussed, a circular buffer is used

for user rate buffering and disk module access. When the

user rate is below 300 megabits per second, the amount of

data accumulated in this buffer due to disk rotation delay

will decrease with a disk-module write. For example,

assume the incoming data rate is 280 megabits per second

and the amount of data in the circular buffer is 1.9

modular tracks. After writing one modular track of data

onto the current disk module, the amount of data left in

the buffer will be reduced to approximately 1.833 modular

tracks. It must continuously write about 14 modular tracks
before the amount of data accumulated in the buffer can be

reduced to less than one modular track. However, if the
space left in the current disk module is less than 14

modular tracks, a new disk module needs to be initiated.
In the worst case, a full modular track of data due to the
new rotation delay could be added into the circular buffer.
Thus, the total amount of data accumulated in the buffer
would exceed two modular tracks. From discussions with

other research groups, it has been suggested to increase
the size of the circular buffer to three modular tracks.

However, examining the simulation results, we find that
the size of the circular buffer is also determined by the

following. In writing a long stream of data with the input

rate of 300 megabits per second, the I/O status of the

buffer is in a static state; i.e., data accumulation will
not decrease with disk-module writes. Again, a full

48

modular track of data could be added into the buffer when

starting to write a blank disk module. With the

continuation of disk-module writes, the data accumulation

would then increase with the number of disk modules

accessed. Therefore, a large size circular buffer
depending on the length of data files would be required.
To circumvent these problems, we suggest the use of two

circular buffers. The two buffers operate in an

interleaving manner; one starts accepting data when the
data left in the other fits into the remaining space of the
current disk module. In any case, the data left in a

circular buffer is less than or equal to the size of two

modular tracks. It becomes the responsibility of the
controller to monitor the status of the current circular
buffer and initiate the second one on time.

Since it is impossible to start writing data anywhere

other than the start of a track, one question concerning

the track-space utilization is whether data left in a

circular buffer should be dumped onto the disk module at
the end of a file, maintained in the buffer waiting for the
next data file, or a percentage transferred onto the disk

module, resulting in less waste of track space. The

problem is integrated into the disk-module write
subroutine, where we consider 20, 40, 60, and 80 percent of

track full as one track. As seen from the simulation

results, the effects on total system capacity are

insignificant or minor due to the nature of user data

files, which are often long and continuous. Therefore,

data left in a buffer should be written onto the disk
module. From the practical point of view, any unnecessary

data transmission delay is undesirable. This confirms the
earlier choice of selecting one track as a sector for a

better utilization of disk space.

CHAPTER 6
CONCLUSIONS

Issues concerning system modularity, multi-user rate
buffering, overall read/write file management, disk module

access, and other details have been discussed with the

simulation results. Most of the solutions are specially
targeted to the space-borne applications, and are different
from the conventional methods adopted for magnetic disk

storages. It is worthwhile to emphasize them again as our

recommendations on the future architecture of the optical
disk controller. Some assumptions, made for the system

modeling, are essential to the evaluation of the overall
system performance and will also have considerable impact

on the memory system design.

A fundamental assumption in this study is the first-in,
first-out (FIFO) read/write file management. It is the

most straightforward file management policy when considered

either from the complexity of the controller's hardware or

the practical applications on the EOS platform. Under the

assumptions that there are no disk-module access conflicts
and an optical head is maintained on the last track it
served, the FIFO method requires no track-seek time for

disk-module writes. The circular buffers, which have the

size of two modular tracks, are shown to be adequate to

50

51

resolve the disk rotation delay and optical heads

synchronization.

The concept of circular buffers, proposed here in

handling the rate buffering and disk-module access, is an

unique feature contributed to the controller's
architecture. Their operation will be under the control of

the disk controller's hardware/software, and constitute a

major element of the data adaptor mentioned in Chapter 2.

We have further indicated that two circular buffers
must operate in a manner of interleaving to avoid the

increase of data accumulation inside a buffer. That is,
the controller needs to monitor the track status of a

current writing module and initiate a second buffer when a

new disk module needs to be accessed. This is a new

requirement imposed on the controller. As direct outcomes,

the size of the circular buffers can be maintained at a

minimum and multi-user inputs are allowed.

A trade-off between the operational requirements and

disk access time is the completion of a hand-shaking

process before an I/O operation can take place. To

eliminate the track-seek delay, we have suggested that the

optical heads need to be placed on the right tracks
beforehand; however, it requires the controller to have a

pre-notification time period from the users.
When partitioning the ODNMS into independent modules,

we considered two major factors: the system capacity

degradation and the modular I/O rate. The effect of system

52

degradation dictates that a disk module should contain a

minimum number of disk surfaces. On the other hand, in

accommodating the circular buffer structure, the modular

I/O rate must be larger than, or equal to, the projected
user rate of 300 megabits per second. We recommend one

double-sided disk as a disk module. Technically speaking,

if possible, the optical head on each disk surface can then

be hard-wired to operate simultaneously. Thus, the

synchronization of both heads is accomplished

automatically.

Finally, to release the burden on the controller, data
left in the circular buffer at the end of writing a file,
is recommended to be transferred to the current disk
module. Due to the nature of large data files, the wasting

of disk space is very limited. This also makes a further
partition of tracks unnecessary.

Our discussion up to this point has relied on the
assumption of FIFO read/write file management. If the
functional requirements of the ODMNS are changed, or files
stored earlier on the memory need to be further referenced,
then other file management policies could be feasible.
Under the circumstances, the rate buffering strategy may

vary correspondingly. Similarly, the relationship between

the system storage capacity and data-load may also change.

This leaves an interesting problem for further research

study, and our simulation program could be further modified

or referenced.

