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ABSTRACT 
 

ONBOARD AUTONOMOUS CONTROLLABILITY ASSESSMENT FOR FIXED 

WING sUAVs 
 

Brian Edward Duvall 

Old Dominion University, 2020 

Director: Dr. Drew Landman 

 

 

 

Traditionally fixed-wing small Unmanned Arial Vehicles (sUAV) are flown while in 

direct line of sight with commands from a remote operator. However, this is changing with the 

increased popularity and ready availability of low-cost flight controllers. Flight controllers 

provide fixed-wing sUAVs with functions that either minimize or eliminate the need for a remote 

operator. Since the remote operator is no longer controlling the sUAV, it is impossible to 

determine if the fixed-wing sUAV has proper control authority. In this work, a controllability 

detection system was designed, built, and flight-tested using COTS hardware. The method 

features in-situ measurement and analysis of the angular velocity response for the roll, pitch, and 

yaw axis using a Multi-Input Multi-Output (MIMO) Autoregressive with Exogenous input 

(ARX) modeling technique. The method is structured so that no prior knowledge of the airplane 

dimensions, control surface deflection angles, mass, or moment of inertia are required. The 

diagnostic is performed in flight with no post-processing so that controllability may be assessed 

during normal operations. This diagnostic works by comparison of baseline healthy control 

responses to current responses using statistical analysis. The outcome of this work shows that 

this is a viable way to check for degraded control authority.      
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𝐾𝑣  DC motor speed constant  

𝜃𝑅𝐸𝐹  Desired servo position   

𝑋                    Force in the x-direction 

𝑌                    Force in the y-direction 

𝑍                     Force in the z-direction  
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𝑝                      Angular velocity about the x-axis 

𝑞                      Angular velocity about the y-axis 
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𝑝̇                     Angular acceleration about the x-axis 

𝑞̇                     Angular acceleration about the y-axis 
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𝑢                     Velocity in the x-direction 

𝑣                     Velocity in the y-direction 

𝑤                    Velocity in the z-direction 

𝑢̇                     Acceleration in the x-direction 

𝑣̇                     Acceleration in the y-direction  

𝑤̇                    Acceleration in the z-direction  

𝑇                     Thrust 

𝑔                      gravity 

𝑚                     Mass 

𝐿  Moment about the x-axis 

𝑀  Moment about the y-axis 
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ARX  Autoregressive with exogenous input  

𝑢𝑖𝑛𝑝𝑢𝑡  System input data 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 System output data 

𝑎𝑛𝑎
  System output coefficients to be identified 

𝑏𝑛𝑏
  System input coefficients to be identified 

𝑛𝑎  Order of system output coefficients to be identified 

𝑛𝑏  Order of system input coefficients to be identified 

SISO  Single-Input Single-Output 

MIMO  Multi-Input Multi-Output 

𝐺(𝑧)  System transfer function in the z domain 

𝐿𝐻𝑆(𝑧) Left-hand side in the z domain 

𝑅𝐻𝑆(𝑧)  Right-hand side in the z domain 

𝑦𝑟𝑜𝑙𝑙_ 𝑟𝑎𝑡𝑒 ARX model estimate of  the roll rate 

𝑦𝑝𝑖𝑡𝑐ℎ_ 𝑟𝑎𝑡𝑒 ARX model estimate of  the pitch rate 

𝑦𝑦𝑎𝑤_ 𝑟𝑎𝑡𝑒 ARX model estimate of  the yaw rate 

𝑇𝐼𝐶  Theil Inequality Coefficient 

PWM  Pulse width modulation   

𝑦̂  Predicted value at x0 
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𝑡𝑠  Student’s critical value 
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𝑆  Estimated standard deviation 

𝑊  Weight of the aircraft  

𝐴  Bifilar string separation  
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CHAPTER 1 

INTRODUCTION 

 In recent years, small fixed-wing Unmanned Aerial Vehicles (sUAV) have become 

readily available. Their small size makes them enticing test platforms to be used by commercial 

industry, in academic settings, and by the model airplane hobbyist. Open-source flight 

controllers, a key enabler for low-cost research and commercial products, can also be added to 

sUAVs to allow for more advanced control. A Cube Orange is an open-source standard flight 

controller in the sUAV industry. Adding it to a small aircraft model offers functions to stabilize 

an sUAV in windy conditions, fly a mission autonomously, and return to the home location, to 

name a few functions available. These autonomous functions have helped drive the increase in 

demand for fixed-wing sUAVs because, traditionally, the attrition rate of small fixed-wing 

aircraft is high. Fixed-wing sUAV flight dynamics are typically slow enough that a human can 

act as the flight controller.  For instance, if the plane is not wings-level, the roll response and 

aircraft stability allow the human pilot to level it. However, this takes hundreds of hours of 

training to become proficient. With an autonomous flight controller, controlling an sUAV is 

simplified. Therefore, the amount of training required to fly a fixed-wing sUAV can be 

significantly reduced.  

Autonomous flight controllers do not only aid the Pilot In Command (PIC), but some 

vehicle health diagnostics are provided synchronously for the safety of the vehicle and people on 

the ground. Though these health diagnostics provided by the flight controller do not encompass 

all possible failure modes of an sUAV, a few examples of the features are that the flight battery 

voltage and current are monitored [1]. Suppose the flight battery voltage drops below a pre-

determined threshold. In that case, the flight controller takes action to automatically return the 
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vehicle to the home location to prevent complete loss of the vehicle, preventing a potential crash, 

damage to property, or injury to people on the ground. Other health diagnostics include 

monitoring the remote control radio link connection, the telemetry link with a ground control 

station, GPS position estimation, and excessive vibrations. All these health diagnostics are 

important. However, open-source flight controllers, such as the Cube Orange do not have 

advanced diagnostics to determine if the aircraft is still controllable or suffering from degraded 

controllability.  

Loss of control can be due to many factors but is typically attributed to malfunction of 

control surface servo actuators, as they are the input to the aircraft. Fixed-wing sUAVs utilize 

control surfaces that deflect to create positive or negative lift increments on the wing and 

empennage for in-flight control [2]. These surfaces are driven by servos, which convert signals 

commanded by the PIC on the ground to a control surface’s mechanical movement. Servos are 

either digital or analog, with the difference being that digital servo position control operates at 

300Hz compared to 50Hz of the analog servo. Also, digital servos are not as susceptible to 

temperature and supply voltage changes that affect analog-servo zero-position [3, 4]. Servo 

anatomy consists of an electric motor, gear train, motor position feedback sensor such as a 

potentiometer, and a closed-loop controller [5].   

 The failures of servos can be divided into electrical and mechanical failure modes. As for 

electrical failures, the DC motors within the servo can vary in type, such as brushed or brushless. 

However, all motors are susceptible to electrical short circuits and overheating due to excessive 

current draw. For the position of the DC motor, feedback of the motor position is provided by a 

potentiometer. Potentiometers are susceptible to blockage from dirt and debris, which causes 
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false readings [6]. A false reading prevents the desired pilot input from being achieved by the 

servo, which can be catastrophic.  

Mechanical failure modes are attributed to the gear train, communication lines, and 

power conductors. Low-cost servos used for RC aircraft, such as the Hitec HS-311, have gears 

made of plastic that are susceptible to deformation of the gear teeth [7]. Deformation can occur 

from sudden acceleration, such as a control surface being struck by a stationary object when 

transporting an sUAV or a bird strike in flight [8]. This sudden acceleration causes intermediate 

gear teeth to be deformed as they cannot rotate with enough angular velocity. The deformation of 

plastic gears also includes overloading and general wear from use. Also included in mechanical 

failure modes are communication and power lines. The command signal is transmitted via a wire 

to the servo from a receiver or flight controller, relaying the pilot’s command on the ground. 

