
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Fall 12-2020

Onboard Autonomous Controllability Assessment for Fixed Wing Onboard Autonomous Controllability Assessment for Fixed Wing

sUAVs sUAVs

Brian Edward Duvall
Old Dominion University, bduva002@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

 Part of the Aerospace Engineering Commons, Computer Engineering Commons, and the Mathematics

Commons

Recommended Citation Recommended Citation
Duvall, Brian E.. "Onboard Autonomous Controllability Assessment for Fixed Wing sUAVs" (2020). Doctor
of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI:
10.25777/jn8n-kk21
https://digitalcommons.odu.edu/mae_etds/321

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses &
Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/321?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ONBOARD AUTONOMOUS CONTROLLABILITY ASSESSMENT FOR FIXED

WING sUAVs

by

Brian Edward Duvall

B.S. May 2014, Old Dominion University

M.S. August 2016, Old Dominion University

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY

December 2020

Approved by:

Drew Landman (Director)

Thomas Alberts (Member)

Loc Tran (Member)

Gene Hou (Member)

ABSTRACT

ONBOARD AUTONOMOUS CONTROLLABILITY ASSESSMENT FOR FIXED

WING sUAVs

Brian Edward Duvall

Old Dominion University, 2020

Director: Dr. Drew Landman

Traditionally fixed-wing small Unmanned Arial Vehicles (sUAV) are flown while in

direct line of sight with commands from a remote operator. However, this is changing with the

increased popularity and ready availability of low-cost flight controllers. Flight controllers

provide fixed-wing sUAVs with functions that either minimize or eliminate the need for a remote

operator. Since the remote operator is no longer controlling the sUAV, it is impossible to

determine if the fixed-wing sUAV has proper control authority. In this work, a controllability

detection system was designed, built, and flight-tested using COTS hardware. The method

features in-situ measurement and analysis of the angular velocity response for the roll, pitch, and

yaw axis using a Multi-Input Multi-Output (MIMO) Autoregressive with Exogenous input

(ARX) modeling technique. The method is structured so that no prior knowledge of the airplane

dimensions, control surface deflection angles, mass, or moment of inertia are required. The

diagnostic is performed in flight with no post-processing so that controllability may be assessed

during normal operations. This diagnostic works by comparison of baseline healthy control

responses to current responses using statistical analysis. The outcome of this work shows that

this is a viable way to check for degraded control authority.

iii

Copyright, 2020, by Brian Edward Duvall, All Rights Reserved.

iv

This dissertation is dedicated to my parents Michael and Sharon Duvall

 and to my sister Kimberly Duvall.

v

ACKNOWLEDGMENTS

 There are many people I would like to thank, which made this work possible. First, I

would like to thank Dr. Drew Landman, my advisor, for reviewing this document and his

dedication to helping me with all my research endeavors since 2014. Dr. Thomas Alberts has

also been a great help in providing knowledge on control theory and debugging problems during

flight testing. Dr. Gene Hou has provided support in understanding uncertainty as well as general

overall project support. I would also like to thank Mr. Engin Baris, a good friend and fellow

Ph.D. candidate, for the ability to talk about problems that arose during this work. Additionally,

this work has benefitted from ties made at NASA Langley. I would like to thank Dr. Danette

Allen for supporting me in my Ph.D. endeavor by being flexible in my work hours at the

Autonomy Incubator. Also, Dr. Allen’s influence benefitted this project greatly in that it allowed

me to learn from fellow coworkers about Python programming and small companion computers

in general. This said, I would like to thank the entire NASA Langley Autonomy Incubator team.

Specifically, Dr. Loc Tran who was an advisor to this project and was always willing to help

when problems arose. Additionally, I would like to thank the entire NASA Langley Aeronautics

Systems Engineering Branch. Specifically, I would like to thank Mr. Robert McSwain my

mentor, Mr. Ray Rhew, Mr. Lou Glaab, and Mr. Dave North. They were always there to answer

questions and provide help when needed. I would also like to thank Mr. Justin Lisee for drawing

the wiring schematic of the SIG EdgeTRA and Mr. Greg Howland for helping me with the

Bifilar pendulum rig. I would also like to thank Mr. Chris Meek, Mr. Neil Coffey, Mr. Dave

Bradley, Mr. Dave Hare, and Mr. Chester Dolph for brainstorming ideas with me. Lastly, I

vi

would like to thank my parents immensely for helping me with the hundreds of hours of flight

testing required for this work and supporting me over the years.

vii

NOMENCLATURE

𝑁𝑓 Number of factors

𝑁𝑚𝑎𝑥 Number of dimensions

𝑇𝐿 Load torque

𝑉 DC motor input voltage

𝜃 Rotor position

𝐼 Armature current

𝑛 Gear ratio

𝛽 Viscous friction coefficient

𝐽 Rotor inertia

𝑅 Armature resistance

𝐿𝑐 Armature inductance

𝐾𝑣 DC motor speed constant

𝜃𝑅𝐸𝐹 Desired servo position

𝑋 Force in the x-direction

𝑌 Force in the y-direction

𝑍 Force in the z-direction

viii

𝑝 Angular velocity about the x-axis

𝑞 Angular velocity about the y-axis

𝑟 Angular velocity about the z-axis

𝑝̇ Angular acceleration about the x-axis

𝑞̇ Angular acceleration about the y-axis

𝑟̇ Angular acceleration about the z-axis

𝑢 Velocity in the x-direction

𝑣 Velocity in the y-direction

𝑤 Velocity in the z-direction

𝑢̇ Acceleration in the x-direction

𝑣̇ Acceleration in the y-direction

𝑤̇ Acceleration in the z-direction

𝑇 Thrust

𝑔 gravity

𝑚 Mass

𝐿 Moment about the x-axis

𝑀 Moment about the y-axis

𝑁 Moment about the z-axis

ix

ARX Autoregressive with exogenous input

𝑢𝑖𝑛𝑝𝑢𝑡 System input data

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 System output data

𝑎𝑛𝑎
 System output coefficients to be identified

𝑏𝑛𝑏
 System input coefficients to be identified

𝑛𝑎 Order of system output coefficients to be identified

𝑛𝑏 Order of system input coefficients to be identified

SISO Single-Input Single-Output

MIMO Multi-Input Multi-Output

𝐺(𝑧) System transfer function in the z domain

𝐿𝐻𝑆(𝑧) Left-hand side in the z domain

𝑅𝐻𝑆(𝑧) Right-hand side in the z domain

𝑦𝑟𝑜𝑙𝑙_ 𝑟𝑎𝑡𝑒 ARX model estimate of the roll rate

𝑦𝑝𝑖𝑡𝑐ℎ_ 𝑟𝑎𝑡𝑒 ARX model estimate of the pitch rate

𝑦𝑦𝑎𝑤_ 𝑟𝑎𝑡𝑒 ARX model estimate of the yaw rate

𝑇𝐼𝐶 Theil Inequality Coefficient

PWM Pulse width modulation

𝑦̂ Predicted value at x0

x

𝑡𝑠 Student’s critical value

𝑛𝑠 Number of runs in the design

𝑆 Estimated standard deviation

𝑊 Weight of the aircraft

𝐴 Bifilar string separation

𝑡 Period of oscillation

𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟 Length of bifilar strings

USB Universal serial bus

GPIO General purpose input/output

RC Remote control

INS Inertial Navigation System

GCS Ground Control Station

AIS Artificial Immune System

PIC Pilot In Command

MIE Manual Input Event

ATE Automatic Trigger Event

PI Prediction Interval

SID System Identification

xi

TABLE OF CONTENTS

 Page

LIST OF TABLES ... xiv

LIST OF FIGURES ... xvi

Chapter

1. INTRODUCTION .. 1
1.1 PROBLEM STATEMENT ... 4

2. LITERATURE SEARCH ... 6
2.1 CURRENT HEALTH DIAGNOSTIC METHODS ... 6

2.1.1 BIOMIMETIC METHOD AIS NEGATIVE SELECTION .. 6

2.1.1.1 SUMMARY OF AIS NEGATIVE SELECTION .. 12

2.1.2 SEMI-AUTONOMOUS sUAV AUTOPILOT LOGIC DESIGN METHOD 13

2.1.3 SERVO FAULT DETECTION MODELING CURRENT FLOW METHOD 21

2.2 DISCUSSION OF CURRENT DIAGNOSTIC METHODS AND RELATED WORK ... 24

3. METHOD ... 28

3.1 OVERVIEW OF THE DEVELOPED METHOD .. 28

3.2 SYSTEM IDENTIFICATION AND APPLICATION TO HEALTH DIAGNOSTICS 31

3.2 AUTOREGRESSIVE MODELING TECHNIQUE ... 32

3.3 LACK OF CONTROLABITY DETECTION .. 35

3.4 MODES OF FAILURE FOR LACK OF CONTROLABITY CHECK 39

4. HARDWARE AND SOFTWARE ... 41
4.1 HARDWARE ... 41

4.2 SOFTWARE AND FIRMWARE ... 45

5. EXPERIMENTAL CONFIGURATION AND OPERATION ... 52

5.1 MANUAL CONTROL ... 53

5.2 AUTOMATIC CONTROL ... 55

5.3 FAILURE MODES ... 58

xii

Chapter Page

6. DATA COLLECTION ... 60
6.1 SENSORS AND DATA COLLECTED ... 60

6.2 MAVLINK MESSAGES .. 63

6.3 RASPBERRY PI FLIGHT COMPUTER ... 65

6.4 START AND STOP OF DATA COLLECTION ... 67

7. DATA PROCESSING .. 69

8. RESULTS ... 73
8.1 MANUAL RC CONTROL MODEL BUILDING ... 73

8.2 AUTOMATIC CONTROL MODEL BUILDING ... 83

8.3 LACK OF CONTROLABILTY DETECTION.. 93

8.3.1 AILERON TWO STUCK NEUTRAL .. 95

8.3.2 AILERON TWO WITH LIMITED TRAVEL .. 98

8.3.3 ELEVATOR TWO STUCK NEUTRAL ... 99

8.3.4 ELEVATOR TWO WITH LIMITED TRAVEL ... 100

8.3.5 AILERON TWO STUCK NEUTRAL AND ELEVATOR TWO LIMITED TRAVEL

... 101

8.3.6 AILERON TWO LIMITED TRAVEL AND ELEVATOR TWO STUCK NEUTRAL

... 103

8.3.7 AILERON TWO AND ELEVATOR TWO STUCK NEUTRAL 105

8.3.8 AILERON TWO AND ELEVATOR TWO WITH LIMITED TRAVEL 107

8.3.9 RUDDER LIMITED TRAVEL ... 109

8.3.10 RUDDER LIMITED TRAVEL AND ELEVATOR TWO LIMITED TRAVEL ... 110

9. DISCUSSION ... 113
9.1 MOMENT OF INERTIA STUDY ... 113

9.2 XFLR5 DYNAMIC STABILITY... 117

10. CONCLUSIONS AND FUTURE WORK ... 124

REFERENCES ... 127

xiii

 Page

APPENDIX A ... 133
APPENDIX B ... 134
APPENDIX C ... 151
APPENDIX D ... 168
APPENDIX E ... 176

VITA ... 180

xiv

LIST OF TABLES

Table Page

1-Post-processed selection of projections ... 9

2-Pre-flight parameter checks ... 15

3-EFSM conditions ... 18

4-Event definitions .. 19

5-Category of fault conditions for a servo actuator .. 24

6-Controllability diagnostic requirements .. 28

7-MIMO Transfer function design.. 34

8-Failure modes tested for lack of controllability detection ... 40

9- Physical properties of EdgeTRA .. 42

10-Baseline hardware use to fly EdgeTRA .. 42

11-Additional hardware used for modeling and safety during failure modes 43

12-RAW_IMU message contents ... 48

13-Available sensors for controllability diagnostic .. 60

14-Data collected from Cube Orange ... 61

15-List of MAVLink messages used to receive and transmit information 63

16-Attributes of MAV_DATA_STREAM ... 65

17-Identified ARX transfer function model for roll, pitch, and yaw rates 76

18- Identified ARX transfer function model for roll, pitch, and yaw rates for auto control 86

19- Comparison of manual vs. automatic standard deviation of TIC values 91

20-Mass and experimentally determined MOI properties of the EdgeTRA 115

xv

Table Page

21- Eigenvalues from XFLR for EdgeTRA .. 119

xvi

LIST OF FIGURES

Figure Page

1-List of features to be recorded ... 7

2-Two-dimensional projection of z acceleration vs. roll attitude features [14] 8

3-Two-dimension projections for case 23,22 under motor failure case one and two, respectively

[14] .. 10

4-History of activated detectors for motor one failure [14] .. 11

5-History of activated detectors for motor two failure [14] .. 11

6-Validation data set [14] .. 12

7-Autopilot logic design in EFSM layout [19] ... 20

8-Airplane coordinate system ... 29

9-System Identification block diagram ... 31

10-TIC with PI showing normal vs. abnormal condition ... 36

11-Effect on prediction interval based on the selection of alpha .. 38

12-Control surfaces on fixed-wing aircraft ... 39

13-SIG EdgeTRA aircraft selected for experimentation .. 41

14-RNode radio installed in-plane and second RNode connected to GCS 44

15-MUX board implementation .. 45

16-QGroundControl telemetry display and map while the EdgeTRA is in flight 46

17-SITL diagram ... 49

18-SITL map view during flight simulation ... 49

19-Model of Great Planes high wing trainer in X-plane 10.. 50

https://d.docs.live.net/bbec8cd166bcf997/Documents/Dissertation_Rev3.docx#_Toc56435476

xvii

Figure Page

20-Flight operations types and Python code used with each .. 52

21-EdgeTRA in wings-level condition ... 54

22-Auto control waypoints and flight path ... 56

23-Aircraft target heading determination diagram ... 57

24-Flight path with failure modes ... 59

25-Data used as the input and output to the ARX MIMO model ... 61

26-Cube Orange input vs. output .. 62

27-Developed Python scripts that run on the RPI ... 66

28-Raspberry Pi USB ports used to connect to Cube Orange .. 67

29-Change of time between MAVLink messages .. 69

30-Interpolation verification from MIMO_Model_Input_03_14_2020__15_28_51 71

31-SSH terminal screen from RPI on the GCS reporting TIC values .. 72

32-Inputs used to identify ARX model for run MIMO_4_05_2020__18_03_08 74

33-Outputs used to build ARX model for run MIMO_4_05_2020__18_03_08 75

34-Fitted output using input from the same data used to build the ARX model for run

MIMO_4_05_2020__18_03_08 ... 77

35-Inputs used to validate ARX model for run MIMO_4_05_2020__18_03_08 78

36-Outputs used to validate ARX model for run MIMO_4_05_2020__18_03_08 79

37-Fitted output using validation input for run MIMO_4_05_2020__18_03_08 80

38-Manual control roll TIC vs. run number.. 81

39-Manual control pitch TIC vs. run number ... 82

40-Manual control yaw TIC vs. run number .. 82

xviii

Figure Page

41-Inputs used to identify ARX model with auto control for run MIMO_6_13_2020__16_18_37

... 84

42-Outputs used to identify ARX model with auto control for run

MIMO_6_13_2020__16_18_37 ... 85

43-Fitted output using input from the same data used to build the ARX model for run

MIMO_6_13_2020__16_18_37 ... 88

44-Inputs used to validate ARX model for run MIMO_6_13_2020__16_18_37 89

45-Fitted output using validation for run MIMO_6_13_2020__16_18_37 90

46-Automatic control roll TIC vs. run number ... 91

47-Automatic control pitch TIC vs. run number .. 92

48-Automatic control yaw TIC vs. run number .. 92

49-Fitted output after aileron two and elevator two are stuck neutral for run

MIMO_4_05_2020__16_55_18 ... 93

50-Fitted output under nominal conditions for run MIMO_4_05_2020__16_55_18 94

51-Roll TIC vs. run number showing runs when aileron two is failed neutral 95

52-Pitch TIC vs. run number showing runs when aileron two is failed neutral 96

53-Yaw TIC vs. run number showing runs when aileron two is failed neutral 97

54-Roll TIC vs. run number with aileron two having limited travel .. 98

55-Pitch TIC vs. run number with elevator two stuck neutral .. 99

56-Pitch TIC vs. run number with elevator two travel limited ... 100

57-Roll TIC vs. run number with aileron two neutral and elevator two travel limited 101

58-Pitch TIC vs. run number with aileron two neutral and elevator two travel limited 102

xix

Figure Page

59-Roll TIC vs. run number with aileron two limited and elevator two neutral 103

60-Pitch TIC vs. run number with aileron two limited and elevator two neutral 104

61-Roll TIC vs. run number with aileron two and elevator two stuck neutral 105

62-Pitch TIC vs. run number with aileron two and elevator two stuck neutral 106

63-Roll TIC vs. run number with aileron and elevator travel limited .. 107

64-Pitch TIC vs. run number with aileron and elevator travel limited 108

65-Yaw TIC vs. run number with rudder travel limited ... 109

66-Pitch TIC vs. run number with elevator two and rudder two travel limited 110

67-Pitch TIC vs. run number with elevator two and rudder two travel limited 112

68-Bifilar MOI suspension configuration for Ixx and Izz .. 114

69-Fitted output under nominal conditions for run MIMO_04_05_2020__18_21_23 116

70-Fitted output under nominal conditions for run MIMO_04_05_2020__18_19_57 117

71- EdgeTRA XFLR5 dynamic model ... 118

72-Root locus plot of longitudinal modes for EdgeTRA .. 120

73-Root locus plot for lateral modes for EdgeTRA .. 120

74-Rudder input and yaw rate response without active control .. 122

75-Aileron input and roll rate response with active control ... 123

1

CHAPTER 1

INTRODUCTION

 In recent years, small fixed-wing Unmanned Aerial Vehicles (sUAV) have become

readily available. Their small size makes them enticing test platforms to be used by commercial

industry, in academic settings, and by the model airplane hobbyist. Open-source flight

controllers, a key enabler for low-cost research and commercial products, can also be added to

sUAVs to allow for more advanced control. A Cube Orange is an open-source standard flight

controller in the sUAV industry. Adding it to a small aircraft model offers functions to stabilize

an sUAV in windy conditions, fly a mission autonomously, and return to the home location, to

name a few functions available. These autonomous functions have helped drive the increase in

demand for fixed-wing sUAVs because, traditionally, the attrition rate of small fixed-wing

aircraft is high. Fixed-wing sUAV flight dynamics are typically slow enough that a human can

act as the flight controller. For instance, if the plane is not wings-level, the roll response and

aircraft stability allow the human pilot to level it. However, this takes hundreds of hours of

training to become proficient. With an autonomous flight controller, controlling an sUAV is

simplified. Therefore, the amount of training required to fly a fixed-wing sUAV can be

significantly reduced.

Autonomous flight controllers do not only aid the Pilot In Command (PIC), but some

vehicle health diagnostics are provided synchronously for the safety of the vehicle and people on

the ground. Though these health diagnostics provided by the flight controller do not encompass

all possible failure modes of an sUAV, a few examples of the features are that the flight battery

voltage and current are monitored [1]. Suppose the flight battery voltage drops below a pre-

determined threshold. In that case, the flight controller takes action to automatically return the

2

vehicle to the home location to prevent complete loss of the vehicle, preventing a potential crash,

damage to property, or injury to people on the ground. Other health diagnostics include

monitoring the remote control radio link connection, the telemetry link with a ground control

station, GPS position estimation, and excessive vibrations. All these health diagnostics are

important. However, open-source flight controllers, such as the Cube Orange do not have

advanced diagnostics to determine if the aircraft is still controllable or suffering from degraded

controllability.

Loss of control can be due to many factors but is typically attributed to malfunction of

control surface servo actuators, as they are the input to the aircraft. Fixed-wing sUAVs utilize

control surfaces that deflect to create positive or negative lift increments on the wing and

empennage for in-flight control [2]. These surfaces are driven by servos, which convert signals

commanded by the PIC on the ground to a control surface’s mechanical movement. Servos are

either digital or analog, with the difference being that digital servo position control operates at

300Hz compared to 50Hz of the analog servo. Also, digital servos are not as susceptible to

temperature and supply voltage changes that affect analog-servo zero-position [3, 4]. Servo

anatomy consists of an electric motor, gear train, motor position feedback sensor such as a

potentiometer, and a closed-loop controller [5].

 The failures of servos can be divided into electrical and mechanical failure modes. As for

electrical failures, the DC motors within the servo can vary in type, such as brushed or brushless.

However, all motors are susceptible to electrical short circuits and overheating due to excessive

current draw. For the position of the DC motor, feedback of the motor position is provided by a

potentiometer. Potentiometers are susceptible to blockage from dirt and debris, which causes

3

false readings [6]. A false reading prevents the desired pilot input from being achieved by the

servo, which can be catastrophic.

Mechanical failure modes are attributed to the gear train, communication lines, and

power conductors. Low-cost servos used for RC aircraft, such as the Hitec HS-311, have gears

made of plastic that are susceptible to deformation of the gear teeth [7]. Deformation can occur

from sudden acceleration, such as a control surface being struck by a stationary object when

transporting an sUAV or a bird strike in flight [8]. This sudden acceleration causes intermediate

gear teeth to be deformed as they cannot rotate with enough angular velocity. The deformation of

plastic gears also includes overloading and general wear from use. Also included in mechanical

failure modes are communication and power lines. The command signal is transmitted via a wire

to the servo from a receiver or flight controller, relaying the pilot’s command on the ground.

Therefore, the command signal transmission and power wires are susceptible to loose

connections, damage due to chafing of insulation, connector corrosion, and melting from an

excessive current draw, leading to servo actuator failure.

 Currently, vehicle health diagnostics for open-source flight controllers that utilize

ArduPilot firmware lack the ability to detect loss of control of an sUAV. Knowing the

controllability of an sUAV is even more critical in Beyond Visual Line of Sight (BVLOS)

operations, where most of the flight of the sUAV is out of view of the PIC or any other spotter to

ensure the vehicle is flight worthy. This is unlike typical Visual Line of Sight (VLOS)

operations, where the PIC can check for controllability by RC stick commands and visually see

the sUAV response. BVLOS operation, when authorized, is typical for package and medical

supplies delivery where the flight path may be over urban environments. Having the ability to

determine controllability provides the flight controller with valuable information. Without this

4

knowledge, the flight mission continues despite any damage sustained, creating a dangerous

situation for the sUAV. The longer the damaged sUAV stays in the air, the higher the probability

of catastrophic loss of control resulting in complete loss of the vehicle, injury to people, and

damage to property on the ground.

1.1 PROBLEM STATEMENT

This research aims to develop in-flight diagnostics to detect the loss of controllability in

an sUAV. Controllability is defined by an aircraft's ability to maneuver based on available

controls under normal circumstances. For a fixed-wing sUAV, controllability is assessed by

evaluating the primary control response, measured angular velocities about the roll, pitch, and

yaw axis, based on control surface inputs. The method leverages the use of historical knowledge

of the response to primary flight control inputs to build empirical models for all axes. Next, a

method for rapidly building a new response model in flight is used to compare responses to the

baseline model and establish thresholds for minimum controllability through statistics. The work

features popular ArduPilot firmware and runs on a commonly available Cube Orange flight

controller hardware. This hardware and firmware combination is widely used by industry,

academics, and hobbyists, which gives the best opportunity for implementation in a wide variety

of sUAVs. Other important considerations are that most sUAVs cannot measure actual deflection

angles (closed-loop), inertial mass measurements are unknown, and onboard sensors are limited.

These sensor outputs are essential to using system identification techniques that utilize aircraft

equations of motion. Although additional hardware could be added, this adds cost and requires

expertise in each additional sensor’s setup and calibration. This work focuses on sensors

commonly used by typical flight controllers, such as the Cube Orange, Pixhawk, and mRo

Control Zero used to fly an sUAV autonomously. The goal was to develop a simple methodology

5

that could be applied across platforms, requiring only an Inertial Measurement Unit (IMU), an

airspeed sensor, and a remote-control signal input. Using sensors already available from the

flight controller makes the detection system readily transferable from one sUAV to another with

few if any hardware changes. Also, this allows the detection system to work on many different

sUAV configurations, such as a stable high wing design, maneuverable mid-wing, and Vertical

Takeoff and Landing (VTOL) sUAVs because the flight controller can be used in many different

vehicle types. The loss-of-primary-control detection system utilizes a black box system

identification approach instead of aircraft equations of motion, which rely on knowing aircraft

inertias and deflection angles of control surfaces. Therefore, to detect primary loss of control, an

empirical model can be built to describe how the sUAV is performing at an instant in time, based

only on input and output data. This model is then compared to measured historical baseline

response data to check for controllability.

6

 CHAPTER 2

LITERATURE SEARCH

2.1 CURRENT HEALTH DIAGNOSTIC METHODS

2.1.1 BIOMIMETIC METHOD AIS NEGATIVE SELECTION

A biomimetic method called Artificial Immune System (AIS), which is modeled after the

human immune system, is a relatively new area of study in health diagnostics for sUAVs.

Traditionally, previous AIS applications have been utilized in computer security to protect from

viruses, pattern recognition, and fault detection for sensors used in industrial plants [9-11]. AIS

is within the context of machine learning. However, AIS is a stand-alone category compared to

neural networks and evolutionary algorithm techniques [12, 13].

 Garcia et al. applied an AIS for a multi-copter health diagnostics for detecting a motor

failure in an sUAV [14, 15]. This paper used an AIS negative selection method to build a health

monitoring system in which the AIS algorithm was developed to model how the human body

detects bad and good cells. In living organisms, the thymus gland contains T-cells and self-

proteins. If a T-cell reacts to a self-protein, then this T-cell is destroyed. A T-cell that does not

react to the self-protein can stay and destroy bacteria or viruses. This principle method of self

and non-self discrimination is known as negative selection. The concept is that anything that

does not belong to self should be deleted. In the case of a living organism, the T-cells that do not

belong are eliminated.

For this idea of negative selection, an AIS is to be applied to aircraft. Therefore,

understanding what self encompasses needs to be defined, which is done by collecting data on

many different features. Features are measurements from sensors such as attitude, rates, and

7

accelerations, to name a few. In this paper, the author used 23 features to develop self, as shown

in Figure 1.

Figure 1-List of features to be recorded

Data were collected for the listed features by flying the quadcopter in an altitude hold

mode while rolling and pitching the vehicle ±10 degrees for 30 seconds. The responses are then

normalized from 0 to 1 and undergo a clustering process. This normalized clustered data forms

the self clusters for all two-dimensional projection combinations of the features, as shown in

Figure 2 by the blue circles.

8

Figure 2-Two-dimensional projection of z acceleration vs. roll attitude features [14]

Before forming a projection, such as the z acceleration vs. roll attitude shown in Figure 2, the

entire projection is first considered non-self-clusters, which are the red circles. Self-clusters are

then overlaid onto the projection from normalized nominal flight data. Anywhere a self-cluster

overlaps a non-self-cluster, this overlapped non-self-cluster is removed. The removal of non-self,

where self overlaps, gives this method the name, negative selection. Once the negative selection

process is performed, the algorithm optimizes the amount of non-self-empty space to

characterize the entire projection space. The process is repeated for all possible combinations of

features. Equation (1) is used to calculate all possible combinations to ensure a complete data set.

Since there are 23 features, it is found that 253 projections are needed to describe the entire self

and non-self.

9

𝑁𝑠𝑒𝑙𝑓 = 𝐶𝑁

𝑁𝑚𝑎𝑥 =
𝑁𝑓!

𝑁𝑚𝑎𝑥! (𝑁𝑓 − 𝑁𝑚𝑎𝑥)!
=

23!

2! 21!
= 253 (1)

With a database of self vs. non-self-understood, future data points are used as detectors to

determine if the data point is a self or non-self. Calculating the Euclidian distance from each

future data point to the centers of all surrounding clusters determines a detector’s status, as the

closest cluster defines whether the future data point is self or non-self. Detectors are said to be

activated if they are found to be non-self. The number of summed activated detectors is then used

to determine if there is a failure or not. However, some detectors are always activated due to

sensor noise and modeling errors that should be considered. A MATLAB Simulink model is

used to test this algorithm. A simulated quadcopter model is used to simulate two different motor

failure scenarios, where a 2.5% reduction in efficiency for each motor is the mode of failure.

After post-processing, the author found that out of 253 projections only 24 needed to be

considered based on the number of activations. The significant projections considered are shown

in Table 1.

Table 1-Post-processed selection of projections

10

Figure 3 shows an example of projections 22 and 23. The black dots in Figure 3a represent data

collected when the motor one had a 2.5% efficiency reduction. Figure 3b shows test data for

motor two with a 2.5% efficiency reduction. The average number of test data points or detectors

was 600 for each projection during the algorithm’s initial testing.