APPENDIX A
SIMULATION PROGRAM LISTING

/+
/»
/+
/+
/»
/+
/»
/+
/»
/+
/+
/»
/+
/»
/+
/+
/+
/»
/»
/+
/+
/+
/+
/»
/+

freet
freet 1

1 disk I'03

ldiskll)
MAX INT
ND ISK
NUMBT

NUMTRK

ptrk
RATEROT
sched. f i 1 sr um
sched. f length
ached.frate
ached.tarive
ached.t lan
side[0)
sideI1)

tread
tr kp
trkq
TSTEP
twindow
WRATE

Free-track pointer associated with write
Free-track pointer associated with read
Number of free disk sides with sideIO)
Number of fr ee disk sides with sideI13
Makxmum integer
Number of disk sides
Number of bits / track
Total numbei of tracks / side
Current number of free tracks / side
Disk rotatton rate r/s
Data file number
Data ftle length bits
User data rate bits/s
Data arriving time
User file transmission time
Right free-disk-side pcinter
Left free-disk-side pointer
side(13 — 1 IW/Rl —) side I0)

I disk C1) ldisk.l03
Time-pointer of read operat ton
Current heads positxon
Track buffer
Seek-time from track to track
Time window of read operation
Disk module write rate bits/s

+/
+/
+/
»/
+/
+/
+/
+/
+/
+/
+/
+/
»/
+/
+/
+/
+/
+/
+/
+/
+/
+/
»/
»/
»/

¹include &std io. hl
¹define TSTEP
¹define RATEROT
¹deftne MAXINT
¹define NUMBT

¹define NUMTRK

¹define WRATE

¹define NDISK

0. 001
15. 413
32757.0
9. 732045e0E
4727
1. 5e08
20

str uct
float tar ive I1003;
float f'rate I1003;
float t len110031
float flengthI10031
int f 1 1enumI I 003 I

& sched;

53

54

int freet I303, freeti &303, ptrk &30), trkp(303, lmax, count;
int sideI23, ldisk &23 I
float twindow(203, tread, tr I q;

void event schedule();
void op wr ite(int lcount, float +timept);
void op read(&;
float seek track(int trk, int trks);
float track queue(int lcount, int trk, float tdel);

/»»»++»+»»+++»++»+»»»+++»+»»/
/»» »+/
/++ MAIN PROGRAM»+/
/»» »+/
/»+»+»»»»»++++»»+»»+»++++»»»/

/+ LABEL DEFINING:
/» 1 count
/+ 1 max

/» tcount

Data file number
Total number of data file
Overall system time clock

»/
»/
»/
»/

main()
C

int lcount, kl
float tcount;

/++ INITIALIIE STSTEM ++/

srand(1);
event schedule();
lcount = Ol
count = 0;
tread "- 0. 0;
trkq= 0 0;
tcount "-sched. tar ive&0) I
twindowIO) = 4020;

/» Seed random rumber generator +/

/+ Read-time window starts anytime
between 0 to 67 min. +/

for &k = 1; k &= 15; k++)
twindowf:k3 = twindowlk-13 + 6000.0;

for (k=O; k (30; k=k+2)
ptr kL'k) = NUMTRK(
trhplk) = 0;
fr»et I'k) = 0;
freeti(k) = 0;

side(03 = sidelll = 0;
Idisk(03 = NDISK — 2;
ldisk&13 = Ol

/++ EXECUTE EVENTS ++ /

for (h = 0; k & lmax; k++) I
print f (" FILE f)Sdhn", Icount);

55

op wr ite(lcount, &tcount);
lcount = lcount + 1;

/»»»»»»»»+»+»»»»+»»»»»»+»+»»»»+»»»»»»++»»++»»/
/»» »»/
/++ DATA FILES SCHEDULE SUBROUTINE »+/
/»+ +»/
/»»»»»»»++»»+»»»+»+»»»+»+»»+»+»»+»»»+»»+»»»»»/

void event schedule()
I

float tem2, tem3, tem4;
int i, temO, temi;
FILE»fp}

/++ READ DATA FROM FILE " OPTICAL. IN " ++/

fp = fopen("optical. in", "r");
fscanf (fp, ")(d%n", &temO);
lmax = temOI
for(i = 0; i (lmax; i++) I

fscanf (fp, ")(d Se Sf)(fXn", &teml, &tem2, &tem3, &tem4);
sched. filenumIi3 = teml;
ached. fr ateIi3 = tem2;
sched. tariveI13 = temS;
sched. t lenI13 = tem4;
sched. flengthIi3 = sched. frateL13 + sched. t lan[i];

fclose(fp);

/»+»+»+»»»++++»»+++»»»»»»»++»»»»»»+++»»»++»+/
/»» +»/
/»+ DISK MODULE WRITE SUBROUTINE»+/
/»» »»/
/»»»»»++»++»+»+»»»»»»+»»»++»»++»»»»++»»+»+++/

/+
/»
/»
/»
/»
/+
/+
/+
/+
/»
/»
/»
/»

LABEL DEFINING:
flag

flag1
ntrk
ntrkc

ntrki
t
t de 1

timept
trkq1
twr ite

»/
Flag)s set if system clock is greater +/
than data arriving tame +/
Flag) is set after update track buffer +/
Number of tracks needed on one dusk szde »/
Number of tracks needed besides tracks +/
available on the cur~ant d)sk module »/
Lower integer of ntrk »/
Disk module access time »/
Delay time used to determ)ne buffer s)ze +/
System clock +/
Current size of track buffer +/
Disk module write time +/

void op write(int lcount, float «timept)
(

int k, ki, flag, flagl;
long ntrki, ntrkc;
float t, tdel, twrite, ntrk, temp, trkqi;

/«Empty trkq if it is 10&(ful I «/

/«Enough space on one disk module «/

/«Data transmlsslon ls
completed within delay t)me «/

tdel = sched. tlen&lcount31
twrite = track queue(lcount,
«timept = «timept + t + twr)
if (flag1 == 1)

trkq = O. 0;
trkpL'kl = freet Lk3 + ntrki;
ptrk(k3 = ptrk&k3 — ntrki;
freetlk3 "-freetLk3 «ntrki;
if (ptrklk3 (= 0) t'disk(03= ldisk(03

sideL03 = side(03 + 2;
freetLk3 = 0;
ptrk&k3 = 0;
trkp(k3 = NUMTRK;

if (side(03 &= NDISK&
ld i sk (03 = 1 d) sk L' l — 2;
sideL'03 = 0;
sideL'1l = ldiskL13;
1 disk L' 3 = 0(

ntrki, tdel);
te;

/« Update track-buffer «/
/« Update current head position «/

/« Update number of free tracks «/
/« Update free track location «/
/« Start writing to next disk «/