Therefore, the command signal transmission and power wires are susceptible to loose 

connections, damage due to chafing of insulation, connector corrosion, and melting from an 

excessive current draw, leading to servo actuator failure.  

 Currently, vehicle health diagnostics for open-source flight controllers that utilize 

ArduPilot firmware lack the ability to detect loss of control of an sUAV. Knowing the 

controllability of an sUAV is even more critical in Beyond Visual Line of Sight (BVLOS) 

operations, where most of the flight of the sUAV is out of view of the PIC or any other spotter to 

ensure the vehicle is flight worthy. This is unlike typical Visual Line of Sight (VLOS) 

operations, where the PIC can check for controllability by RC stick commands and visually see 

the sUAV response. BVLOS operation, when authorized, is typical for package and medical 

supplies delivery where the flight path may be over urban environments. Having the ability to 

determine controllability provides the flight controller with valuable information. Without this 
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knowledge, the flight mission continues despite any damage sustained, creating a dangerous 

situation for the sUAV. The longer the damaged sUAV stays in the air, the higher the probability 

of catastrophic loss of control resulting in complete loss of the vehicle, injury to people, and 

damage to property on the ground.  

1.1 PROBLEM STATEMENT 

This research aims to develop in-flight diagnostics to detect the loss of controllability in 

an sUAV. Controllability is defined by an aircraft's ability to maneuver based on available 

controls under normal circumstances. For a fixed-wing sUAV, controllability is assessed by 

evaluating the primary control response, measured angular velocities about the roll, pitch, and 

yaw axis, based on control surface inputs. The method leverages the use of historical knowledge 

of the response to primary flight control inputs to build empirical models for all axes. Next, a 

method for rapidly building a new response model in flight is used to compare responses to the 

baseline model and establish thresholds for minimum controllability through statistics. The work 

features popular ArduPilot firmware and runs on a commonly available Cube Orange flight 

controller hardware. This hardware and firmware combination is widely used by industry, 

academics, and hobbyists, which gives the best opportunity for implementation in a wide variety 

of sUAVs. Other important considerations are that most sUAVs cannot measure actual deflection 

angles (closed-loop), inertial mass measurements are unknown, and onboard sensors are limited. 

These sensor outputs are essential to using system identification techniques that utilize aircraft 

equations of motion. Although additional hardware could be added, this adds cost and requires 

expertise in each additional sensor’s setup and calibration. This work focuses on sensors 

commonly used by typical flight controllers, such as the Cube Orange, Pixhawk, and mRo 

Control Zero used to fly an sUAV autonomously. The goal was to develop a simple methodology 
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that could be applied across platforms, requiring only an Inertial Measurement Unit (IMU), an 

airspeed sensor, and a remote-control signal input. Using sensors already available from the 

flight controller makes the detection system readily transferable from one sUAV to another with 

few if any hardware changes. Also, this allows the detection system to work on many different 

sUAV configurations, such as a stable high wing design, maneuverable mid-wing, and Vertical 

Takeoff and Landing (VTOL) sUAVs because the flight controller can be used in many different 

vehicle types. The loss-of-primary-control detection system utilizes a black box system 

identification approach instead of aircraft equations of motion, which rely on knowing aircraft 

inertias and deflection angles of control surfaces. Therefore, to detect primary loss of control, an 

empirical model can be built to describe how the sUAV is performing at an instant in time, based 

only on input and output data. This model is then compared to measured historical baseline 

response data to check for controllability.  
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 CHAPTER 2 

LITERATURE SEARCH 

2.1 CURRENT HEALTH DIAGNOSTIC METHODS 

2.1.1 BIOMIMETIC METHOD AIS NEGATIVE SELECTION 

A biomimetic method called Artificial Immune System (AIS), which is modeled after the 

human immune system, is a relatively new area of study in health diagnostics for sUAVs. 

Traditionally, previous AIS applications have been utilized in computer security to protect from 

viruses, pattern recognition, and fault detection for sensors used in industrial plants [9-11]. AIS 

is within the context of machine learning. However, AIS is a stand-alone category compared to 

neural networks and evolutionary algorithm techniques [12, 13]. 

 Garcia et al. applied an AIS for a multi-copter health diagnostics for detecting a motor 

failure in an sUAV [14, 15]. This paper used an AIS negative selection method to build a health 

monitoring system in which the AIS algorithm was developed to model how the human body 

detects bad and good cells. In living organisms, the thymus gland contains T-cells and self-

proteins. If a T-cell reacts to a self-protein, then this T-cell is destroyed. A T-cell that does not 

react to the self-protein can stay and destroy bacteria or viruses. This principle method of self 

and non-self discrimination is known as negative selection. The concept is that anything that 

does not belong to self should be deleted. In the case of a living organism, the T-cells that do not 

belong are eliminated.  

For this idea of negative selection, an AIS is to be applied to aircraft. Therefore, 

understanding what self encompasses needs to be defined, which is done by collecting data on 

many different features. Features are measurements from sensors such as attitude, rates, and 
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accelerations, to name a few. In this paper, the author used 23 features to develop self, as shown 

in Figure 1. 

  

 

Figure 1-List of features to be recorded 

 

Data were collected for the listed features by flying the quadcopter in an altitude hold 

mode while rolling and pitching the vehicle ±10 degrees for 30 seconds. The responses are then 

normalized from 0 to 1 and undergo a clustering process. This normalized clustered data forms 

the self clusters for all two-dimensional projection combinations of the features, as shown in 

Figure 2 by the blue circles.  
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Figure 2-Two-dimensional projection of z acceleration vs. roll attitude features [14] 

 

Before forming a projection, such as the z acceleration vs. roll attitude shown in Figure 2, the 

entire projection is first considered non-self-clusters, which are the red circles. Self-clusters are 

then overlaid onto the projection from normalized nominal flight data. Anywhere a self-cluster 

overlaps a non-self-cluster, this overlapped non-self-cluster is removed. The removal of non-self, 

where self overlaps, gives this method the name, negative selection. Once the negative selection 

process is performed, the algorithm optimizes the amount of non-self-empty space to 

characterize the entire projection space. The process is repeated for all possible combinations of 

features. Equation (1) is used to calculate all possible combinations to ensure a complete data set. 

Since there are 23 features, it is found that 253 projections are needed to describe the entire self 

and non-self.  
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𝑁𝑠𝑒𝑙𝑓 = 𝐶𝑁

𝑁𝑚𝑎𝑥 =
𝑁𝑓!

𝑁𝑚𝑎𝑥! (𝑁𝑓 − 𝑁𝑚𝑎𝑥)!
=

23!

2! 21!
= 253 (1) 

  

With a database of self vs. non-self-understood, future data points are used as detectors to 

determine if the data point is a self or non-self. Calculating the Euclidian distance from each 

future data point to the centers of all surrounding clusters determines a detector’s status, as the 

closest cluster defines whether the future data point is self or non-self. Detectors are said to be 

activated if they are found to be non-self. The number of summed activated detectors is then used 

to determine if there is a failure or not. However, some detectors are always activated due to 

sensor noise and modeling errors that should be considered. A MATLAB Simulink model is 

used to test this algorithm. A simulated quadcopter model is used to simulate two different motor 

failure scenarios, where a 2.5% reduction in efficiency for each motor is the mode of failure. 

After post-processing, the author found that out of 253 projections only 24 needed to be 

considered based on the number of activations. The significant projections considered are shown 

in Table 1. 

  

Table 1-Post-processed selection of projections 
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Figure 3 shows an example of projections 22 and 23. The black dots in Figure 3a represent data 

collected when the motor one had a 2.5% efficiency reduction. Figure 3b shows test data for 

motor two with a 2.5% efficiency reduction. The average number of test data points or detectors 

was 600 for each projection during the algorithm’s initial testing. 