Figure 3-Two-dimension projections for case 23,22 under motor failure case one and two,

respectively [14]

Counting the number of activated black dot detectors over time for all 24 projections allows for

real-time implementation of the algorithm by creating a time history of activated detectors, as

shown in Figure 4 for motor one failure. The author states that no failures have been

implemented for the first eight seconds, providing nominal conditions. The number of activated

detectors then increases above 50 at 10 seconds into the test showing that a failure has been

detected. The activated detectors are not constant because the non-linear dynamic inversion

controller used to fly the multi-copter recognizes the failure and attempts to compensate

11

momentarily. This oscillating pattern of increasing and decreasing detectors activated is also

seen for motor two failure conditions, as shown in Figure 5.

Figure 4-History of activated detectors for motor one failure [14]

Figure 5-History of activated detectors for motor two failure [14]

These results were validated by performing more flight tests in the same manner to build the self

and non-self-projections. The quadcopter was rolled and pitched ±10 degrees to create a nominal

validation data set. Figure 6a shows the roll and pitch values that were collected over 60 seconds.

12

For this data set, it is shown in Figure 6b there are few activated detectors, which shows the

algorithm is effective.

Figure 6-Validation data set [14]

2.1.1.1 SUMMARY OF AIS NEGATIVE SELECTION

The use of AIS negative selection was shown to be an effective approach for fault

detection within an sUAV. In this method, a data set of desired features is selected, collected,

and normalized, which allows the creation of two-dimension projections of every possible

combination from the list of the desired features. The two-dimension projections display the self

and non-self-areas, indicating nominal or abnormal regions of the two-dimension projection.

These two-dimension projections have future test data called detectors overlaid. Based on where

the detector falls in the projection, it is either found to be activated or not activated. An activated

detector means failure is present, while a not activated detector indicates no failure present.

Continuously counting the activated detectors provides the AIS method with real-time

implementation.

13

 Other authors, such as Lopez et al., have implemented the AIS negative selection method

similarly for multi-copters [16]. However, in Lopez et al.’s work, the failure modes implemented

were completely inoperable motors instead of just reduced efficiency as the mode of failure.

Even with the different failure modes, the results were found to be similar. Additionally,

applications of AIS negative selection have also been applied to fixed-wing aircraft. In Sanchez

et al.’s work, an RC jet aircraft is utilized where an AIS negative selection method is applied to

develop a fault detection scheme for control surfaces [17, 18]. Only two failure modes were

tested, and they are one of two elevators and ailerons stuck in a neutral position while

performing a doublet maneuver. From flight testing the RC jet, the AIS algorithm detected

control surface faults for both manually controlled via a pilot and a mode where a stabilization

controller assists the pilot. Overall results from these works show AIS negative selection is an

effective way to determine fault detection because of its ability to include aerodynamic coupling

effects, diversity of possible airframe types, and the ability for real-time implementation.

2.1.2 SEMI-AUTONOMOUS sUAV AUTOPILOT LOGIC DESIGN METHOD

 Quan discusses a multi-copter design and control health evaluation method for flight

controllers [19]. This health diagnostic focus is on the flight controller itself. For example, is

sensor data from the IMU valid? The report covers three different failure types: communication,

sensors, and propulsion. Also, the use of an Extended Finite State Machine is developed to semi-

autonomously counteract any of the three failure modes and ensure the safety of the sUAV.

Communication failures occur when the RC transmitter loses the link with the receiver on

the vehicle. The causes of communication failure can be from hardware failures or even operator

errors, such as the transmitter being turned off accidentally when the vehicle is powered. Also,

flight controllers that are not calibrated for paired transmitter endpoints fall within this failure

14

type. By not calibrating the flight controller to the transmitter endpoints, the flight controller

does not understand what the operator is commanding, leading to flight accidents. An example of

this is that the operator wants the vehicle to roll left, but, instead, it rolls right. Communication

with the vehicle is not limited to only an RC transmitter. A ground control station (GCS) is also

utilized to provide essential telemetry data such as altitude and speed. However, this can be

another source of communication failure. Like the RC transmitter, the GCS can lose the link with

the vehicle because of hardware failures, range limitations, or loss of power to the GCS.

 Sensor failures are defined as when a sensor cannot measure a quantity accurately or it

malfunctions altogether. Examples of sensors that can fail are a barometer, compass, GPS, and

Inertial Navigation System (INS). Barometer failure is considered when altitude measurements

are inconsistent. Similarly, inconsistency in the compass heading and GPS position indicates a

failure in these sensors. As for the INS, failure occurs when either the accelerometer or

gyroscope is not calibrated, which produces inaccurate vehicle position estimates. Failure of the

INS also includes possible hardware failure of the accelerometers or gyroscopes.

 Propulsion failure encompasses the entire propulsion system. The system includes the

battery, Electronic Speed Controllers (ESC), motors, and propellers. Each one of these

components can lead to a failure in the propulsion system. Flight batteries can fail from low

capacity, high internal resistance, overcharging, or over-discharging. An ESC can fail due to

hardware limitations, such as overheating, limiting power, or eliminating power flow to the

motors completely. Flight controllers send commands to the ESC in which some cases, the ESC

does not recognize these commands. ESC failures directly relate to motor failures as the motor

does not work if the ESC is not working correctly. Lastly, propeller failures occur when blades

are worn, loose, cracked, or poorly balanced.

15

2.1.2.1 HEALTH MONITORING AND DESIGN

 With the three failure modes defined (communication, sensors, propulsion), a health

evaluation process is developed to determine if the discussed parameters associated with each

failure mode are working correctly. The health evaluation is performed before and while in

flight. A pre-flight check ensures all essential communication, sensors, and propulsion are

functioning before a flight, as shown in Table 2. If there are any failures in the pre-flight check,

they are reported to the GCS.

 Check Item Failure Type

1 Whether the RC has been calibrated Communication breakdown

2 Whether the RC connection is normal Communication breakdown

3 Whether the barometer hardware fails Sensor failure

4 Whether the compass hardware fails Sensor failure

5 Whether the compass has been calibrated Sensor failure

6 Whether the GPS signal is normal Sensor failure

7 Whether the INS has been calibrated Sensor failure

8 Whether the accelerometer hardware fails Sensor failure

9 Whether the gyroscope hardware fails Sensor failure

10 Battery voltage check Propulsion system anomaly

11 Whether the critical parameter settings are

correct

Parameter configuration

mistake

Table 2-Pre-flight parameter checks

 In-flight, communication is continuously checked to ensure that updated signals are

received from the RC transmitter and the GCS. If one of the communication methods does not

respond within five seconds, it is assumed there is a loss of contact. The sensors’ health

diagnostic during flight is best if the vehicle can be at a steady-state to avoid false alarms. Being

at a steady-state is particularly important when checking the health status of the barometer. Large

16

fluctuations in altitude measurements produce fault detection. In comparison, large fluctuations

in yaw produce fault detections in the compass sensor. However, evaluating the compass sensor

in greater depth indicates that the compass sensor is most susceptible to magnetic interference

from the propulsion system. Magnetic interference can be measured as it fluctuates in strength, in

which interference fluctuates due to varying current flow to increase or decrease motor RPM.

These fluctuations must not exceed 60% of the original magnetic field, or the compass reading

may suffer from severe interference [20]. The GPS position is checked by comparing it to an

estimated position. This estimated position comes from the Extended Kalman Filter, which takes

sensor data from the IMU. The GPS sensor is okay if the error between the measured and

estimated positions is less than a pre-defined parameter value.

 The propulsion system in-flight health monitoring has multiple checks as well, starting

with the propellers. These are checked by ensuring excessive vibrations are not present, which is

measured by the accelerometers within the flight controller. The battery is monitored by using a

combination of methods. One way is to fly the vehicle until the voltage drops below a set value

for several seconds. However, a real-time method is to calculate the Reserved Maximum

Ampere-Hour (RMAH). There are some difficulties in doing this, as the flight battery voltage

cannot be directly measured because of nonlinearity when under load. Also, calculating the

remaining capacity of a battery must be continuously recalculated due to changing pilot inputs.

Therefore, the State of Charge (SOC) calculates the battery state shown in equation (2) to combat

the changing pilot inputs. S is the SOC of the battery, I is the discharge current, R is the battery

impedance, Q is the nominal battery capacity, T is the sampling time, and w is the system noise.

The SOC equation is then implemented in equation (4) to calculate the battery terminal voltage.

C represents constant error offset, v is measurement noise, and OCV(S) is the curve of the Open

17

Circuit Voltage and SOC (OCV-SOC). The OCV(S) curves are found from battery charge and

discharge tests. These equations still require instantaneous input to solve for the SOC and V,

which is subject to error. To mitigate error, an Extended Kalman Filter is used to nonlinearly

estimate the SOC using equations (2)(3)(4).

𝑆𝑘+1 = 𝑆𝑘 −

𝐼𝑘𝑇𝑠

𝑄𝑚𝑎𝑥
+ 𝑤1,𝑘

(2)

 𝑅𝑘+1 = 𝑅𝑘 + 𝑤2,𝑘 (3)

 𝑉𝑘 = 𝑂𝐶𝑉(𝑆𝑘) − 𝐼𝑘𝑅𝑘 + 𝐶 + 𝑣𝑘 (4)

2.1.2.2 Safe Semi-Autonomous Autopilot Logic Design

 A logic design process is used to implement the discussed health monitoring system by

developing an Extended Finite State Machine (EFSM), which describes a discrete-event system.

It is assumed that all the conditions in Table 3 are true. To use EFSM, all states, flight modes,

and events need to be defined. A state refers to whether the vehicle is powered on or off. Flight

modes describe what the vehicle is attempting to do. Loiter, stabilize, and landing are examples

of flight modes in which the vehicle is holding position, self-leveling, and descending in altitude,

respectively.

18

The system has a finite number of states

System behavior in a specific state should remain the same

The system always stays in a particular mode for a certain period

The number of conditions for the state’s switch is finite

A switch of the system state is the response to a set of events

The time of state switch is negligible

Table 3-EFSM conditions

Events are separated into Manual Input Events (MIE) and Automatic Trigger Events (ATE),

which control the states and flight modes. MIE is directly from pilot input, such as arming or

disarming the vehicle. MIE also includes switching flight modes like a return to launch, land, and

stabilize. ATE is used when the flight controller recognizes there is a problem. For example, the

vehicle is in loiter flight mode, but the flight controller finds the GPS unhealthy. To avoid an

uncontrollable flight experience, the flight controller automatically switches the flight mode from

loitering to altitude hold, which does not require GPS. ATE is similarly used when the battery is

found to be unhealthy. No matter the flight mode, the flight controller sets the flight mode to

land, preventing a crash. Table 4 defines all events used to build the autopilot logic design.

19

MIE1 1:denote to arm, 0:denote to disarm

MIE2 Manual operation instruction(1:Switch to MANUAL FLIGHT MODE;

2:Switch to RTL MODE; 3:Switch to AUTO-LANDING MODE)

MIE3 Turn on or turn off the multi-copter(1:turn on;0:turn off)

MIE4 Power cutoff for maintenance (1:repaired;0:repairing)

ATE1 Health status of INS and status of multi-copter (1:healthy;0:unhealthy)

ATE2 Health status of GPS(1:healthy;0:unhealthy)

ATE3 Health status of the barometer(1:healthy;0:unhealthy)

ATE4 Health status of the compass(1:healthy;0:unhealthy)

ATE5 Health status of the propulsion system(1:healthy;0:unhealthy)

ATE6 Status of connections of RC(1:normal;0:abnormal)

ATE7 The status of the battery’s capacity(1:adequate, able to perform RTL;

0:inadequate, unable to perform RTL)

ATE8 Comparison of the multi-copter altitudes and a specified threshold (1:the

multi-copters altitude is lower than the specified threshold;0:otherwise)

ATE9 Comparison of the multi-copters throttle command and a specified threshold

over a time horizon(1:the multi-copters throttle command is less the

specified threshold;0:otherwise)

ATE10 Comparison of the multi-copter distance from the home point and a

specified threshold (1:the multi-copters distance from the home point is

greater than the specified threshold; 0:the multi-copters distance from the

home point is not greater than the specified threshold)

Table 4-Event definitions

The EFSM is defined by transition conditions developed using defined states, flight

modes, and events. Transition conditions are strings of events, such as from power off to standby

and vice versa, as seen in Figure 7, denoted by C1 and C2, respectively. C1 transition condition

includes event MIE3=1 while C2 also includes event MIE3 but with a value of 0. By combining

more events in the proper order, all states can be achieved.

20

Figure 7-Autopilot logic design in EFSM layout [19]

Equation (5) is an example of transition conditions C1 and C3 needed to enter the manual flight

mode state. In this example, events within the transition conditions show the vehicle is powered,

arms, changes flight mode to manual, checks INS for health, checks propulsion health status,

checks the RC communication, and checks the battery health status. These transition definitions

are defined for all states and flight modes. By doing this, a road map is created for the flight

controller to follow under normal and abnormal conditions.

C1:MIE3=1, C3:(MIE1=1)&(MIE2=1)&(ATE1=1)&(ATE5=1)&(ATE6=1)&(ATE7=1)

(5)

21

2.1.2.3 SUMMARY OF AUTOPILOT LOGIC DESIGN METHOD

Of the three possible modes of failure discussed, communication, sensors, and

propulsion, the ability to detect and react to the failure modes helps ensure the safety of an sUAV

at the flight controller firmware level. The health evaluation was implemented before take-off

and while in flight to provide the opportunity to monitor for abnormalities continuously. If an

abnormality was detected, a developed semi-autonomous logic design would allow the autopilot

to switch flight modes automatically. An example would be a scenario in which the current flight

mode utilized the GPS for the vehicle location but the GPS signal was lost. The logic is designed

so that the flight mode requires GPS changes to a different flight mode, which is not dependent

on vehicle location obtained from the GPS. Automatically changing flight modes in this example

helps prevent the sUAV from flying out of control, which can lead to flight into restricted

airspace, damage to property, and possible injury to people. Tridgell et al. and Meier et al. have

implemented this health diagnostic method within the flight controller firmware called ArduPilot

and PX4, respectively [21, 22]. Based on these implementations, health diagnostics effectively

detect and remedy communication, sensors, and propulsion modes of failure at the firmware

level.

2.1.3 SERVO FAULT DETECTION MODELING CURRENT FLOW METHOD

 Fuggetti et al. argued that if an aircraft is suffering from a lack of controllability, it is likely due

to faulty servo actuators. They provide the input to the aircraft dynamics [23]. In this method, the

current absorbed to servo actuators is modeled. This model is then compared to the measured

absorbed current, and if both current values do not match, there is a problem with a servo

actuator. Using Newton’s First Law and Kirchhoff’s Voltage Law, the DC servo is modeled

using an ODE system of equations (6) and (7).

22

 𝐽𝑛𝜃̈(𝑡) =
1

𝐾𝑣
𝐼(𝑡) − 𝑇𝐿(𝑡) − 𝛽𝑛𝜃̇(t) (6)

 𝑉(𝑡) = 𝑅𝐼(𝑡) + 𝐿𝑐𝐼(̇𝑡) +
𝑛

𝐾𝑣
𝜃̇(t) (7)

These equations are put into a transfer function form by understanding the inputs and outputs of

a servo. The input to a servo is the desired position 𝜃𝑅𝐸𝐹. Knowing the desired position, the

servo control loop within the servo applies a voltage to the DC motor to rotate the servo arm.

This voltage is then related to the current used to drive the servo to 𝜃𝑅𝐸𝐹. Equation (8) describes

this in the transfer function form and is populated by applying the Laplace transform to equations

(6) and (7), leading to equations (9) and (10), respectively.

𝜃(𝑠)

𝑉(𝑠)
=

𝜃(𝑠)

𝐼(𝑠)

𝐼(𝑠)

𝑉(𝑠)
 (8)

𝜃(𝑠)

𝐼(𝑠)
=

1
𝑛𝐾𝑣𝐽

𝛽
𝐽 𝑠 + 𝑠2

 (9)

𝐼(𝑠)

𝑉(𝑠)
=

𝛽
𝐽𝐿𝑐

+
1
𝐽 𝑠

𝛽𝑅𝐾𝑉
2 + 1

𝐽𝐾𝑣
2𝐿𝑐

+
𝐽𝑅 + 𝛽𝐿𝑐

𝐽𝐿𝑐
𝑠 + 𝑠2

 (10)

23

Equation (10) provides the transfer function model of the current absorbed based on an input

voltage applied, which can be simplified to identify parameters within A, B, C, and D. These

parameters are identified by applying a step voltage and measuring the response current.

 𝐼(𝑠)

𝑉(𝑠)
=

𝐴 + 𝐵𝑠

𝐶 + 𝐷𝑠 + 𝑠2
 (11)

 𝛽

𝐽𝐿𝑐
= 𝐴 (12)

 1

𝐽
= 𝐵 (13)

 𝛽𝑅𝐾𝑉
2 + 1

𝐽𝐾𝑣
2𝐿𝑐

= 𝐶 (14)

 𝐽𝑅 + 𝛽𝐿𝑐

𝐽𝐿𝑐
= 𝐷 (15)

 Fault detection is based on the difference between the measured and estimated current, as

shown in equation (16). Based on the difference's magnitude, there are four different fault

conditions, as shown in Table 5. Based on initial testing, the nominal range of current flow was

from 0 to 0.5A. If any current differences are above 0.5A, there is either a mechanical fault or a

short circuit. If no current, then there is an electrical problem with the servo actuator, such as a

broken wire or damaged DC motor.

𝑟(𝑡) = 𝐼(𝑡) − 𝐼(𝑡)̂ (16)

24

Table 5-Category of fault conditions for a servo actuator

2.2 DISCUSSION OF CURRENT DIAGNOSTIC METHODS AND RELATED WORK

 Of the three different methods reviewed in-depth, all perform a health diagnostic, but all

have some drawbacks. The AIS method required the nominal model to be trained with

previously recorded data. Therefore, the AIS diagnostic system cannot entirely be encompassed

in one package on the sUAV as post-processing is required, which uses additional hardware to

perform the computation to train the nominal model. Post-processing is problematic due to a

need for additional hardware and the likely event of a configuration change of the sUAV. For

example, suppose a multi-copter sUAV crashed, and as a result, a motor is damaged. Therefore,

the motor is replaced. Since all motors differ slightly in terms of efficiency, mass properties, and

dimensions due to manufacturing variances, if the AIS is not retrained, these differing motor

factors may affect the AIS when the motor is replaced. False alarms may be a common

occurrence even though the sUAV is nominal due to the AIS method’s sensitivity. In addition to

this damaged motor example, a more typical configuration change is changing the flight battery

from run to run. Again, as with differences in motors, batteries vary in weight, dimensions, and

current discharge rates. Using a different battery affects vehicle factors used in the AIS, such as

vehicle acceleration, which can cause false alarms since the original AIS only knows nominal

Fault condition Residual

Fault-free 0A < r(t) < 0.5A

Mechanical fault r(t) ≥0.5 A

Short Circuit r(t) ≥0.5 A

Electrical fault r(t) ≤ 0 A

25

conditions with the battery used in nominal model building runs. Therefore, with any

configuration change, it cannot be trusted until the AIS model has been retrained. This retraining

process reduces this method’s practicality for sUAVs, as an aircraft’s payload may change from

mission to mission.

This dissertation also discusses a semi-autonomous health diagnostic autopilot logic

design built into the flight controller firmware. This method applies health diagnostic monitoring

to sensors within a flight controller, omitting other necessary equipment, such as servo actuators

and electronic speed controllers. For instance, in the event of a failed rudder control linkage in a

fixed-wing sUAV, as semi-autonomous health diagnostic is only diagnosing the sensors within

the flight controller, it might find everything normal even though the aircraft has no primary yaw

control. Not having the ability to detect these kinds of controllability problems leaves this

method with an incomplete health diagnosis.

Additionally, the method focused on the servo actuators, which are the direct input to the

aircraft aerodynamics. The modeling technique was specific to one servo actuator, as transfer

function models were built using data from a bench test rig with HXT-900 servos. With the

technique applied to only one type of servo, this is problematic if the servo utilized is changed,

which is likely the case from one fixed-wing sUAV to another. Using a different servo would

require new data to be obtained from the servo of interest through bench testing and post-

processing, which cannot be performed in-flight. This approach is also invasive as the method

requires the knowledge of the voltage applied to the DC motor that drives the servo. Typically,

the input voltage to the servo’s DC motor is not available with Commercial Off the Shelf

(COTS) servo actuators, where a constant voltage is applied, and an internal control loop

regulates the voltage to the servo’s DC motor. Therefore, the servo case must be removed to

26

obtain this measurement, which, if not carefully performed, can introduce unnecessary problems

that can create failures. In continuation, this requires additional hardware to measure the current

absorbed by the servo, which also adds to the complexity and the number of parts that can fail.

As a way to mitigate the problems and limitations of the previously discussed work,

additional literature was reviewed. In Gertler and Ding’s work, the general approach to detecting

faults is separated into two different methods [24, 25]. These methods are model-free and model-

based. The model-free approach utilizes redundancy and established limits to perform fault

detection. An example of the redundancy model-free approach is the use of multiple IMU

sensors. With multiple sensors, the readings can be compared with one another to check for

proper operation. If there are several IMU sensors, then a voting scheme can be implemented to

determine which IMU is genuinely malfunctioning. In the case of the established limit, an

example is a fixed-wing sUAV air velocity that is below stall velocity. Being below the stall

velocity limit indicates a fault that the aircraft is flying too slow.

For the model-based approach, an explicit mathematical model of the system of interest is

used, such as governing equations of motion, state-space models, and transfer functions. The

calculation of residuals determines the detection of a fault. Residuals are the difference between

the mathematical model estimate and the measured quantity from a sensor, and since there is

always noise in a system, the residuals are never zero. Therefore, for the model-based approach,

a residual evaluation process is conducted to compare the residuals to an established threshold,

determined by experimentation or theoretical knowledge.

This model-based method has been demonstrated using an E-flite Ultra Stick 25 in the

work of Freeman et al. The aircraft governing equations of motion are required, and the focus is

on fault detection for control actuators [26, 27]. While monitoring the Ultra Stick 25 attitude, a

27

command is applied at the same time. The detection of a faulty control actuator is performed by

analyzing residuals. These residuals are the difference between the aerodynamics model’s

estimated attitudes and the measured attitudes from the IMU. After analysis, results show this

method is feasible for controllability diagnostics of aircraft.

Following the literature review of current methods available for health diagnostics, some

methods showing promising results have been found, although one gap in the previous research

is the ability of a health diagnostic to detect whether an sUAV is suffering from a lack of

controllability. Specifically, a controllability diagnostic capable of functioning with an sUAV

that changes mass configurations often, such as a package delivery sUAV where the payload

mass varies from run to run, can affect previously built nominal models. Therefore, the ability

for a diagnostic to be developed in-flight without any post-processing or the use of large data sets

to identify a nominal model represents a significant improvement to the state of the art. Another

shortcoming identified in the literature search is that the vast majority of low-cost sUAVs

entering the market are not suitable for typical model-based health diagnostics due to a lack of

available sensors. For example, using the model-based method with aircraft equations of motion,

sensors such as alpha and beta potentiometers, generally found on research sUAVs, are two

variables needed when using the aircraft equations of motion as a nominal model. However, in

standard low-cost sUAVs, these sensors are typically omitted to reduce cost and complexity, as

they are not required for flight. Additionally, low-cost sUAVs often lack the necessary

parameters, such as mass properties, required for an aircraft’s complete mathematical model.

This lack of prior knowledge about an sUAV is also to be considered if a health diagnostic is to

apply to many different sUAVs.

28

CHAPTER 3

METHOD

3.1 OVERVIEW OF THE DEVELOPED METHOD

Fixed-wing sUAVs using ArduPilot firmware has been found to lack the ability to check

for degraded controllability. Specifically, controllability checks performed while an aircraft is in

flight include the immediate use of any previously created nominal models. Therefore, from the

time a fixed-wing aircraft takes off and lands, a controllability check should be performed. Also,

there is a lack of sensors for performing a controllability check for consumer-grade sUAVs. The

reason is that sensors are costly and add complexity to a fixed-wing sUAV. Sensors can be added

to sUAVs, but many require unique installation and calibration knowledge-making established

controllability checks impractical for the average fixed-wing sUAV. In addition to this, aircraft

constants, such as moments of inertia data, are not readily available, limiting the ability to use

aerodynamic equations of motion as they require these constants.

Controllability check performed in-flight (no post-processing)

No knowledge of aircraft moment of inertias

No measurement of the control surface deflection angles

No measurement of the aircraft angle of attack or sideslip angle

Diagnostic of controllability is not to be configuration specific (eg. high wing vs. mid-

wing)

Table 6-Controllability diagnostic requirements

 The work performed in this research represents a way to accommodate the aforementioned

limitations with requirements, as shown in Table 6. This work focused on the fact that all fixed-

wing sUAVs have a principal axis, as shown in Figure 8. It is shown that the x-axis is out of the

29

nose, the y-axis to the right wingtip and the z-axis points out of the bottom of the fuselage. For

each principal axis, there is an associated force, velocity, angular velocity, and moment.

Figure 8-Airplane coordinate system

The force equations (17) to (19) require an unknown angle of attack and sideslip angle as well as

accelerations and velocities to solve for forces 𝑋, 𝑌, and 𝑍 [28]. Similarly, to solve for moments

𝐿, 𝑀, and, 𝑁, in equations (20) to (21) requires the aircraft inertia and angular rates. This work

assumes inertias are unknown.

Force Equations:

𝑢̇ = (𝑟𝑣 − 𝑞𝑤) +

𝑋

𝑚
− 𝑔sin𝜃 +

𝑇

𝑚
 (17)

𝑣̇ = (𝑝𝑤 − 𝑟𝑢) +

𝑌

𝑚
+ 𝑔cos𝜃sin𝜙 (18)

 𝑤̇ = (𝑞𝑢 − 𝑝𝑣) +

𝑍

𝑚
+ 𝑔cos𝜃cos𝜙 (19)

30

Moment Equations:

 𝑝̇ − (

𝐼𝑥𝑥

𝐼𝑥
) 𝑟̇ = −

𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
+

𝑞𝑝𝐼𝑥𝑧

𝐼𝑥
+

𝐿

𝐼𝑥

(20)

𝑞̇ = −

𝑝𝑟(𝐼𝑥 − 𝐼𝑧)

𝐼𝑦
−

(𝑝2 − 𝑟2)𝐼𝑥𝑧

𝐼𝑦
+

𝑀

𝐼𝑦

(21)

 𝑟̇ − (

𝐼𝑥𝑧

𝐼𝑧
) 𝑝̇ = −

𝑝𝑞(𝐼𝑦 − 𝐼𝑥)

𝐼𝑧
+

𝑞𝑟𝐼𝑥𝑧

𝐼𝑧
+

𝑁

𝐼𝑧

(22)

Of the four values, angular velocity is intriguing because it is the only value that can be readily

measured from a sensor for each axis, which meets the requirement that inertias and other

sensors to measure the angle of attack and sideslip are not needed. With the ability to measure

the angular velocity, the controllability check is defined by creating a mathematical model under

nominal conditions of the angular velocities for roll, pitch, and yaw. Measured angular velocities

are then compared to estimates from the model built under nominal conditions. The fit of the

model vs. the measured angular velocities is based on a fit coefficient (metric). This coefficient’s

value is a type of go/no-go conditional that determines if the aircraft is suffering from a lack of

controllability. For this work, a lack of controllability is defined as any roll, pitch, or yaw axis

whose fit coefficient falls above a nominal threshold established from a Prediction Interval (PI).

In other words, the controllability diagnostic is suitable to detect the partial or complete loss of

control of an sUAV, such as in the case of a servo actuator malfunctioning.

31

3.2 SYSTEM IDENTIFICATION AND APPLICATION TO HEALTH DIAGNOSTICS

 System Identification (SID) is the process of developing mathematical models of physical

systems based on imperfect observations or measurements, and models are not unique [29].

Observations are the output of the system, which is caused by some input to the system. Using

the input and output relationship allows the identification of the model for the system, as shown

in Figure 9.

Figure 9-System Identification block diagram

For this paper, the aircraft is the defined system. Models of the system can estimate the physical

system’s values, such as angular velocity and acceleration. In addition, models can be used to

estimate specific parameters within a set of governing equations. For example, in the work of

Noah Favaregh, the pitching moment equation is used to solve the damping stability and control

derivatives using a linear least-squares regression SID technique [30].

 SID can be performed in the time or frequency domain. Frequency domain SID has the

advantage that it offers a better understanding of the aircraft dynamics with the ability to create a

bode plot [31-33]. However, frequency-domain SID requires excitation over a wide range of

frequencies, increasing the needed run time. sUAVs are usually limited in-flight duration

capability and physical air space within the ground-based pilot’s view. In comparison, time-

Input, 𝑢 System, 𝑆 Output, 𝑦

32

domain SID only requires excitation at a few frequencies of interest. However, the frequencies of

interest may be unknown, making the frequency domain a more straightforward choice. In the

case of a controllability diagnostic, the frequency of excitation can be chosen based on the

frequency that safely excites the aircraft while avoiding resonant frequencies and is low enough

to meet Nyquist theorem rules to prevent aliasing in data recording [34].