/« Disk allocation diagram: «/
/« Before: I L'17-&I data L03-)I «/
/« After: I L07-&IC(7-& data I «/

k = sideC03(
flag = 0;
flagl = 0;
ntrk = sched. flengthllcountl / (2. 0 «NUMBT);
ntrki = ntr k;
trkql = trkq + NUMBT «&ntr k - ntrki);
if (trkql &= 0.1 «NUMBT)

ntrki = ntrki + 1;
flagi = 1„.

ntrkc = ntrki — ptrklk31
pr i nt f ("FILE LENGTH(TRACKS): &(ldhn", 2«ntrki);
if («timept (= sched.tariveL'lcount3)

«timept = sched. tarivellcount3)
else

flag = 1;
other disk:
if (ntrkc & 0) 1

if (flag == 1)
= 0.0 /«Continue to write new f(le «/

I

else
t = seek track(freet L'k3, tr kp(kl);

tdel = t;
if (tdel &= sched- tlenL'lcountl)

57

print f ("SYSTEM STATUS BEFORE READING:'&n");
printf("SYSTEM TIME))(10.3f READ TIME410.3f R LENGTH(%)0.3fhn",

«t imept, t window &count I, t read);
pr intf ("RD PTR: 'Ad LENGTH: Nd WR PTR: Xd LENGTH: %dan",

sideI13/2, IdiskL'l3/2, side(03/2, ldiski03 /2);
ki = Oi
for(k=O; k&NDISK; k=k+2) i

print f (" DISK)(2d: %dan", ki, 2aptr k Ik));
ki = ki + 11

pr intf ("%n");

/» Starts reading «/if (at imept) = t window 1'count I) I
if ((sideI13 + ldiski'13) == side(03)

tread = tread + «timept - twindow(count3; /a Unable to read «/
twindowlcount3 = «timept;
3

else (
temp = tread;
op read();
twindowicount3 = twindowicount3 + tread — temp;

printf (xSYSTEM STATUS AFTER READING(hn");
printf("R LENGTH: WIO. 3f) n", tread);
pr intf("RD PTR: Sd LENGTH:)&d WT PTR: Xd LENGTH: WdXn",

sideI13/2, ldisk(13/2, side(03/2, IdiskI03/2)(
kl = 01
for (k=O; k&NDISK; k=k+2)

printf ("DISKW2d) Sdhn", k1,2«ptrkIk3);
k1=kl+1;

printf("Nnx);

/a Reset flag «/

if &tread) = 1980. 0) I /a Read-time w)ndow)s over «/
tread = O.OI
count = court + 1; /a Advance to next read-t &me w)ndow s/

rat urn",

else { /a Need more than one d)sk module s/
if (flag == 1)

t=0;
else

t = seek track(f'rest i'kl, trkp(k3) (

flag = 0;
ntrki = ptrkik3;
tdel = t;
if (tdel) = sched. t lenilcount3)

tdel = sched. t lent'lcount3;
twrite = track queue(lcount, ntrki, tdel);
ached. t lenilcounti = sched. t lenllcount3 - twr) te;

58

if (ached. tlen[lcount3 & 0. 0)
sched. t 1 en [1 count 3 = 0. 0 I

»timept = »timept + t + twrite;
trkpl'k3 = NUMTRK;

freet[k] = 0;
ptrk[k] = 01
side[03 = side[03 + 2;
Idisk[03 = ldisk[03 — 2;
if (side[03 &= NDISK)

side[03 = 0;
ldisk[03 = ldisk[1] — 2;
side[I] = ldisk[17;
ldisk[13 = Ol

/» Disk allocation diagram&»/
/» Before: I [I]-& I data [03-& I »/
/» After:) [03-& I [13-& data I »/

pr intf (" SYSTEM STATUS BEFORE READING:ln");
print f ("TIME:&&10.3f READ TIME:)&10. 3f R LENGTH".$ 10. 3fhn",

»t imept, twindow[count], tread) I

pr intf("RD PTR: Sd LENGTH: Sd WR PTR: &&d LENGTH:)&dXn",
side(13/2, Idisk[13/2, side(07/2, ldisk[03/2);

kl =0;
for & k=O; k &ND ISK I k=k+2)

printf("DISKS2d: %dan", k1,2»ptrk[k3);
kl = kl + 1&

printf("Xn");

if (»t imept &
"- twindow[count]) 1

if (side[17 + Idisk[13 == side[03 — 2)
tread = tread + »t imept — twindowl.count 3;

/» Wait till write xs finished »/
temp = tread;
op read();
twindow[count3 = »timept + tread — temp(

else [
temp = tread;
op read();
twindow[count3 = twindow[count3 + tread — temp;

print f("SYSTEM STATUS AFTER READING(hn");
printf("R LENGTH:)&IO. 3fhn", tread);
printf("RD PTR: &&d LENGTH: Sd WR PTR: Wd LENGTH: Sdhn",

side['l3/2, ldisk[13/2, side[03/2, ldisk[03/2)(
k1=0;
for (k=O; k &NDISK; k=k+2)

print f ("DISKS2d) Sdhn", ki, 2»ptt klk3) (
kl =kl+11

print f ("Nn") (

59

/» Update file length»/

if (tread &= 1980. 0) I
tread = 0. 0;
count = count + 11

3

k = side&03;
ntr ki = ntrkc;
ntrkc = ntrkc — ptr kfk3;
if (&ptrk(k3 &= 0)()&L(ntrkc & 0)) I

pr int f ("WRITE OPERATION IS INCONPLETEXn")
&

print f ("%n");
return;

goto other disk;

/»»/
/»» »»/
/»» DISK NODULE READ SUBROUTINE »»/
/»» »»/
/»»/

void op read()

int trk, dsk;

if (tread &= 1980. 0)
return;