    

 

Figure 3-Two-dimension projections for case 23,22 under motor failure case one and two, 

respectively [14] 

 

Counting the number of activated black dot detectors over time for all 24 projections allows for 

real-time implementation of the algorithm by creating a time history of activated detectors, as 

shown in Figure 4 for motor one failure. The author states that no failures have been 

implemented for the first eight seconds, providing nominal conditions. The number of activated 

detectors then increases above 50 at 10 seconds into the test showing that a failure has been 

detected. The activated detectors are not constant because the non-linear dynamic inversion 

controller used to fly the multi-copter recognizes the failure and attempts to compensate 
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momentarily. This oscillating pattern of increasing and decreasing detectors activated is also 

seen for motor two failure conditions, as shown in Figure 5. 

     

 

Figure 4-History of activated detectors for motor one failure [14] 

 

 

Figure 5-History of activated detectors for motor two failure [14] 

 

These results were validated by performing more flight tests in the same manner to build the self 

and non-self-projections. The quadcopter was rolled and pitched ±10 degrees to create a nominal 

validation data set. Figure 6a shows the roll and pitch values that were collected over 60 seconds. 
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For this data set, it is shown in Figure 6b there are few activated detectors, which shows the 

algorithm is effective. 

       

 

Figure 6-Validation data set [14] 

 

2.1.1.1 SUMMARY OF AIS NEGATIVE SELECTION 

The use of AIS negative selection was shown to be an effective approach for fault 

detection within an sUAV. In this method, a data set of desired features is selected, collected, 

and normalized, which allows the creation of two-dimension projections of every possible 

combination from the list of the desired features. The two-dimension projections display the self 

and non-self-areas, indicating nominal or abnormal regions of the two-dimension projection. 

These two-dimension projections have future test data called detectors overlaid. Based on where 

the detector falls in the projection, it is either found to be activated or not activated. An activated 

detector means failure is present, while a not activated detector indicates no failure present. 

Continuously counting the activated detectors provides the AIS method with real-time 

implementation.   
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 Other authors, such as Lopez et al., have implemented the AIS negative selection method 

similarly for multi-copters [16]. However, in Lopez et al.’s work, the failure modes implemented 

were completely inoperable motors instead of just reduced efficiency as the mode of failure. 

Even with the different failure modes, the results were found to be similar. Additionally, 

applications of AIS negative selection have also been applied to fixed-wing aircraft. In Sanchez 

et al.’s work, an RC jet aircraft is utilized where an AIS negative selection method is applied to 

develop a fault detection scheme for control surfaces [17, 18]. Only two failure modes were 

tested, and they are one of two elevators and ailerons stuck in a neutral position while 

performing a doublet maneuver. From flight testing the RC jet, the AIS algorithm detected 

control surface faults for both manually controlled via a pilot and a mode where a stabilization 

controller assists the pilot.  Overall results from these works show AIS negative selection is an 

effective way to determine fault detection because of its ability to include aerodynamic coupling 

effects, diversity of possible airframe types, and the ability for real-time implementation.   

2.1.2  SEMI-AUTONOMOUS sUAV AUTOPILOT LOGIC DESIGN METHOD 

 Quan discusses a multi-copter design and control health evaluation method for flight 

controllers [19]. This health diagnostic focus is on the flight controller itself. For example, is 

sensor data from the IMU valid? The report covers three different failure types: communication, 

sensors, and propulsion. Also, the use of an Extended Finite State Machine is developed to semi-

autonomously counteract any of the three failure modes and ensure the safety of the sUAV.    

Communication failures occur when the RC transmitter loses the link with the receiver on 

the vehicle. The causes of communication failure can be from hardware failures or even operator 

errors, such as the transmitter being turned off accidentally when the vehicle is powered. Also, 

flight controllers that are not calibrated for paired transmitter endpoints fall within this failure 
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type. By not calibrating the flight controller to the transmitter endpoints, the flight controller 

does not understand what the operator is commanding, leading to flight accidents. An example of 

this is that the operator wants the vehicle to roll left, but, instead, it rolls right. Communication 

with the vehicle is not limited to only an RC transmitter. A ground control station (GCS) is also 

utilized to provide essential telemetry data such as altitude and speed. However, this can be 

another source of communication failure. Like the RC transmitter, the GCS can lose the link with 

the vehicle because of hardware failures, range limitations, or loss of power to the GCS.  

 Sensor failures are defined as when a sensor cannot measure a quantity accurately or it 

malfunctions altogether. Examples of sensors that can fail are a barometer, compass, GPS, and 

Inertial Navigation System (INS). Barometer failure is considered when altitude measurements 

are inconsistent. Similarly, inconsistency in the compass heading and GPS position indicates a 

failure in these sensors. As for the INS, failure occurs when either the accelerometer or 

gyroscope is not calibrated, which produces inaccurate vehicle position estimates. Failure of the 

INS also includes possible hardware failure of the accelerometers or gyroscopes. 

 Propulsion failure encompasses the entire propulsion system. The system includes the 

battery, Electronic Speed Controllers (ESC), motors, and propellers. Each one of these 

components can lead to a failure in the propulsion system. Flight batteries can fail from low 

capacity, high internal resistance, overcharging, or over-discharging. An ESC can fail due to 

hardware limitations, such as overheating, limiting power, or eliminating power flow to the 

motors completely. Flight controllers send commands to the ESC in which some cases, the ESC 

does not recognize these commands. ESC failures directly relate to motor failures as the motor 

does not work if the ESC is not working correctly. Lastly, propeller failures occur when blades 

are worn, loose, cracked, or poorly balanced. 
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2.1.2.1 HEALTH MONITORING AND DESIGN 

 With the three failure modes defined (communication, sensors, propulsion), a health 

evaluation process is developed to determine if the discussed parameters associated with each 

failure mode are working correctly. The health evaluation is performed before and while in 

flight. A pre-flight check ensures all essential communication, sensors, and propulsion are 

functioning before a flight, as shown in Table 2. If there are any failures in the pre-flight check, 

they are reported to the GCS. 

   

 Check Item Failure Type 

1 Whether the RC has been calibrated Communication breakdown 

2 Whether the RC connection is normal Communication breakdown 

3 Whether the barometer hardware fails Sensor failure 

4 Whether the compass hardware fails Sensor failure 

5 Whether the compass has been calibrated Sensor failure 

6 Whether the GPS signal is normal Sensor failure 

7 Whether the INS has been calibrated Sensor failure 

8 Whether the accelerometer hardware fails Sensor failure 

9 Whether the gyroscope hardware fails Sensor failure 

10 Battery voltage check Propulsion system anomaly 

11 Whether the critical parameter settings are 

correct 

Parameter configuration 

mistake 

Table 2-Pre-flight parameter checks 

 

 In-flight, communication is continuously checked to ensure that updated signals are 

received from the RC transmitter and the GCS. If one of the communication methods does not 

respond within five seconds, it is assumed there is a loss of contact. The sensors’ health 

diagnostic during flight is best if the vehicle can be at a steady-state to avoid false alarms. Being 

at a steady-state is particularly important when checking the health status of the barometer. Large 
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fluctuations in altitude measurements produce fault detection. In comparison, large fluctuations 

in yaw produce fault detections in the compass sensor. However, evaluating the compass sensor 

in greater depth indicates that the compass sensor is most susceptible to magnetic interference 

from the propulsion system. Magnetic interference can be measured as it fluctuates in strength, in 

which interference fluctuates due to varying current flow to increase or decrease motor RPM. 

