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Abstract 

The effect of water ingress on the surface of the buffer layer of a Cu(In, Ga)Se2 (CIGS) solar 

cell was studied. Such degradation can occur either during the fabrication process, if it 

involves a chemical bath as is often the case for CdS, or while the modules are in the field and 

encapsulants degrade. To simulate the impact of this moisture ingress, devices with a 

structure sodalime glass/Mo/CIGS/CdS were immersed in deionized water. The thin films 

were then analyzed both pre and post water soaking. Dynamic secondary ion mass 

spectroscopy (SIMS) was performed on completed devices to analyze impurity diffusion 

(predominantly sodium and potassium) and to assess potential degradation mechanisms. The 

results were compared to device measurements, which indicate a degradation of all device 

parameters due to an increase in the total and peak trap densities, as shown by simulation. 

This is potentially due to a modification of the sodium profile in the bulk CIGS, with a decrease 
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content after water soaking or because the oxygen profile increased in the bulk CIGS after 

water soaking.  

Graphical abstract 
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1. Introduction 

Of all of the degradation mechanisms that can affect a photovoltaic module, water remains one 

of the most potent ones [1-3]. Degradation can occur all the way from the connection to the 

electrical system to the degradation of individual layers within the module via corrosion-like 

processes [4, 5]. Most of the studies performed on CIGS solar cells, with regard to the effect of water, 

have been performed on the solar cell as a whole not on the individual layers [6, 7]. We have 

previously reported on the impact of water on Molybdenum, CIGS and TCO (i-ZnO/ITO) components 

of the CIGS devices [8-10]. We will be focusing on the buffer layer, specifically CdS, here. Among the 

various choices for buffer layers for CIGS solar cells, cadmium sulfide (CdS) is still the main choice 

due to its wide bandgap and suitable band alignment with CIGS and TCO [11, 12]. Previous studies 

into the degradation mechanism due to the CdS layer have mostly focused on the effect on the CIGS 

layer due to damp heat treatments. Several studies compared the CdS buffer layers to other buffer 

layers under damp heat treatments and concluded that the CdS layer was often the most stable one. 

These studies indicate that when degradation occurred, it was often due to a decrease in open 

circuit voltage, and sometimes due to a decrease in fill factor [13].  

In this paper, we focus our study on the effect of water ingress after the CdS deposition on device 

performance. We assess the potential degradation of the devices using various device 

characterization and simulation methods.  

2. Materials and Methods 

CIGS solar cells were fabricated using a three-stage co-evaporation process on soda-lime glass 

(SLG) substrates with the following structure: SLG/Mo/CIGS/CdS/i-ZnO/ITO. The molybdenum layer 

was deposited by DC magnetron sputtering using a two-step process, with the first step at high 
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argon pressure (5 mTorr) and the second at low pressure (1 mTorr) resulting in a 

tensile/compressive stress dipole. The CIGS films were deposited using a three-stage co-evaporation 

process [14]. The junction was formed by chemical bath deposition (CBD) of cadmium sulfide (CdS). 

The initial solution includes a mixture of H2O, Cd(CH3COO)2 and NH4OH and is kept in a hot bath at 

70 °C for 1 min. Then, thiourea (H2NCSNH2), is added to the solution. Finally, the samples are placed 

for 16 min in the heated bath, resulting in an approximate CdS thickness of ∼120 nm. This slightly 

greater thickness compared to standard device structures was intentional to ensure that potential 

effects due to moisture damage to CdS could be more easily identified. After the CdS deposition, 

half of the samples were soaked in deionized water (18.2 MΩ) at 50 °C for 24 hours (referred to as 

water-soaked (WS) samples), while the other half was stored in a dry box until window layer 

deposition (referred to as reference). Therefore, 24 hours after CdS deposition, all the samples 

(reference and water soaked) were put together in the sputtering system for window layer 

deposition. The window layer, consisting of 50 nm of i-ZnO and 150 nm of ITO was deposited at 5 

mTorr of argon by RF sputtering. Finally, a metallic grid of Ni/Al/Ni was used as the front contact 

and was deposited by e-beam evaporation through a shadow mask. Solar cells were then defined 

by mechanical scribing with an active area of 0.5 cm2.  

Energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) measurements were 

performed on the reference films and on water soaked films to measure any overall change in 

composition or crystalline properties. The elemental depth composition was measured by time of 

flight secondary ion mass spectrometry (ToF SIMS). The solar cell characteristics were measured by 

current density-voltage (J-V) measurements and by external quantum efficiency measurements 

under simulated AM1.5G with a light intensity of 100 mW/cm2 at 25°C. 

3. Results and Discussion 

After CdS deposition and water soaking of one set of samples, the overall composition and 

crystalline properties of both types of structures was assessed via XRD and EDS measurements. Each 

experiment was repeated a minimum of 10 times. The experiments lead to reproductive results, 

consistent with each other. As expected, no change was observed by either of these measurements 

before and after water soaking. Also, no obvious microstructural changes were observed by STEM 

[9].  