/» Terminate read operation »/

IoopZ&
dsk = sidei'l3 + ldisklll;
trk = freet1Ldsk31
if (side&03) dsk) I

/» Completion of one disk reading»/

/» Advance pointer L13 »/

/» Disk allocation diagram: »/
/» l &13 -& I data -) I (03 & »/

tread = tread + seek track(freeti&dsk3, trkpidskl);
do I

tread = tread + 1.0 / RATEROT; /» Read one track »/
trk = trk + I;
if (tr k &= NUNTRK)

ptrkL'dsk3 = NUNTRK;
trkp Idsk 3 = 0. 0;
freet1L'dskl = 0;
ldisk&13 = ldisk&13 + Z;
dsk = dsk + Z;
trk ~ 01
if (dsk &~ sideL'03) /» Two pointers crash »/

goto loop1;
tread = tread + seek track(freet 1&dskl, trkp&dsk3);
3

while(tread & 1980.0) I /» Read-time slot is 33 min. »/
freet1&dsk3 = freet1&dsk3 + tr k;
ptrk&dsk3 = freet1(dskl;

60

trkpfdsk7 = 0.0;
loop 1:
r et urn 1

else I /» Drisk allocation d(agram: »/
/» (I07-& I III -) data I »/

tread = tread + seek track(freetIIdsk7, trkp(dsk7);
do I

tread = tread + 1. 0 / RATEROT; /» Read one track»/
trk = trk + 1;
if (tr k &= NUNTRK) I

freetiIdsk7 = 0;
ptrkldskl = NUNTRK;
trkpldsk7 = 0. 0;
dsk = dsk + 2;
sidelll = sideI17 + 2;
ldisk(07 = IdiskL'07 + 2;
trk = 01
if (dsk) = NDISK) I/» Change pointers, back to the original »/

sidei'l3 = 0;
if (sidel07 == 0)

return)
goto loop2;

tread = tread + seek track(freet11'dsk7, trkp(dskl);

7 while(tread (1980.0);
freet1 I'dsk3 = freetlldsk7 + trk;
ptr k(dsk3 -" freeti l'dsk3;
trkpl'dsk3 = 0. 0;
return;

/»»/
/»» »»/
/»» DISK NODULE ACCESS SUBROUTINE »»/
/»» »»/
/»»/

/»
/»
/»
/»
/»
/»
/»

LABEL DEFINING:
phead
tjump
trk
trks
trot
tseek

Heads'osition over the right tracks
Time to move heads to the right tracks
Tracks needs to be found
Current heads position
Disk rotation delay
Total disk module access time

»/
»/
»/
»/
»/
»/
»/

float seek track(int trk, int tr ks)

float tjump, tseek, phead, trot;
/» Position head to the nth track

assuming innermost track as 0th track »/

if (trk == trks)
t jump = 0. 0;

else i f (tr k & trks)
tjump = TSTEP» &trks - trk);

else
tjump = TSTEP + (trk — trks);

/+ Position head to the start of track +/

/+ Move R/W inward +/

/+ Move R/W outward +/

phead = rand() / MAXINT;

tr ot = (1 — phead) / RATEROT;
tseek = tjump + trot;
r et urn(t seek);

/» Position R/W at nth track +/
/+ Rotation delay»/

/»»»+»»»»»»»»»»+»»+»+»»»+»++++»»»»»+»»»»/
/»» »+/
/++ RATE BUFFERING SUBROUTINE ++/
/»» ++/
/»»»»»+»+»»»»»»»»»»+»»+»»»++++»+»»»++»++/

/+ LABEL DEFINING."
/+ point 1

/+ trk
/+ f 1

/»

Number of bits in the buffer due
Number of tracks to be wr itten
Number of bits accumulated after
rotation

»/
to delay +/

+/
one disk +/

»/

float track queue(int Icount, int trk, float tdel)

float point, point 1, fl, t;
int k, ki;

k = 01
ki = 1;
t =0.0;
fl = ached. frate(lcountl / (2.0 + RATEROT);

/+ Advance pointer by fl bits after one rotat(on +/

/+» DETERMINE BUFFER SIZE ++/

pointl = trkq + sched.fratellcountl + tdel / 2. 0;
point = po int I)
if (point1 &= NUMBT)

do I
point i = pointi — Ni)MBT;
kl = ki + 1",

& while(pointi &= NUMBT);
print f ("TRACK BUFFER SIZE(TRACK): &(dNn", kl);

/++ RATE CHANGE "+/

if (point &» NUMBT)

62

do 1
point = point - NUNBT + fl;
k = k+ 1;

= t + 1. 0 / RATEROT1
if (k &= trk)

goto loop;
while(point) = NUNBT);

do C

point = point + fl;
if (point)= NUNBT) 1

point = point - NUNBT;
k=k+1",

t = t + 1 ~ 0 / RATEROT)
) while(k (trk&;

loop:
trkq = point;
return(t);

APPENDIX B
PROGRAM INPUT DESCRIPTION

The input file is determined corresponding to the
diagram shown in Figure 4.3 where each constant-rate block

is considered as a data file. To make the input file
structure more understandable, a detailed explanation is
provided here (referring to the listing on the next page).

The following instructions are used in the program to
read data from the input file:

fp = fopen("optical. in", "r")

It opens the file named "optical. in" as the input file.
Each following instruction reads one line of data from the
file "optical. in", and the instructions are repeated in a

loop. No data field specification is required.
fscanf(fp,"%dan",Imax);

lmax -- total number of files, integer.
for(i = 0; i & lmax; i++)

fscanf(fp,"%d ,e %f ,f~n", filenum, irate, tarive,
tlen);

filenum

frate
tarive
tlen

file number, integer;
data transmission rate, exponential, Mb/sec.;

starting transmission time, real, second;

data transmission time, real, second.

63

INPUT FILE: "optical. in"

21

0 1.3e08 0.0 300.0

300.0600.01 1.5e08

2 3.0e08 900.0 300.0

3 1.5e08 1200.0

4 1.5e08 4200.0

5 1.0e07 4800.0

6 1.5e08 10200.0

7 1.5e08 11100.0

8 3.0e08 11400.0

9 1.5e08 11700.0

10 1.5e08 12300.0

11 3.0e08 12600.0

12 1.5e08 12900.0

13 1.5e08 16200.0

14 1.5e08 16800.0

15 3.0e08 17100.0

16 1.5e08 19200.0

17 1.5e08 22200.0

18 1.5e08 24000.0

19 3.0e08 24300.0

20 1.5e08 25200.0

300.0

600.0

2400.0

600.0

300.0

300.0

300.0

300.0

300.0

300.0

600.0

300.0

2100.0

300.0

600.0

300.0

900.0

300.0

65

For example, after reading the very first two lines of

data from the file "optical. in", each variable in the

instructions will be assigned the following value:

lmax = 21

filenum = 0

irate = 1.3e08

tarive = 0.0 and

tlen = 300.0.