 In the development of a controllability diagnostic, understanding the aircraft in a nominal

state is crucial. SID gives the ability for the nominal model to be identified without the need for

large data sets such as machine learning methods described in the literature review. Also, black-

box approaches to modeling the system where there are no governing equations of the system

make SID practical for controllability checks. For this paper, this is important as the assumption

of no known physical aircraft properties prevents the use of aircraft governing equations. It

should be noted that transfer functions can substitute for aircraft governing equations of motion.

3.2 AUTOREGRESSIVE MODELING TECHNIQUE

 Autoregressive with Exogenous input (ARX) modeling is used to identify the roll pitch

and yaw angular velocity models. ARX models are based on a discrete-time series transfer

function approach where data from the past is used to predict the future based on an input [35,

36]. Equation (23) is the governing equation for the ARX model structure for a Single Input

Single Output (SISO) where 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 is the output and 𝑢𝑖𝑛𝑝𝑢𝑡 is the input. The left-hand side

represents output terms while the right-hand side represents the input terms.

 𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) + 𝑎1𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡 − 𝑛𝑎)

= 𝑏1𝑢𝑖𝑛𝑝𝑢𝑡(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏
𝑢𝑖𝑛𝑝𝑢𝑡(𝑡 − 𝑛𝑏)

(23)

33

The Laplace transform and z transform theorems are applied to each side of the equation to

convert to the 𝑧 domain shown in equations (24) and (25) [37].

 𝐿𝐻𝑆(𝑧) = 1 + 𝑎1𝑧− + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎 (24)

 𝑅𝐻𝑆(𝑧) = 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏 (25)

It is understood that the 𝐿𝐻𝑆(𝑧) represents the output, and the 𝑅𝐻𝑆(𝑧) represents the input,

which allows substitution into the transfer function form that relates the input with the output, as

shown in equation (26). 𝐺(𝑧) represents the mathematical model used to estimate the angular

velocities for roll, pitch, and yaw. Based on an input 𝑢 the output is modeled, as shown in

equation (27).

𝐺(𝑧) =

𝐼𝑛𝑝𝑢𝑡𝑠

𝑂𝑢𝑡𝑝𝑢𝑡𝑠
=

𝑅𝐻𝑆(𝑧)

𝐿𝐻𝑆(𝑧)
=

(𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏)

(1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎)

 (26)

 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐺(𝑧)𝑢𝑖𝑛𝑝𝑢𝑡 (27)

Coefficients 𝑎𝑛𝑎
 and 𝑏𝑛𝑏

 are the terms to be identified and relate to the output and input,

respectively. The coefficients are identified using linear regression after providing a discrete-

time series of input and output data [38]. The order of the system dictates the number of

coefficients. 𝑛𝑎 and 𝑛𝑏 set the order in 𝐺(𝑧) and are user-selectable parameters. Through

experimentation, it was found 𝑛𝑏 = 2 and 𝑛𝑎 = 3 provided sufficient fit of the model to

measured data for this lack of controllability diagnostic.

34

The aircraft equations of motion show coupling prominent within the roll and yaw axis.

For example, rudder affects the yaw and roll, and ailerons affect roll and yaw as well. 𝐺(𝑧) in

equation (26) only assumes SISO. For aircraft, the system must be Multi-Input Multi-Output

(MIMO) to account for coupling. Therefore, a transfer function is required to relate each input to

each output shown in Table 7. Four inputs were selected as aileron, elevator, rudder, and

airspeed. The three outputs are roll, pitch, and yaw angular velocity.

Inputs Roll Rate Output Pitch Rate Output Yaw Rate Output

Aileron (PWM) 𝑔(𝑧)1,1 𝑔(𝑧)2,1 𝑔(𝑧)3,1

Elevator (PWM) 𝑔(𝑧)1,2 𝑔(𝑧)2,2 𝑔(𝑧)3,2

Rudder (PWM) 𝑔(𝑧)1,3 𝑔(𝑧)2,3 𝑔(𝑧)3,3

Airspeed (m/s) 𝑔(𝑧)1,4 𝑔(𝑧)2,4 𝑔(𝑧)3,4

Table 7-MIMO Transfer function design

𝑦𝑟𝑜𝑙𝑙_ 𝑟𝑎𝑡𝑒 = 𝑔(𝑧)1,1𝑢Aileron(PWM) + 𝑔(𝑧)1,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+ 𝑔(𝑧)1,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) + 𝑔(𝑧)1,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)

(28)

𝑦𝑝𝑖𝑡𝑐ℎ_𝑟𝑎𝑡𝑒 = 𝑔(𝑧)2,1𝑢Aileron(PWM) + 𝑔(𝑧)2,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+ 𝑔(𝑧)2,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) + 𝑔(𝑧)2,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)

(29)

𝑦𝑦𝑎𝑤_𝑟𝑎𝑡𝑒 = 𝑔(𝑧)3,1𝑢Aileron(PWM) + 𝑔(𝑧)3,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+ 𝑔(𝑧)3,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) + 𝑔(𝑧)3,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)

(30)

35

Equations (28), (29), and (30) show the addition of each column in the table. It is shown that

each output is dependent on the four inputs, and these capture coupling effects. These three

equations are developed in the same manner as the SISO. Discrete time-domain input and output

data are used to solve for coefficients using linear regression. With the model defined, the output

or response of the aircraft can be estimated with provided inputs.

3.3 LACK OF CONTROLLABILITY DETECTION

 Understanding if there is a lack of controllability is based on how well the model estimate

compares to measured angular rates from sensors. Evaluating the Theil Inequality Coefficient

(TIC) compares the current model to historically measured results [39]. TIC is a metric of fit on a

scale from zero to one, with zero as the perfect fit. Equation (31) defines the formula for the

calculation of TIC. Measured sensor data is represented by 𝑥𝑖 and model estimated data is 𝑥𝑖̂.

𝑇𝐼𝐶 =

√1
𝑛

∑ (𝑥𝑖 − 𝑥𝑖̂)
2𝑛

𝑖

√1
𝑛

∑ 𝑥𝑖
2 + √1

𝑛
∑ 𝑥𝑖

2̂𝑛
𝑖

𝑛
𝑖

 (31)

TIC only provides one observation of the fit per run and is susceptible to variance from run to

run due to sensor noise and imperfect modeling. Therefore, the use of a Prediction Interval (PI)

on a mean value is used. The PI is a form of confidence interval used for comparing individual

future values to understand whether they belong to the original population [40, 41]. In this work,

a PI is developed from a sample of multiple model evaluations. Equation (32) shows a two-sided

PI [42]. Since minimum controllability is established using a threshold TIC value, a single-sided

36

interval is most appropriate. Therefore, the positive side of the PI is selected, as shown in

equation (33).

𝑦̂ ± 𝑡𝑠(
𝛼
2

,𝑛𝑠−1)
∙ 𝑆 ∙ √1 +

1

𝑛𝑠
 (32)

𝑦̂ + 𝑡𝑠(𝛼 ,𝑛𝑠−1)
∙ 𝑆 ∙ √1 +

1

𝑛𝑆
 (33)

The PI threshold is demonstrated in Figure 10, where the bound is calculated using data available

to build the ARX models. Acceptable TIC values fall below the calculated PI limit. However, if

a TIC value is greater than the PI, then there is a lack of controllability detected.

Figure 10-TIC with PI showing normal vs. abnormal condition

37

It is also worth noting that the sensitivity of detection can be adjusted by selecting different alpha

values in the calculation of the PI. Alpha, the level of significance, is traditionally set at 5% for

many engineering problems [43]. The PI evaluation is typically used for confirmation runs in an

experimental setting to understand if the model is adequate for prediction. The alpha value sets

the probability of determining a new observation as confirmed when it is not. Confirmation

infers that the model controllability is unchanged from the nominal model. In order to determine

alpha, a set of data collection runs were performed under nominal conditions. Then additional

runs were performed with known problems introduced, such as limited throw of a control

surface. Figure 11 shows the nominal results used in the selection of alpha. Nominal runs are

indicated by red dots, while the black squares show runs with a stuck control surface failure

introduced. The five black dashed lines represent different possible PI based on the selection of

alpha. If alpha is set to a small percentage such as 5%, or a 95% PI, this leads to a greater chance

that the algorithm determines the aircraft has full control authority. An alpha value set to 20%,

resulting in an 80% PI, reduces the chance that the algorithm finds the aircraft to have full

control authority, increasing the probability that the algorithm detects a lack of controllability.

38

Figure 11-Effect on prediction interval based on the selection of alpha

Since this work focuses on detecting a lack of controllability, increasing the probability of

detection is desired, which increases the chance of detection for small off-nominal failures, such

as control surfaces with a limited throw. However, there is a fine line about how much alpha can

be increased because overly increasing alpha can lead to significant false positives. Analyzing

additional failure mode TIC results with a control surface with limited throw allowed the

selection of alpha to be 20%, allowing the system to be sensitive when there is a failure while

simultaneously not triggering many false alarms.

39

3.4 MODES OF FAILURE FOR LACK OF CONTROLLABILITY CHECK

 This work focuses on the servo actuators being the root cause of the lack of

controllability based on the literature search. Figure 12 displays in red commonly available

control surfaces, such as the aileron, elevator, and rudder found on a fixed-wing sUAV.

Figure 12-Control surfaces on fixed-wing aircraft

A list of several different failure modes is considered using these available control surfaces. The

failure modes are: complete actuator failure, limited movement failure, and combinations of

complete and limited failure modes. For example, aileron one and elevator both fail either

entirely or partially, which is to include not only mechanical or electrical issues with the

actuators but also external sources such as bird strikes. The thought process is damage is likely to

occur to more than one surface at the same time. Table 8 displays all the failure modes tested for

lack of controllability detection.

40

Failure Mode: Action to achieve failure mode:

Stuck neutral aileron Aileron two fixed neutral

Limited aileron Aileron two throw limited to ±25%

Stuck neutral elevator Elevator two fixed neutral

Limited elevator Elevator two throw limited to ±25%

Stuck neutral aileron and limited elevator Aileron two fixed neutral and elevator two

throw limited to ±25%

Limited aileron and stuck neutral elevator Aileron two throw limited ±25% and elevator

two fixed neutral

Stuck neutral aileron and stuck neutral

elevator

Aileron two fixed neutral and Elevator two

fixed neutral

Limited aileron and limited elevator Aileron two throw limited ±25%, and elevator

two throw limited to ±25%

Limited rudder Rudder 1B throw limited ±25%

Limited rudder and limited elevator Rudder 1B throw limited ±25%, and elevator

one throw limited to ±25%

Table 8-Failure modes tested for lack of controllability detection

Since the ARX model utilized the input PWM signal to aileron one, elevator one, and rudder

one, the failures needed not to be introduced on these channels. Otherwise, the model estimates

the response based on what it should be with the signal used to simulate a failure mode.

Therefore, the failure modes need to be external to the ARX model to prevent the estimation of

the angular rates with the failed signal, which is done by using aileron two, elevator two, and

rudder 1B. These surfaces are external to the ARX model inputs used to estimate angular

velocity for roll, pitch, and yaw.

41

CHAPTER 4

HARDWARE AND SOFTWARE

4.1 HARDWARE

 The SIG EdgeTRA is the selected test platform for this work and is shown in Figure 13,

with physical properties shown in Table 9. A few reasons for selecting this aircraft are the 60-

inch wingspan and fuselage length with removable wing that ease transportation requirements.

Also, there is a spacious interior for data acquisition equipment, and its dynamic characteristics

are suitable for large input excitations. The EdgeTRA is an Almost Ready to Fly (ARF) model

aircraft, meaning that the final configuration of the electronics is left to the end-user.

Figure 13-SIG EdgeTRA aircraft selected for experimentation

42

Wingspan 60 in.

Wing Area 675 sq. in.

Length 60 in.

Height 18 in.

Flying weight 8.57 lbs.

Landing gear main wheel diameter 4 in.

Table 9- Physical properties of EdgeTRA

Table 10 summarizes all additional components selected to complete the ARF EdgeTRA for

flight. These components are selected based on recommendations from SIG, the manufacturer of

the EdgeTRA. However, additional consideration was taken when selecting the receiver.

Traditionally, the EdgeTRA aircraft only requires a four-channel receiver that accepts aileron,

elevator, throttle, and rudder. Any pairs of control actuators such as the aileron servos

traditionally would be joined together (y configuration) before plugging them into the four-

channel receiver. To simulate servo failures to test the controllability diagnostic required all

servos to be independent of one another. Therefore, each servo is assigned to a channel on the

receiver requiring it to have at least six channels for aileron one, aileron two, elevator one,

elevator two, throttle, and rudder one. Also, there is additional hardware that requires input from

the PIC for data collection and safety equipment. With this, the receiver was required to have 9

channels. Therefore, the Spectrum AR9320T was selected.

Motor E-flite Power 32

ESC Castle Creations 100-amp

Phoenix Edge Lite

Servos HiTEC servos HS-5245MG

Receiver Spectrum AR9320T

Battery 3 cell 5200 Lipo

Propeller APC 14x8

Table 10-Baseline hardware use to fly EdgeTRA

43

Table 11 shows the additional hardware used for data acquisition. The Cube Orange flight

controller is the basis of this work, which gives the EdgeTRA autonomous flight modes such as

RETURN TO LAUNCH, LOITER, and AUTO. The same sensors used to perform the flight

modes are also used for the ARX modeling of the angular velocities. The Cube Orange also

controls failure modes, as it can limit travel or fix any servo position.

Cube Orange Flight Controller with Arduplane 4.0.5 Firmware

Here 2 GPS Antenna

4525 Digital Airspeed Sensor

3DR 900 MHz Telemetry Radio

Raspberry Pi 3B with Raspbian Stretch OS

433 MHz Rnode Radio

Cytron 8-Channel RC Multiplexer

Table 11-Additional hardware used for modeling and safety during failure modes

The failure modes are controlled, and data acquisition is performed using an onboard Raspberry

Pi 3B (RPI) using Python scripts. The RPI is hard wired to the Cube Orange using two different

serial links. One serial link was dedicated to data acquisition connected to the telemetry 2 port. In

contrast, a second serial link dedicated to setting failure modes and general MAVlink commands

was connected to the GPS 2 port. Respectively, the baud rate for each serial link is 921600 and

57600. In addition, to execute the Python scripts, 433 MHz Rnode radios are used. These radios

use a LoRa network to provide a long-range, low power remote connection from one computer to

another [44]. In this case, the RPI flight computer and the Ground Control Station (GCS) are the

two computers connected via the Rnode radios, as illustrated in Figure 14.

44

Figure 14-RNode radio installed in-plane and second RNode connected to GCS

In the event of a failure mode or if the Cube Orange malfunctions, an 8-channel Multiplexer

(MUX) board is used to bypass all Cube Orange and RPI related commands, as shown in Figure

15. The MUX board has two inputs and one output. Input A is the master, and B is secondary.

The output is where control actuators and the electronic speed controller (ESC) are connected.

The AUX 2 channel on the Spectrum AR 9320T controls whether input A or B passes through

the MUX board based on a Pulse Width Modulated (PWM) value. A PWM value ranges from

1.0 ms to 2.0 ms. When the AUX 2 signal is above 1.5 ms, commands from input A or

commands from the pilot can pass through. If AUX 2 is less than 1.5 ms, commands from the

Cube Orange can pass. Notice the intersection between the output of the receiver and the input A

of the MUX board. This intersection eliminates the need to use two separate receivers, as the

Cube Orange also requires pilot input to operate for general flight commands and flight mode

changes. However, even though the Cube Orange is always receiving signals from the receiver,

45

the Cube Orange commands are ignored if the MUX input selection is A. A complete wiring

diagram in detail for the EdgeTRA is shown in APPENDIX A.

Figure 15-MUX board implementation

4.2 SOFTWARE AND FIRMWARE

ArduPlane 4.0.5 is the selected firmware to be run on the Cube Orange, which is a

popular open-source firmware used by many commercial entities and hobbyists from around the

world. ArduPlane provides the Cube Orange with the flexible setup configuration required for

this work. For example, the ability to have each control surface actuator on independent channels

such as aileron one and aileron two. Independent control surfaces allow for failures of individual

servos to be tested. Also, autonomous capabilities to fly waypoint missions, return to launch, and

loiter, to name a few, are used in this work. Lastly, the firmware provides access for the RPI

companion computer, so pertinent sensor data can be collected for controllability diagnostics.

Firmware setup and telemetry feedback of ArduPlane firmware are done using a GCS.

Mission Planner and QGroundControl are two GCS programs used by the ArduPlane

firmware. The majority of this work utilized QGroundControl to set up the ArduPlane firmware,

while Mission Planner helped the gain tuning process. The setup performed involved calibrations

PWM Commands

from PIC

46

of the accelerometer, compass, and airspeed sensor of the Cube Orange. Failsafe parameters are

also configured with QGroundControl, such as in the event of a loss of radio link, low battery

conditions, and geofences. During flight operations, QGroundControl is used to provide

telemetry information of the aircraft location via a satellite imagery map, airspeed, battery

voltage, and altitude, as shown in Figure 16.

Figure 16-QGroundControl telemetry display and map while the EdgeTRA is in flight

 In addition to ArduPlane, Python, a high-level scripting language, is used to develop the

controllability diagnostic. Python offers plotting tools, dynamic systems, and control toolboxes

similar to commercial MATLAB variants with serial connection interfaces. The main benefit is

that Python runs on most operating systems and can be used on small single-board computers

such as the RPI. A Python-based communication framework had already been developed to

communicate from ArduPlane to a companion computer called DroneKit. DroneKit is a Python

package that allows a user to send commands and receive data between a companion computer

47

and a Cube Orange flight controller. DroneKit uses Pymavlink, which is the framework that

processes Micro Aerial Vehicle messages (MAVLink) to send and receive from the Cube Orange

flight controller [45]. There are two general categories of MAVLink messages. The first category

contains messages sent from the companion computer to the Cube Orange, such as setting a

value to change the vehicle's airspeed, position, and altitude. These messages utilize either

COMMAND_INT or COMMAND_LONG encoding structure. COMMAND_INT is essential

when the coordinate reference frame is important, such as sending a waypoint location to fly to.

COMMAND_LONG is more suitable for sending desired changes in airspeed, dropping a

payload, or retracting the landing gear, to name a few examples. The second category is the

companion computer receives MAVLink messages from the Cube Orange. As these messages

are being sent from the Cube Orange, Pymavlink provides a function called rev_match() to

gather the desired message, as many different messages are streaming at the same time. IMU

data is an example of the Cube Orange's desired message, which is published under the

RAW_IMU message name. Attributes within the RAW_IMU message define the acceleration,

angular velocity, and magnetic field for each axis shown in Table 12. Many other messages can

also be viewed, such as the RC transmitter commands to the Cube Orange. The full listing of

available messages is found in the MAVLink documentation [46].

48

RAW_IMU

Field Name Units Description

Time_usec 𝑢𝑠 Timestamp since boot

xacc 𝑚/𝑠2 X acceleration

yacc 𝑚/𝑠2 Y acceleration

zacc 𝑚/𝑠2 Z acceleration

xgyro 𝑟𝑎𝑑/𝑠 Angular speed around the X-axis

ygyro 𝑟𝑎𝑑/𝑠 Angular speed around the Y-axis

zgyro 𝑟𝑎𝑑/𝑠 Angular speed around the Z-axis

xmag 𝑔𝑎𝑢𝑠𝑠 X Magnetic field

ymag 𝑔𝑎𝑢𝑠𝑠 Y Magnetic field

zmag 𝑔𝑎𝑢𝑠𝑠 Z Magnetic field

Table 12-RAW_IMU message contents

Additionally, Sim_vehicle.py, a simulation written in Python, was used [47]. This simulation

runs the ArduPlane firmware on a computer as if the Cube Orange was running the firmware.

Sim_vehicle.py utilizes Software in The Loop (SITL), where no hardware is used. Local network

connections through the computer running the simulation are created, as shown in Figure 17.

These local network connections allow developed Python scripts that utilize DroneKit to be

connected to the simulation and tested similarly to real hardware. These connections also allow

GCS applications, such as Mission Planner or QGroundControl, to connect to the simulated

Cube Orange and perform vehicle setup, change a parameter, and view telemetry while the

simulation is running.

49

The benefit is the ability to test and debug developed Python scripts that control the aircraft. For

example, a Python script is developed using the DroneKit package to send MAVLink messages

to the Cube Orange to fly to four waypoints in an oval racetrack pattern. Using the SITL reduces

the risk in that the waypoints to fly to, altitude, and flight duration can be verified before using

any actual hardware. However, Sim_vehicle.py SITL alone can only provide a two-dimensional

view of the aircraft flight path, as shown in Figure 18. This two-dimensional view limits the

ability to see how an aircraft behaves in the roll, pitch, and yaw axis.

Figure 18-SITL map view during flight simulation

Figure 17-SITL diagram

Development Computer

Simulated Cube

Orange ArduPilot

Firmware

Developed

Python Script

Local Network
Connections

50

Visual aids from 3rd party 3D flight simulators can be connected to Sim_vehicle.py. This work

used X-plane 10, an aircraft simulator typically used for full-scale aircraft and supports model

aircraft, such as the Great Planes 40 high wing trainer shown in Figure 19. This three-

dimensional view provides an inflight experience that allows all the control surfaces to be

observed and is particularly useful in testing the described failure modes. Each failure mode

implementation could be visually verified.

Figure 19-Model of Great Planes high wing trainer in X-plane 10

 Lastly, the simulation of the Great Planes 40 was a way to determine the feasibility of

the System Identification Package for Python (SIPPY) for building the ARX transfer function

angular velocity models. SIPPY is currently one of the few Python packages covering the MIMO

transfer function and state-space identification methods of SID [48]. SIPPY is focused on linear

51

modeling methods in the discrete-time domain that utilize only input and output data sets for the

black-box modeling technique.

52

CHAPTER 5

EXPERIMENTAL CONFIGURATION AND OPERATION

 Flight experiments used three different Python codes developed for this work called the

Data Recorder, Servo Failure, and Plane flyer, which could be used either under manual or auto

control, as shown in Figure 20. The Data Recorder was used to collect, record, and process any

collected data and was used in conjunction with the Servo Failure or Plane Flyer scripts. The

Servo Failure code was used to communicate with the Cube Orange to command specific control

actuators to stop functioning and how. Plane Flyer communicates with the Cube Orange to

upload a four-point mission, change the flight mode, and provide an excitation input. Before

each flight, a Secure Shell (SSH) connection is established between the GCS laptop and the RPI

companion computer in the EdgeTRA, which allowed for any of these Python scripts to be

started in flight if necessary. However, the Data Recorder was always started before the

EdgeTRA took off as this code would idle, waiting for pilot input to start or stop taking data with

the RC transmitter. More detail on these codes' specific use, manual and auto control methods

are included in this chapter's following sections.

Figure 20-Flight operations types and Python code used with each

53

5.1 MANUAL CONTROL

 Initial flight testing showed that the controllability diagnostic running autonomously

would be complex and would require more than one Python script functioning simultaneously.

Therefore, initial work focused on the aircraft being manually piloted while the aircraft was

underway with the Cube Orange in STABILIZE flight mode. This controllability check’s final

intent is to use it while the aircraft is under a fully autonomous mode, such as the AUTO mode,

where the plane is flying to waypoints. However, while in AUTO mode, the Cube Orange flight

controller has its own Proportional, Integral, and Derivative (PID) gains, affecting how the ARX

model is built. Therefore, STABILIZE mode is used during manual control testing, and the Cube

Orange flight controller is still in the loop, and its effect is captured just as if AUTO mode is

used.

 In manual control, the basic operation is that the pilot provides some RC input to the

aircraft to excite it in a way that is as non-invasive as possible to its trajectory. For example, a

roll input that follows a sine wave trajectory allows the aircraft to start neutral roll left or right,

depending on the sign convention, and return to neutral. This sine wave input is non-invasive in

that the aircraft is left on its original heading when the maneuver is completed. The sine wave

input can also be applied to the pitch and yaw axis similarly.

 Before starting the input excitations, the pilot flies the plane downwind to the desired

altitude of 300ft approximately using an RC transmitter from a 3rd person view and visually

checks the aircraft for wings level trim condition. An example of what the pilot would consider

wings level was captured using a GoPro Max 360 camera, as shown in Figure 21.

54

Figure 21-EdgeTRA in wings-level condition

Once these conditions were met, the data recorder was started using an auxiliary switch on the

RC transmitter. Approximately two seconds of no excitations were provided to allow the data

recorder to capture some trim condition data. After this period, the pilot then executed sine wave

inputs to the aircraft via the RC transmitter. First, the roll, then pitch, then yaw was excited in

this order one at a time manually. Once the yaw excitation was complete, the aircraft was set

back to trim condition for approximately two seconds before data collection was stopped with

the RC transmitter. The run's entire duration is about 15 seconds but dependent on how long the

pilot spends with each excitation and air space available. This routine is performed two times but

with the pilot changing the input excitation slightly each time. This is once to collect data to

build the ARX transfer function model and a second time to validate how well the ARX model

predicts.

55

Immediately after the switch on the RC transmitter is set to the stop taking data position,

the Data Recorder Python code (shown in APPENDIX B) processes the collected data. If the

data collected from the run is the first data set, this data is used to identify the ARX model. Any

data sets thereafter use the ARX model to estimate the angular velocity responses. The data

recorder also calculates the TIC values for each data set and creates pertinent plots of the data

collected. Therefore, just after two laps around the field, roll, pitch, and yaw angular velocity

models have been built with data collected on the first lap and validated with collected data on

the second lap.

5.2 AUTOMATIC CONTROL

 Automatic control was used to fly the aircraft in an oval racetrack pattern similar to the

manual control mode. Auto control is done using the Fly Plane Python code shown in

APPENDIX D. The pilot manually takes off and flies to an altitude of approximately 300 ft.

From this point, the ground control station operator starts the Fly Plane Python script and the

Data Recorder script. The Fly Plane script performs multiple tasks. First, using the GPS

coordinates from where the EdgeTRA is initially powered, a home point is established. Four

waypoints relative to the home location form a rectangle approximately 1,000 ft x 400 ft, as

shown in Figure 22. This mission is then sent from the RPI to the Cube Orange, and the Cube

Orange flight mode is set to AUTO, all via the Fly Plane script.

56

Figure 22-Auto control waypoints and flight path

 While en route, the Fly Plane script is responsible for providing the excitations to the

EdgeTRA in a similar manner to the manual control method. However, these excitations were

only to be performed on the straightaway section between WP two and three, as shown in Figure

22. Waypoint three is established to be the target waypoint. Therefore, when the Plane Flyer

script reads from the Cube Orange that the next waypoint is three, excitations are introduced.

However, as the plane flies from waypoint one to two, the Cube Orange accepts that waypoint

two had been reached prematurely due to acceptance criteria that waypoint two has been

reached. Prematurely accepting waypoint two being reached is problematic as the next waypoint

is the target heading, and the aircraft is still turning to achieve the target heading when the sine

wave excitations are performed. Therefore, to know when the EdgeTRA is to start sine wave

maneuvers, a method is developed, as shown in Figure 23. Since the coordinates of the target

waypoint (waypoint 3) and the airplane are known from GPS, the desired heading relative to

these coordinates is calculated. Then the desired heading can be compared to the actual heading

of the EdgeTRA. The difference between the two vectors is called theta. If theta is ±10 degrees

57

and the next waypoint is three, then it is known that excitations can be started. Also, as the

EdgeTRA is in flight, the desired heading is calculated every tenth of a second.

Figure 23-Aircraft target heading determination diagram

 Once the EdgeTRA is between waypoints two and three, the Fly Plane script starts the

Data Recorder by sending a low PWM signal on the same channel the pilot uses in the manual

control method. A few seconds of delay is allowed to collect neutral conditions, then sine wave

inputs are sent to the Cube Orange from the Fly Plane script using the RC_OVERRIDE

MAVLink message. Sine wave inputs for roll, pitch, and yaw are excited independently in this

order. After excitations are completed, the data recorder is stopped, and the collected data is

processed, which all happens before reaching waypoint three. Similar to the manual control

method, the first data set collected is used to build the angular velocity models. A second data set

is used for the validation of the models. After the second data set is collected, the aircraft is

manually landed by the pilot.

58

5.3 FAILURE MODES

 Failure modes are tested by having the pilot take off and climb to approximately 300 ft.

Just as before, two laps around an oval track pattern are performed. However, in this case, the

first lap is used to build the angular velocities model. The applied sine wave excitations are the

same as before where roll, pitch, and then yaw are independently excited in that order. Before the

second circuit, the GCS operator executes the Servo Failure Python script (found in APPENDIX

C). This script requires the GCS operator input for failure mode to enable and duration. A

message reports on the GCS operator's screen once the desired surface is failed. The timing of

this is critical. If the failure mode starts too early, the selected failure mode time duration may

expire before maneuvers are complete. Therefore, the aircraft is under normal conditions when

the test for abnormal conditions is in progress. The duration of the failed control surface or

surfaces can be increased, but this runs the risk the aircraft still has a failed control surface after

data collection is complete, making it hard to control when resetting to collect more data. To

mitigate these issues, the EdgeTRA is loitered near waypoints 1 and 2, as shown in Figure 24.