Box plots of the device parameters for reference and water soaked samples are shown in Figure 

1, while representative J-V and QE curves are shown in Figure 2 for the same type of devices. Note 

that a total of 75 cells have been tested for Figure 1. The devices after water soaking are 

systematically less efficient, with a decrease in all three major parameters: open circuit voltage (Voc), 

short-circuit current density (Jsc) and fill factor (FF) (Figure 1), which is consistent with previous 

reports [15, 16]. One can see from Figure 2 that there does not seem to be much shunt in the device 

even after water soaking, while there is an increase in voltage dependent current collection. No 

dark-to-light crossover can be observed in either case. The QE curves indicate that the loss in current 

density is due to an overall decrease in current collection from 500 nm to 1200 nm. To extract diode 

parameters, a single diode model was used (Table 1). There is an increase in the reverse saturation 

current density (J0) and diode ideality factor (A) after water soaking, indicating a deterioration of 

the diode quality. At the same time, the series (RS) and the shunt resistance (RSH) do not change 

significantly. 
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Figure 1 Box plots of device parameters comparing the device characteristics of 

reference devices (blue) and 24 hour water-soaked devices (red): (a) efficiency; (b): fill 

factor; (c): open circuit voltage; and (d): short circuit current density. 

 

Figure 2 Representative current density-voltage (J-V) and quantum efficiency (QE) 

curves for reference (solid blue) and water soaked (dashed red) devices. 

Table 1 Photovoltaic characteristics and diode parameters (dark j-v) of the 

representative cells shown in figure 1 and figure 2. 

Sample Voc (V) Jsc (mA/cm2) FF (%) η (%) J0 (mA/cm2) A RS (Ω.cm2) RSH (kΩ.cm2) 

Reference 0.64 34.0 73.2 15.9 1.0E -9 1.6 0.7 1.4 

Water Soaked 0.61 32.7 71.3 14.3 8.0E -9 1.8 0.6 1.8 
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In order to better understand what could possibly be the underlying mechanism that causes 

degradation of the devices, simulations of the devices were performed using SCAPS. The main 

parameters used for the simulations are similar to the ones we used previously [9, 17]. The CIGS 

baseline parameters, such as electron affinity, dielectric permittivity, density of states, thermal 

velocity, mobilities, acceptor/donor density, were not changed. Parameters like thickness, 

transmission of the front contact and trap density were slightly modified to replicate the 

experimental curves. 

One change was in the CdS thickness layer, which was set to 120 nm. The other main changes 

were in the transmission coefficient, which was changed from 89% for the reference sample to 86% 

after water soaking, and in the trap density properties. The change in transmission is likely due to a 

modification of the sample surface after water soaking, leading to an increase reflection. 

Both the total trap density and the trap density peak were changed in the SCAPS simulation to 

fit the experimental data, from 1.2E +15 cm-3 and 6.7E +15 cm-3 for the reference sample to 3.0E 

+15 cm-3 and 1.6E +16 cm-3 for the water soaked sample. Figure 3 shows the comparison of the J-V 

and QE simulated data versus the measured data for both types of devices, indicating a good fit 

between the two.  

 

Figure 3 Simulated (dashed red) and measured (solid blue) current density-voltage and 

external quantum efficiency curves for the reference and water soaked device. 

To try to further elucidate where this change in device efficiency could come from, SIMS depth 

profiles were measured on the samples with and without water soaking. Because we did not have 

an accurate standard to compare our sample to, no quantitative assessment can be done through 

the SIMS, but a comparative study of the elemental depth profiles is still possible. Figure 4 indicates 

clearly that no change in the main elements involved in the CIGS solar cells (Cu, In, Ga and Se) is 

occurring due to the water soaking, as one would expect, matching the results obtained by EDS and 
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XRD. The gallium profile is also the one expected via the 3-stage deposition process. The next key 

elements in a CIGS solar cell are the alkali elements, both Na and K (since we did not use any post-

deposition treatment by RbF or CsF here), as can be seen in Figure 5. One can see that no change 

can be observed for K, while the Na signal decreases in the water soaked sample in comparison to 

the reference sample. It is known that the alkali metals diffuse from the SLG, through the 

molybdenum and into the CIGS. Afterwards, notably because the processes are done at much lower 

temperature, there is less diffusion of the alkali into the other layers. This can be seen for both Na 

and K from their profiles in the reference sample. Interestingly though, the Na profile is lower in the 

bulk of the CIGS after water soaking, indicating an out-diffusion of the Na through the CdS into the 

water during water soaking. The effect of alkali migration has been observed before and was 

correlated with losses in VOC, FF and consequently in efficiency [18]. Interestingly, one can see that 

the oxygen content in the water-soaked sample is higher than for the reference sample, in the same 

location where the sodium is lower. One could therefore assume that both ions diffuse under a 

similar process at grain boundaries, while leaving K unaffected. The difference of behavior between 

Na and K might be partially explained by the smaller ionic radius of Na compared to K, or a difference 

in chemical affinity [19].  

 

Figure 4 Secondary ion mass spectroscopy (SIMS) depth profiles for the main element 

of reference (solid lines) and water soaked (dashed lines) device. 
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Figure 5 SIMS depth profiles of Na+, K+ and O- in the reference (solid) and water soaked 

(dashed) device. 

4. Conclusions 

Because of the nature of the deposition process, often used for CdS buffer layers in CIGS solar 

cells, which is an aqueous chemical bath method, one would not assume that the resulting layer 

would be sensitive to water. However, given enough time, water soaking of a SLG/Mo/CIGS/CdS 

structure can also degrade the future device performance of completed devices. All device 

parameters are affected by this degradation, which involves primarily a change in the diode quality 

factor and reverse saturation current density, leading to an overall efficiency dropping from ∼16% 

down to ∼14%. Simulation of the devices via SCAPS indicate that a slight modification of the 

transmission (decreasing by 3%) and a slight increase in trap density properties (by a factor of 2) can 

yield such a change. The chemical origin of these changes seem to be in part due to the out migration 

of Na from the bulk of the CIGS and in-migration of O.  
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