The file 0 corresponds to the left-most, constant-rate
data block in Figure 4.3, where the left edge of the block

determines the value of frate, and the width of the block

determines the value of tlen. The determination of the
rest files follows the same reasoning.

APPENDIX C
PROGRAM OUTPUT DESCRIPTION

The output is printed directly on a screen during a

program run. We intend to provide the readers a better
understanding by explaining a typical output segment listed
below (numbers at the beginning of lines are for
illustration only).

0 FILE)) 4

1 FILE LENGTH(TRACKS): 9248

2 TRACK BUFFER SIZE(TRACK): 1

3 SYSTEM STATUS BEFORE READING:

4 TIME: 4580.111 READ TIME: 4020.0 R LENGTH: 0.00

5 RD PTR: 0 LENGTH: 0 WR PTR: 3 LENGTH: 6

6 DISK 0:

7 DISK 1:

8 DISK 2:

9 DISK 3: 9454

10 DISK 4: 9454

11 DISK 5: 9454

12 DISK 6: 9454

13 DISK 7: 9454

14 DISK 8: 9454

15 DISK 9: 9454

66

67

16 SYSTEM STATUS AFTER READING:

17 R LENGTH: 934.383

18 RD PTR: 0 LENGTH: 3 WR PTR: 3 LENGTH: 6

19 DISK 0: 9454

20 DISK 1: 9454

21 DISK 2: 9454

22 DISK 3: 9454

23 DISK 4: 9454

24 DISK 5: 9454

25 DISK 6: 9454

26 DISK 7: 9454

27 DISK 8: 9454

28 DISK 9: 9454

29 TRACK BUFFER SIZE(TRACK): 1

30 SYSTEM STATUS BEFORE READING:

31 TIME: 4800.075 READ TIME: 4954.382 R LENGTH: 934.383

32 RD PTR: 0 LENGTH: 3 WR PTR: 3 LENGTH: 6

33 DISK 0: 9454

34 DISK 1: 9454

35 DISK 2: 9454

36 DISK 3: 3598

37 DISK 4: 9454

38 DISK 5: 9454

39 DISK 6: 9454

40 DISK 7: 9454

41 DISK 8: 9454

68

42 DISK 9: 9454

Line 0 — line 2 provides the following information:

the number of current data file, its length (in terms of

modular tracks), and the size of buffer (in terms of

modular track) for disk-module access.
Line 4 provides the timing information: TIME is the

system time after writing the current module, READ TIME is
the TDRSS available time, and R LENGTH is the amount of

TDRSS time that has been used. The unit of time is in

seconds.

Line 5 provides the capacity status of the system after
writing the current module. RD PTR, LENGTH, WR PTR, and

LENGTH correspond to the status scheme defined previously
in Figure 4.6.

Line 6 — line 15 lists the number of modular tracks
available on each module. Zero means a module is full, and

9454 is the total number of modular tracks available on a

module (two disk surfaces) .

As assumed, the system time-pointer is checked against
the TDRSS availability at the end of writing a file or a

disk module (end of a module in this case), to reflect a

simultaneous I/O. Since the value of TIME is larger than

the value of READ TIME, the disk-module read subroutine is
called. The output then reflects the system status after
the disk-module read (line 16 — line 28). Meanwhile, the

system time-pointer is frozen until the disk-module write

69

subroutine is resumed. To read module 0 through module 2,

it requires about 934.38 seconds (equal to the value of

R LENGTH). The disk-module read cannot continue on module

3 because it is the current writing module. The program

control is then switched to the disk-module write. The

output format is similar as before.
Line 36 indicates that part of the data file is written

on module 3.

At the end of writing file g4, the value of the system

time-pointer is smaller than the value of READ TIME, which

means that data-read on module 2 has not yet been

completed. Therefore, no disk-module read can be initiated
at this time instant, and the disk memory starts accepting
new data files (it is the case of simultaneous I/O).

The above output segment is part of a computer printout
from a sample run (refer to the next few pages) . Following

the same reasoning, the readers will be able to trace the
rest of the outputs.

70

FILE ()0
FILE LENGTH(TRACKS) t 4008
TRACK BUFFER SIIE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 300.071 READ TIME:
RD PTR: 0 LENGTH: 0 WR PTR: 0
DISK 0: 5446
DISK Ii 9454
DISK 2(9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

4020. 000 R LENGTH:
LENGTH: 9

0. 000

FILE ()I
FILE LENGTH (TRACKS): 4624
TRACK BUFFER SIIE(TRACK): 1

SYSTEM STATUS BEFORE READING)
SYSTEM TIME: 900. 071 READ TIME:
RD PTR: 0 LENGTH) 0 WR PTR: 0
DISK 0: 822
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

4020. 000 R LENGTH:
LENGTH: 9

0. 000

F I LE
FILE LENGTH(TRACKS): 9248
TRACK BUFFER SIIE(TRACK)(1

SYSTEM STATUS BEFORE READING:
TIME: 926. 802 READ TIME: 4020. 000 R LENGTH:
RD PTR: 0 LENGTH: 0 WR PTR: 1 LENGTH: 8
DISK 0: 0
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0. 000

TRACK BUFFER SIlE(TRACK): 2
SYSTEM STATUS BEFORE READING&

SYSTEM TIME„1200. 186 READ TIME: 4020. 000 R LENGTH:
RD PTR: 0 LENGTH: 0 WR PTR: 1 LENGTH: 8
DISK 0: 0
DISK 1: 1028
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

FILE ()3
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIIE(TRACK) ."1
SYSTEM STATUS BEFORE READING:
TIME: 1266. 948 READ TIME: 4020. 000
RD PTR: 0 LENGTH: 0 WR PTR: 2
DISK 0: 0
DISK 1: 0
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