Then the GCS operator executes the Servo Failure Python script with the duration set to 15

seconds. Once the GCS operator reports the failure has occurred, the PIC immediately stops

loitering, starts the data recorder, and flies towards waypoint three, performing excitations en

route. After excitations are completed, the data recorder is then stopped, normal and abnormal

data are compared, and the EdgeTRA is landed.

59

Figure 24-Flight path with failure modes

60

CHAPTER 6

DATA COLLECTION

6.1 SENSORS AND DATA COLLECTED

 For this work, the use of specialty sensors such as strain gauges is to be excluded so that

the typical user can implement the controllability diagnostic. Therefore, all collected data must

be provided by the Cube Orange flight controller and its auxiliary sensors. Table 13 shows the

available sensors that can be used for the controllability diagnostic. Many of these sensors are

redundant between the Cube Orange and the auxiliary Here 2 GPS module. This redundancy is

needed due to a lack of space requiring the Cube Orange to be installed near other wires,

equipment, and metallic aircraft structure. This proximity to metallic objects causes errors in the

compass readings. The Here 2 module requires a clear view of the sky. Therefore, it is mounted

in the open, reducing compass interference. Additionally, these sensors' redundancy allows the

ArduPlane health diagnostic to perform checks on the listed sensors for correct operation.

Cube Orange

Accelerometer ICM20948 / ICM20649 / ICM20602

Gyroscope ICM20948 / ICM20649 / ICM20602

Compass ICM20948

Barometric Pressure Sensor MS5611 ×2

Here 2 GPS

GPS 72-channel u-blox M8N /QZSS L1C/A

Accelerometer ICM20948

Gyroscope ICM20948

Compass ICM20948

Barometric Pressure Sensor MS5611

Auxiliary Sensors on I2C Bus

Airspeed 4525 Digital Pressure Transducer

Table 13-Available sensors for controllability diagnostic

61

In Chapter 3, the relevant data to collect was presented and shown to be gyroscope data,

commands to the servos, and aircraft airspeed to model angular velocities, as shown in Figure 25.

Figure 25-Data used as the input and output to the ARX MIMO model

Table 14 shows all the data collected, such as all PWM commands into the Cube Orange marked

by RC_Channel_X while the Cube Orange's output commands are denoted as Servo_X.

RC_Channel_1 (PWM) Ailerons

RC_Channel_2 (PWM) Elevators

RC_Channel_3 (PWM) Throttle

RC_Channel_4 (PWM) Rudder

RC_Channel_5 (PWM) Cube Orange flight mode select

RC_Channel_6 (PWM) Data record start and stop

Servo_1 (PWM) Aileron one

Servo_2 (PWM) Elevator one

Servo_3 (PWM) Throttle

Servo_4 (PWM) Rudder

Servo_5 (PWM) Aileron Two

Servo_6 (PWM) Elevator Two

Servo_7 (PWM) Rudder Two

Angular velocity x (rad/sec) Roll rate

Angular velocity y (rad/sec) Pitch rate

Angular velocity z (rad/sec) Yaw rate

Airspeed (m/s) Aircraft airspeed

Table 14-Data collected from Cube Orange

62

 The inputs are RC commands from the PIC, while the output is an altered signal

depending on the flight mode. For example, there is no flight control algorithm in MANUAL

mode, and the controls are directly passed without alterations. In this work, data collection is

either occurring in a STABILIZED or AUTO mode. Both modes alter the RC input to the Cube

Orange as the control algorithm tries to maintain level flight due to windy conditions or is

navigating to a waypoint. Therefore, to account for this alteration in the input due to the Cube

Orange control algorithm, the output to the servos is utilized as the input to the ARX model, as

shown in Figure 26.

Figure 26-Cube Orange input vs. output

Additionally, as shown in Table 14, RC_Channels 5 and 6 are collected for debugging to ensure

the desired flight mode and proper state of the data recorder were achieved during a run. Angular

velocity data were collected from only one of the three gyroscopes, as the MAVLink protocol

used to collect the data is limited by the number of messages and transmission rate. Therefore,

additional data such as battery voltage, location, altitude, and a plethora of other telemetry data

were recorded on the SD card of the Cube Orange. This data is important, but only data required

63

to build the ARX transfer function models and perform the controllability diagnostic is collected

on the RPI companion computer for further processing.

6.2 MAVLINK MESSAGES

MAVLink messages are used to communicate with the Cube Orange to either send or

receive data. This type of serial communication is used with the Cube Orange and is widely used

in other flight controller platforms as well, making a data collection system built around

MAVLink messages versatile [46]. Traditionally, MAVLink messages are used in conjunction

with a telemetry radio pair, allowing GCS to send commands and receive telemetry data from a

flight controller. In this work, MAVLink messages are transmitted over a wire directly between

the RPI and Cube Orange. Table 15 shows a list of the messages used. In the received column,

the previously discussed RC_CHANNELS_RAW, SERVO_OUTPUT_RAW, VFR_HUD, and

RAW_IMU were used in the ARX angular velocity model building. Also, the PARAM_VALUE

messages are used during failure modes of operation to determine if the failure mode sent to the

Cube Orange is received. In the transmitted column is all messages sent via a Python script

running on the RPI. The RC_OVERRIDE message provides RC input to the Cube Orange as if

an RC Transmitter is used, which is essential when building models autonomously as there is no

human interaction, and excitation is required.

Received Transmitted

RC_CHANNELS_RAW RC_OVERRIDE

SERVO_OUTPUT_RAW MAV_CMD_DO_SET_SERVO

VFR_HUD PARAM_SET

RAW_IMU MAV_DATA_STREAM

PARAM_VALUE

Table 15-List of MAVLink messages used to receive and transmit information

64

MAV_CMD_DO_SET_SERVO message is used during the implementation of a stuck

control surface failure mode. This message is sent with a desired servo output number and PWM

value to drive the servo. As a safety feature, ArduPlane does not allow

MAV_CMD_DO_SET_SERVO to be used on any servo output of the Cube Orange designated

for flight control. Therefore, this message is inoperable on any output of the Cube Orange listed

as aileron, elevator, throttle, and rudder. The PARAM_SET message is used to work around this

by temporarily changing the servo output assignments. Then the

MAV_CMD_DO_SET_SERVO message can be implemented to set a servo to the desired PWM

value. For example, to fail aileron two, which is physically connected to servo output five on the

Cube Orange, the PARAM_SET message is set to temporally change the function of servo

output five from aileron to none. Setting the function of output five to none allows the

MAV_CMD_DO_SET_SERVO to be implemented, simulating a stuck control surface failure.

Once the failure is complete, PARAM_SET is used to return the function of SERVO five to its

original state nullifying the failure. For the limited travel failure mode, only the PARAM_SET

message is used to reduce the allowable throw limits of the desired servo, and it is also used to

revert the limited failure mode to nominal conditions.

 Lastly, MAV_DATA_STREAM is used to set the Cube Orange rate to transmit

MAVLink messages from its ports. ArduPlane separates the data into eight categories, with a

data rate assigned to each category, as shown in Table 16. For this work, only RAW_SENSORS,

RC_CHANNELS, and EXTRA2 are needed. Therefore, the remaining categories’ data rates

were set to zero. As each category's rate was increased, or as more categories were added, the

maximum attainable rate for all categories was affected. For example, if all categories are set to a

requested rate of 50Hz, the RAW_SENSORS category can only be received at 15Hz. The other

65

categories such as the RC_CHANNELS are affected as well. Setting unnecessary categories to

requested data rates of 0 Hz, the RAW_SENSORS category is found to be the requested rate of

50Hz. Therefore, limiting to only the necessary categories, RAW_SENSORS, RC_CHANNELS,

and EXTRA2, allowed the data to be collected at 50 Hz, 25Hz, 25Hz, respectively.

MAV_DATA_STREAM

RAW_SENSORS IMU, Compass, Location

EXTENDED_STATUS

RC_CHANNELS RC_Input, Servo_Output

RAW_COTROLLER

POSITION

EXTRA1

EXTRA2 Airspeed Sensor

EXTRA3

Table 16-Attributes of MAV_DATA_STREAM

6.3 RASPBERRY PI FLIGHT COMPUTER

 The RPI 3B is a lightweight, compact single-board computer that runs the Raspbian

Stretch operating system using 1GB of RAM and a Quad-Core 1.2Ghz BCM2837 64 CPU. As a

companion computer to the Cube Orange, the RPI runs the developed Python scripts explained in

Chapter 5. Figure 27 shows an overview of the three Python scripts that run on the RPI, which

are used to control the Cube Orange and collect all data via MAVLink messages.

66

Figure 27-Developed Python scripts that run on the RPI

The RPI offers four USB serial ports, as shown in Figure 28. General Purpose Input

Output (GPIO) and I2C pins are just a few. For data collection, one of the four USB serial ports

is devoted to the Data Recorder.py script. A second USB port is used for either the Fly Plane.py

or the Servo Failure.py scripts, while the remaining ports are used for communicating with the

RPI over the RNode radio SSH connection to start and stop the developed Python scripts. Also,

to aid in data processing, the time and date of each run were collected. A real-time clock (RTC)

was added to the RPI, as usually the RPI syncs the date and time when connected to the internet,

but that is not the case, of course, in flight. A PCF8523 real-time clock is used to keep the date

and time, even after shutdown. Therefore, all collected data sets are saved with the time and date,

allowing the data to be compared with the flight log notes if there is a discrepancy.

67

Figure 28-Raspberry Pi USB ports used to connect to Cube Orange

6.4 START AND STOP OF DATA COLLECTION

 The data collection process needed to be dynamic, in that the time duration between the

start and stop was not always the same due to imperfect human excitation inputs and delays in

Python scripts. For example, when the PIC would provide the sine wave input in the manual

control mode, the duration of the time spent rolling the aircraft can vary from time spent exciting

pitch and yaw. Therefore, if the data recorder only collects data for a predetermined period and

the PIC has not finished the input, then only a portion of the run is collected. The same is also

true for when the Fly_plane.py code is providing the inputs. In the event the Fly_Plane.py code

is delayed, not all of the input commands would be captured if the data recorder only collects

data for a fixed period. Therefore, the Data Recorder.py script was made to run continuously in

the background waiting for a command from an RC transmitter switch. The data recorder

continuously monitors channel 6 of the Cube Orange RC input, controlled by a three-position

68

switch on the RC transmitter. If the switch sends a low-PWM value, this tells the data recorder to

start collecting data. When a high-PWM value is received, the data recorder stops taking data,

and the data is further processed. However, in the case that an excitation maneuver did not go as

intended, the middle position of channel 6 is used, sending a mid-PWM value of 1500, instead of

a high-PWM. A mid-PWM value stops the data recorder but does not process or save any of the

data. Doing this allows another run to be made in that the data recorder idles until the low PWM

values are received again. Every time a low value is seen, any previous data that has not been

processed is cleared. This process worked for both manual and auto control methods. However,

in auto control, channel 6 is controlled using the RC_OVERRIDE MAVLink messages rather

than the three-position switch on the RC transmitter.

69

CHAPTER 7

DATA PROCESSING

 One of the requirements for this work is that all data processing is to be done while in

flight, and all data is saved and processed using the onboard RPI. After the data is collected, it is

first discretized. MAVLink messages are secondary to any flight control computations within the

ArduPlane firmware architecture, meaning the rate at which data is collected may not be

constant. Figure 29 shows this inconsistent data rate for the IMU, RC Channels input and output,

and airspeed categories, respectively, versus the number of MAVLink messages collected.

However, the average message rate is the requested rate of 50 Hz for IMU data, 25 Hz for RC

channels data, and 25 Hz for airspeed data. This nonconstant data rate is problematic, as the

change in time for discrete transfer functions must be fixed intervals when building ARX models

of the roll, pitch, and yaw angular velocities.

Figure 29-Change of time between MAVLink messages

70

Therefore, linear interpolation is used to fix the data into discrete intervals. Before interpolation,

a verification process is performed. This checks that the average data rate obtained meets the

requested data rate, and if so, interpolation is performed. For example, if the IMU average data

rate is ±5 Hz of the requested 50 Hz, then the data set is interpolated. This verification is to

ensure the gaps to be interpolated are small. Verification is also done with the RC channels and

airspeed messages. However, the verification is for ±5 Hz of the requested 25 Hz data instead of

50 Hz for IMU messages. Another need for interpolation is to make the input and output data set

arrays the same length. Since the input data, RC channels, and airspeed are collected at 25 Hz

while the output data, IMU, is at 50 Hz for a given period, there are only half the input data

points compared to the output data points. Therefore, the inputs are interpolated to provide 50 Hz

data, making the input and output data sets arrays the same length. The data is then passed to

SIPPY where the inputs and outputs are used to build the ARX transfer function model.

This interpolation process is visually verified, as shown in Figure 30. On the y-axis, the

input to the aileron, elevator, throttle, rudder, and the measured airspeed is shown. The x-axis is

the time in seconds since the Cube Orange has been powered. Interpolation verification is

provided by the blue plus and orange triangle symbols. The blue plus symbols represent data in

the raw form where the change in time is not discrete, while the orange triangles are the

interpolated data points in discrete time intervals of 0.02 sec. Since the symbols overlap, an

informal verification of interpolation is provided.

71

Figure 30-Interpolation verification from MIMO_Model_Input_03_14_2020__15_28_51

 Data were temporarily stored in memory on the RPI during the data collection process,

and for data to be saved for future post-processing, it is saved in a CSV file format in three

different files using Pandas, a Python library. The first saved file contains data in its raw form,

while the data used to build the ARX model and the identified MIMO transfer function is saved

in a second CSV file. The third CSV file contains data used to validate the model and TIC

results. Each CSV file is saved with the name as the time and date in the 24-hour clock format

and dependent on the run; they are sorted into a folder named “Model” or “Validation”. Saving

the data this way allows for a model building run to be paired with its respected validation run.

Data processing also included calculating the TIC values and saving them in their respective

72

CSV files, whether for model building or validation. However, TIC is also printed on the GCS

operators screen for inflight fit performance evaluation of the runs, as shown in Figure 31.

Figure 31-SSH terminal screen from RPI on the GCS reporting TIC values

 Furthermore, plots of all collected models and validation data are created and saved for

further inspection if need be. The plots include data in the raw format vs. interpolated data to

inspect for proper interpolation. Also, model predictions and measured angular velocity are

overlaid on one another for a visual inspection of the fit, which gives the ability to quickly check

the fit of the model versus the measured angular velocity following the landing of the EdgeTRA.

These plots are saved as PNG files similarly to the CSV files in that the time and date is used as

the file name and sorted into folders of “Model” or “Validation” as well.

73

CHAPTER 8

RESULTS

8.1 MANUAL RC CONTROL MODEL BUILDING

 As discussed in Chapter 5, manual control uses input excitation commands from the PIC

while the EdgeTRA is in the STABILIZE flight mode, including the flight controller algorithm

in a similar way AUTO mode would. The first step in this work is to determine a nominal model

of the EdgeTRA roll, pitch, and yaw angular velocities. Figure 32 shows all inputs recorded via

the Data Recorder.py script. Aileron, elevator, rudder, and airspeed are used as input data to

build an ARX model. It is shown that the input excitation occurs for roll, pitch, and yaw in that

order with respect to time. The inputs applied are attempted sine waves from the PIC between

0.5 and 1Hz frequencies. However, the inputs applied to the servos are not a smooth sine wave,

as the Cube Orange flight controller is in the loop. Therefore, when excitation is not performed

on an axis, the input signal is not constant. For example, in the Ele/Ch2 plot between 262 to 266

and 272 to 277 seconds, the elevator servo input is sporadic about a small magnitude. This small

change in command is due to the Cube Orange attempting to maintain a constant altitude.

Additionally, a maximum bank angle of ±45 degrees and a pitch limit of ±30 degrees are

configured. In this run, the PIC did not achieve the roll limit, although the pitch limit was

achieved, shown in the Ele/Ch_2 plot at 269 sec. An increase in PWM on the elevator channel

correlates to the EdgeTRA pitching upward. Therefore, the PIC is commanding the EdgeTRA to

pitch up. However, the pitch angle of 30 degrees is achieved, and the Cube Orange flight

controller reduces the PWM value to the elevator servo. The reached pitch limit of 30 degrees

forms a valley at the peak of the sine wave input, and the purpose of this is to show the

importance of using the actual input to the servos after the Cube Orange flight controller. Using

74

the inputs directly via the PIC to the Cube Orange results in improper modeling because this

would not account for these described limits.

Figure 32-Inputs used to identify ARX model for run MIMO_4_05_2020__18_03_08

75

 Figure 33 shows the output or response from the applied input in Figure 32. Roll, Pitch,

and Yaw rate are shown respectively, while the x-axis shows the time since the Cube Orange has

been powered. Similar to the applied inputs, the response is not a perfectly smooth sine wave.

The discussed limit is achieved when looking at the pitch rate at 269 seconds when there is a

change in the pitch rate magnitude. It is also important to note that the aileron is mixed with the

rudder movement by 10%. This mixing is used to aid in the navigation of the EdgeTRA while in

AUTO mode since there is no active control on the yaw axis. Mixing effects can be seen in the

yaw rate response between 262 and 267 seconds while the ailerons are moved. Mixing of the

aileron to rudder is only one way, in that if the rudder is moved, the ailerons are unaffected.

However, it can be seen in the roll rate plots at 272 and 276 seconds there is some rolling

movement when the rudder is excited. This rolling movement is not due to mixing but rather the

coupling of the aircraft dynamics.

Figure 33-Outputs used to build ARX model for run MIMO_4_05_2020__18_03_08

76

Using the input and output data from Figure 32 and Figure 33, Table 17 shows the

MIMO identified transfer function used to model the response of the roll, pitch, and yaw angular

velocities. Developing a MIMO model includes any coupling within the EdgeTRA as each

input's effect can be related to each output. In the case of the EdgeTRA, the coupling effect of

the aileron and rudder should be negligible due to the zero degree dihedral angle of the wing

[49]. However, the rudder may still cause some rolling since the rudder area is not evenly

distributed about the longitudinal centerline. Additionally, for each column, it is shown that the

denominator has the same coefficients, while the numerator differs. As previously discussed, the

transfer function relates the inputs to the outputs. Therefore, the denominator remains the same

as the output data remains the same throughout a column, and the numerator changes base on the

applied input. For example, focusing on the roll rate output column, the roll rate output data's

polynomial is identified and placed into the transfer function's denominator. Then, the aileron

input data polynomial is identified and placed in the numerator of the transfer function. This

process repeats for the elevator, rudder, and airspeed inputs. However, only the numerator needs

to be identified thereafter because the column's roll rate output curve is the same.

Inputs Roll Rate Output Pitch Rate Output Yaw Rate Output

Aileron

(PWM)

4.148𝑧 − 2.435

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧

0.1036𝑧 − 0.2063

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧

−0.3238𝑧 + 0.3188

𝑧4 − 1.674𝑧3 + 0.453𝑧2 − 0.2403𝑧

Elevator

(PWM)

0.1924𝑧 − 0.5182

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧

−2.386𝑧 + 1.592

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧

−0.07169𝑧 + 0.06467

𝑧4 − 1.674𝑧3 + 0.453𝑧2 + 0.2403𝑧

Rudder

(PWM)

0.5386𝑧 − 0.851

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧

0.2618𝑧 − 0.2458

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧

−1.05𝑧 + 1.019

𝑧4 − 1.674𝑧3 + 0.453𝑧2 − 0.2403𝑧

Airspeed

(m/s)

7.506𝑧 − 7.34

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧

21.75𝑧 − 21.44

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧

−7.825𝑧 + 7.936

𝑧4 − 1.674𝑧3 + 0.453𝑧2 + 0.2403𝑧

Table 17-Identified ARX transfer function model for roll, pitch, and yaw rates

77

 Figure 34 shows the identified model plotted over the measured response. The blue dots

represent angular velocity measured from the Cube Orange gyroscope for roll, pitch, and yaw,

while the orange plus symbol is the model predicted values. The measured and estimated angular

velocities overlap one another well. However, in this figure, the same input data used to identify

the ARX model is used to estimate the shown response. Therefore, the fit is expected to be good.

A second run is performed to validate this model to show that the modeling works even when a

different input is applied.

Figure 34-Fitted output using input from the same data used to build the ARX model for run

MIMO_4_05_2020__18_03_08

78

 Figure 35 shows the inputs used to validate the previously built ARX model. The inputs

are applied similarly as before in that roll, pitch, and yaw are excited in this order. Inputs are still

sine waves. However, the frequency has been reduced by about half, and the amplitude varies

approximately 25 PWM more than the input used to build the model. Also, in this validation run,

no limits were achieved. Therefore, the inputs mimicked the sine wave more in the validation

than in the previous model building run.

Figure 35-Inputs used to validate ARX model for run MIMO_4_05_2020__18_03_08

79

 Figure 36 shows the outputs, or the response, from Figure 35 validation inputs. An

increase in amplitude is seen in the roll rate plot at 309 seconds. The maximum magnitude

achieved is 3000 milliradians/sec compared to 2200 milliradians/sec in the model building run.

There also is more activity from the Cube Orange to maintain level flight when an input is not

applied. Specifically, looking at the roll rate after 311 seconds, the plotted response is jagged.

The jagged response is also seen in the pitch rate plot before 311 and after 316 seconds.

Figure 36-Outputs used to validate ARX model for run MIMO_4_05_2020__18_03_08

80

Figure 37 shows an overlay of the estimated and measured angular velocities for

validation data. The blue dots show measured angular velocities, while the orange plus symbols

are estimated angular velocities based on validation inputs. The fit of the two lines visually

appears to be suitable for roll and pitch. Due to non-linearity, the yaw rate does not fit well,

which is discussed further in the next chapter. For this run, the TIC metric of fit values is 0.126,

0.096, and 0.372 for roll, pitch, and yaw, respectively, which supports the assumption that as a

TIC value tends to zero, the fit is considered to be better. Results from Dorobantu et al. are found

to be similar with TIC values of 0.12, 0.07, and 0.26 for roll, pitch, and yaw, respectively, using

a high-wing ultra stick [31].

Figure 37-Fitted output using validation input for run MIMO_4_05_2020__18_03_08

81

In total, 29 runs were performed while under manual control to understand the variance

in the TIC value from run to run. Figures 38 through 40 show the TIC values for roll, pitch, and

yaw, respectively, vs. the run number from validation runs. Of the 29 runs, four runs were

omitted as outliers because the EdgeTRA had reached the end of the field, and the PIC had to

abort excitations before completion. There is a general trend that as the run number increases, the

TIC values decrease, indicating a better fit of the angular velocity models. The trend is believed

to be caused by human errors, such as the PIC is learning to perform the excitations in a more

repeatable fashion as the run number increases. Weather also affected this decrease in the TIC

coefficient. Runs 1-10 were performed on days where the flight logbook stated wind conditions

gusting 11 to 13 mph on the ground. The remaining runs were performed in calm conditions or

winds of 3 to 5 mph.

Figure 38-Manual control roll TIC vs. run number

82

Figure 39-Manual control pitch TIC vs. run number

Figure 40-Manual control yaw TIC vs. run number

83

8.2 AUTOMATIC CONTROL MODEL BUILDING

 With the ability to build roll, pitch, and yaw angular velocity models with manual control

proven, the focus was shifted to automatic control. Automatic control occurs when the EdgeTRA

is flying with no human input, invoking the Fly_Plane.py script, as discussed in Chapter 5.

Figure 41 shows the inputs applied via MAVLink messages from the Fly_Plane.py script. Sine

wave inputs of 1 Hz, 0.5 Hz, and 1 Hz for roll, pitch, and yaw are applied, respectively. The sine

waves' amplitude is 200 PWM about the trim PWM signal used to neutralize the control surface,

and excitations were once again performed in the order of roll, pitch, and yaw. Aileron, elevator,

rudder, and airspeed are used to build the ARX transfer function model of the inputs shown. Just

as in manual control model building, the inputs shown are not smooth sine waves as the Cube

Orange flight controller alters the input for stability, navigation, or if a limit is achieved. A

reached limit example is shown in the Rudd/Ch4 subplot at 400 seconds; the tops of the sine

wave’s inputs are truncated. The plateau is caused by the commanded PWM signal being greater

or less than the allowable PWM limit set for the rudder channel. Until the commanded PWM

signal is back in range, the Cube Orange keeps sending the maximum or minimum PWM signal,

which gives the plateau in the input.

84

Figure 41-Inputs used to identify ARX model with auto control for run

MIMO_6_13_2020__16_18_37

85

Figure 42 shows the output, or response, to the applied inputs in Figure 41. After 399

seconds, there is more movement in the pitch rate than in manual control runs as the flight

controller is attempting to maintain a desired altitude in the AUTO flight mode. This additional

movement was deemed insignificant, as it minimally affected the TIC coefficient for the pitch

axis. This output is used in addition to the input to identify the ARX transfer function model.

Figure 42-Outputs used to identify ARX model with auto control for run

MIMO_6_13_2020__16_18_37

86

Table 18 shows the identified ARX transfer function model while under automatic

control based on the input and output data shown in Figure 41 and Figure 42. Just as in the

manual control mode, the model is based on MIMO. Therefore, any coupling between the axis is

captured in the model. Additionally, the denominator is the same for each column as it relates to

the output data curve. Simultaneously, the numerators are all different because they relate each

input's effect on the desired output. The summation of each column provides the complete model

for each axis.

Inputs Roll Rate Output Pitch Rate Output Yaw Rate Output

Aileron

(PWM)

2.412𝑧 − 1.431

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧

−0.01323𝑧 − 0.0146

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧

−0.06946𝑧 + 0.0861

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧

Elevator

(PWM)

0.179𝑧 − 0.2505

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧

−0.9721𝑧 + 0.6156

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧

−0.1153𝑧 + 0.1184

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧

Rudder

(PWM)

0.3203𝑧 − 0.4617

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧

0.1452𝑧 − 0.135

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧

−0.4781𝑧 + 0.5526

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧

Airspeed

(m/s)

−34.81𝑧 + 34.15

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧

9.365𝑧 − 7.845

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧

−12.14𝑧 + 12.77

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧

Table 18- Identified ARX transfer function model for roll, pitch, and yaw rates for auto control

Figure 43 shows the identified ARX model plotted over the measured angular velocity

data used to identify the model. The blue dots represent the measured angular velocity from the

Cube Orange flight controller. In contrast, the orange plus symbol represents the estimated

angular velocity based on the input data used to build the model. The estimated and measured

angular velocity appear to correlate well based on an informal visual inspection. However, in the

pitch rate plot after 399 seconds, there is a mismatch in the model. Once the pitch excitation is

87

completed, the EdgeTRA is no longer at the desired altitude of 75 meters set via the

Fly_Plane.py script. Therefore, the Cube Orange attempts to reacquire the desired altitude by

driving the elevator with small inputs. However, based on the measured response, these small

inputs do not correlate linearly to the output. As the ARX modeling structure is for linear

modeling, the fit is not expected to be good in this period.

 Additionally, in the roll rate plot, after 399 seconds, there is a rolling motion. This rolling

motion is partially due to coupling in the lateral axis between the rudder and aileron. However,

while the rudder excitation is performed, the elevator maintains the desired altitude of 75 meters.

When the elevator and rudder are moved simultaneously, this creates a force that rolls the

EdgeTRA [50]. However, the Cube Orange is in the loop and counteracts the rolling motion

created by the rudder and elevator. Therefore, the motion found in the roll rate plot after 399

seconds is attributed to the Cube Orange reacting to the rolling motion produced by the elevator

and rudder movement at the same time.

88

Figure 43-Fitted output using input from the same data used to build the ARX model for run

MIMO_6_13_2020__16_18_37

 Figure 44 shows the input used to validate the previously identified ARX model for

automatic control. Figure 45 shows the blue dots' measured responses and the modeled responses

shown by the orange plus signs based on this validation input. As discrepancies were seen in the

fit of the measured and estimated angular velocities for the model building run, this validation

run shows similar discrepancies. In the pitch rate subplot, after 456 seconds, the pitch excitations

have been completed. However, there is still a nonlinear change in pitch rate relative to the

applied input. Also, there is still a rolling motion seen in the roll rate subplot after 454 seconds

due to the rudder and elevator's simultaneous actuation. However, with these discrepancies, the

TIC fit coefficients were not drastically affected as they are still similar to TIC values from the

89

manual control method. For this validation run, the TIC values are 0.184, 0.198, 0.214 for roll,

pitch, and yaw, respectively.