These fluctuations must not exceed 60% of the original magnetic field, or the compass reading 

may suffer from severe interference [20]. The GPS position is checked by comparing it to an 

estimated position. This estimated position comes from the Extended Kalman Filter, which takes 

sensor data from the IMU. The GPS sensor is okay if the error between the measured and 

estimated positions is less than a pre-defined parameter value. 

 The propulsion system in-flight health monitoring has multiple checks as well, starting 

with the propellers. These are checked by ensuring excessive vibrations are not present, which is 

measured by the accelerometers within the flight controller. The battery is monitored by using a 

combination of methods. One way is to fly the vehicle until the voltage drops below a set value 

for several seconds. However, a real-time method is to calculate the Reserved Maximum 

Ampere-Hour (RMAH). There are some difficulties in doing this, as the flight battery voltage 

cannot be directly measured because of nonlinearity when under load. Also, calculating the 

remaining capacity of a battery must be continuously recalculated due to changing pilot inputs. 

Therefore, the State of Charge (SOC) calculates the battery state shown in equation (2) to combat 

the changing pilot inputs. S is the SOC of the battery, I is the discharge current, R is the battery 

impedance, Q is the nominal battery capacity, T is the sampling time, and w is the system noise. 

The SOC equation is then implemented in equation (4) to calculate the battery terminal voltage. 

C represents constant error offset, v is measurement noise, and OCV(S) is the curve of the Open 
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Circuit Voltage and SOC (OCV-SOC). The OCV(S) curves are found from battery charge and 

discharge tests. These equations still require instantaneous input to solve for the SOC and V, 

which is subject to error. To mitigate error, an Extended Kalman Filter is used to nonlinearly 

estimate the SOC using equations (2)(3)(4). 

   

 
𝑆𝑘+1 = 𝑆𝑘 −

𝐼𝑘𝑇𝑠

𝑄𝑚𝑎𝑥
+ 𝑤1,𝑘 

 

(2) 

 𝑅𝑘+1 = 𝑅𝑘 + 𝑤2,𝑘 (3) 

 𝑉𝑘 = 𝑂𝐶𝑉(𝑆𝑘) − 𝐼𝑘𝑅𝑘 + 𝐶 + 𝑣𝑘 (4) 

 

2.1.2.2 Safe Semi-Autonomous Autopilot Logic Design 

 A logic design process is used to implement the discussed health monitoring system by 

developing an Extended Finite State Machine (EFSM), which describes a discrete-event system. 

It is assumed that all the conditions in Table 3 are true. To use EFSM, all states, flight modes, 

and events need to be defined. A state refers to whether the vehicle is powered on or off. Flight 

modes describe what the vehicle is attempting to do. Loiter, stabilize, and landing are examples 

of flight modes in which the vehicle is holding position, self-leveling, and descending in altitude, 

respectively. 
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The system has a finite number of states  

System behavior in a specific state should remain the same 

The system always stays in a particular mode for a certain period 

The number of conditions for the state’s switch is finite  

A switch of the system state is the response to a set of events 

The time of state switch is negligible 

Table 3-EFSM conditions 

 

Events are separated into Manual Input Events (MIE) and Automatic Trigger Events (ATE), 

which control the states and flight modes. MIE is directly from pilot input, such as arming or 

disarming the vehicle. MIE also includes switching flight modes like a return to launch, land, and 

stabilize. ATE is used when the flight controller recognizes there is a problem. For example, the 

vehicle is in loiter flight mode, but the flight controller finds the GPS unhealthy. To avoid an 

uncontrollable flight experience, the flight controller automatically switches the flight mode from 

loitering to altitude hold, which does not require GPS. ATE is similarly used when the battery is 

found to be unhealthy. No matter the flight mode, the flight controller sets the flight mode to 

land, preventing a crash. Table 4 defines all events used to build the autopilot logic design. 
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MIE1 1:denote to arm, 0:denote to disarm 

MIE2 Manual operation instruction(1:Switch to MANUAL FLIGHT MODE; 

2:Switch to RTL MODE; 3:Switch to AUTO-LANDING MODE) 

MIE3 Turn on or turn off the multi-copter(1:turn on;0:turn off) 

MIE4 Power cutoff for maintenance (1:repaired;0:repairing) 

ATE1 Health status of INS and status of multi-copter (1:healthy;0:unhealthy) 

ATE2 Health status of GPS(1:healthy;0:unhealthy) 

ATE3 Health status of the barometer(1:healthy;0:unhealthy) 

ATE4 Health status of the compass(1:healthy;0:unhealthy) 

ATE5 Health status of the propulsion system(1:healthy;0:unhealthy) 

ATE6 Status of connections of RC(1:normal;0:abnormal) 

ATE7 The status of the battery’s capacity(1:adequate, able to perform RTL; 

0:inadequate, unable to perform RTL) 

ATE8 Comparison of the multi-copter altitudes and a specified threshold (1:the 

multi-copters altitude is lower than the specified threshold;0:otherwise)  

ATE9 Comparison of the multi-copters throttle command and a specified threshold 

over a time horizon(1:the multi-copters throttle command is less the 

specified threshold;0:otherwise) 

ATE10 Comparison of the multi-copter distance from the home point and a 

specified threshold (1:the multi-copters distance from the home point is 

greater than the specified threshold; 0:the multi-copters distance from the 

home point is not greater than the specified threshold)  

Table 4-Event definitions 

  

The EFSM is defined by transition conditions developed using defined states, flight 

modes, and events. Transition conditions are strings of events, such as from power off to standby 

and vice versa, as seen in Figure 7, denoted by C1 and C2, respectively. C1 transition condition 

includes event MIE3=1 while C2 also includes event MIE3 but with a value of 0. By combining 

more events in the proper order, all states can be achieved. 
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Figure 7-Autopilot logic design in EFSM layout [19] 

 

Equation (5) is an example of transition conditions C1 and C3 needed to enter the manual flight 

mode state. In this example, events within the transition conditions show the vehicle is powered, 

arms, changes flight mode to manual, checks INS for health, checks propulsion health status, 

checks the RC communication, and checks the battery health status. These transition definitions 

are defined for all states and flight modes. By doing this, a road map is created for the flight 

controller to follow under normal and abnormal conditions.     

 

C1:MIE3=1, C3:(MIE1=1)&(MIE2=1)&(ATE1=1)&(ATE5=1)&(ATE6=1)&(ATE7=1) 

 

(5) 
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2.1.2.3 SUMMARY OF AUTOPILOT LOGIC DESIGN METHOD  

Of the three possible modes of failure discussed, communication, sensors, and 

propulsion, the ability to detect and react to the failure modes helps ensure the safety of an sUAV 

at the flight controller firmware level. The health evaluation was implemented before take-off 

and while in flight to provide the opportunity to monitor for abnormalities continuously. If an 

abnormality was detected, a developed semi-autonomous logic design would allow the autopilot 

to switch flight modes automatically. An example would be a scenario in which the current flight 

mode utilized the GPS for the vehicle location but the GPS signal was lost. The logic is designed 

so that the flight mode requires GPS changes to a different flight mode, which is not dependent 

on vehicle location obtained from the GPS. Automatically changing flight modes in this example 

helps prevent the sUAV from flying out of control, which can lead to flight into restricted 

airspace, damage to property, and possible injury to people. Tridgell et al. and Meier et al. have 

implemented this health diagnostic method within the flight controller firmware called ArduPilot 

and PX4, respectively [21, 22]. Based on these implementations, health diagnostics effectively 

detect and remedy communication, sensors, and propulsion modes of failure at the firmware 

level.   