R LENGTH:
LENGTH".7 0. 000

TRACK BUFFER SIIE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 1500. 256 READ TIME: 4020.000 R LENGTH:
RD PTR: 0 LENGTH: 0 WR PTR: 2 LENGTH: 7
DISK 0: 0
DISK 1: 0
DISK 2: 5858
DISK 3: 9454
DISK 4."9454
DISK 5: 9454
DISK 6: 9454
DISK 7." 9454
DISK 8: 9454
DISK 9: 9454

FILE %4

FILE LENGTH(TRACKS): 9248
TRACK BUFFER SIIE(TRACK)& 1

SYSTEM STATUS BEFORE READING:
TIME: 4580. 111 READ TIMEt 4020. 000 R LENGTH:
RD PTR: 0 LENGTHEN 0 WR PTR: 3 LENGTH: 6
DISK 0: 0
DISK 1: 0

O. 000

72

DISK 2: 0
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH: 934.383
RD PTR: 0 LENGTH: 3 WR PTR: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 6

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 4800. 075 READ TIME:
RD PTR: 0 LENGTH: 3 WR PTR: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 6064
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

49'54. 82 R LENGTH:
LENGTH: 6

934. 383

FILE ()5
FILE LENGTH(TRACKS): 2466,
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 7199. 431 READ TIME:
RD PTR: 0 LENGTH: 3 WR PTR: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 3598
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454

4954..82 R LENGTH:
LENGTH: 6

934. 83

73

DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH."3179. 431
RD PTR: 0 LENGTH: 3 MT PTR: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 3598
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 6

FILE ()6
FILE LENGTH(TRACKS)& 9248
TRACK BUFFER SIIE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 10433. 442 READ TIME: 10020. 000 R LENGTH:
RD PTR: 0 LENGTH: 3 (JR PTR: 4 LENGTH: 5
DISK 0: 9454
DISK 1: 9454
DISK P: 9454
DISK 3: 0
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0. 000

SYSTEM STATUS AFTER READING(
R LENGTH: 724.906
RD PTR(0 LENGTH: 4 AR PTR: 4
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 5

TRACK BUFFER SIIE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 10800. 053 READ TIME: 10744. 906 R LENGTH:
RD PTR: 0 LENGTH: 4 WR PTR: 4 LENGTH: 5
DISK 0: 9454
DISK 1: 9454

724. 906

74

DISK 2: 9454
DISK 3: 9454
DISK 4: 3804
DISK 5." 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH: 780. 052
RD PTR: 0 LENGTH: 4 WT PTR: 4
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 3804
DISK 5(9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 5

FILE ()7
FILE LENGTH (TRACKS): 4624
TRACK BUFFER SIIE(TRACK)) 1

SYSTEM STATUS BEFORE READING:
TIME: 11346. 862 READ TIME: 10800. 053
RD PTR: 0 LENGTH: 4 NR PTR: 5
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 0
DISK 5: 9454
DISK 6: 9454
DISK 7: 3454
DISK 8: 9454
DISK 9: 9454

R LENGTH:
LENGTH: 4

780. 052

SYSTEM STATUS AFTER READING:
R LENGTH: 1638. 010
RD PTR: 0 LENGTH: 5 NR PTR: 5 LENGTH: 4
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

75

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 11400. 027 READ TIME: 11658. 010 R LENGTH: 1638. 010
RD PTR: 0 LENGTH: 5 WR PTR: 5 LENGTH: 4
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 8634
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

FILE ()8
FILE LENGTH (TRACKS): 9248
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 11680. 181 READ TIME: 11658. 01
RD PTR: 0 LENGTH: 5 WR PTR: 6
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 0
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0 R LENGTH: 1638. 010
LENGTH: 3

SYSTEM STATUS AFTER READING."
R LENGTH: 1971. 371
RD PTR: 0 LENGTH: 6 WR PTR: 6
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 3

TRACK BUFFER SIZE(TRACK): 2
SYSTEM STATUS BEFORE READING&
SYSTEM TIME) 11700. 153 READ TIME: 11'991. 371 R LENGTH: 1971. 371
RD PTR: 0 LENGTH: 6 WR PTR: 6 LENGTH: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454

DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 8840
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

F ILE 89
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIIE(TRACK) (1

SYSTEN STATUS BEFORE READING:
SYSTEM TINE: 12000. 225 READ TINE: 11991. 371 R LENGTH: 1971. 371
RD PTR: 0 LENGTH: 6 WR PTR: 6 LENGTH: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 4216
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

SYSTEN STATUS AFTER READING:
R LENGTH." 1980. 224
RD PTR: 0 LENGTH: 6 WT PTR: 6
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 4216
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 3

FILE ()10
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEN STATUS BEFORE READING:
TINE) 12573. 548 READ TINE: 16020. 000 R LENGTH:
RD PTR) 0 LENGTH: 6 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4(9454
DISK 5(9454
DISK 6: 0

0. 000

77

DISK 7: 9454
DISK 8: 9454
DISK 9."9454
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 12600. 039 READ TIiME: 16020. 000 R LEiNGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 9046
DISK 8: 9454
DISK 9: 9454

0. 000

FILE %11
FILE LENGTH(TRACKS): 9248
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 12893. 558 READ TIME: 16020. 000 R LFNGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8: 9454
DISK 9: 9454

0. 000

TRACK BUFFER SIZE(TRACK): 2
SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 12900. 126 READ TIME: 16020. 000 R LENGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8: 9252
DISK 9t 9454

0. 000

FILE 412
FILE LENGTH(TRACKS): 4624

DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 8840
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

FILE ¹9
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 12000. 225 READ TIME: 11991. 371 R LENGTH: 1971. 371
RD PTR: 0 LENGTH: 6 WR PTR: 6 LENGTH: 3
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6".4216
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH: 1980. 224
RD PTR: 0 LENGTH: 6 WT PTR: 6
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 4216
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 3

FILE ¹10
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 12573. 548 READ TIME: 16020. 000 R LENGTH:
RD PTR) 0 LENGTH: 6 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0

0. 000

77

DISK 7: 9454
DISK 8: 9454
DISK 9& 9454

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 12600. 039 READ TI)hE: 16020. 000 R LEiNGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 9046
DISK 8: 9454
DISK 9: 9454