Figure 44-Inputs used to validate ARX model for run MIMO_6_13_2020__16_18_37

90

Figure 45-Fitted output using validation for run MIMO_6_13_2020__16_18_37

 In total, 13 nominal runs were collected using the automatic control method. Figures 46

to 48 show the TIC values for the 13 runs, except for run 4, which is omitted because the yaw

excitation was incomplete before the end of the run. For roll, pitch, and yaw, TIC values appear

to have a neutral slope. Compared to the manual control method, using the auto control method

with excitations commanded by the Fly_Plane.py script appears to provide more repeatable

results, indicated by the TIC standard deviation values for automatic control being less than

manual control as shown in Table 19.

91

 Manual Control TIC

Standard Deviation

Automatic Control TIC

Standard Deviation

Roll 0.0466 0.0275

Pitch 0.0473 0.0163

Yaw 0.0623 0.0345

Table 19- Comparison of manual vs. automatic standard deviation of TIC values

Also, automatic control runs were performed over varying weather conditions, similar to weather

conditions when manual control runs were performed. Automatic control runs 1-8 were

performed with ground speed wind conditions of 8-12 mph, while the remaining runs were

performed in weather conditions with wind 5 mph or less.

Figure 46-Automatic control roll TIC vs. run number

92

Figure 47-Automatic control pitch TIC vs. run number

Figure 48-Automatic control yaw TIC vs. run number

93

8.3 LACK OF CONTROLLABILITY DETECTION

 With the baseline model of the angular velocities established, this work is now focused

on detecting a lack of controllability. In Table 8, the failure modes were described and

demonstrated using the manual control method. Each failure mode was implemented one at a

time, and the results were collected. A lack of controllability can be seen visually in Figure 49. In

this run, both aileron two and elevator two are stuck in a neutral position. In the roll rate versus

time subplot between 502 and 506 seconds, the ARX model indicates that the roll rate should

have a greater magnitude than the measured roll rate. A greater pitch rate is also indicated in the

pitch rate subplot between 505 and 511seconds.

Figure 49-Fitted output after aileron two and elevator two are stuck neutral for run

MIMO_4_05_2020__16_55_18

94

Before the introduced failure, as shown in Figure 49, a nominal run was made with results shown

in Figure 50. The roll, pitch, and yaw angular velocity subplots show the ARX model estimate,

and the measured angular velocities agreed before the failure was introduced.

Figure 50-Fitted output under nominal conditions for run MIMO_4_05_2020__16_55_18

Therefore, the discrepancy between the ARX model and the measured angular velocity increases

the TIC value and is flagged as a lack of controllability detection on the respective axis. Results

are shown for all failure mode’s TIC values in detail in the following sections.

95

8.3.1 AILERON TWO STUCK NEUTRAL

Figure 51 shows the TIC values for all collected data under nominal conditions, as shown

by the red circles. In addition, runs shown by black squares with checkmarks indicate when

aileron two was stuck in the neutral position. A lack of controllability is detected if the TIC value

of a run is greater than the prediction interval, as shown by the light blue dashed line. The

prediction interval is based on the mean and standard deviation of the TIC values for the 29

nominal runs and the alpha choice. Alpha equal to 20% is selected, as this allows for greater

sensitivity for lack of controllability detection. When aileron two is stuck in the neutral position,

the TIC value for these runs is clearly above the nominal range established by the prediction

interval, indicating a lack of controllability in the roll axis.

Figure 51-Roll TIC vs. run number showing runs when aileron two is failed neutral

Run Number

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

R
o

ll
T
IC

0.1

0.15

0.2

0.25

0.3

0.35

Roll TIC vs. Run Number with Failed Neutral Aileron Two

Roll TIC

Design Points

80% PI Bands

96

 While aileron two was stuck in the neutral position, no failure is implemented on the

pitch axis. Therefore, pitch TIC values should be at or below the prediction interval threshold,

which is the case for most runs made with this failure, as shown in Figure 52, denoted by the

black squares with checkmarks. However, run 33 is found to be above the PI, indicating a false

alarm for the pitch axis.

Figure 52-Pitch TIC vs. run number showing runs when aileron two is failed neutral

Run Number

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

P
it

ch
 T

IC

0.05

0.1

0.15

0.2

0.25

0.3

Pitch TIC vs. Run Number with Failed Neutral Aileron Two

Pitch TIC

Design Points

80% PI Bands

97

Similarly, for the yaw axis, while aileron two is stuck in the neutral position, the yaw axis had no

failure introduced. Therefore, the yaw TIC values are at or below the prediction interval, as

shown in Figure 53 for most failure mode runs, denoted by the black checked squares. However,

run 32 is above the threshold in the yaw axis, indicating a false alarm on the yaw axis.

Figure 53-Yaw TIC vs. run number showing runs when aileron two is failed neutral

Run Number

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

Y
a
w

 T
IC

0.2

0.25

0.3

0.35

0.4

0.45

Yaw TIC vs. Run Number with Failed Neutral Aileron Two

Yaw TIC

Design Points

80% PI Bands

98

8.3.2 AILERON TWO WITH LIMITED TRAVEL

Figure 54 shows the lack of controllability detection for the limited throw by ±25% of

the aileron two case, shown by the black squares with checkmarks above the prediction interval.

Compared to the stuck in neutral position aileron case, the limited aileron case has lower TIC

values, which are expected, as the failure is not as drastic. Also, for pitch and yaw, the TIC

values do not detect a failure since no failure is introduced on those axes.

Figure 54-Roll TIC vs. run number with aileron two having limited travel

Run Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

R
o

ll
T
IC

0.1

0.15

0.2

0.25

0.3

Roll TIC vs. Run Number with reduced Travel for Aileron Two

Roll TIC

Design Points

80% PI Bands

99

8.3.3 ELEVATOR TWO STUCK NEUTRAL

When elevator two is stuck in the neutral position, the TIC values are indicated by the black

squares with checkmarks, as shown in Figure 55, and are all found to be above the prediction

interval. This indicates that the failure mode has been detected. However, some of the initial

nominal runs collected have TIC values near the same magnitude as failure mode runs 31 and 33.

The TIC values above the PI are believed to be due to gusty weather conditions and insufficient

PIC input excitation when initial nominal runs were collected.

Figure 55-Pitch TIC vs. run number with elevator two stuck neutral

Run Number

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

P
it

ch
 T

IC

0

0.1

0.2

0.3

0.4

Pitch TIC vs. Run Number with Elevator Two Stuck Neutral

Pitch TIC

Design Points

80% PI Bands

100

8.3.4 ELEVATOR TWO WITH LIMITED TRAVEL

 For the limited travel of the elevator failure mode, the travel was limited to ± 25%. The

TIC values for this failure mode are indicated by black squares with checkmarks, as shown in

Figure 56. All failure mode tests are above the prediction interval, indicating a detection of a lack

of controllability.

Figure 56-Pitch TIC vs. run number with elevator two travel limited

Run Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P
it

ch
 T

IC

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pitch TIC vs. Run Number with Elevator Travel Limited

Pitch TIC

Design Points

80% PI Bands

101

8.3.5 AILERON TWO STUCK NEUTRAL AND ELEVATOR TWO LIMITED TRAVEL

 Combinations of failure modes are also tested. For this failure mode, aileron two is fixed

at its neutral point, while elevator two is limited to only ± 25% of its full travel simultaneously.

The TIC value results during the roll axis's failure mode are marked by the black squares with

checkmarks, as shown in Figure 57. As the TIC values for the runs to test the failure mode in the

roll axis are above the prediction interval, there is a detection of a lack of controllability in the

roll axis.

Figure 57-Roll TIC vs. run number with aileron two neutral and elevator two travel limited

102

Additionally, since this failure mode contains two compromised control surfaces, the pitch axis

is also reviewed. As expected, the pitch axis detection of a lack of controllability is found by the

black squares with checkmarks above the prediction interval, as shown in Figure 58.

Figure 58-Pitch TIC vs. run number with aileron two neutral and elevator two travel limited

103

8.3.6 AILERON TWO LIMITED TRAVEL AND ELEVATOR TWO STUCK NEUTRAL

 The failure mode combination of aileron two with its travel limited to ± 25% of its

original travel, and elevator two fixed to its neutral position, results are shown in Figure 59 for

the roll axis. As failure mode runs with the black squares with checkmarks are above the

prediction interval, there is a detection of a lack of controllability.

Figure 59-Roll TIC vs. run number with aileron two limited and elevator two neutral

104

The same is also found for the pitch axis, indicated by the black squares' TIC values with

checkmarks above the prediction interval, as shown in Figure 60. In comparison to failure modes

where a surface is fixed to its neutral position or is limited in travel, these results show how more

drastic failure modes affect the chance of detection. Such as with the failed neutral elevator, the

TIC values have a larger magnitude than the limited elevator case.

Figure 60-Pitch TIC vs. run number with aileron two limited and elevator two neutral

105

8.3.7 AILERON TWO AND ELEVATOR TWO STUCK NEUTRAL

 When aileron two and elevator two are fixed in their neutral position, a detection of a

lack of controllability is definitively found for the roll axis. As shown in Figure 61, the black

squares with checkmarks are for runs 30 to 32.

Figure 61-Roll TIC vs. run number with aileron two and elevator two stuck neutral

106

For the pitch axis, detection of a lack of controllability is also found due to the fixed aileron and

elevator failure mode combination, indicated by the black squares with checkmarks above the

prediction interval, as shown in Figure 62.

Figure 62-Pitch TIC vs. run number with aileron two and elevator two stuck neutral

107

8.3.8 AILERON TWO AND ELEVATOR TWO WITH LIMITED TRAVEL

 Results from both aileron two and elevator two having limited travel of ± 25% of their

original travel show a lack of controllability for the roll axis, which is denoted by the black

squares with checkmarks, as shown in Figure 63. However, for the roll axis, approximately only

50% of the runs made with this combination failure mode fall above the prediction interval. This

partial detection of a lack of controllability is believed to be due to elevator two having limited

travel while elevator one has full travel. This mismatch in the travel between elevators one and

two aids in rolling the EdgeTRA. Therefore, even with aileron two being compromised, the roll

axis angular velocity is closer to its nominal rate due to the travel mismatch between elevator one

and two, which drives down the roll axis TIC value, indicating a better fit.

Figure 63-Roll TIC vs. run number with aileron and elevator travel limited

108

Additionally, for the pitch axis, this combination failure mode is showing detection of a lack of

controllability indicated by the black squares with checkmarks, as shown in Figure 64.

Compared to the single failure mode of just elevator two having its travel limited to ± 25% of its

original travel, the TIC values of the runs made with this combination failure mode appear not to

be affected for the pitch axis, which is unlike the roll axis.

Figure 64-Pitch TIC vs. run number with aileron and elevator travel limited

109

8.3.9 RUDDER LIMITED TRAVEL

 For the rudder travel limited to ± 25% case, a lack of controllability is found, which is

indicated by the black squares with checkmarks, as shown in Figure 65. The yaw axis angular

velocity was the most challenging axis to model due to its moment of inertia, explained in detail

in Chapter 9. The yaw axis had a large variance in the TIC values for nominal runs, which means

the chance for false positives for the yaw axis is high. However, the rudder-limited failure mode

runs still show TIC values above the prediction interval, indicating a problem in the yaw axis.

Figure 65-Yaw TIC vs. run number with rudder travel limited

110

8.3.10 RUDDER LIMITED TRAVEL AND ELEVATOR TWO LIMITED TRAVEL

 A combination of both the rudder and elevator two limited to ± 25% of their original

throw are tested simultaneously. For the pitch axis, a lack of controllability is found by the black

squares with checkmarks above the prediction interval, as shown in Figure 66.

Figure 66-Pitch TIC vs. run number with elevator two and rudder two travel limited

111

For the yaw axis, the detection of a lack of controllability is found, indicated by the black

squares with checkmarks above the prediction interval, as shown in Figure 67. Compared to the

single failure mode of just the rudder limited to ± 25%, results from this combination failure

mode runs show TIC values of greater magnitude. This is believed to be due to angular velocity

models being built for each run, and the yaw axis has a significant variance. Since models are

built for each run, this changes the prediction effectiveness from run to run. Also, as the variance

is large for the yaw axis's nominal runs, sometimes a model from one run predicts better than

other runs. Therefore, when the runs are made with the combination failure mode of limited

travel for both the rudder and elevator two, it is found that these models had higher TIC values

than when a nominal input was applied. When the failure mode is implemented, the yaw axis

TIC values only increase, which explains the difference in the yaw axis TIC values for just the

rudder limited and the combination failure mode of the rudder and elevator two limited.

112

Figure 67-Pitch TIC vs. run number with elevator two and rudder two travel limited

113

CHAPTER 9

DISCUSSION

9.1 MOMENT OF INERTIA STUDY

 Results show that ARX angular velocity models fit the roll and pitch axis better than the

yaw axis, which is based on the fact that TIC values for roll and pitch are closer to zero while at

the same time have less variance than the yaw axis TIC values. To further understand the

reasoning behind this, the mass properties of the EdgeTRA are studied. Specifically, the

moments of inertia (MOI) were measured for the fully configured EdgeTRA in a flight-ready

state, including the flight battery. Since MOIs are not known for the EdgeTRA, the MOIs are

experimentally determined using a Bifilar pendulum method, allowing variables in equation (34)

to be determined.

𝐼 =

𝑊𝐴2𝑡2𝑔

16𝑝𝑖2𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟
 (34)

In this method, the EdgeTRA is suspended from two wires oscillating about each principal axis.

Simultaneously, the time duration for a desired number of cycles is recorded to calculate the

period [51, 52]. Using two support lines with a known length, 𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟, which are separated by

some known distance, 𝐴, the Bifilar pendulum method suspends the EdgeTRA about its center of

gravity. While these two variables are constants, the lengths vary due to the changing orientation

of the EdgeTRA in determining the MOI for each axis. For example, for estimation of the 𝐼𝑥𝑥

MOI, the EdgeTRA was required to be oriented nose up, and the two Bifilar lines were attached

114

to a mounting point 8 feet above the ground. The value of 𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟 for 𝐼𝑥𝑥 is relatively short,

which prevents the 6 foot long fuselage of the EdgeTRA from touching the ground in the nose up

configuration, as shown in Figure 68. In comparison, the same 8-foot mounting point was used in

a setup to oscillate about the z-axis, as shown in Figure 68 for 𝐼𝑧𝑧. This configuration allows the

𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟 lines to be longer, as the EdgeTRA is close to resting on its landing gear rather than the

rudder.

Figure 68-Bifilar MOI suspension configuration for Ixx and Izz

A total of 10 oscillations were timed with a stopwatch to determine the oscillation period for

each axis. Since the stopwatch's exact start and stop is subject to human error, five sets of 10

oscillations each were timed so the period could be averaged. All periods for each experiment

and Bifilar wire lengths are shown in APPENDIX E.

115

 The determined MOIs from the Bifilar experiment are shown in Table 20, in addition to

the mass and center of gravity locations for the flight-ready EdgeTRA.

Mass 3.89 kg

CoG_x 0.107 m

CoG_z 0.012 m

Ixx 0.157 𝑘𝑔 𝑚2

Iyy 0.527 𝑘𝑔 𝑚2

Izz 0.589 𝑘𝑔 𝑚2

Ixz 0.331 𝑘𝑔 𝑚2

Table 20-Mass and experimentally determined MOI properties of the EdgeTRA

The MOIs describe how a rotational movement about an axis resists a change in direction [53].

Motion about the roll axis (x) is relatively unimpeded due to the low magnitude of 𝐼𝑥𝑥, allowing

roll changes to happen quickly. In comparison, 𝐼𝑧𝑧 was found to have a large order of magnitude,

which means more resistance to change in the yaw direction. The larger magnitude in 𝐼𝑧𝑧 is

understandable as the combination of the mass of the fuselage and wings affects this axis, which

allows the EdgeTRA to yaw more than commanded. For example, the EdgeTRA is flying in a

straight line at trim conditions. The rudder is commanded to yaw the EdgeTRA to the right for a

0.5 second period and then immediately following, commanded to yaw left for 0.5 seconds.

Since 𝐼𝑧𝑧 is large, the change in yaw direction is not instantaneous, allowing the EdgeTRA yaw

motion to overshoot the commanded yaw input. Drifting past the commanded yaw input is

problematic, as it introduces nonlinearity into the yaw axis in that the response does not directly

correlate to the provided input, therefore making the linear ARX model incapable of predicting

as well as shown in Figure 69. In the yaw rate versus time subplot, between 409 and 415

116

seconds, the estimated yaw rate indicated by the orange plus signs does not fully capture the

measured yaw rate indicated by the blue dots.

Figure 69-Fitted output under nominal conditions for run MIMO_04_05_2020__18_21_23

However, it was found that if greater amplitude input deflections of the rudder are applied, this

produces a large enough yawing moment capable of overcoming 𝐼𝑧𝑧 more quickly, which

allowed for a more linear input to output relation, as shown in Figure 70. The yaw rate versus

time plot between 327 to 332 seconds, as the model Yaw_Rate_Val, fits the measured data,

Yaw_Rate_Interp, better visually as indicated by the yaw TIC value of 0.257. In comparison to

Figure 69, a smaller rudder deflection input was applied, which resulted in a larger yaw TIC

value of 0.336, indicating a less desirable fit.

117

Figure 70-Fitted output under nominal conditions for run MIMO_04_05_2020__18_19_57

This phenomenon did not occur for the roll or pitch axis, although the pitch axis MOI, 𝐼𝑦𝑦, was

lower but close to 𝐼𝑧𝑧. Not seeing nonlinearity in the pitch axis is believed to be due to the

elevators having double the surface area compared to the rudder. Having double the surface area

increases the force capable of overcoming the pitch MOI and aids in a more linear input to

output relation, similar to when greater amplitude inputs to the rudder were applied. The fit was

found to be better. In summary, when using the linear ARX modeling technique, the proper

amplitude of excitation is critical to acquire a model that predicts well.

9.2 XFLR5 DYNAMIC STABILITY

An XFLR5 model of the EdgeTRA, as shown in Figure 71, was developed to give a

better understanding of the dynamic stability. The model is built by providing mass properties,

physical dimensions, and the airfoil for the wing and tail. The exact airfoil for the wing and

118

empennage of the EdgeTRA is unknown. However, the NACA 0011 airfoil is a close match and

used throughout in the XFLR5 model.

Figure 71- EdgeTRA XFLR5 dynamic model

 Aircraft dynamics are divided into longitudinal and lateral groups. Within the

longitudinal group, two modes are contained, phugoid and short-period mode. Phugoid mode is

slow, lightly damped oscillations, and short-period mode is a high frequency or fast oscillations

that are moderately damped in the pitch axis. Within the lateral group, there are three different

modes: roll, spiral, and dutch roll. Roll mode pertains to moderately damped low-frequency

oscillations, the spiral mode has low dampening with low frequency, and the dutch roll mode is

moderately damped with high frequency. Using eigenvalues, each of these modes can be

identified for the EdgeTRA. Table 21 shows the eigenvalues of the dynamic modes of the

EdgeTRA obtained from XFLR5.

119

Table 21- Eigenvalues from XFLR for EdgeTRA

Plotting the eigenvalues in a root locus plot allows dynamic modes of the EdgeTRA to be

visually shown as in Figure 72 for longitudinal modes and Figure 73 for lateral modes. For the

imaginary axis, as a closed-loop pole moves further away from the origin, the frequency

increases. If a closed-loop pole moves more negative in the real axis, then this relates to

increased dampening. Therefore, each mode can be identified based on the expectation of how

the mode behaves. For example, the longitudinal phugoid mode is known to have low frequency

with a small dampening amount, which can be found on the longitudinal root locus near the

origin.

Longitudinal Eigenvalue

Phugoid −0.0091 ± 0.5859𝑖
Short Period −5.7136 ± 6.1030𝑖

Lateral Eigenvalue

Roll Mode 0.1411 ± 0.00𝑖
Spiral Mode 85.22 ± 0.00𝑖
Dutch Roll −2.0422 ± 4.7302𝑖

120

Figure 72-Root locus plot of longitudinal modes for EdgeTRA

Figure 73-Root locus plot for lateral modes for EdgeTRA

121

Knowing the eigenvalues of the EdgeTRA, can provide additional reasoning for why the

yaw angular velocity model does not predict as well as the roll and pitch models. The lateral

eigenvalues for the roll and spiral modes show the EdgeTRA to be unstable laterally. The Cube

Orange provides active control to the roll and pitch axis in both manual PIC input and automatic

input control methods. However, no active control is provided to the yaw axis. Therefore, the roll

axis's lateral instability is compensated for by the Cube Orange, but that is not the case for the

yaw axis.

Not compensating for this instability affects the modeling by allowing a response to be

present when there is no correlated input, as shown in the red box in Figure 74. Specifically, it is

shown that even when the rudder input is constant, between 335 seconds and 349 seconds, there

are still oscillations in the yaw axis output believed to be due to lateral instability. This instability

reduces the direct correlation of rudder input to the yaw rate response, making it non-linear,

which reduces the linear yaw rates model ability to predict well. During the time frame

encompassed by the red box, roll and pitch input maneuvers are implemented. The rudder input

applied between 340 seconds and 345 seconds is due to the previously discussed mixing of the

aileron and the rudder. Otherwise, the input signal should be constant until it's time for the yaw

axis to be excited by the rudder.

122

Figure 74-Rudder input and yaw rate response without active control

Compared to the roll axis, which is also affected by the same lateral instability, the

aileron input is never truly constant as the flight controller compensates for instability and

external disturbances, such as wind. By compensating, this provides the model with a more

correlated roll input to roll rate output for the linear roll rate model since this compensated input

is used to build the roll rate model, which provides a better fit. An example of this is shown in

Figure 75. After the roll excitation has been completed, 345 sec and greater, the measured

Roll_Rate_Interp data fits the roll rate model data, Roll_Rate_Val better throughout the run, in

the output subplot.

123

Figure 75-Aileron input and roll rate response with active control

124

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

 This work has shown that it's possible to use response models for roll, pitch, and yaw

angular velocities as a function of primary control inputs to detect a lack of controllability in a

sUAV. An entirely onboard controllability detection system was demonstrated using a COTS

flight controller and aircraft model with no knowledge of mass properties or servo deflection

angles and a minimum additional sensor suite consisting of airspeed, GPS antenna, and RPI.

Data collection was performed using MAVLink messages, a common serial

communication protocol used by the Cube Orange flight controller running ArduPlane firmware.

MAVLink messages gathered sensor data from the Cube Orange and transmitted them to the RPI

companion computer. These messages transmitted commands from the RPI to the Cube Orange

to perform maneuvers and change flight modes. It was found that these messages have secondary

priority to any main flight control functions. Therefore, the messages' rate was not constant,

which was problematic as the ARX model was in discrete time. In order to correct this

inconsistent message rate, MAVLink messages were linearly interpolated based upon the

average data rate of a particular message group.

The MIMO ARX black-box modeling technique was used to identify transfer function

models of the roll, pitch, and yaw angular velocities using only the input and the system's output.

The models were validated using newly collected input and output data, where the input is

passed through the model to estimate the output, which is then compared to the measured output.

Using TIC as a metric for goodness of fit allowed the comparison of the modeled and the

measured angular velocity on a scale from zero to one. A simple threshold for TIC based on a

125

prediction interval proved useful in this first effort but may be improved upon with a TIC rating

scale in the future rather than a go/no-go value.

Since the collected data is experimental, it was found to be susceptible to sensor noise,

pilot learning, and weather disturbances such as wind. The TIC value varies from run to run

because of this. A series of nominal runs are made to determine the TIC value threshold of the

EdgeTRA under nominal conditions. A prediction interval is used as the threshold, created from

nominal runs, determining if a run is nominal or abnormal based on its TIC value. If the

prediction interval is increased by reducing alpha, this gives greater acceptance that the aircraft is

nominal while reducing the acceptance that the EdgeTRA is abnormal. A decreased prediction

interval or an increased choice of alpha does the opposite, by accepting more of the TIC range as

abnormal and less nominal. Therefore, based on the collected results of the nominal runs, a

compromise was made to set the prediction interval to 80%. Setting alpha to 80% increases the

chance for a false positive but simultaneously increases the chance to detect a lack of

controllability. Again, future work could look at a graded scale.

 For this work, a Lack of Controllability is defined as any roll, pitch, or yaw axis with a

TIC value that falls above the established prediction interval of 80%. A total of 10 different

failure modes were developed to simulate possible modes of failure to test for the controllability

of the EdgeTRA. The failure modes tested the control authority of a single axis as well as

multiple axes simultaneously. Failures were simulated by either completely failing a servo or

limiting the travel. Results show that a lack of controllability is detected when appropriate with

minimal false alarms. Even in the case of the limited throw authority, detection of a lack of

controllability still occurred, showing the method is sensitive to small changes from nominal

126

conditions. This finding is felt to be significant as detecting small changes in controllability is

essential before it catastrophically affects the aircraft.

In future work, this controllability diagnostic could benefit from real-time

implementation. Currently, the developed lack of controllability detection system only runs and

reports the status of the aircraft when commanded. However, the developed method does not

disrupt the mission of the sUAV, and testing can be done en route to the next waypoint and can

be performed many times during a flight.

Additionally, the ability to detect the direct cause of the controllability problem would be

a subject for future work. For example, there is a lack of controllability detected on the roll axis.

The reason could be due to a failing servo, damaged linkage, loss of covering to the wing, or

wing structural failure. Knowing the cause of failure would help resolve the problem and decide

the next action for resolution.

As the foundation of this work's data collection is based on MAVLink messages, future

work would include investigating other airframe types such as multi-copters and VTOL sUAVs.

The same concept of roll, pitch, and yaw angular velocity models can be used, except that many

more inputs can be added. For example, in an octocopter, the signal to each motor can be used as

the input, which replaces the aileron, elevator, and rudder used for traditional fixed-wing sUAVs.

The output stays the same as roll, pitch, and yaw angular velocity. A VTOL vehicle, such as the

Langley Aerodrome No. 8, which is a mix of a multi-copter and fixed-wing sUAV again, could

follow the same approach. This aircraft has 21 different inputs that affect roll, pitch, and yaw

angular velocities, which differ in hover and forward flight conditions. Therefore, future work

could increase understanding of how well this controllability detection diagnostic functions as

more inputs are added to the system, and complexity increases.

127

REFERENCES

1. Cai, G., B.M. Chen, and T.H. Lee, Unmanned Rotorcraft Systems. 2011: Springer-Verlag

London.

2. Bertin, J.J. and R.M. Cummings, Aerodynamics for Engineers. 6th ed. 2014: Pearson.

3. Behnke, S. and M. Schreiber, Digital Position Control for Analog Servos, in RAS

International Conference on Humanoid Robots. 2006, IEEE: Genoa, Italy. p. 56-61.

4. Ryan. The Difference between Analog and Digital RC Servos. 2020; Available from:

https://www.radiocontrolinfo.com/the-difference-between-analog-and-digital-rc-servos/.

5. Basu, A., S.A. Moosavian, and R. Morandini, Mechanical Optimization of Servo Motor.

Journal of Mechanical Design, 2005.

6. McManis, C. R/C Servos 101. 1995; Available from:

http://pages.cs.wisc.edu/~bolo/shipyard/servos101.html.

7. HS-311 Standard Economy Servo. 2020; Available from:

https://hitecrcd.com/products/servos/analog/sport-2/hs-311/product.

8. Lyons, M., K. Brandis, C. Callaghan, J. McCann, C. Mills, S. Ryall, and R. Kingsford,

Bird interactions with drones, from individuals to large colonies. 2017.

9. Forrest, S., A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a

computer. in Proceedings of 1994 IEEE Computer Society Symposium on Research in

Security and Privacy. 1994.

10. Ishida, Y., An immune network model and its applications to process diagnosis. Systems

and Computers in Japan, 1993. 24(6): p. 38-46.

11. Jerne, N.K., Towards a network theory of the immune system. Ann Immunol (Paris),

1974. 125c(1-2): p. 373-89.

https://www.radiocontrolinfo.com/the-difference-between-analog-and-digital-rc-servos/
http://pages.cs.wisc.edu/~bolo/shipyard/servos101.html
https://hitecrcd.com/products/servos/analog/sport-2/hs-311/product

128

12. Dasgupta, D., Artificial Immune Sytems and Their Applications, ed. D. Dasgupta. 1999:

Springer.

13. Timmis, J. and P. Andrews, A Beginners Guide to Artificial Immune Systems. 2007,

Boston, MA: Springer.

14. Garcia, D., H. Moncayo, A. Perez, and C. Jain, Low cost implementation of a biomimetic

approach for UAV health management. IEEE, 2016: p. 2265-2270.

15. Herrera, D.F.G., Design, Development and Implementation of Intelligent Algorithms to

Increase Autonomy of Quadrotor Unmanned Missions, in Graduate Studies. 2017,

Embry-Riddle.

16. Lopez, K.P.R., H. Moncayo, J.A. Verberne, and D. F., Design and Implementation of

Intelligent Decision-Making Algorithms for Unmanned Aerial Vehicles Mission

Protection, in AIAA Scitech 2019 Forum.