2.1.3 SERVO FAULT DETECTION MODELING CURRENT FLOW METHOD 

 Fuggetti et al. argued that if an aircraft is suffering from a lack of controllability, it is likely due 

to faulty servo actuators. They provide the input to the aircraft dynamics [23]. In this method, the 

current absorbed to servo actuators is modeled. This model is then compared to the measured 

absorbed current, and if both current values do not match, there is a problem with a servo 

actuator. Using Newton’s First Law and Kirchhoff’s Voltage Law, the DC servo is modeled 

using an ODE system of equations (6) and (7). 
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 𝐽𝑛𝜃̈(𝑡) =
1

𝐾𝑣
𝐼(𝑡) − 𝑇𝐿(𝑡) − 𝛽𝑛𝜃̇(t) (6) 

 𝑉(𝑡) = 𝑅𝐼(𝑡) + 𝐿𝑐𝐼(̇𝑡) +
𝑛

𝐾𝑣
𝜃̇(t) (7) 

 

These equations are put into a transfer function form by understanding the inputs and outputs of 

a servo. The input to a servo is the desired position 𝜃𝑅𝐸𝐹. Knowing the desired position, the 

servo control loop within the servo applies a voltage to the DC motor to rotate the servo arm. 

This voltage is then related to the current used to drive the servo to 𝜃𝑅𝐸𝐹. Equation (8) describes 

this in the transfer function form and is populated by applying the Laplace transform to equations 

(6) and (7), leading to equations (9) and (10), respectively. 

   

 
𝜃(𝑠)

𝑉(𝑠)
=

𝜃(𝑠)

𝐼(𝑠)

𝐼(𝑠)

𝑉(𝑠)
 (8) 

  
𝜃(𝑠)

𝐼(𝑠)
=

1
𝑛𝐾𝑣𝐽

𝛽
𝐽 𝑠 + 𝑠2

 (9) 

 
𝐼(𝑠)

𝑉(𝑠)
=

𝛽
𝐽𝐿𝑐

+
1
𝐽 𝑠

𝛽𝑅𝐾𝑉
2 + 1

𝐽𝐾𝑣
2𝐿𝑐

+  
𝐽𝑅 + 𝛽𝐿𝑐

𝐽𝐿𝑐
𝑠 + 𝑠2

 (10) 
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Equation (10) provides the transfer function model of the current absorbed based on an input 

voltage applied, which can be simplified to identify parameters within A, B, C, and D. These 

parameters are identified by applying a step voltage and measuring the response current. 

    

 𝐼(𝑠)

𝑉(𝑠)
=

𝐴 + 𝐵𝑠

𝐶 + 𝐷𝑠 + 𝑠2
 (11) 

 𝛽

𝐽𝐿𝑐
= 𝐴 (12) 

 1

𝐽
= 𝐵 (13) 

 𝛽𝑅𝐾𝑉
2 + 1

𝐽𝐾𝑣
2𝐿𝑐

= 𝐶 (14) 

 𝐽𝑅 + 𝛽𝐿𝑐

𝐽𝐿𝑐
= 𝐷 (15) 

 

 Fault detection is based on the difference between the measured and estimated current, as 

shown in equation (16). Based on the difference's magnitude, there are four different fault 

conditions, as shown in Table 5. Based on initial testing, the nominal range of current flow was 

from 0 to 0.5A. If any current differences are above 0.5A, there is either a mechanical fault or a 

short circuit. If no current, then there is an electrical problem with the servo actuator, such as a 

broken wire or damaged DC motor.  

 

 

 

𝑟(𝑡) = 𝐼(𝑡) − 𝐼(𝑡)̂  (16) 
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Table 5-Category of fault conditions for a servo actuator 

 

2.2 DISCUSSION OF CURRENT DIAGNOSTIC METHODS AND RELATED WORK 

 Of the three different methods reviewed in-depth, all perform a health diagnostic, but all 

have some drawbacks. The AIS method required the nominal model to be trained with 

previously recorded data. Therefore, the AIS diagnostic system cannot entirely be encompassed 

in one package on the sUAV as post-processing is required, which uses additional hardware to 

perform the computation to train the nominal model. Post-processing is problematic due to a 

need for additional hardware and the likely event of a configuration change of the sUAV. For 

example, suppose a multi-copter sUAV crashed, and as a result, a motor is damaged. Therefore, 

the motor is replaced. Since all motors differ slightly in terms of efficiency, mass properties, and 

dimensions due to manufacturing variances, if the AIS is not retrained, these differing motor 

factors may affect the AIS when the motor is replaced. False alarms may be a common 

occurrence even though the sUAV is nominal due to the AIS method’s sensitivity. In addition to 

this damaged motor example, a more typical configuration change is changing the flight battery 

from run to run. Again, as with differences in motors, batteries vary in weight, dimensions, and 

current discharge rates. Using a different battery affects vehicle factors used in the AIS, such as 

vehicle acceleration, which can cause false alarms since the original AIS only knows nominal 

Fault condition Residual 

Fault-free  0A < r(t) < 0.5A 

Mechanical fault  r(t) ≥0.5 A 

Short Circuit  r(t) ≥0.5 A 

Electrical fault  r(t) ≤ 0 A 



 

 

 

25 

conditions with the battery used in nominal model building runs. Therefore, with any 

configuration change, it cannot be trusted until the AIS model has been retrained. This retraining 

process reduces this method’s practicality for sUAVs, as an aircraft’s payload may change from 

mission to mission.   

This dissertation also discusses a semi-autonomous health diagnostic autopilot logic 

design built into the flight controller firmware. This method applies health diagnostic monitoring 

to sensors within a flight controller, omitting other necessary equipment, such as servo actuators 

and electronic speed controllers. For instance, in the event of a failed rudder control linkage in a 

fixed-wing sUAV, as semi-autonomous health diagnostic is only diagnosing the sensors within 

the flight controller, it might find everything normal even though the aircraft has no primary yaw 

control. Not having the ability to detect these kinds of controllability problems leaves this 

method with an incomplete health diagnosis.     

Additionally, the method focused on the servo actuators, which are the direct input to the 

aircraft aerodynamics. The modeling technique was specific to one servo actuator, as transfer 

function models were built using data from a bench test rig with HXT-900 servos. With the 

technique applied to only one type of servo, this is problematic if the servo utilized is changed, 

which is likely the case from one fixed-wing sUAV to another. Using a different servo would 

require new data to be obtained from the servo of interest through bench testing and post-

processing, which cannot be performed in-flight. This approach is also invasive as the method 

requires the knowledge of the voltage applied to the DC motor that drives the servo. Typically, 

the input voltage to the servo’s DC motor is not available with Commercial Off the Shelf 

(COTS) servo actuators, where a constant voltage is applied, and an internal control loop 

regulates the voltage to the servo’s DC motor. Therefore, the servo case must be removed to 
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obtain this measurement, which, if not carefully performed, can introduce unnecessary problems 

that can create failures. In continuation, this requires additional hardware to measure the current 

absorbed by the servo, which also adds to the complexity and the number of parts that can fail. 

As a way to mitigate the problems and limitations of the previously discussed work, 

additional literature was reviewed. In Gertler and Ding’s work, the general approach to detecting 

faults is separated into two different methods [24, 25]. These methods are model-free and model-

based. The model-free approach utilizes redundancy and established limits to perform fault 

detection. An example of the redundancy model-free approach is the use of multiple IMU 

sensors. With multiple sensors, the readings can be compared with one another to check for 

proper operation. If there are several IMU sensors, then a voting scheme can be implemented to 

determine which IMU is genuinely malfunctioning. In the case of the established limit, an 

example is a fixed-wing sUAV air velocity that is below stall velocity. Being below the stall 

velocity limit indicates a fault that the aircraft is flying too slow.   