0. 000

FILE ()I I
FILE LENGTH(TRACKS): 9248
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIII1E: 12893.558 READ TIME: 16020.000 R LENGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8: 9454
DISK 9: 9454

0. 000

TRACK BUFFER SIZE(TRACK): 2
SYSTEIII STATUS BEFORE READING:
SYSTEM TIME: 12900. 126 READ TIME: 16020. 000 R LENGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: '9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8: 9252
DISK 959454

0. 000

FILE «12
FILE LENGTH(TRACKS): 4624

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 13200. 197 READ TIME) 16020. 000 R LENGTH:
RD PTR: 0 LENGTH: 6 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8) 4628
DISK 9: 9454

0. 000

FILE () 13
FILE LENGTH (TRACKS): 9248
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 16500. 277 READ TIME: 16020. 000 R LENGTH:
RD PTR(0 LENGTH: 6 WR PTR: 9 LENGTH: 0
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 0
DISK 7: 0
DISK 8: 0
DISK 9: 9454

0. 000

SYSTEM STATUS AFTER READING:
R LENGTH: 934. 340
RD PTR: 0 LENGTH: 9 WR PTR: 9 LENGTH: 0
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8) 9454
DISK 9: 9454

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 16800. 027 READ TIME: 16954. 340 R LENGTH:
RD PTR: 0 LENGTH: 9 WR PTR: 9 LENGTH: 0
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454

934. 340

DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 4834

FILE ()14
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEN STATUS BEFORE READING:
SVSTEN TINE: 17100. 100 READ TINE) 16954. 340 R LENGTH: 934. 340
RD PTR: 0 LENGTH: 9 WR PTR: 9 LENGTH: 0
DISK 0". 9454
DISK 1: 9454
DISK 2& 9454
DISK 3: 9454
DISK 4". 9454
DISK 5: 9454
DISK 6: 9454
DISK 7". 9454
DISK 8: 9454
DISK 9: 210

SYSTEN STATUS AFTER READING:
R LENGTH: 1080. 100
RD PTR: 0 LENGTH: 9 MT PTR: 9
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3."9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 210

LENGTH: 0

FILE () 15
FILE LENGTH(TRACKS): 64736
TRACK BUFFER SIZE(TRACK): 1

SYSTEN STATUS BEFORE READING:
TINE: 17106. 977 READ TI!hE: 17100. 100 R LENGTH: 1080. 100
RD PTR: 9 LENGTH: 0 'rJR PTR: 0 LENGTH: 8
DISK 0: 9454
DISK 1: 9454
DISK 2: '9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7& 9454

80

DISK 8: 9454
DISK 9: 0

SYSTEM STATUS AFTER READING:
R LENGTH: 1391. 238
RD PTR: 0 LENGTH: 0 WR PTR: 0
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3".9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 9

TRACK BUFFER SIZE&TRACK)) 2
SYSTEM STATUS BEFORE READING:
TIME: 17413. 672 READ TIME: 17411. 238
RD PTR: 0 LENGTH: 0 WR PTR: 1

DISK 0: 0
DISK I". 9454
DISK 2: 9454
DISK 3) 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

R LENGTH". 1391. 238
LENGTH: 8

SYSTEM STATUS AFTER READING:
R LENGTH: 1704. 812
RD PTR: 0 LENGTH: 1 WR PTR: 1

DISK 0: 9454
DISK I: 9454
DISK 2: 9454
DISK 3) 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 8

TRACK BUFFER SIZE(TRACK): 2
SYSTEM STATUS BEFORE READING:
TIME) 17720. 396 READ TIME: 17724. 812
RD PTR: 0 LENGTH: 1 WR PTR: 2
DISK 0: 9454
DISK 1: 0
DISK 2& 9454

R LENGTH: 1704. 812
LENGTH: 7

DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

TRACK BUFFER SIZE(TRACK): 3
SYSTEM STATUS BEFORE READING:
TIME: 18027. 111 READ TIME: 17724. 812 R LENGTH: 1704. 812
RD PTR: 0 LENGTH: 1 WR PTR: 3 LENGTH: 6
DISK 0: 9454
DISK 1: 0
DISK 2: 0
DISK 3: 9454
DISK 4s 9454
DISK 5) 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH) 1980. 052
RD PTR: 0 LENGTH: 1 WR PTR: 3
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

LENGTH: 6

TRACK BUFFER SIZE(TRACK): 3
SYSTEM STATUS BEFORE READING:
TIME: 18333. 826 READ TIME: 22020. 000 R LENGTH:
RD PTR& 0 LENGTH: 1 WR PTR: 4 LENGTH: 5
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3: 0
DISK 4) 9454
DISK 5: 9454
DISK 6& 9454
DISK 7) 9454
DISK 8: 9454
DISK 9) 9454

0. 000

TRACK BUFFER SIZE&TRACK): 3

82

SYSTEM STATUS BEFORE READING:
TIME..18640.545 READ TIME) 22020.000 R LENGTH..

RD PTR: 0 LENGTH: 1 WR PTR: 5 LENGTH: 4
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3: 0
DISK 4: 0
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0. 000

TRACK BUFFER SIZE(TRACK): 4
SYSTEM STATUS BEFORE READING:
TIME: 18947.252 READ TIME: 22020.000 R LENGTH:
RD PTR: 0 LENGTH: 1 WR PTR: 6 LENGTH: 3
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3: 0
DISK 4: 0
DISK 5: 0
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0. 000

TRACK BUFFER SIZE(TRACK): 5
SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 19200. 408 READ TIME: 22020. 000 R LENGTH:
RD PTR: 0 LENGTH: 1 WR PTR: 6 LENGTH: 3
DISK 0: 9454
DISK I: 8346
DISK 2: 0
DISK 3: 0
DISK 4: 0
DISK 5: 0
DISK 6: 1652
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

0. 000

FILE ()16
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 19307. 656 READ TIME: 22020. 000 R LENGTH:
RD PTR: 0 LENGTH: 1 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 8346
DISK 2: 0

0. 000

DISK 3: 0
DISK 4: 0
DISK 5: 0
DISK 6: 0
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING'YSTEM