17. Sanchez, S., M. Perhinschi, H. Moncayo, M. Napolitano, J. Davis, and M. Fravolini, In-

Flight Actuator Failure Detection and Identification for a Reduced Size UAV Using the

Artificial Immune System Approach, in AIAA Guidance, Navigation, and Control

Conference.

18. Perhinschi, M.G., H. Moncayo, and D.A. Azzawi, Integrated Immunity-Based

Framework for Aircraft Abnormal Conditions Management. Journal of Aircraft, 2014.

51(6): p. 1726-1739.

19. Quan, Q., Introduction to Multicopter Design and Control. 2017, Singapore Springer

Nature.

20. Han, L., Y. Li, S. Mi, and H. Liu, Research on compass error compensation of certain

UAS, in Information and Automation 2013, IEEE: Yinchuan, China.

129

21. Tridgell, A., F. Ferreira, G. Morphett, J. Walser, L.D. Marchi, M.d. Breuil, P. Barker, R.

Mackay, T. Pittenger, B. Geyer, C. Olson, E. Castelnuovo, E. Shamaev, G. Staroselskii,

G.J.d. Sousa, J. Beraud, L. Hall, M. Lawrence, M. Badaire, M. Denecke, P. Riseborough,

P. Kancir, V.M. Vilches, A. Lucas, and S. Tabor. ArduPilot. 2016; Available from:

https://ardupilot.org/.

22. Meier, L., D. Agar, J. Oes, B. Küng, M. Grob, H. Willee, D. Sidrane, R. Bapst, M.

Bresciani, J. Vautherin, J. Kent, M. Rivizzigno, D. Gagne, G. Grubba, N. Marques, P.

Kirienko, and JaeyoungLim. PX4 Autopilot User Guide. 2020; Available from:

https://px4.io/.

23. Fuggetti, G., A. Ghetti, and M. Zanzi, Safety Improvement of Fixed Wing Mini-UAV

Based on Handy FDI Current Sensor and a FailSafe Configuration of Control Surface

Actuators IEEE, 2015.

24. Gertler, J.J., Fault Detection and Diagnosis in Engineering Systems. 1st ed. 2017: CRC

Press. 504.

25. Ding, S., Model-based fault diagnosis techniques: Design schemes, algorithms, and tools.

2008.

26. Freeman, P., R. Pandita, N. Srivastava, and G.J. Bakas, Model-Based and Data-Driven

Fault Detection Performance for a Small UAV. IEEE/ASME Transactions on

Mechatronics 2013. 18(4): p. 1300-1309.

27. Freeman, P. and G.J. Balas, Analytical Fault Detection for a Small UAV, in AIAA

Infotech@Aerospace (I@A) Conference.

https://ardupilot.org/
https://px4.io/

130

28. Yechout, T.R., S.L. Morris, D.E. Bossert, W.F. Hallgren, and J.K. Hall, Introduction to

Aircraft Flight Mechanics. Second ed. 2014: American Institute of Aeronautics and

Astronautics.

29. Morelli, E.A. and V. Klein, Aircraft System Identification Theory and Practice. Vol. 2.

2016: Sunflyte Enterprises.

30. Favaregh, N.M., Global Modeling of Pitch Damping From Flight Data, in Aerospace

Engineering. 2006, Old Dominion University.

31. Dorobantu, A., A. Murch, B. Mettler, and G. Balas, System Identification for Small, Low-

Cost, Fixed-Wing Unmanned Aircraft. Journal of Aircraft, 2013. 50(4): p. 1117-1130.

32. Perry, A.T., T. Bretl, and P.J. Ansell, System Identification and Dynamics Modeling of a

Distributed Electric Propulsion Aircraft. AIAA, 2019.

33. Woodrow, P., M. Tischler, G. Mendoza, S.G. Hagerott, and J. Hunter, Low Cost Flight-

Test Platform to Demonstrate Flight Dynamics Concepts using Frequency-Domain

System Identification Methods, in AIAA Atmospheric Flight Mechanics (AFM)

Conference.

34. Vaidyanathan, P.P., Generalizations of the sampling theorem: Seven decades after

Nyquist. IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, 2001. 48(9): p. 1094 1109.

35. ARX Time Series Model. 2019 [cited 2020; Available from:

https://apmonitor.com/wiki/index.php/Apps/ARXTimeSeries.

36. Chetouani, Y., Using ARX Approach For Modeling and Prediction of the Dynamics of a

Reactor-Exchanger. 2008, Université de Rouen, : IChemE.

37. Nise, N.S., Control System Engineering. 7th ed. 2014: Wiley. 944.

https://apmonitor.com/wiki/index.php/Apps/ARXTimeSeries

131

38. Haldar, A. and S. Mahadevan, Probability, Reliability, and Statistical Methods in

Engineering Design. 1999: Wiley. 320.

39. Bliemel, F., Theil's Forecast Accuracy Coefficient: A Clarification. Journal of Marketing

Research, 1973. 10(4): p. 444-446.

40. Montgomery, D.C., Design and Analysis of Experiments 2013: John Wiley and Sons,Inc.

41. Whitmore, G.A., Prediction Limits for a Univariate Normal Observation. The American

Statistician, 1986. 40(2): p. 141-143.

42. Point Prediction Intervals. Design-Expert [cited 2020; Available from:

https://www.statease.com/docs/v11/contents/analysis/point-prediction-intervals/.

43. Anderson, D.R., K.P. Burnham, and W.L. Thompson, Null Hypothesis Testing:

Problems, Prevalence, and an Alternative. The Journal of Wildlife Management, 2000.

64(4): p. 912-923.

44. Edward, P., S. Elzeiny, M. Ashour, and T. Elshabrawy, On the Coexistence of LoRa- and

Interleaved Chirp Spreading LoRa-Based Modulations, in International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob). 2019:

Barcelona, Spain.

45. pymavlink. 2018; Available from: https://github.com/ArduPilot/pymavlink.

46. MAVLINK. 2020; Available from: https://mavlink.io/en/messages/common.html.

47. SITL Simulator. 2020; Available from: https://ardupilot.org/dev/docs/sitl-simulator-

software-in-the-loop.html.

48. Armenise, G., M. Vaccari, R.B.D. Capaci, and G. Pannocchia, An Open-Source System

Identification Package for Multivariable Processes. IEEE, 2018.

https://www.statease.com/docs/v11/contents/analysis/point-prediction-intervals/
https://github.com/ArduPilot/pymavlink
https://mavlink.io/en/messages/common.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

132

49. Phillips, W.F. and B.W. Santana, Aircraft Small-Disturbance Theory with Longitudinal-

Lateral Coupling. Journal of Aircraft, 2002. 39(6): p. 973-980.

50. Gudmundsson, S., Chapter 11 - The Anatomy of the Tail, in General Aviation Aircraft

Design, S. Gudmundsson, Editor. 2014, Butterworth-Heinemann: Boston. p. 459-519.

51. Jardin, M. and E. Mueller, Optimized Measurements of UAV Mass Moment of Inertia

with a Bifilar Pendulum, in AIAA Guidance, Navigation and Control Conference and

Exhibit.

52. Dantsker, O.D., M. Vahora, S. Imtiaz, and M. Caccamo, High Fidelity Moment of Inertia

Testing of Unmanned Aircraft, in 2018 Applied Aerodynamics Conference.

53. COLLINS, J.D. and W.T. THOMSON, Statistics of rigid body moment of inertia

computation. Journal of Spacecraft and Rockets, 1967. 4(12): p. 1673-1675.

133

APPENDIX A

134

APPENDIX B

#!/usr/bin/env python

#Writen by Brian Duvall January 2020

#Collects Data from ArduPlane Firmware and builds MIMO models of p,q,r

#DT is fixed by interpolating all data after recoding to the Time

#Debug help:

#import code

#code.interact(local=locals())

import sys, os

from optparse import OptionParser

import time

import numpy as np

import math

import matplotlib

matplotlib.use('Agg') #This lets plts run over ssh but prevents output

try:

 from SIPPY import *

except ImportError:

 import sys, os

 sys.path.append(os.pardir)

 from SIPPY import *

from SIPPY import functionset as fset

from SIPPY import functionsetSIM as fsetSIM

import control as cnt

from control.matlab import *

import pandas

import matplotlib.pyplot as plt

from datetime import datetime

from pymavlink import mavutil

from distutils.version import StrictVersion

if StrictVersion(cnt.__version__) >= StrictVersion('0.8.2'):

 lsim = cnt.matlab.lsim

else:

 def lsim(sys, U = 0.0, T = None, X0 = 0.0):

 U_ = U

 if isinstance(U_, (np.ndarray, list)):

 U_ = U_.T

 return cnt.matlab.lsim(sys, U_, T, X0)

ROLL_DATA_SET = 0

PITCH_DATA_SET = 0

YAW_DATA_SET = 0

All_AXIS_DATA_SET = 0

Roll_ID_SYS = None

Pitch_ID_SYS = None

Yaw_ID_SYS = None

MIMO_ID_SYS = None

Data_Model = None

File_Name = None

Data_RAW_Model = None

135

def handle_heartbeat(msg):

 mode = mavutil.mode_string_v10(msg)

 is_armed = msg.base_mode & mavutil.mavlink.MAV_MODE_FLAG_SAFETY_ARMED

 is_enabled = msg.base_mode & mavutil.mavlink.MAV_MODE_FLAG_GUIDED_ENABLED

def handle_rc_raw(msg):

#This is the input from RX to Pixhawk

 channel_1 = msg.chan1_raw #Aileron Right

 channel_2 = msg.chan2_raw #Elevator

 channel_3 = msg.chan3_raw #Throttle

 channel_4 = msg.chan4_raw #Rudder

 channel_5 = msg.chan5_raw #Mode switch

 channel_6 = msg.chan6_raw #Data record start stop

 rc_in_time = (msg.time_boot_ms)*0.001 #Time since boot of each message

 return channel_1, channel_2, channel_3, channel_4, channel_5, channel_6,

rc_in_time

def handle_rc_raw_out(msg):

#This is the output side from Pixhawk to the servo

 channel_1_out = msg.servo1_raw #Aileron Right

 channel_2_out = msg.servo2_raw #Elevator Left

 channel_3_out = msg.servo3_raw #Throttle

 channel_4_out = msg.servo4_raw #Rudder

 channel_5_out = msg.servo5_raw #Aileron Left

 channel_6_out = msg.servo6_raw #Elevator Right

 rc_out_time = (msg.time_usec)*0.000001 # Time when the mavlink message is

created

 return channel_1_out, channel_2_out, channel_3_out, channel_4_out,

channel_5_out, channel_6_out, rc_out_time

def handle_attitude(msg):

 attitude_data = (msg.roll, msg.pitch, msg.yaw, msg.rollspeed,

 msg.pitchspeed, msg.yawspeed)

def handle_raw_imu(msg):

 raw_imu_time = (msg.time_usec)*0.000001 #Time at which the IMU message is

created

 raw_imu_roll = msg.xgyro #Roll rate

 raw_imu_pitch = msg.ygyro #Pitch rate

 raw_imu_yaw = msg.zgyro # Yaw rate

 return raw_imu_time,raw_imu_roll, raw_imu_pitch, raw_imu_yaw

def handle_VFR_HUD(msg):

 air_speed = msg.airspeed

 return air_speed

def Store_Model_Data_CSV(MIMO_ID_SYS, Roll_Rate_Model, Pitch_Rate_Model,

Yaw_Rate_Model, TIC_Roll_Model, TIC_Pitch_Model, TIC_Yaw_Model):

 global File_Name

 Data_Model = pandas.DataFrame({'Id_SYS':MIMO_ID_SYS.G,

'Roll_Rate_Model':Roll_Rate_Model, 'Pitch_Rate_Model':Pitch_Rate_Model,

'Yaw_Rate_Model':Yaw_Rate_Model, 'TIC_Roll_Model':TIC_Roll_Model,

'TIC_Pitch_Model':TIC_Pitch_Model, 'TIC_Yaw_Model':TIC_Yaw_Model)

 Data_Model.to_csv('MODEL_DATA/MIMO/MODEL/MIMO_Model_'+ str(File_Name))

 return

136

def Store_Validation_SIM_Data(Roll_Rate_Val, Pitch_Rate_Val, Yaw_Rate_Val,

TIC_Roll_Val, TIC_Pitch_Val, TIC_Yaw_Val):

 global File_Name

 Data_Val = pandas.DataFrame({'Roll_Rate_Val':Roll_Rate_Val,

'Pitch_Rate_Val':Pitch_Rate_Val, 'Yaw_Rate_Val':Yaw_Rate_Val,

'TIC_Roll_Val':TIC_Roll_Val, 'TIC_Pitch_Val':TIC_Pitch_Val,

'TIC_Yaw_Val':TIC_Yaw_Val})

 Data_Val.to_csv('MODEL_DATA/MIMO/VALIDATION/MIMO_Val'+ str(File_Name))

 return

def Store_Data_RAW_CSV(Channel_1_interpolated, Channel_2_interpolated,

Channel_3_interpolated, Channel_4_interpolated, Channel_5_interpolated,

Channel_6_interpolated,

 Channel_1_OUT_interpolated,

Channel_2_OUT_interpolated, Channel_3_OUT_interpolated,

Channel_4_OUT_interpolated, Channel_5_OUT_interpolated,

Channel_6_OUT_interpolated,

 Roll_Rate_Interpolated, Pitch_Rate_Interpolated,

Yaw_Rate_Interpolated, Air_speed_VFR_interpolated, MIMO_DATA_SET, Time, DT,

DT_avg_IMU, DT_avg_RC, DT_avg_VFR):

 global Data_RAW_Model #Saves first data set until the second one is

collected

 global File_Name

 if MIMO_DATA_SET == 0:

 File_Save_Time = datetime.now()

 File_Name = File_Save_Time.strftime("%m_%d_%Y__%H:%M:%S")

 Data_RAW_Model = pandas.DataFrame({'Channel_1 (PWM)':

Channel_1_interpolated,'Channel_2 (PWM)':Channel_2_interpolated,'Channel_3

(PWM)':Channel_3_interpolated, 'Channel_4 (PWM)':Channel_4_interpolated,

'Channel_5 (PWM)':Channel_5_interpolated, 'Channel_6

(PWM)':Channel_6_interpolated,

 'Channel_1_OUT

(PWM)':Channel_1_OUT_interpolated,'Channel_2_OUT

(PWM)':Channel_2_OUT_interpolated, 'Channel_3_OUT

(PWM)':Channel_3_OUT_interpolated, 'Channel_4_OUT

(PWM)':Channel_4_OUT_interpolated,'Channel_5_OUT

(PWM)':Channel_5_OUT_interpolated, 'Channel_6_OUT

(PWM)':Channel_6_OUT_interpolated,

 'Roll_Rate

(millirad/sec)':Roll_Rate_Interpolated, 'Pitch_Rate (millirad/sec)':

Pitch_Rate_Interpolated,'Yaw_Rate (millirad/sec)':Yaw_Rate_Interpolated,

'Air_Speed_VFR':Air_speed_VFR_interpolated, 'Time (sec)':Time, 'DT':DT,

'DT_avg_IMU':DT_avg_IMU, 'DT_avg_RC':DT_avg_RC, 'DT_avg_VFR':DT_avg_VFR})

 if MIMO_DATA_SET != 0:

 Data_RAW_Val = pandas.DataFrame({'Channel_1 (PWM)':

Channel_1_interpolated,'Channel_2 (PWM)':Channel_2_interpolated,'Channel_3

(PWM)':Channel_3_interpolated, 'Channel_4 (PWM)':Channel_4_interpolated,

'Channel_5 (PWM)':Channel_5_interpolated, 'Channel_6

(PWM)':Channel_6_interpolated,

 'Channel_1_OUT

(PWM)':Channel_1_OUT_interpolated,'Channel_2_OUT

(PWM)':Channel_2_OUT_interpolated, 'Channel_3_OUT

(PWM)':Channel_3_OUT_interpolated, 'Channel_4_OUT

(PWM)':Channel_4_OUT_interpolated,'Channel_5_OUT

137

(PWM)':Channel_5_OUT_interpolated, 'Channel_6_OUT

(PWM)':Channel_6_OUT_interpolated,

 'Roll_Rate (millirad/sec)':Roll_Rate_Interpolated,

'Pitch_Rate (millirad/sec)': Pitch_Rate_Interpolated,'Yaw_Rate

(millirad/sec)':Yaw_Rate_Interpolated,

'Air_Speed_VFR':Air_speed_VFR_interpolated, 'Time (sec)':Time, 'DT':DT,

'DT_avg_IMU':DT_avg_IMU, 'DT_avg_RC':DT_avg_RC, 'DT_avg_VFR':DT_avg_VFR})

 All_Data = pandas.concat([Data_RAW_Model,Data_RAW_Val],

keys=['Model_Data', 'Validation_Data'])

 All_Data.to_csv('RAW_DATA/MIMO/MIMO_Raw_Data_'+ str(File_Name))

 return

def Delta_Time(time):

 i=0

 sdeltatime=[]

 while i < len(time)-1:

 delta_time= time[i+1]-time[i]

 i=i+1

 sdeltatime= np.append(sdeltatime,delta_time)

 dt_avg = np.average(sdeltatime)

 return dt_avg, sdeltatime

def Master_Time(time, dt):

 Number_of_Samples = (time[len(time)-1] - time[0])/dt -1

#Not accounting for first and last sample

 Time = np.linspace(time[0], time[len(time)-1], Number_of_Samples + 2)

#The plus 2 accounts for the start and stop parts of linspace

 return(Time)

def TIC(Measured, Predictions):

 NUM = np.sqrt(((Predictions - Measured) ** 2).mean())

 DOM1 = np.sqrt(((Predictions)**2).mean())

 DOM2 = np.sqrt(((Measured)**2).mean())

 DOM_TOT = DOM1 + DOM2

 return NUM/DOM_TOT

def Airspeed(q):

#Not currently used

 rho = 1.225 #kg/m^3

 velocity = np.sqrt((q*0.1*2)/rho)

 print "velocity"

 return velocity

def Centering(array):

 mean = np.mean(array)

 centered_value = array-mean

 return centered_value

def Make_Model(y,u,dt,axis):

 ordersna = [2]

#Order for Output

 ordersnb = [[1,1]]

#Order for Input

 theta_list = [[1,0]]

#Time delay list

 id_sys=system_identification(y,u, 'ARX',centering='MeanVal',

138

ARX_orders=[ordersna, ordersnb, theta_list], tsample=dt)#Built SIMO model

 #print "Transfer function built for:", axis, "axis",id_sys.G

#Prints built TF model

 return(id_sys)

def Make_Model_MIMO(y,u,dt,axis):

 ordersna = [3,3,3]

#Order for Output

 ordersnb = [[2,2,2,2],[2,2,2,2],[2,2,2,2]]

#Order for Input

 ordersnc = [[1,1,1,1],[1,1,1,1],[1,1,1,1]]

 theta_list = [[2,2,2,2],[2,2,2,2],[2,2,2,2]]

#Time delay list

 #id_sys=system_identification(y,u, 'ARMAX',centering='MeanVal',

ARX_orders=[ordersna, ordersnb,ordersnc, theta_list], tsample=dt,

ARMAX_max_iterations = 500)#Built MIMO model

 id_sys=system_identification(y,u, 'ARX',centering='MeanVal',

ARX_orders=[ordersna, ordersnb, theta_list], tsample=dt)

 #print "Transfer function built for:", axis, "axis",id_sys.G

#Prints built TF model

 return(id_sys)

def SIM_OUTPUT(sys,u,master_time):

#master_time= Time for the run with fiexed width dt intervals see def

master_time

 time = master_time - master_time[0]

Time must start at zero

 sim_output, T_lsim, Xsim = lsim(sys.G,u,time)

 return(sim_output)

def Process_All_Axis_MIMO(Channel_1, Channel_2, Channel_3, Channel_4,

Channel_5, Channel_6, Channel_IN_Time,

 Channel_1_OUT, Channel_2_OUT, Channel_3_OUT,

Channel_4_OUT, Channel_5_OUT, Channel_6_OUT, Channel_Out_Time,

 Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR

,Air_speed_VFR, MIMO_DATA_SET, Time, DT, DT_avg_IMU, SDelta_Time_IMU,

DT_avg_RC, SDelta_Time_RC, DT_avg_VFR, SDelta_Time_VFR):

 global MIMO_ID_SYS

 global File_Name

 Axis_type = "MIMO"

###

 #Reciver input to Pixhawk

 Channel_1_interpolated = np.interp(Time, Channel_IN_Time, Channel_1)#Roll

 Channel_2_interpolated = np.interp(Time, Channel_IN_Time,

Channel_2)#Pitch

 Channel_3_interpolated = np.interp(Time, Channel_IN_Time,

Channel_3)#Throtle

 Channel_4_interpolated = np.interp(Time, Channel_IN_Time, Channel_4)#Yaw

 Channel_5_interpolated = np.interp(Time, Channel_IN_Time, Channel_5)#Mode

switch

 Channel_6_interpolated = np.interp(Time, Channel_IN_Time, Channel_6)#Data

recorded start stop

###

139

 #Pixhawk input to servos

 Channel_1_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_1_OUT)#Aileron Right

 Channel_2_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_2_OUT)#Elevator

 Channel_3_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_3_OUT)#Throttle

 Channel_4_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_4_OUT)#Rudder

 Channel_5_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_5_OUT)#Aileron Left

 Channel_6_OUT_interpolated = np.interp(Time, Channel_Out_Time,

Channel_6_OUT)#Extra channel that can be used in the future

###

 #Sensor input

 Air_speed_VFR_interpolated = np.interp(Time, Time_VFR, Air_speed_VFR)

###

 #Interpolated measured responses

 Roll_Rate_Interpolated = np.interp(Time, Time_IMU, Roll_Rate) #Roll Rate

 Pitch_Rate_Interpolated = np.interp(Time, Time_IMU, Pitch_Rate) #Pitch

Rate

 Yaw_Rate_Interpolated = np.interp(Time, Time_IMU, Yaw_Rate) #Yaw Rate

###

 #Input data used for lsim centered

 Roll_In_Center = Centering(Channel_1_OUT_interpolated)

 Pitch_In_Center = Centering(Channel_2_OUT_interpolated)

 Yaw_In_Center = Centering(Channel_4_OUT_interpolated)

 Velocity_Center = Centering(Air_speed_VFR_interpolated)

###

 #Input and Output arrays built for modeling or lsim

 U = np.array([Channel_1_OUT_interpolated, Channel_2_OUT_interpolated,

Channel_4_OUT_interpolated, Air_speed_VFR_interpolated])

 U_Center = np.array([Roll_In_Center, Pitch_In_Center, Yaw_In_Center,

Velocity_Center])

 Y = np.array([Roll_Rate_Interpolated, Pitch_Rate_Interpolated,

Yaw_Rate_Interpolated])

###

 #Saveing data that is all the same length

 Store_Data_RAW_CSV(Channel_1_interpolated, Channel_2_interpolated,

Channel_3_interpolated, Channel_4_interpolated, Channel_5_interpolated,

Channel_6_interpolated,

 Channel_1_OUT_interpolated,

Channel_2_OUT_interpolated, Channel_3_OUT_interpolated,

Channel_4_OUT_interpolated, Channel_5_OUT_interpolated,

Channel_6_OUT_interpolated,

140

 Roll_Rate_Interpolated, Pitch_Rate_Interpolated,

Yaw_Rate_Interpolated, Air_speed_VFR_interpolated, MIMO_DATA_SET, Time, DT,

DT_avg_IMU, DT_avg_RC, DT_avg_VFR)

 if MIMO_DATA_SET == 0:

 MIMO_ID_SYS = Make_Model_MIMO(Y, U, DT, Axis_type) #Makes MIMO

transfer function model

 MIMO_ID_Model = SIM_OUTPUT(MIMO_ID_SYS,U_Center,Time) #Based on

MIMO_ID_SYS the input data is used to simulate the responses

 Roll_Rate_Model = MIMO_ID_Model[:,0] #Simulated Roll Rate

(millirad/sec)

 Pitch_Rate_Model = MIMO_ID_Model[:,1] #Simulated Pitch Rate

(millirad/sec)

 Yaw_Rate_Model = MIMO_ID_Model[:,2] #Simulated Yaw Rate

(millirad/sec)

 TIC_Roll_Model = TIC(Y[0,:], Roll_Rate_Model) #Estimates how well

the model fits the measured for roll rate with data used to build the model

 TIC_Pitch_Model = TIC(Y[1,:], Pitch_Rate_Model) #Estimates how well

the model fits the measured for pitch rate with data used to build the model

 TIC_Yaw_Model = TIC(Y[2,:], Yaw_Rate_Model) #Estimates how well

the model fits the measured for yaw rate with data used to build the model

 print"TIC for Roll model is: " + str(TIC_Roll_Model)

 print"TIC for Pitch model is: " + str(TIC_Pitch_Model)

 print"TIC for Yaw model is: " + str(TIC_Yaw_Model)

 #Saveing the ID_TF and simulated responses from model data as well as

the TIC values

 Store_Model_Data_CSV(MIMO_ID_SYS, Roll_Rate_Model, Pitch_Rate_Model,

Yaw_Rate_Model,TIC_Roll_Model, TIC_Pitch_Model, TIC_Yaw_Model)

 #Check of interpolation for input model-building data set

 plt.figure(1)

 plt.subplot(511)

 Ch_1, = plt.plot(Channel_Out_Time, Channel_1_OUT,'+', label='Ch_1')

 Ch_1_interp, = plt.plot(Time,

Channel_1_OUT_interpolated,'^',markerfacecolor='None', label='Ch_1_interp')

 plt.ylabel('Aile/Ch_1 (PWM)')

 plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right')

 plt.title('Recorded vs Interpolated RC Input of Model Data Set')

 plt.subplot(512)

 Ch_2, = plt.plot(Channel_Out_Time, Channel_2_OUT,'+', label='Ch_2')

 Ch_2_interp, = plt.plot(Time,

Channel_2_OUT_interpolated,'^',markerfacecolor='None', label='Ch_2_interp')

 plt.ylabel('Ele/Ch_2 (PWM)')

 plt.legend(handles=[Ch_2, Ch_2_interp],loc='upper right')

 plt.subplot(513)

 Ch_3, = plt.plot(Channel_Out_Time, Channel_3_OUT,'+', label='Ch_3')

141

 Ch_3_interp, = plt.plot(Time,

Channel_3_OUT_interpolated,'^',markerfacecolor='None', label='Ch_3_interp')

 plt.ylabel('Thr/Ch_3 (PWM)')

 plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right')

 plt.subplot(514)

 Ch_4, = plt.plot(Channel_Out_Time, Channel_4_OUT,'+',label='Ch_4')

 Ch_4_interp, = plt.plot(Time,

Channel_4_OUT_interpolated,'^',markerfacecolor='None', label='Ch_4_interp')

 plt.ylabel('Rud/Ch_4 (PWM)')

 plt.legend(handles=[Ch_4, Ch_4_interp],loc='upper right')

 plt.subplot(515)

 Air_Speed, = plt.plot(Time_VFR, Air_speed_VFR,'+',

label='Air_Speed_VFR')

 Air_Speed_interp, = plt.plot(Time,

Air_speed_VFR_interpolated,'^',markerfacecolor='None',label='Air_Speed_VFR_in

terp')

 plt.ylabel('Air_Speed (m/s)')

 plt.xlabel('Time(sec)')

 plt.legend(handles=[Air_Speed, Air_Speed_interp],loc='upper right')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Input_' + str(File_Name))

#Saveing Input data set plots used to build the model

 #Check of interpolation for output model-building data set

 plt.figure(2)

 plt.subplot(311)

 Roll_rate, = plt.plot(Time_IMU, Roll_Rate,'+', label='Roll_Rate')

 Roll_rate_interp, = plt.plot(Time,

Roll_Rate_Interpolated,'^',markerfacecolor='None', label='Roll_Rate_Interp')

 plt.ylabel('Roll_Rate (millirad/sec)')

 plt.title('Recorded vs Interpolated Response of Model Data Set')

 plt.legend(handles=[Roll_rate, Roll_rate_interp],loc='upper right')

 plt.subplot(312)

 Pitch_rate, = plt.plot(Time_IMU, Pitch_Rate,'+', label='Pitch_Rate')

 Pitch_rate_interp, = plt.plot(Time,

Pitch_Rate_Interpolated,'^',markerfacecolor='None',label='Pitch_Rate_Interp')

 plt.ylabel('Pitch_Rate (millirad/sec)')

 plt.legend(handles=[Pitch_rate, Pitch_rate_interp],loc='upper right')

 plt.subplot(313)

 Yaw_rate, = plt.plot(Time_IMU, Yaw_Rate,'+', label='Yaw_Rate')

 Yaw_rate_interp, = plt.plot(Time,

Yaw_Rate_Interpolated,'^',markerfacecolor='None', label='Yaw_Rate_Interp')

 plt.ylabel('Yaw_Rate (millirad/sec)')

 plt.xlabel('Time(sec)')

 plt.legend(handles=[Yaw_rate, Yaw_rate_interp],loc='upper right')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Output_' + str(File_Name))

#Saveing Output data set plots used to build the model

142

 plt.figure(3)

 #Mesured Roll and Model roll

 plt.subplot(311)

 Roll_Rate_Interp, = plt.plot(Time, Roll_Rate_Interpolated,'-o',

label='Roll_Rate_Interp')

 Roll_Rate_model, = plt.plot(Time, Roll_Rate_Model,'-+',

label='Roll_Rate_Model')

 plt.ylabel('Roll_Rate (millirad/sec) ')

 plt.title('Measured vs. Modeled Angular Rates With Model Data Set')

 plt.legend(handles=[Roll_Rate_Interp, Roll_Rate_model],loc='upper

right')

 # Measured Pitch and Model Pitch

 plt.subplot(312)

 Pitch_Rate_Interp, = plt.plot(Time, Pitch_Rate_Interpolated, '-o',

label='Pitch_Rate_Interp')

 Pitch_Rate_model, = plt.plot(Time, Pitch_Rate_Model, '-+',

label='Pitch_Rate_Model')

 plt.ylabel('Pitch Rate (millirad/sec)')

 plt.legend(handles=[Pitch_Rate_Interp, Pitch_Rate_model],loc='upper

right')

 # Measured Yaw and Model Yaw

 plt.subplot(313)

 Yaw_Rate_Interp, = plt.plot(Time, Yaw_Rate_Interpolated, '-o',

label='Yaw_Rate_Interp')

 Yaw_Rate_model, = plt.plot(Time, Yaw_Rate_Model, '-+',

label='Yaw_Rate_Model')

 plt.ylabel('Yaw Rate (millirad/sec) ')

 plt.xlabel('Time (s)')

 plt.legend(handles=[Yaw_Rate_Interp, Yaw_Rate_model],loc='upper

left')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Fitted_Input_Output_' +

str(File_Name)) #Saveing mesured and modeled responses for model data set

 #Check time interval between messages

 plt.figure(4)

 #Time_IMU

 plt.subplot(311)

 plt.plot(SDelta_Time_IMU, '+')

 plt.ylabel('Time_IMU_DT (sec) ')

 #plt.xlabel('Number of intervals')

 #Time_RC

 plt.subplot(312)

 plt.plot(SDelta_Time_RC, '+')

 plt.ylabel('Time_RC_DT (sec) ')

 #plt.xlabel('Number of intervals')

 #Time_VFR

 plt.subplot(313)

 plt.plot(SDelta_Time_VFR, '+')

 plt.ylabel('Time_VFR_DT (sec) ')

 plt.xlabel('Number of intervals')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Delta_Time_' +

str(File_Name)) #Saveing change of time for diffrent mavlink messaages for

143

model data set

 plt.close(1)

 plt.close(2)

 plt.close(3)

 plt.close(4)

 print "Data processing for model building compleat!"