For the model-based approach, an explicit mathematical model of the system of interest is 

used, such as governing equations of motion, state-space models, and transfer functions. The 

calculation of residuals determines the detection of a fault. Residuals are the difference between 

the mathematical model estimate and the measured quantity from a sensor, and since there is 

always noise in a system, the residuals are never zero. Therefore, for the model-based approach, 

a residual evaluation process is conducted to compare the residuals to an established threshold, 

determined by experimentation or theoretical knowledge. 

This model-based method has been demonstrated using an E-flite Ultra Stick 25 in the 

work of Freeman et al. The aircraft governing equations of motion are required, and the focus is 

on fault detection for control actuators [26, 27]. While monitoring the Ultra Stick 25 attitude, a 
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command is applied at the same time. The detection of a faulty control actuator is performed by 

analyzing residuals. These residuals are the difference between the aerodynamics model’s 

estimated attitudes and the measured attitudes from the IMU. After analysis, results show this 

method is feasible for controllability diagnostics of aircraft. 

Following the literature review of current methods available for health diagnostics, some 

methods showing promising results have been found, although one gap in the previous research 

is the ability of a health diagnostic to detect whether an sUAV is suffering from a lack of 

controllability. Specifically, a controllability diagnostic capable of functioning with an sUAV 

that changes mass configurations often, such as a package delivery sUAV where the payload 

mass varies from run to run, can affect previously built nominal models. Therefore, the ability 

for a diagnostic to be developed in-flight without any post-processing or the use of large data sets 

to identify a nominal model represents a significant improvement to the state of the art. Another 

shortcoming identified in the literature search is that the vast majority of low-cost sUAVs 

entering the market are not suitable for typical model-based health diagnostics due to a lack of 

available sensors. For example, using the model-based method with aircraft equations of motion, 

sensors such as alpha and beta potentiometers, generally found on research sUAVs, are two 

variables needed when using the aircraft equations of motion as a nominal model. However, in 

standard low-cost sUAVs, these sensors are typically omitted to reduce cost and complexity, as 

they are not required for flight. Additionally, low-cost sUAVs often lack the necessary 

parameters, such as mass properties, required for an aircraft’s complete mathematical model. 

This lack of prior knowledge about an sUAV is also to be considered if a health diagnostic is to 

apply to many different sUAVs.        

     



 

 

 

28 

CHAPTER 3 

METHOD 

3.1 OVERVIEW OF THE DEVELOPED METHOD 

Fixed-wing sUAVs using ArduPilot firmware has been found to lack the ability to check 

for degraded controllability. Specifically, controllability checks performed while an aircraft is in 

flight include the immediate use of any previously created nominal models. Therefore, from the 

time a fixed-wing aircraft takes off and lands, a controllability check should be performed. Also, 

there is a lack of sensors for performing a controllability check for consumer-grade sUAVs. The 

reason is that sensors are costly and add complexity to a fixed-wing sUAV. Sensors can be added 

to sUAVs, but many require unique installation and calibration knowledge-making established 

controllability checks impractical for the average fixed-wing sUAV. In addition to this, aircraft 

constants, such as moments of inertia data, are not readily available, limiting the ability to use 

aerodynamic equations of motion as they require these constants. 

 

Controllability check performed in-flight (no post-processing)  

No knowledge of aircraft moment of inertias 

No measurement of the control surface deflection angles  

No measurement of the aircraft angle of attack or sideslip angle 

Diagnostic of controllability is not to be configuration specific (eg. high wing vs. mid-

wing) 

Table 6-Controllability diagnostic requirements 

 

 The work performed in this research represents a way to accommodate the aforementioned 

limitations with requirements, as shown in Table 6. This work focused on the fact that all fixed-

wing sUAVs have a principal axis, as shown in Figure 8. It is shown that the x-axis is out of the 
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nose, the y-axis to the right wingtip and the z-axis points out of the bottom of the fuselage. For 

each principal axis, there is an associated force, velocity, angular velocity, and moment. 

       

 

Figure 8-Airplane coordinate system 

 

The force equations (17) to (19) require an unknown angle of attack and sideslip angle as well as 

accelerations and velocities to solve for forces 𝑋, 𝑌, and 𝑍 [28]. Similarly, to solve for moments 

𝐿, 𝑀, and, 𝑁, in equations (20) to (21) requires the aircraft inertia and angular rates. This work 

assumes inertias are unknown.  

Force Equations:  

 
𝑢̇ = (𝑟𝑣 − 𝑞𝑤) +

𝑋

𝑚
− 𝑔sin𝜃 +

𝑇

𝑚
 (17) 

 
𝑣̇ = (𝑝𝑤 − 𝑟𝑢) +

𝑌

𝑚
+ 𝑔cos𝜃sin𝜙 (18) 

 
    𝑤̇ = (𝑞𝑢 − 𝑝𝑣) +

𝑍

𝑚
+ 𝑔cos𝜃cos𝜙    (19) 
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Moment Equations: 

 
       𝑝̇ − (

𝐼𝑥𝑥

𝐼𝑥
) 𝑟̇ =  −

𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
+

𝑞𝑝𝐼𝑥𝑧

𝐼𝑥
+

𝐿

𝐼𝑥
 

(20) 

 
𝑞̇ = −

𝑝𝑟(𝐼𝑥 − 𝐼𝑧)

𝐼𝑦
−

(𝑝2 − 𝑟2)𝐼𝑥𝑧

𝐼𝑦
+

𝑀

𝐼𝑦
 

 

(21) 

 
      𝑟̇ − (

𝐼𝑥𝑧

𝐼𝑧
) 𝑝̇ =  −

𝑝𝑞(𝐼𝑦 − 𝐼𝑥)

𝐼𝑧
+

𝑞𝑟𝐼𝑥𝑧

𝐼𝑧
+

𝑁

𝐼𝑧
 

(22) 

 

Of the four values, angular velocity is intriguing because it is the only value that can be readily 

measured from a sensor for each axis, which meets the requirement that inertias and other 

sensors to measure the angle of attack and sideslip are not needed. With the ability to measure 

the angular velocity, the controllability check is defined by creating a mathematical model under 

nominal conditions of the angular velocities for roll, pitch, and yaw. Measured angular velocities 

are then compared to estimates from the model built under nominal conditions. The fit of the 

model vs. the measured angular velocities is based on a fit coefficient (metric). This coefficient’s 

value is a type of go/no-go conditional that determines if the aircraft is suffering from a lack of 

controllability. For this work, a lack of controllability is defined as any roll, pitch, or yaw axis 

whose fit coefficient falls above a nominal threshold established from a Prediction Interval (PI). 

In other words, the controllability diagnostic is suitable to detect the partial or complete loss of 

control of an sUAV, such as in the case of a servo actuator malfunctioning.     
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3.2 SYSTEM IDENTIFICATION AND APPLICATION TO HEALTH DIAGNOSTICS  

 System Identification (SID) is the process of developing mathematical models of physical 

systems based on imperfect observations or measurements, and models are not unique [29].  

Observations are the output of the system, which is caused by some input to the system. Using 

the input and output relationship allows the identification of the model for the system, as shown 

in Figure 9.   

 

Figure 9-System Identification block diagram 

 

For this paper, the aircraft is the defined system. Models of the system can estimate the physical 

system’s values, such as angular velocity and acceleration. In addition, models can be used to 

estimate specific parameters within a set of governing equations. For example, in the work of 

Noah Favaregh, the pitching moment equation is used to solve the damping stability and control 

derivatives using a linear least-squares regression SID technique [30]. 

 SID can be performed in the time or frequency domain. Frequency domain SID has the 

advantage that it offers a better understanding of the aircraft dynamics with the ability to create a 

bode plot [31-33]. However, frequency-domain SID requires excitation over a wide range of 

frequencies, increasing the needed run time. sUAVs are usually limited in-flight duration 

capability and physical air space within the ground-based pilot’s view. In comparison, time-

Input, 𝑢  System, 𝑆 Output, 𝑦 
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domain SID only requires excitation at a few frequencies of interest. However, the frequencies of 

interest may be unknown, making the frequency domain a more straightforward choice. In the 

case of a controllability diagnostic, the frequency of excitation can be chosen based on the 

frequency that safely excites the aircraft while avoiding resonant frequencies and is low enough 

to meet Nyquist theorem rules to prevent aliasing in data recording [34].  