TIME: 19500. 455 READ TIME: 22020. 000 R LENGTH:
RD PTR: 0 LENGTH: 1 WR PTR: 7 LENGTH: 2
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3: 0
DISK 4: 0
DISK 5: 0
DISK 6: 0
DISK 7: 6482
DISK 8: 9454
DISK 9: 9454

FILE ¹17
FILE LENGTH (TRACKS): 9248
TRACK BUFFER SIZEITRACK): 1

SYSTE)lt STATUS BEFORE READING:
TIME: 22620. 611 READ TIME: 22020. 000 R LENGTH:
RD PTR: 0 LENGTH: 1 WR PTR: 8 LENGTH:
DISK 0: 9454
DISK 1: 8346
DISK 2: 0
DISK 3& 0
DISK 4: 0
DISK 5) 0
DISK 6: 0
DISK 7: 0
DISK 8: 9454
DISK 9) 9454

0. 000

SYSTEM STATUS AFTER READING:
R LENGTH: 1908.008
RD PTR: 0 LENGTH: 8 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 9454
DISK 9: 9454

TRACK BUFFER SIZE{TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 22800. 059 READ TIME: 23928. 008 R LENGTH: 1908. 008
RD PTR: 0 LENGTH: 8 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 6688
DISK 9: 9454

FILE 818
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIIE(TRACK) (1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 24300. 045 READ TIME: 23928. 008 R LENGTH: 1908. 008
RD PTR: 0 LENGTH: 8 WR PTR: 8 LENGTH: 1

DISK 0: 9454
DISK 1: 9454
DISK 2: '9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8." 2064
DISK 9: 9454

SYSTEM STATUS AFTER READING:
R LENGTH: 2280. 045
RD PTR: 0 LENGTH: 8 WT PTR: 8
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 2064
DISK 9(9454

LENGTH: 1

FILE () 19
FILE LENGTH(TRACKS): 27744
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING&
TIME: 24367. 066 READ TIME: 28020. 000 R LENGTH..
RD PTR& 0 LENGTH: 8 WR PTR: 9 LENGTH& 0
DISK 0(9454

0. 000

DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 0
DISK 9: 9454

TRACK BUFFER SIIE(TRACK): 2
SYSTEM STATUS BEFORE READING:
TIME: 24673. 775 READ TIME: 28020.000 R LENGTH:
RD PTR: 8 LENGTH: 0 WR PTR: 0 LENGTH: 7
DISK 0: 9454
DISK 1: 9454
DISK 2: 9454
DISK 3: 9454
DISK 4: 94S4
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 0
DISK 9: 0

0. 000

TRACK BUFFER SIIE(TRACK): 3
SYSTEM STATUS BEFORE READING:
TIME: 24980. 520 READ TIME) 28020. 000 R LENGTH:
RD PTR: 8 LENGTH) 0 l4R PTR: 1 LENGTH: 6
DISK 0: 0
DISK 1: 9454
DISK 2: 9454
DISK 3c 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 0
DISK 9: 0

0. 000

TRACK BUFFER SIZE(TRACK): 3
SYSTEM STATUS BEFORE READING:
SYSTEM TIME& 25200. 234 READ TIME: 28020. 000 R LENGTH:
RD PTR: 8 LENGTH: 0 FAIR PTR: 1 LENGTH: 6
DISK 0) 0
DISK 1: 2682
DISK 2: 9454
DISK 3) 9454
DISK 4t 9454
DISK 5: 9454
DISK 6t 9454
DISK 7) 9454
DISK 8) 0
DISK 9) 0

86

FILE ()20
FILE LENGTH(TRACKS): 4624
TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
TIME: 25374. 309 READ TIME: 28020. 000 R LENGTH:
RD PTR: 8 LENGTH: 0 WR PTR: 2 LENGTH: 5
DISK 0: 0
DISK 1: 0
DISK 2: 9454
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 0
DISK 9: 0

0. 000

TRACK BUFFER SIZE(TRACK): 1

SYSTEM STATUS BEFORE READING:
SYSTEM TIME: 25500. 264 READ TIME) 28020. 000 R LENGTH: 0. 000
RD PTR: 8 LENGTH: 0 WR PTR: 2 LENGTH: 5
DISK 0: 0
DISK 1: 0
DISK 2: 7512
DISK 3: 9454
DISK 4: 9454
DISK 5: 9454
DISK 6: 9454
DISK 7: 9454
DISK 8: 0
DISK 9: 0

SELECTED BIBLIOGRAPHY

[1] G ~ J. Ammon and J. A. Calabria, "Operational
Performance of Optical Disk Systems," SPIE,
Vol. 529, Optical Mass Data Storage, 1985,
pp 131-137

[2] G. J. Ammon, "An Optical Disk Jukebox Mass Memory
System," private communication.

[3] G ~ M. Claffie, "Optical Disk Recorders for
Operationally Demanding Mass Storage
Applications," private communication.

[4] C. M. Weng and Y. H. Yaun, "CDC Cyber 170/172
System Performance Evaluation," 17th Annual
Simulation Symposium, 1984, pp.193-208.

A. Shull and B. A. Conway, "Spaceborne Optical
Disk Controller Development," SPIE, Vol. 695,
Optical Mass Data Storage, 1986.

[6] Notes from "Photonics-Based Flight System
Workshop," NASA Langley Research Center, May
1987.

[7] H. C. Lucas, Jr., "Performance Evaluation and
Monitoring," Computing Surveys, Vol. 3, No. 3,
1971, pp.79-91.

[8] J A. Payne, Introduction to Simulation:
Pro rammin Techni es and Methods of Anal sis,
McGraw-Hill Book Company, New York, N.Y., 1982.

[9] J. L. Baer, Com uter S stems Architecture, Computer
Science Press, Inc., Potomac, Md., 1980.

[10] D J. Kuck, The Structure of Com uters and~Ctt', Vl. i, Jh Wly&S, I
New York, N.Y., 1978.

[11] B W. Kernigham and D. M. Ritchie, The C
Pro rammin Lan ua e, Prentice-Hall, Inc.,
Englewood Cliff, N.J., 1978.

87

Date Due

	A Simulation Study of a Space-Borne Optical Disk Mass Memory System
	Recommended Citation

	tmp.1721832325.pdf.221vV