 #plt.show()

 if MIMO_DATA_SET != 0:

 MIMO_ID_Val = SIM_OUTPUT(MIMO_ID_SYS,U_Center,Time)

 Roll_Rate_Val = MIMO_ID_Val[:,0] #Simulated Roll Rate (millirad/sec)

with calidation data

 Pitch_Rate_Val = MIMO_ID_Val[:,1] #Simulated Roll Rate (millirad/sec)

with validation data

 Yaw_Rate_Val = MIMO_ID_Val[:,2] #Simulated Roll Rate (millirad/sec)

with validation data

 TIC_Roll_Val = TIC(Y[0,:], MIMO_ID_Val[:,0]) #Estimates how well the

model fits the mesured for roll rate with validation data

 TIC_Pitch_Val = TIC(Y[1,:], MIMO_ID_Val[:,1]) #Estimates how well the

model fits the mesured for pitch rate with validation data

 TIC_Yaw_Val = TIC(Y[2,:], MIMO_ID_Val[:,2]) #Estimates how well the

model fits the mesured for yaw rate with validation data

 print("TIC for Roll_Validation is: " + str(TIC_Roll_Val))

 print("TIC for Pitch_Validation is: " + str(TIC_Pitch_Val))

 print("TIC for Yaw_Validation is: " + str(TIC_Yaw_Val))

 #Saveing the simulated responses for validation as well as the TIC

values

 Store_Validation_SIM_Data(Roll_Rate_Val, Pitch_Rate_Val,

Yaw_Rate_Val, TIC_Roll_Val, TIC_Pitch_Val, TIC_Yaw_Val)

 if TIC_Roll_Val < 0.16:

 print " Roll Okay!!!!"

 elif TIC_Roll_Val > 0.18:

 print "Problem with Roll Axis"

 ##Check of interpolation for input validation data set

 plt.figure(1)

 plt.subplot(511)

 Ch_1, = plt.plot(Channel_Out_Time, Channel_1_OUT,'+', label='Ch_1')

 Ch_1_interp, = plt.plot(Time,

Channel_1_OUT_interpolated,'^',markerfacecolor='None', label='Ch_1_interp')

 plt.ylabel('Aile/Ch_1 (PWM)')

 plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right')

 plt.title('Recorded vs Interpolated RC Input of Model Data Set')

 plt.subplot(512)

 Ch_2, = plt.plot(Channel_Out_Time, Channel_2_OUT,'+', label='Ch_2')

 Ch_2_interp, = plt.plot(Time,

Channel_2_OUT_interpolated,'^',markerfacecolor='None', label='Ch_2_interp')

144

 plt.ylabel('Ele/Ch_2 (PWM)')

 plt.legend(handles=[Ch_2, Ch_2_interp],loc='upper right')

 plt.subplot(513)

 Ch_3, = plt.plot(Channel_Out_Time, Channel_3_OUT,'+', label='Ch_3')

 Ch_3_interp, = plt.plot(Time,

Channel_3_OUT_interpolated,'^',markerfacecolor='None', label='Ch_3_interp')

 plt.ylabel('Thr/Ch_3 (PWM)')

 plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right')

 plt.subplot(514)

 Ch_4, = plt.plot(Channel_Out_Time, Channel_4_OUT,'+',label='Ch_4')

 Ch_4_interp, = plt.plot(Time,

Channel_4_OUT_interpolated,'^',markerfacecolor='None', label='Ch_4_interp')

 plt.ylabel('Rud/Ch_4 (PWM)')

 plt.legend(handles=[Ch_4, Ch_4_interp],loc='upper right')

 plt.subplot(515)

 Air_Speed, = plt.plot(Time_VFR, Air_speed_VFR,'+',

label='Air_Speed_VFR')

 Air_Speed_interp, = plt.plot(Time,

Air_speed_VFR_interpolated,'^',markerfacecolor='None',label='Air_Speed_VFR_in

terp')

 plt.ylabel('Air_Speed (m/s)')

 plt.xlabel('Time(sec)')

 plt.legend(handles=[Air_Speed, Air_Speed_interp],loc='upper right')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Input_' + str(File_Name))

#Saveing Input data set plots used for model validation

 plt.figure(2)

 plt.subplot(311)

 Roll_rate, = plt.plot(Time_IMU, Roll_Rate,'+', label='Roll_Rate')

 Roll_rate_interp, = plt.plot(Time,

Roll_Rate_Interpolated,'^',markerfacecolor='None', label='Roll_Rate_Interp')

 plt.ylabel('Roll_Rate (millirad/sec)')

 plt.title('Recorded vs Interpolated Response of Model Data Set')

 plt.legend(handles=[Roll_rate, Roll_rate_interp],loc='upper right')

 plt.subplot(312)

 Pitch_rate, = plt.plot(Time_IMU, Pitch_Rate,'+', label='Pitch_Rate')

 Pitch_rate_interp, = plt.plot(Time,

Pitch_Rate_Interpolated,'^',markerfacecolor='None',label='Pitch_Rate_Interp')

 plt.ylabel('Pitch_Rate (millirad/sec)')

 plt.legend(handles=[Pitch_rate, Pitch_rate_interp],loc='upper right')

 plt.subplot(313)

 Yaw_rate, = plt.plot(Time_IMU, Yaw_Rate,'+', label='Yaw_Rate')

 Yaw_rate_interp, = plt.plot(Time,

Yaw_Rate_Interpolated,'^',markerfacecolor='None', label='Yaw_Rate_Interp')

 plt.ylabel('Yaw_Rate (millirad/sec)')

 plt.xlabel('Time(sec)')

 plt.legend(handles=[Yaw_rate, Yaw_rate_interp],loc='upper right')

145

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Output_' +

str(File_Name)) #Saveing Output data set plots used for model validation

 plt.figure(3)

 #Mesured Roll and Model roll

 plt.subplot(311)

 Roll_Rate_Interp, = plt.plot(Time, Roll_Rate_Interpolated,'-o',

label='Roll_Rate_Interp')

 Roll_Rate_val, = plt.plot(Time, Roll_Rate_Val,'-+',

label='Roll_Rate_Val')

 plt.ylabel('Roll_Rate (millirad/sec) ')

 plt.title('Measured vs Modeled Angular Rates With Validation Data

Set')

 plt.legend(handles=[Roll_Rate_Interp, Roll_Rate_val],loc='upper

right')

 # Measured Pitch and Model Pitch

 plt.subplot(312)

 Pitch_Rate_Interp, = plt.plot(Time, Pitch_Rate_Interpolated, '-o',

label='Pitch_Rate_Interp')

 Pitch_Rate_val, = plt.plot(Time, Pitch_Rate_Val, '-+',

label='Pitch_Rate_Val')

 plt.ylabel('Pitch Rate (millirad/sec)')

 plt.legend(handles=[Pitch_Rate_Interp, Pitch_Rate_val],loc='upper

right')

 # Measured Yaw and Model Yaw

 plt.subplot(313)

 Yaw_Rate_Interp, = plt.plot(Time, Yaw_Rate_Interpolated, '-o',

label='Yaw_Rate_Interp')

 Yaw_Rate_val, = plt.plot(Time, Yaw_Rate_Val, '-+',

label='Yaw_Rate_Val')

 plt.ylabel('Yaw Rate (millirad/sec) ')

 plt.xlabel('Time (s)')

 plt.legend(handles=[Yaw_Rate_Interp, Yaw_Rate_val],loc='upper left')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Fitted_Input_Output_' +

str(File_Name)) #Saveing mesured and modeled responses for validation data

set

 #Check time interval between messages

 plt.figure(4)

 #Time_IMU

 plt.subplot(311)

 plt.plot(SDelta_Time_IMU, '+')

 plt.ylabel('Time_IMU_DT (sec) ')

 #plt.xlabel('Number of intervals')

 #Time_RC

 plt.subplot(312)

 plt.plot(SDelta_Time_RC, '+')

 plt.ylabel('Time_RC_DT (sec) ')

 #plt.xlabel('Number of intervals')

 #Time_VFR

 plt.subplot(313)

 plt.plot(SDelta_Time_VFR, '+')

146

 plt.ylabel('Time_VFR_DT (sec) ')

 plt.xlabel('Number of intervals')

 plt.gcf().set_size_inches(11,8.5)

 plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Delta_Time_' +

str(File_Name)) #Saveing change of time for diffrent mavlink messaages for

model data set

 print "Data processing for validation compleat!"

 #plt.show()

 return

def Process_Data(Channel_1, Channel_2, Channel_3, Channel_4, Channel_5,

Channel_6, Channel_IN_Time,

 Channel_1_OUT, Channel_2_OUT, Channel_3_OUT, Channel_4_OUT,

Channel_5_OUT, Channel_6_OUT, Channel_Out_Time,

 Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR

,Air_speed_VFR):

 global ROLL_DATA_SET

 global PITCH_DATA_SET

 global YAW_DATA_SET

 global All_AXIS_DATA_SET

 #First check for correct DT value

 DT_avg_IMU, SDelta_Time_IMU = Delta_Time(Time_IMU) #DT stats on IMU

mavlink messages

 DT_avg_RC, SDelta_Time_RC = Delta_Time(Channel_IN_Time) #DT stats on RC

Channel mavlink messages

 DT_avg_VFR, SDelta_Time_VFR = Delta_Time(Time_VFR) #DT stats on

Time_VFR

 print "IMU_Message_Rate_Avg (Hz)", 1/DT_avg_IMU, "\tRC_Message_Rate_Avg

(Hz)", 1/DT_avg_RC , "\tVFR_Message_Rate_Avg (Hz)", 1/DT_avg_VFR

 if (DT_avg_IMU > 0.015) and (DT_avg_IMU < 0.07):

 DT = 0.02 #Sets the time interval for all

samples to collected at

 print "50 Hz data"

 if (DT_avg_IMU >0.002) and (DT_avg_IMU < 0.01):

 DT = 0.005

 print "200 Hz data"

 Time = Master_Time(Time_IMU, DT) #Creates Time vector based on length

of the test used as the baseline for all interpolation

if (any(Channel_1_OUT>1500)) and (any(Channel_1_OUT<1450)):

if (any(Channel_2_OUT>1700)) and (any(Channel_2_OUT<1535)):

if (any(Channel_4_OUT>1600)) and (any(Channel_4_OUT<1500)):

 print "Going into MIMO"

 Process_All_Axis_MIMO(Channel_1, Channel_2, Channel_3, Channel_4,

Channel_5, Channel_6, Channel_IN_Time,

 Channel_1_OUT, Channel_2_OUT, Channel_3_OUT,

Channel_4_OUT, Channel_5_OUT, Channel_6_OUT, Channel_Out_Time,

 Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR

,Air_speed_VFR, All_AXIS_DATA_SET, Time, DT, DT_avg_IMU, SDelta_Time_IMU,

147

DT_avg_RC, SDelta_Time_RC, DT_avg_VFR, SDelta_Time_VFR)

 All_AXIS_DATA_SET = All_AXIS_DATA_SET + 1

 return

def read_loop(m):

 stime_channel = np.array([])

 schannel_1 = np.array([])

 schannel_2 = np.array([])

 schannel_3 = np.array([])

 schannel_4 = np.array([])

 schannel_5 = np.array([])

 schannel_6 = np.array([])

 #########################

 stime_channel_out = np.array([])

 schannel_1_out = np.array([])

 schannel_2_out = np.array([])

 schannel_3_out = np.array([])

 schannel_4_out = np.array([])

 schannel_5_out = np.array([])

 schannel_6_out = np.array([])

 ##########################

 stime_imu= np.array([])

 sxgyro = np.array([])

 sygyro = np.array([])

 szgyro = np.array([])

 #########################

 svfr_time = np.array([])

 sair_speed = np.array([])

 while True:

 #print"Waiting to get data"

 channel_6 =1500

 msg = None

 while not msg:

 msg = m.recv_match()

 msg_type = msg.get_type()

 if msg_type == "BAD_DATA":

 if mavutil.all_printable(msg.data):

 sys.stdout.write(msg.data)

 sys.stdout.flush()

 elif msg_type == "RC_CHANNELS":

 channel_1, channel_2, channel_3, channel_4, channel_5,

channel_6, rc_in_time = handle_rc_raw(msg)

 last_imu_time = None

 while channel_6 < 1450:

 if last_imu_time == None:

 print("Takeing Data")

 msg = None

148

 while not msg:

 msg = m.recv_match()

 # handle the message based on its type

 msg_type = msg.get_type()

 if msg_type == "BAD_DATA":

 if mavutil.all_printable(msg.data):

 sys.stdout.write(msg.data)

 sys.stdout.flush()

 elif msg_type == "RC_CHANNELS":

 channel_1, channel_2, channel_3, channel_4, channel_5,

channel_6, rc_in_time = handle_rc_raw(msg)

 stime_channel= np.append(stime_channel, rc_in_time)

 schannel_1 = np.append(schannel_1, channel_1)

 schannel_2 = np.append(schannel_2, channel_2)

 schannel_3 = np.append(schannel_3, channel_3)

 schannel_4 = np.append(schannel_4, channel_4)

 schannel_5 = np.append(schannel_5, channel_5)

 schannel_6 = np.append(schannel_6, channel_6)

 elif msg_type == "SERVO_OUTPUT_RAW":

 channel_1_out, channel_2_out, channel_3_out,

channel_4_out, channel_5_out, channel_6_out, rc_out_time =

handle_rc_raw_out(msg)

 stime_channel_out = np.append(stime_channel_out,

rc_out_time)

 schannel_1_out = np.append(schannel_1_out, channel_1_out)

 schannel_2_out = np.append(schannel_2_out, channel_2_out)

 schannel_3_out = np.append(schannel_3_out, channel_3_out)

 schannel_4_out = np.append(schannel_4_out, channel_4_out)

 schannel_5_out = np.append(schannel_5_out, channel_5_out)

 schannel_6_out = np.append(schannel_6_out, channel_6_out)

 #elif msg_type == "HEARTBEAT":

 #handle_heartbeat(msg)

 elif msg_type == "RAW_IMU":

 raw_imu_time,raw_imu_roll, raw_imu_pitch, raw_imu_yaw =

handle_raw_imu(msg)

 stime_imu= np.append(stime_imu,raw_imu_time)

 sxgyro = np.append(sxgyro, raw_imu_roll)

 sygyro = np.append(sygyro, raw_imu_pitch)

 szgyro = np.append(szgyro, raw_imu_yaw)

 last_imu_time = raw_imu_time

 elif msg_type =="VFR_HUD":

 air_speed = handle_VFR_HUD(msg)

 #if last_imu_time is not None:

 if (last_imu_time != None) and (air_speed > 1):

#This eliminates zeros airspeed values!!!!!!!!!!!!!!!! need to check!!!!!

 svfr_time = np.append(svfr_time, last_imu_time)

 sair_speed = np.append(sair_speed, air_speed)

 elif msg_type == "ATTITUDE":

 handle_attitude(msg)

149

 if (schannel_1.size > 1) and (channel_6 > 1600):

 print("Entering Data Processing....")

 Process_Data(schannel_1, schannel_2, schannel_3, schannel_4,

schannel_5, schannel_6, stime_channel, schannel_1_out, schannel_2_out,

schannel_3_out, schannel_4_out, schannel_5_out, schannel_6_out,

stime_channel_out, stime_imu, sxgyro, sygyro, szgyro, svfr_time ,sair_speed)

 stime_channel = np.array([])

 schannel_1 = np.array([])

 schannel_2 = np.array([])

 schannel_3 = np.array([])

 schannel_4 = np.array([])

 schannel_5 = np.array([])

 schannel_6 = np.array([])

 #########################

 stime_channel_out = np.array([])

 schannel_1_out = np.array([])

 schannel_2_out = np.array([])

 schannel_3_out = np.array([])

 schannel_4_out = np.array([])

 schannel_5_out = np.array([])

 schannel_6_out = np.array([])

 ##########################

 stime_imu= np.array([])

 sxgyro = np.array([])

 sygyro = np.array([])

 szgyro = np.array([])

 #########################

 svfr_time = np.array([])

 sair_speed = np.array([])

def main():

 # read command-line options

 parser = OptionParser("readdata.py [options]")

 parser.add_option("--baudrate", dest="baudrate", type='int',

 help="master port baud rate",

default=921600)

 parser.add_option("--device", dest="device", default=

"/dev/ttyPIXHAWK_DATA", help="serial device")

 parser.add_option("--rate", dest="rate", default=50, type='int',

help="requested stream rate")

 parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int',

 default=255, help='MAVLink source

system for this GCS')

 parser.add_option("--showmessages", dest="showmessages",

action='store_true',

 help="show incoming messages",

default=False)

 (opts, args) = parser.parse_args()

150

 if opts.device is None:

 print("You must specify a serial device")

 sys.exit(1)

 # create a mavlink serial instance

 master = mavutil.mavlink_connection(opts.device, baud=opts.baudrate)

 # wait for the heartbeat msg to find the system ID

 master.wait_heartbeat()

 # request data to be sent at the given rate for IMU

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_RAW_SENSORS, 50, 1)

 # request data to be sent at the given rate for EXTENDED STATUS

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_EXTENDED_STATUS, 25, 0) #Not used

 # request data to be sent at the given rate for RC

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_RC_CHANNELS, 25, 1)

 # request data to be sent at the given rate for RAW_CONTROLLER

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_RAW_CONTROLLER, 0, 0) #Not used

 # request data to be sent at the given rate for the position

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_POSITION, 0, 0)#Not used

 # request data to be sent at the given rate EXTRA 1

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_EXTRA1, 5, 0) #Not used

 # request data to be sent at the given rate EXTRA 2 (VFR)

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_EXTRA2, 25, 1)

 # request data to be sent at the given rate EXTRA 3

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_EXTRA3, 0, 0) #Not used

 print "Connected going to data collection"

 read_loop(master)

if __name__ == '__main__':

 main()

151

APPENDIX C

#!/usr/bin/env python

"""

Servo_Failer

Code was written by Brian Duvall March 2020

Danger this code changes SERVOX_FUNCTION params when run!!!

Danger this code changes SERVOX_MAX and MIN endpoints!!!

DO NOT USE WITHOUT MUX BOARD!!!

Gets servo trim PWM value

Sets desired servo to its trim condition to simulate a fail-safe

import code

code.interact(local=locals())

"""

import sys, os

from optparse import OptionParser

import time

from pymavlink import mavutil

import math

def Set_RC_Channel_PWM(master, id, pwm=1500):

 """ Set RC channel PWM value

 Args:

 id (TYPE): Channel ID

 pwm (int, optional): Channel pwm value 1100-1900

 """

 if id < 1:

 print("Channel does not exist.")

 return

 # We only have 8 channels

 # https://mavlink.io/en/messages/common.html#RC_CHANNELS_OVERRIDE

 if id < 9:

 rc_channel_values = [65535 for _ in range(8)]

 rc_channel_values[id - 1] = pwm

 master.mav.rc_channels_override_send(

 master.target_system, # target_system

 master.target_component, # target_component

 *rc_channel_values) # RC channel list, in

microseconds.

 return

def Channel_Overide(master, ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8):

 msg = master.mav.rc_channels_override_send(

 0,#master.target_system,

 0,#master.target_component,

 ch1,

 ch2,

 ch3,

 ch4,

 ch5,

 ch6,

152

 ch7,

 ch8)

 master.mav.send(msg)

 print ("Sent message")

 return

def Read_Param_Value(master,param):

 while True:

 master.mav.param_request_read_send(master.target_system,

master.target_component,param,-1)

 message = master.recv_match(type='PARAM_VALUE',

blocking=True).to_dict()

 time.sleep(0.02)

 if param == message['param_id']:

 #print('name: %s\tvalue: %d' % (message['param_id'].decode("utf-

8"), message['param_value']))

 return message['param_value']

def Set_Param(master, param, param_value):

 master.mav.param_set_send(

 master.target_system, master.target_component,

 param,

 param_value,

 mavutil.mavlink.MAV_PARAM_TYPE_REAL32

)

def Set_Servo(master, servo_number, pwm_value):

 msg = master.mav.command_long_encode(

 master.target_system,

 master.target_component,

 mavutil.mavlink.MAV_CMD_DO_SET_SERVO,

 0,

 servo_number,

 pwm_value,

 0, 0, 0, 0, 0)

 master.mav.send(msg)

 return

def read_loop(m):

 Ch1=1

 Ch2=2

 Ch3=3

 Ch4=4

 Ch5=5

 Ch6=6

 Ch1_Trim = Read_Param_Value(m,'SERVO1_TRIM') #Right_Aileron

 CH1_Min_Orig = Read_Param_Value(m,'SERVO1_MIN')

 CH1_Max_Orig = Read_Param_Value(m,'SERVO1_MAX')

 ##

 Ch5_Trim = Read_Param_Value(m,'SERVO5_TRIM') #Left_Aileron

 CH5_Min_Orig = Read_Param_Value(m,'SERVO5_MIN')

 CH5_Max_Orig = Read_Param_Value(m,'SERVO5_MAX')

 ##

 Ch2_Trim = Read_Param_Value(m,'SERVO2_TRIM') #Right_Elevator

 CH2_Min_Orig = Read_Param_Value(m,'SERVO2_MIN')

153

 CH2_Max_Orig = Read_Param_Value(m,'SERVO2_MAX')

 ##

 Ch6_Trim = Read_Param_Value(m,'SERVO6_TRIM') #Left_Elevator

 CH6_Min_Orig = Read_Param_Value(m,'SERVO6_MIN')

 CH6_Max_Orig = Read_Param_Value(m,'SERVO6_MAX')

 ##

 Ch7_Trim = Read_Param_Value(m,'SERVO7_TRIM') #Rudder

 CH7_Min_Orig = Read_Param_Value(m, 'SERVO7_MIN') #Rudder Min

 CH7_Max_Orig = Read_Param_Value(m, 'SERVO7_MAX') #Rudder Max

 #Failure combo

 #C1 = F_AL5_ELE6

 #C2 = F_AL5_L_ELE6

 #C3 = L_AL5_F_ELE6

 #C4 = L_AL5_ELE6

 while (True):

 #print"C1 = F_AL5_ELE6, C2 = F_AL5_L_ELE6, C3 = L_AL5_F_ELE6, C4 =

L_AL5_ELE6"

 print"C5 = L_ELE6_L_RUDD7, C6 = F_ELE6_L_RUDD7, C7 = L_AL5_L_RUDD7,

C8 = F_AL5_L_RUDD7"

 failure_mode = raw_input("Enter a failure mode, LIM_AL5, AL5,

LIM_ELE6, ELE6, RUDD7, C1, C2, C3, C4, C5, C6, C7, C8:")

 duration = input("Enter the time duration of failure:")

 if failure_mode == 'LIM_AL1':

 CH1_Min_New = int(Ch1_Trim - abs((CH1_Min_Orig - Ch1_Trim)/4))

#Get new Min PWM limit

 CH1_Max_New = int(Ch1_Trim + abs((CH1_Max_Orig - Ch1_Trim)/4))

#Get new Max PWM limit

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 while (CH1_Min != CH1_Min_New) and (CH1_Max != CH1_Max_New):

 Set_Param(m,'SERVO1_MIN',CH1_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO1_MAX',CH1_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 print"AL1 Limited!"

 time.sleep(duration)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 while (CH1_Min != CH1_Min_Orig) and (CH1_Max != CH1_Max_Orig):

 Set_Param(m,'SERVO1_MIN',CH1_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO1_MAX',CH1_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron Max

154

 print"AL1 Limit Removed!"

 if failure_mode == 'LIM_AL5':

 CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))

#Get new Min PWM limit

 CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))

#Get new Max PWM limit

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New):

 Set_Param(m,'SERVO5_MIN',CH5_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MAX',CH5_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 print"AL5 Limited!"

 time.sleep(duration)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig):

 Set_Param(m,'SERVO5_MIN',CH5_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MAX',CH5_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.1)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 print"AL5 Limit Removed!"

 if failure_mode == 'LIM_AL':

 CH1_Min_New = int(Ch1_Trim - abs((CH1_Min_Orig - Ch1_Trim)/4))

#Get new Min PWM limit

 CH1_Max_New = int(Ch1_Trim + abs((CH1_Max_Orig - Ch1_Trim)/4))

#Get new Max PWM limit

 CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))

#Get new Min PWM limit

 CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))

#Get new Max PWM limit

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 while (CH1_Min != CH1_Min_New) and (CH1_Max != CH1_Max_New) and

(CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New):

 Set_Param(m,'SERVO1_MIN',CH1_Min_New) #Setting the

new Min PWM Limit

155

 time.sleep(0.02)

 Set_Param(m,'SERVO1_MAX',CH1_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MIN',CH5_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MAX',CH5_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 print"AL Limited!"

 time.sleep(duration)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 while (CH1_Min != CH1_Min_Orig) and (CH1_Max != CH1_Max_Orig) and

(CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig):

 Set_Param(m,'SERVO1_MIN',CH1_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO1_MAX',CH1_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MIN',CH5_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO5_MAX',CH5_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH1_Min = Read_Param_Value(m, 'SERVO1_MIN') #Aileron1 Min

 CH1_Max = Read_Param_Value(m, 'SERVO1_MAX') #Aileron1 Max

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 print"AL Limit Removed!"

 if failure_mode == 'AL5':

 ServoFunctionValue= Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy

servo function is disabled

 while ServoFunctionValue != 0:

 Set_Param(m, 'SERVO5_FUNCTION', 0) #Disables aileron

 ServoFunctionValue=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled

 time.sleep(0.02)

 print"AL5 FAILED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,5,Ch5_Trim)#Do set servo command

156

 time.sleep(0.02)

 ServoFunctionValue= Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy

servo function is disabled

 while ServoFunctionValue != 4:

 Set_Param(m, 'SERVO5_FUNCTION', 4) #Enalbles aileron

 ServoFunctionValue=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled

 print"AL5 Restored!"

 if failure_mode == 'LIM_ELE2':

 CH2_Min_New = int(Ch2_Trim - abs((CH2_Min_Orig - Ch2_Trim)/4))

#Get new Min PWM limit

 CH2_Max_New = int(Ch2_Trim + abs((CH2_Max_Orig - Ch2_Trim)/4))

#Get new Max PWM limit

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 while (CH2_Min != CH2_Min_New) and (CH2_Max != CH2_Max_New):

 Set_Param(m,'SERVO2_MIN',CH2_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO2_MAX',CH2_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 print"ELE2 Limited!"

 time.sleep(duration)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 while (CH2_Min != CH2_Min_Orig) and (CH2_Max != CH2_Max_Orig):

 Set_Param(m,'SERVO2_MIN',CH2_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO2_MAX',CH2_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 print"ELE2 Limit Removed!"

 if failure_mode == 'LIM_ELE6':

 CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))

#Get new Min PWM limit

 CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))

#Get new Max PWM limit

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):

 Set_Param(m,'SERVO6_MIN',CH6_Min_New) #Setting the

157

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MAX',CH6_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 print"ELE6 Limited!"

 time.sleep(duration)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig):

 Set_Param(m,'SERVO6_MIN',CH6_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MAX',CH6_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 print"ELE6 Limit Removed!"

 if failure_mode == 'LIM_ELE':

 CH2_Min_New = int(Ch2_Trim - abs((CH2_Min_Orig - Ch2_Trim)/4))

#Get new Min PWM limit

 CH2_Max_New = int(Ch2_Trim + abs((CH2_Max_Orig - Ch2_Trim)/4))

#Get new Max PWM limit

 CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))

#Get new Min PWM limit

 CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))

#Get new Max PWM limit

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH2_Min != CH2_Min_New) and (CH2_Max != CH2_Max_New) and

(CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):

 Set_Param(m,'SERVO2_MIN',CH2_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO2_MAX',CH2_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MIN',CH6_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MAX',CH6_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

158

 print"ELE Limited!"

 time.sleep(duration)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH2_Min != CH2_Min_Orig) and (CH2_Max != CH2_Max_Orig) and

(CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig):

 Set_Param(m,'SERVO2_MIN',CH2_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO2_MAX',CH2_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MIN',CH6_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO6_MAX',CH6_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH2_Min = Read_Param_Value(m, 'SERVO2_MIN') #Elevator2 Min

 CH2_Max = Read_Param_Value(m, 'SERVO2_MAX') #Elevator2 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 print"ELE Limit Removed!"

 if failure_mode == 'ELE6':

 ServoFunctionValue= Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy

servo function is disabled

 while ServoFunctionValue != 0:

 Set_Param(m, 'SERVO6_FUNCTION', 0) #Disables aileron

 ServoFunctionValue=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled

 time.sleep(0.02)

 print"ELE6 FAILED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,6,Ch6_Trim)#Do set servo command

 time.sleep(0.02)

 ServoFunctionValue= Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy

servo function is disabled

 while ServoFunctionValue != 19:

 Set_Param(m, 'SERVO6_FUNCTION', 19) #Enalbles Elevator

 ServoFunctionValue=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled

 print"ELE6 Restored!"

 if failure_mode == 'RUDD7':

 CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/2))

#Get new Min PWM limit

159

 CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/2))

#Get new Max PWM limit

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudder Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudder Max

 while (CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New):

 Set_Param(m,'SERVO7_MIN',CH7_Min_New) #Setting the

new Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO7_MAX',CH7_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudder Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudder Max

 print"Rudder Limited!"

 time.sleep(duration)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudder Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudder Max

 while (CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig):

 Set_Param(m,'SERVO7_MIN',CH7_Min_Orig) #Setting

back to original Min PWM Limit

 time.sleep(0.02)

 Set_Param(m,'SERVO7_MAX',CH7_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudder Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudder Max

 print"Rudder Limit Removed!"