 In the development of a controllability diagnostic, understanding the aircraft in a nominal 

state is crucial. SID gives the ability for the nominal model to be identified without the need for 

large data sets such as machine learning methods described in the literature review. Also, black-

box approaches to modeling the system where there are no governing equations of the system 

make SID practical for controllability checks. For this paper, this is important as the assumption 

of no known physical aircraft properties prevents the use of aircraft governing equations. It 

should be noted that transfer functions can substitute for aircraft governing equations of motion.   

3.2 AUTOREGRESSIVE MODELING TECHNIQUE 

 Autoregressive with Exogenous input (ARX) modeling is used to identify the roll pitch 

and yaw angular velocity models. ARX models are based on a discrete-time series transfer 

function approach where data from the past is used to predict the future based on an input [35, 

36]. Equation (23) is the governing equation for the ARX model structure for a Single Input 

Single Output (SISO) where 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 is the output and 𝑢𝑖𝑛𝑝𝑢𝑡 is the input. The left-hand side 

represents output terms while the right-hand side represents the input terms. 

  

 𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) + 𝑎1𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦𝑜𝑢𝑡𝑝𝑢𝑡(𝑡 − 𝑛𝑎)

= 𝑏1𝑢𝑖𝑛𝑝𝑢𝑡(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏
𝑢𝑖𝑛𝑝𝑢𝑡(𝑡 − 𝑛𝑏) 

(23) 
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The Laplace transform and z transform theorems are applied to each side of the equation to 

convert to the 𝑧 domain shown in equations (24) and (25) [37]. 

  

 𝐿𝐻𝑆(𝑧) = 1 + 𝑎1𝑧− + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎 (24) 

 𝑅𝐻𝑆(𝑧) = 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏 (25) 

 

It is understood that the 𝐿𝐻𝑆(𝑧) represents the output, and the 𝑅𝐻𝑆(𝑧) represents the input, 

which allows substitution into the transfer function form that relates the input with the output, as 

shown in equation (26). 𝐺(𝑧) represents the mathematical model used to estimate the angular 

velocities for roll, pitch, and yaw. Based on an input 𝑢 the output is modeled, as shown in 

equation (27). 

  

 
𝐺(𝑧) =

𝐼𝑛𝑝𝑢𝑡𝑠

𝑂𝑢𝑡𝑝𝑢𝑡𝑠
=

𝑅𝐻𝑆(𝑧)

𝐿𝐻𝑆(𝑧)
=

(𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏)

(1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎)

 (26) 

 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐺(𝑧)𝑢𝑖𝑛𝑝𝑢𝑡 (27) 

 

Coefficients 𝑎𝑛𝑎
 and 𝑏𝑛𝑏

 are the terms to be identified and relate to the output and input, 

respectively. The coefficients are identified using linear regression after providing a discrete-

time series of input and output data [38]. The order of the system dictates the number of 

coefficients. 𝑛𝑎 and 𝑛𝑏 set the order in 𝐺(𝑧) and are user-selectable parameters. Through 

experimentation, it was found 𝑛𝑏 = 2 and 𝑛𝑎 = 3 provided sufficient fit of the model to 

measured data for this lack of controllability diagnostic.  



 

 

 

34 

The aircraft equations of motion show coupling prominent within the roll and yaw axis. 

For example, rudder affects the yaw and roll, and ailerons affect roll and yaw as well. 𝐺(𝑧) in 

equation (26) only assumes SISO. For aircraft, the system must be Multi-Input Multi-Output 

(MIMO) to account for coupling. Therefore, a transfer function is required to relate each input to 

each output shown in Table 7. Four inputs were selected as aileron, elevator, rudder, and 

airspeed. The three outputs are roll, pitch, and yaw angular velocity. 

   

Inputs  Roll Rate Output Pitch Rate Output Yaw Rate Output 

Aileron (PWM) 𝑔(𝑧)1,1 𝑔(𝑧)2,1 𝑔(𝑧)3,1 

Elevator (PWM) 𝑔(𝑧)1,2 𝑔(𝑧)2,2 𝑔(𝑧)3,2 

Rudder (PWM) 𝑔(𝑧)1,3 𝑔(𝑧)2,3 𝑔(𝑧)3,3 

Airspeed (m/s) 𝑔(𝑧)1,4 𝑔(𝑧)2,4 𝑔(𝑧)3,4 

Table 7-MIMO Transfer function design 

 

𝑦𝑟𝑜𝑙𝑙_ 𝑟𝑎𝑡𝑒 = 𝑔(𝑧)1,1𝑢Aileron(PWM) + 𝑔(𝑧)1,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+  𝑔(𝑧)1,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) +  𝑔(𝑧)1,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)
  

(28) 

𝑦𝑝𝑖𝑡𝑐ℎ_𝑟𝑎𝑡𝑒 = 𝑔(𝑧)2,1𝑢Aileron(PWM) + 𝑔(𝑧)2,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+  𝑔(𝑧)2,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) +  𝑔(𝑧)2,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)
 

(29) 

𝑦𝑦𝑎𝑤_𝑟𝑎𝑡𝑒 = 𝑔(𝑧)3,1𝑢Aileron(PWM) + 𝑔(𝑧)3,2𝑢𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 (𝑃𝑊𝑀)

+  𝑔(𝑧)3,3𝑢𝑅𝑢𝑑𝑑𝑒𝑟(𝑃𝑊𝑀) +  𝑔(𝑧)3,4𝑢
𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 (

𝑚
𝑠

)
 

(30) 
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Equations (28), (29), and (30) show the addition of each column in the table. It is shown that 

each output is dependent on the four inputs, and these capture coupling effects. These three 

equations are developed in the same manner as the SISO. Discrete time-domain input and output 

data are used to solve for coefficients using linear regression. With the model defined, the output 

or response of the aircraft can be estimated with provided inputs.    

3.3 LACK OF CONTROLLABILITY DETECTION 

 Understanding if there is a lack of controllability is based on how well the model estimate 

compares to measured angular rates from sensors. Evaluating the Theil Inequality Coefficient 

(TIC) compares the current model to historically measured results [39]. TIC is a metric of fit on a 

scale from zero to one, with zero as the perfect fit. Equation (31) defines the formula for the 

calculation of TIC. Measured sensor data is represented by 𝑥𝑖 and model estimated data is 𝑥𝑖̂. 

    

 

𝑇𝐼𝐶 =

√1
𝑛

∑ (𝑥𝑖 − 𝑥𝑖̂)
2𝑛

𝑖

√1
𝑛

∑ 𝑥𝑖
2 + √1

𝑛
∑ 𝑥𝑖

2̂𝑛
𝑖

𝑛
𝑖

 (31) 

 

TIC only provides one observation of the fit per run and is susceptible to variance from run to 

run due to sensor noise and imperfect modeling. Therefore, the use of a Prediction Interval (PI) 

on a mean value is used. The PI is a form of confidence interval used for comparing individual 

future values to understand whether they belong to the original population [40, 41]. In this work, 

a PI is developed from a sample of multiple model evaluations. Equation (32) shows a two-sided 

PI [42]. Since minimum controllability is established using a threshold TIC value, a single-sided 
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interval is most appropriate. Therefore, the positive side of the PI is selected, as shown in 

equation (33). 