###

###############################

 #Combination failure modes: F_AL5_ELE6, F_AL5_L_ELE6, L_AL5_F_ELE6,

L_AL5_ELE6, L_ELE6_L_RUDD, F_ELE6_L_RUDD

 if failure_mode == 'C1':

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled

 while (ServoFunctionValue5 != 0) and (ServoFunctionValue6 != 0):

 Set_Param(m, 'SERVO5_FUNCTION', 0) #Disables aileron

 Set_Param(m, 'SERVO6_FUNCTION', 0) #Disables elevator

 time.sleep(0.02)

 ServoFunctionValue5 =

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled

 print"AL5 and ELE6 FAILED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,5,Ch5_Trim)#Do set servo command

 time.sleep(0.02)

 Set_Servo(m,6,Ch6_Trim)#Do set servo command

 time.sleep(0.02)

160

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled

 while (ServoFunctionValue5 != 4) and (ServoFunctionValue6 != 19):

 Set_Param(m, 'SERVO5_FUNCTION', 4) #Enalbles aileron

 Set_Param(m, 'SERVO6_FUNCTION', 19) #Enalbles Elevator

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 print"AL5 and ELE6 Restored!"

###

#################

 if failure_mode == 'C2':

 CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))

#Get new Min PWM limit

 CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))

#Get new Max PWM limit

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (ServoFunctionValue5 != 0) and (CH6_Min != CH6_Min_New) and

(CH6_Max != CH6_Max_New):

 Set_Param(m,'SERVO5_FUNCTION', 0) #Disables aileron

 Set_Param(m,'SERVO6_MIN',CH6_Min_New) #Setting the new Min

PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_New) #Setting the new Max

PWM Limit

 time.sleep(0.02)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 print"AL5 FAILED ELE6 LIMITED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,5,Ch5_Trim)#Do set servo command

 time.sleep(0.02)

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (ServoFunctionValue5 != 4) and (CH6_Min != CH6_Min_Orig)

and (CH6_Max != CH6_Max_Orig):

 Set_Param(m,'SERVO5_FUNCTION', 4) #Enalbles aileron

 Set_Param(m,'SERVO6_MIN',CH6_Min_Orig) #Setting back to

161

original Min PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_Orig) #Setting back to the

original Max PWM Limit

 time.sleep(0.02)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 print"AL5 Restored ELE6 LIMIT REMOVED!"

###

###################

 if failure_mode == 'C3':

 CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))

#Get new Min PWM limit

 CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))

#Get new Max PWM limit

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 while (ServoFunctionValue6 != 0) and (CH5_Min != CH5_Min_New) and

(CH5_Max != CH5_Max_New):

 Set_Param(m,'SERVO6_FUNCTION', 0) #Disables aileron

 Set_Param(m,'SERVO5_MIN',CH5_Min_New) #Setting the new Min

PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_New) #Setting the new Max

PWM Limit

 time.sleep(0.02)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 print"AL5 LIMITED ELE6 FAILED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,6,Ch6_Trim)#Do set servo command

 time.sleep(0.02)

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 while (ServoFunctionValue6 != 19) and (CH5_Min != CH5_Min_Orig)

and (CH5_Max != CH5_Max_Orig) :

 Set_Param(m,'SERVO6_FUNCTION', 19) #Enalbles Elevator

 Set_Param(m,'SERVO5_MIN',CH5_Min_Orig) #Setting back to

original Min PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_Orig) #Setting back to

the original Max PWM Limit

 time.sleep(0.02)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

162

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 print"AL5 LIMIT REMOVED ELE6 RESTORED!"

###

####################

 if failure_mode == 'C4':

 CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))

#Get new Min PWM limit

 CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))

#Get new Max PWM limit

 CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))

#Get new Min PWM limit

 CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))

#Get new Max PWM limit

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New) and

(CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):

 Set_Param(m,'SERVO5_MIN',CH5_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_New) #Setting the

new Max PWM Limit

 Set_Param(m,'SERVO6_MIN',CH6_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 print"AL5 and ELE6 LIMITED!"

 time.sleep(duration)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig) and

(CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig) :

 Set_Param(m,'SERVO5_MIN',CH5_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_Orig) #Setting

back to the original Max PWM Limit

 Set_Param(m,'SERVO6_MIN',CH6_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.1)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

163

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 print"AL5 and ELE6 LIMIT REMOVED!"

###

####################

 if failure_mode == 'C5':#L_ELE6_L_RUDD7

 CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))

#Get new Min PWM limit

 CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))

#Get new Max PWM limit

 CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))

#Get new Min PWM limit

 CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))

#Get new Max PWM limit

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New) and

(CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New) :

 Set_Param(m,'SERVO6_MIN',CH6_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_New) #Setting the

new Max PWM Limit

 Set_Param(m,'SERVO7_MIN',CH7_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 print"Rudd7 and ELE6 LIMITED!"

 time.sleep(duration)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig) and

(CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig) :

 Set_Param(m,'SERVO6_MIN',CH6_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO6_MAX',CH6_Max_Orig) #Setting

back to the original Max PWM Limit

 Set_Param(m,'SERVO7_MIN',CH7_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_Orig) #Setting

back to the original Max PWM Limit

164

 time.sleep(0.1)

 CH6_Min = Read_Param_Value(m, 'SERVO6_MIN') #Elevator6 Min

 CH6_Max = Read_Param_Value(m, 'SERVO6_MAX') #Elevator6 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 print"Rudd7 and ELE6 LIMIT REMOVED!"

###

######################

 if failure_mode == 'C6': # F_ELE6_L_Rudd

 CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))

#Get new Min PWM limit

 CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))

#Get new Max PWM limit

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 while (ServoFunctionValue6 != 0) and (CH7_Min != CH7_Min_New) and

(CH7_Max != CH7_Max_New):

 Set_Param(m,'SERVO6_FUNCTION', 0) #Disables aileron

 Set_Param(m,'SERVO7_MIN',CH7_Min_New) #Setting the new Min

PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_New) #Setting the new Max

PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 print"RUDD7 LIMITED ELE6 FAILED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,6,Ch6_Trim)#Do set servo command

 time.sleep(0.02)

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (ServoFunctionValue6 != 19) and (CH7_Min != CH7_Min_Orig)

and (CH7_Max != CH7_Max_Orig) :

 Set_Param(m,'SERVO6_FUNCTION', 19) #Enalbles Elevator

 Set_Param(m,'SERVO7_MIN',CH7_Min_Orig) #Setting back to

original Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_Orig) #Setting back to

the original Max PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 ServoFunctionValue6=

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function

 print"RUDD7 LIMIT REMOVED ELE6 RESTORED!"

###

165

######################

 if failure_mode == 'C7': #L_AL5_L_Rudd

 CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))

#Get new Min PWM limit

 CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))

#Get new Max PWM limit

 CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))

#Get new Min PWM limit

 CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))

#Get new Max PWM limit

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New) and

(CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New):

 Set_Param(m,'SERVO5_MIN',CH5_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_New) #Setting the

new Max PWM Limit

 Set_Param(m,'SERVO7_MIN',CH7_Min_New) #Setting the

new Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_New) #Setting the

new Max PWM Limit

 time.sleep(0.02)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 print"AL5 and RUDD7 LIMITED!"

 time.sleep(duration)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig) and

(CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig) :

 Set_Param(m,'SERVO5_MIN',CH5_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO5_MAX',CH5_Max_Orig) #Setting

back to the original Max PWM Limit

 Set_Param(m,'SERVO7_MIN',CH7_Min_Orig) #Setting

back to original Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_Orig) #Setting

back to the original Max PWM Limit

 time.sleep(0.1)

 CH5_Min = Read_Param_Value(m, 'SERVO5_MIN') #Aileron5 Min

 CH5_Max = Read_Param_Value(m, 'SERVO5_MAX') #Aileron5 Max

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Elevator6 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Elevator6 Max

 print"AL5 and RUDD7 LIMIT REMOVED!"

###

166

######################

 if failure_mode == 'C8': # F_AL5_L_Rudd

 CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))

#Get new Min PWM limit

 CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))

#Get new Max PWM limit

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (ServoFunctionValue5 != 0) and (CH7_Min != CH7_Min_New) and

(CH7_Max != CH7_Max_New):

 Set_Param(m,'SERVO5_FUNCTION', 0) #Disables aileron

 Set_Param(m,'SERVO7_MIN',CH7_Min_New) #Setting the new Min

PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_New) #Setting the new Max

PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 print"AL5 FAILED Rudd7 LIMITED!"

 start_time = time.time()

 end_time = start_time + duration

 while time.time() < end_time:

 Set_Servo(m,5,Ch5_Trim)#Do set servo command

 time.sleep(0.02)

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 while (ServoFunctionValue5 != 4) and (CH7_Min != CH7_Min_Orig)

and (CH7_Max != CH7_Max_Orig):

 Set_Param(m,'SERVO5_FUNCTION', 4) #Enalbles aileron

 Set_Param(m,'SERVO7_MIN',CH7_Min_Orig) #Setting back to

original Min PWM Limit

 Set_Param(m,'SERVO7_MAX',CH7_Max_Orig) #Setting back to the

original Max PWM Limit

 time.sleep(0.02)

 CH7_Min = Read_Param_Value(m, 'SERVO7_MIN') #Rudd7 Min

 CH7_Max = Read_Param_Value(m, 'SERVO7_MAX') #Rudd7 Max

 ServoFunctionValue5=

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function

 print"AL5 Restored Rudd7 LIMIT REMOVED!"

167

 return

def main():

 # read command-line options

 parser = OptionParser("readdata.py [options]")

 parser.add_option("--baudrate", dest="baudrate", type='int',

 help="master port baud rate", default=921600)

 parser.add_option("--device", dest="device",

default="/dev/ttyPIXHAWK_CONTROL", help="serial device")

 parser.add_option("--rate", dest="rate", default=4, type='int',

help="requested stream rate")

 parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int',

 default=255, help='MAVLink source system for this GCS')

 parser.add_option("--showmessages", dest="showmessages",

action='store_true',

 help="show incoming messages", default=False)

 (opts, args) = parser.parse_args()

 if opts.device is None:

 print("You must specify a serial device")

 sys.exit(1)

 # create a mavlink serial instance

 master = mavutil.mavlink_connection(opts.device, baud=opts.baudrate)

 # wait for the heartbeat msg to find the system ID

 master.wait_heartbeat()

 # request data to be sent at the given rate

 master.mav.request_data_stream_send(master.target_system,

master.target_component,

 mavutil.mavlink.MAV_DATA_STREAM_ALL, opts.rate, 1)

 # enter the data loop

 read_loop(master)

if __name__ == '__main__':

 main()

168

APPENDIX D

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

Fly_Mission_and_Maneuver_Plane_Rev2

Code Written by Brian Duvall April 2020

Flys plane in an oval pattern about four waypoints,in addition, provides

inputs between two of the four points

import code

code.interact(local=locals())

"""

from __future__ import print_function, division

from dronekit import connect, VehicleMode, LocationGlobalRelative,

LocationGlobal, Command

from my_vehicle import MyVehicle #Our custom vehicle class

import time

import math

import numpy as np

from pymavlink import mavutil

#import matplotlib.pyplot as plt

import os

#Set up option parsing to get the connection string

import argparse

parser = argparse.ArgumentParser(description='Demonstrates basic mission

operations.')

parser.add_argument('--connect',default= "/dev/ttyPIXHAWK_CONTROL",

help="vehicle connection target string")

args = parser.parse_args()

connection_string = args.connect

Connect to the Vehicle

print('Connecting to vehicle on: %s' % connection_string)

vehicle = connect(connection_string, wait_ready=True, baud=57600,

vehicle_class=MyVehicle)

point3 = None #Global value

vehicle.channels.overrides['6'] = 1500 #Force to wait to take data

#os.system('python /Data_Recorder/Ardupilot/Data_Recorder_MIMO.py ') # Trying

to autostart data colection code

def get_location_metres(original_location, dNorth, dEast):

 """

 Returns a LocationGlobal object containing the latitude/longitude

`dNorth` and `dEast` meters from the

 specified `original_location`. The returned Location has the same `alt`

value

 as `original_location`.

 The function is useful when you want to move the vehicle around

specifying locations relative to

169

 the current vehicle position.

 The algorithm is relatively accurate over small distances (10m within

1km) except close to the poles.

 For more information, see:

 http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-

latitude-longitude-by-some-amount-of-meters

 """

 earth_radius=6378137.0 #Radius of "spherical" earth

 #Coordinate offsets in radians

 dLat = dNorth/earth_radius

 dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180))

 #New position in decimal degrees

 newlat = original_location.lat + (dLat * 180/math.pi)

 newlon = original_location.lon + (dLon * 180/math.pi)

 return LocationGlobal(newlat, newlon,original_location.alt)

def get_distance_metres(aLocation1, aLocation2):

 """

 Returns the ground distance in meters between two LocationGlobal objects.

 This method is an approximation, and will not be accurate over large

distances and close to the

 earth's poles. It comes from the ArduPilot test code:

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py

 """

 dlat = aLocation2.lat - aLocation1.lat

 dlong = aLocation2.lon - aLocation1.lon

 return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

def distance_to_current_waypoint():

 """

 Gets distance in meters to the current waypoint.

 It returns None for the first waypoint (Home location).

 """

 nextwaypoint = vehicle.commands.next

 if nextwaypoint==0:

 return None

 missionitem=vehicle.commands[nextwaypoint-1] #commands are zero indexed

 lat = missionitem.x

 lon = missionitem.y

 alt = missionitem.z

 targetWaypointLocation = LocationGlobalRelative(lat,lon,alt)

 distancetopoint = get_distance_metres(vehicle.location.global_frame,

targetWaypointLocation)

 return distancetopoint

def download_mission():

 """

 Download the current mission from the vehicle.

 """

 cmds = vehicle.commands

170

 cmds.download()

 cmds.wait_ready() # wait until download is complete.

def adds_takeoff_mission(aLocation):

 """

 Only used when connected to SIM

 Adds a takeoff command

 The function assumes vehicle.commands matches the vehicle mission state

 (you must have called download at least once in the session and after

clearing the mission)

 """

 cmds = vehicle.commands

 print(" Clear any existing commands")

 cmds.clear()

 print(" Define/add new commands.")

 # Add new commands. The meaning/order of the parameters is documented in

the Command class.

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, aLocation.lat,

aLocation.lon, 100))

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, aLocation.lat,

aLocation.lon, 100))

 print(" Upload new commands to vehicle")

 cmds.upload()

def adds_fly_between_mission(aLocation):

 """

 The function assumes vehicle.commands matches the vehicle mission state

 (you must have called download at least once in the session and after

clearing the mission)

 """

 global point3 #This is the target point to fly to when doing a mauver

 cmds = vehicle.commands

 #download_mission()

 print(" Clear any existing commands")

 cmds.clear()

 print(" Define/add new commands.")

 # Add new commands. The meaning/order of the parameters is documented in

the Command class.

(North/South, East/West)

point1 = get_location_metres(aLocation, 120, 230) # Old points that

worked well in sim

point2 = get_location_metres(aLocation, 170, 150) # Old point that

worked well in sim

 point1 = get_location_metres(aLocation, 100, 300)

 point2 = get_location_metres(aLocation, 170, 170)

 point3 = get_location_metres(aLocation,-180, -70)

 point4 = get_location_metres(aLocation,-200, 75)

171

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point1.lat,

point1.lon, 75))

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point2.lat,

point2.lon, 75))

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point3.lat,

point3.lon, 75))

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point4.lat,

point4.lon, 75))

 cmds.add(Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_DO_JUMP, 0, 0, 1, 1, 0, 0, 0, 0, 0))

 print(" Upload new commands to vehicle")

 cmds.upload()

def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print("Basic pre-arm checks")

 # Don't let the user try to arm until autopilot is ready

 while not vehicle.is_armable:

 print("Status",vehicle.is_armable)

 print(" Waiting for vehicle to initialize...")

 time.sleep(1)

 print("Taking Off!")

 #Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print(" Waiting for arming...")

 vehicle.armed = True

 time.sleep(1)

 while vehicle.mode != 'AUTO':

 print("setting mode AUTO")

 vehicle.mode = VehicleMode("AUTO")

 time.sleep(1)

 # Wait until the vehicle reaches a safe height before processing the goto

(otherwise the command

 while True:

 print(" Altitude: ", vehicle.location.global_relative_frame.alt)

 if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

#Trigger just below target alt.

 print("Reached target altitude changing")

 vehicle.mode = VehicleMode("RTL")

 break

def Sin_wave_generator(S_Rate,freq,Duration, Amp, RC_Trim):

 #y = Asin(2*PI*f*t+phi)

 T= 1/S_Rate #Time period of one sample

 N = S_Rate*Duration #Number of samples in the given duration

172

 omega = 2*np.pi*freq #Angular freqency

 t_seq = np.arange(N)*T #Time Sequence

 y = Amp*np.sin(omega*t_seq) + RC_Trim #Sin wave function

 y = y.astype(int) #Convert to integers for PWM values

 return(y, t_seq)

def Home_Location_Check():

 while not vehicle.home_location:

 cmds= vehicle.commands

 cmds.download()

 cmds.wait_ready()

 print ("Got Home Location")

def calculate_compass_bearing(pointA, pointB):

 """

 Calculates the bearing between two points.

 The formula used is the following:

 θ = atan2(sin(Δlong).cos(lat2),

 cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong))

 :Parameters:

 - `pointA: The tuple representing the latitude/longitude for the

 first point. Latitude and longitude must be in decimal degrees

 - `pointB: The tuple representing the latitude/longitude for the

 second point. Latitude and longitude must be in decimal degrees

 :Returns:

 The bearing in degrees

 :Returns Type:

 float

 """

 if (type(pointA) != tuple) or (type(pointB) != tuple):

 raise TypeError("Only tuples are supported as arguments")

 lat1 = math.radians(pointA[0])

 lat2 = math.radians(pointB[0])

 diffLong = math.radians(pointB[1] - pointA[1])

 x = math.sin(diffLong) * math.cos(lat2)

 y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)

 * math.cos(lat2) * math.cos(diffLong))

 initial_bearing = math.atan2(x, y)

 # Now we have the initial bearing but math.atan2 return values

 # from -180° to + 180° which is not what we want for a compass bearing

 # The solution is to normalize the initial bearing as shown below

 initial_bearing = math.degrees(initial_bearing)

 compass_bearing = (initial_bearing + 360) % 360

 return compass_bearing

def Input_Command_Builder_MIMO():

 """

 Inputs used in SIM

 roll_S_Input, t = Sin_wave_generator(25,1,3,200,1480)

 pitch_S_Input, t = Sin_wave_generator(25,1,3,200,1520)

173

 #yaw_S_Input, t = Sin_wave_generator(25,1,3,70,1500)

 yaw_S_Input, t = Sin_wave_generator(25,1,3,200,1550)

 """

 #Inputs used in plane

 roll_S_Input, t = Sin_wave_generator(100,1,3,200,1480)# Go above 1480 to

bias right roll from tail

 pitch_S_Input, t = Sin_wave_generator(100,0.5,3,250,1520)#Go below 1520

to bias pitch up

 yaw_S_Input, t = Sin_wave_generator(100,1,3,200,1550)#Go below 1500 to

bias right yaw

 ##plt.plot(t,roll_S_Input,'+-')

 ##plt.show()

 # padding input arrays with Nones to send to the Cube Orange at one time

 N = len(roll_S_Input) + len(pitch_S_Input) + len(yaw_S_Input)

 Number_of_None_Padding_Roll= N-len(roll_S_Input)

 Number_of_None_Padding_Pitch = N- len(pitch_S_Input)

 Number_of_None_Padding_Yaw = N-len(yaw_S_Input)

 i=1

 while i <= Number_of_None_Padding_Roll:

 roll_S_Input = np.append(roll_S_Input,0)

 i=i+1

 roll_padded = np.append(roll_S_Input,0) # added an extra None to array so

rudder gose nutral

 #####################################

 front = np.array([])

 back = np.array([])

 i=1

 while i <= Number_of_None_Padding_Pitch/2: # Building front array of

Nones

 front = np.append(front,0)

 i=i+1

 i=1

 while i <= Number_of_None_Padding_Pitch/2:# Building back array of Nones

 back = np.append(back,0)

 i=i+1

 front_pitch = np.append(front,pitch_S_Input)# append the None's to the

beginning of pitch signal

 pitch_padded = np.append(front_pitch,back) # append beginning None's and

pitch to the back

 pitch_padded = np.append(pitch_padded,0)# added an extra None to array so

rudder gose nutral

 #####################################

 front = np.array([])

 i=1

 while i <= Number_of_None_Padding_Yaw:

 front = np.append(front,0)

 i=i+1

 yaw_padded = np.append(front,yaw_S_Input)

 yaw_padded = np.append(yaw_padded,0) # added an extra None to array so

rudder gose nutral

 ####################################

 #This is here to prevent the channel overrides from stoping data

174

recording

 ch6_padded = np.array([])

 i=1

 while i<=N:

 ch6_padded = np.append(ch6_padded,1200)

 i=i+1

 ch6_padded = np.append(ch6_padded,1200) # Keeps arrays the same length

due to adition None for rudder to go nutral

 return(roll_padded, pitch_padded, yaw_padded, ch6_padded)

def Channel_Override(roll,pitch,yaw,ch6):

 vehicle.message_factory.rc_channels_override_send(

 0,#master.target_system

 0,#master.target_component

 roll, #Aileron 1

 pitch, #Elevator 2

 0, #Throttle 3

 yaw, #Rudder 4

 0, #Channel 5

 ch6, #Channel 6

 0, #Channel 7

 0) #Channel 8

def Manuver_Plane(roll_padded, pitch_padded, yaw_padded, ch6_padded):

 nextwaypoint=vehicle.commands.next

 while True:

 nextwaypoint=vehicle.commands.next

 Heading = vehicle.heading

 Vehicle_Location = (vehicle.location.global_relative_frame.lat,

vehicle.location.global_relative_frame.lon)

 Waypoint_Location = (point3.lat, point3.lon)

 Waypoint_Heading3 = calculate_compass_bearing(Vehicle_Location,

Waypoint_Location)

 roll_attitude = vehicle.attitude.roll

print("Roll_Attitude",vehicle.attitude.roll)

print("Roll_Target_Attitude",

vehicle.nav_controller_output.nav_roll)

print("Waypoint_Heading3",Waypoint_Heading3)

print("Next waypoint", nextwaypoint)

print('Distance to waypoint (%s): %s' % (nextwaypoint,

distance_to_current_waypoint()))

print ("Heading",Heading)

 if (nextwaypoint == 3) and (Heading in range(int(Waypoint_Heading3)-

5, int(Waypoint_Heading3)+5)):

 time.sleep(2)# Give some time for the plane to get trim

conditions

 print ("In-line ready to start maneuver")

 ##

 vehicle.channels.overrides['6'] = 1200 # Start collecting data!

 i=0

 dt = 0.01 # send messages at this interval

 while i < len(roll_padded):

 Channel_Override(roll_padded[i], pitch_padded[i],

175

yaw_padded[i], ch6_padded[i]) #Simple version of channel override

 time.sleep(dt) #wait to send the next message

 i=i+1

 time.sleep(1) # Give some time for the plane to go back to

neutral

 vehicle.channels.overrides['6'] = 1900 # Stop collecting data and

process!

 ##

 count = 0

 while nextwaypoint != 1:

 if count == 0:

 print ("Done, waiting to go around")

 count= count+1

 nextwaypoint=vehicle.commands.next

 time.sleep(0.1)

###

###

#Starting to run the script

if connection_string == '127.0.0.1:14551':

 adds_takeoff_mission(vehicle.location.global_frame) #Send to the comand

to have the plane takeoff

 arm_and_takeoff(50)# ARM the vehicle and set it to auto

 time.sleep(10)

###

Home_Location_Check() # Ensure

home location is availibule

adds_fly_between_mission(vehicle.home_location) # Writes

waypoints for plane to fly to

print("Mission Loaded")

roll_padded,pitch_padded,yaw_padded,ch6_padded = Input_Command_Builder_MIMO()

Gets intput command sin_wave for roll pitch yaw

print("Inputs_Built")

print("Starting mission, setting mode to AUTO")

Reset mission set to first (0) waypoint

vehicle.commands.next=0

Set mode to AUTO to start the mission

while vehicle.mode != "AUTO":

 vehicle.mode = VehicleMode("AUTO")

Manuver_Plane(roll_padded,pitch_padded,yaw_padded,ch6_padded)

###

###

######################################

#Close vehicle object before exiting the script

print("Close vehicle object")

vehicle.close()

176

APPENDIX E

177

178

179

180

VITA

Brian Edward Duvall was born in Charlottesville, Virginia, on January 7, 1991. During his high

school years, he became interested in dynamics and decided to continue his education at Old

Dominion University (ODU) to learn more. At ODU, Brian completed the curriculum for a B.S.

degree in mechanical engineering. During the B.S. mechanical engineering program, he became

interested in model aircraft, which led him to pursue an M.S. degree in aerospace engineering.

Following his M.S. degree in August of 2016, Brian continued at ODU to obtain his Ph.D. in

aerospace engineering to further his UAV technology knowledge. While pursuing his M.S. and

Ph.D. degrees, he was able to help the Old Dominion University Society of Automotive

Engineering Aero East team compete in a design-build and fly competition. This allowed him to

further his knowledge of aircraft design and apply what he learned in the classroom to real-life

applications. Brian received his Ph.D. degree in aerospace engineering in December 2020.

	Onboard Autonomous Controllability Assessment for Fixed Wing sUAVs
	Recommended Citation

	tmp.1609776796.pdf._KhZ1