        

 

𝑦̂ ± 𝑡𝑠(
𝛼
2

,𝑛𝑠−1)
∙ 𝑆 ∙ √1 +

1

𝑛𝑠
 (32) 

 

𝑦̂ + 𝑡𝑠(𝛼 ,𝑛𝑠−1)
∙ 𝑆 ∙ √1 +

1

𝑛𝑆
 (33) 

 

The PI threshold is demonstrated in Figure 10, where the bound is calculated using data available 

to build the ARX models. Acceptable TIC values fall below the calculated PI limit. However, if 

a TIC value is greater than the PI, then there is a lack of controllability detected. 

 

 

Figure 10-TIC with PI showing normal vs. abnormal condition 
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It is also worth noting that the sensitivity of detection can be adjusted by selecting different alpha 

values in the calculation of the PI. Alpha, the level of significance, is traditionally set at 5% for 

many engineering problems [43]. The PI evaluation is typically used for confirmation runs in an 

experimental setting to understand if the model is adequate for prediction. The alpha value sets 

the probability of determining a new observation as confirmed when it is not. Confirmation 

infers that the model controllability is unchanged from the nominal model.  In order to determine 

alpha, a set of data collection runs were performed under nominal conditions. Then additional 

runs were performed with known problems introduced, such as limited throw of a control 

surface. Figure 11 shows the nominal results used in the selection of alpha. Nominal runs are 

indicated by red dots, while the black squares show runs with a stuck control surface failure 

introduced. The five black dashed lines represent different possible PI based on the selection of 

alpha. If alpha is set to a small percentage such as 5%, or a 95% PI, this leads to a greater chance 

that the algorithm determines the aircraft has full control authority. An alpha value set to 20%, 

resulting in an 80% PI, reduces the chance that the algorithm finds the aircraft to have full 

control authority, increasing the probability that the algorithm detects a lack of controllability. 
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Figure 11-Effect on prediction interval based on the selection of alpha 

 

Since this work focuses on detecting a lack of controllability, increasing the probability of 

detection is desired, which increases the chance of detection for small off-nominal failures, such 

as control surfaces with a limited throw. However, there is a fine line about how much alpha can 

be increased because overly increasing alpha can lead to significant false positives. Analyzing 

additional failure mode TIC results with a control surface with limited throw allowed the 

selection of alpha to be 20%, allowing the system to be sensitive when there is a failure while 

simultaneously not triggering many false alarms. 
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3.4 MODES OF FAILURE FOR LACK OF CONTROLLABILITY CHECK 

 This work focuses on the servo actuators being the root cause of the lack of 

controllability based on the literature search. Figure 12 displays in red commonly available 

control surfaces, such as the aileron, elevator, and rudder found on a fixed-wing sUAV. 

  

 

Figure 12-Control surfaces on fixed-wing aircraft 

 

A list of several different failure modes is considered using these available control surfaces. The 

failure modes are: complete actuator failure, limited movement failure, and combinations of 

complete and limited failure modes. For example, aileron one and elevator both fail either 

entirely or partially, which is to include not only mechanical or electrical issues with the 

actuators but also external sources such as bird strikes. The thought process is damage is likely to 

occur to more than one surface at the same time. Table 8 displays all the failure modes tested for 

lack of controllability detection.  
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Failure Mode: Action to achieve failure mode: 

Stuck neutral aileron Aileron two fixed neutral 

Limited aileron Aileron two throw limited to ±25%  

Stuck neutral elevator Elevator two fixed neutral 

Limited elevator Elevator two throw limited to ±25% 

Stuck neutral aileron and limited elevator Aileron two fixed neutral and elevator two 

throw limited to ±25% 

Limited aileron and stuck neutral elevator  Aileron two throw limited ±25% and elevator 

two fixed neutral 

Stuck neutral aileron and stuck neutral 

elevator 

Aileron two fixed neutral and Elevator two 

fixed neutral 

Limited aileron and limited elevator Aileron two throw limited ±25%, and elevator 

two throw limited to ±25%  

Limited rudder Rudder 1B throw limited ±25% 

Limited rudder and limited elevator Rudder 1B throw limited ±25%, and elevator 

one throw limited to ±25% 

Table 8-Failure modes tested for lack of controllability detection 

 

Since the ARX model utilized the input PWM signal to aileron one, elevator one, and rudder 

one, the failures needed not to be introduced on these channels. Otherwise, the model estimates 

the response based on what it should be with the signal used to simulate a failure mode. 

Therefore, the failure modes need to be external to the ARX model to prevent the estimation of 

the angular rates with the failed signal, which is done by using aileron two, elevator two, and 

rudder 1B. These surfaces are external to the ARX model inputs used to estimate angular 

velocity for roll, pitch, and yaw.  
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CHAPTER 4 

HARDWARE AND SOFTWARE 

4.1 HARDWARE 

 The SIG EdgeTRA is the selected test platform for this work and is shown in Figure 13, 

with physical properties shown in Table 9. A few reasons for selecting this aircraft are the 60-

inch wingspan and fuselage length with removable wing that ease transportation requirements. 

Also, there is a spacious interior for data acquisition equipment, and its dynamic characteristics 

are suitable for large input excitations. The EdgeTRA is an Almost Ready to Fly (ARF) model 

aircraft, meaning that the final configuration of the electronics is left to the end-user.  

    

 

Figure 13-SIG EdgeTRA aircraft selected for experimentation 

 

 



 

 

 

42 

Wingspan 60 in. 

Wing Area 675 sq. in. 

Length 60 in. 

Height 18 in. 

Flying weight 8.57 lbs. 

Landing gear main wheel diameter 4 in. 

Table 9- Physical properties of EdgeTRA 

 

Table 10 summarizes all additional components selected to complete the ARF EdgeTRA for 

flight. These components are selected based on recommendations from SIG, the manufacturer of 

the EdgeTRA. However, additional consideration was taken when selecting the receiver. 

Traditionally, the EdgeTRA aircraft only requires a four-channel receiver that accepts aileron, 

elevator, throttle, and rudder. Any pairs of control actuators such as the aileron servos 

traditionally would be joined together (y configuration) before plugging them into the four-

channel receiver. To simulate servo failures to test the controllability diagnostic required all 

servos to be independent of one another. Therefore, each servo is assigned to a channel on the 

receiver requiring it to have at least six channels for aileron one, aileron two, elevator one, 

elevator two, throttle, and rudder one. Also, there is additional hardware that requires input from 

the PIC for data collection and safety equipment. With this, the receiver was required to have 9 

channels. Therefore, the Spectrum AR9320T was selected. 

  

Motor E-flite Power 32 

ESC Castle Creations 100-amp 

Phoenix Edge Lite   

Servos HiTEC servos HS-5245MG 

Receiver  Spectrum AR9320T 

Battery 3 cell 5200 Lipo  

Propeller APC 14x8 

Table 10-Baseline hardware use to fly EdgeTRA 
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Table 11 shows the additional hardware used for data acquisition. The Cube Orange flight 

controller is the basis of this work, which gives the EdgeTRA autonomous flight modes such as 

RETURN TO LAUNCH, LOITER, and AUTO. The same sensors used to perform the flight 

modes are also used for the ARX modeling of the angular velocities. The Cube Orange also 

controls failure modes, as it can limit travel or fix any servo position.  

 

Cube Orange Flight Controller with Arduplane 4.0.5 Firmware 

Here 2 GPS Antenna 

4525 Digital Airspeed Sensor 

3DR 900 MHz Telemetry Radio 

Raspberry Pi 3B with Raspbian Stretch OS 

433 MHz Rnode Radio 

Cytron 8-Channel RC Multiplexer  

Table 11-Additional hardware used for modeling and safety during failure modes 

 

The failure modes are controlled, and data acquisition is performed using an onboard Raspberry 

Pi 3B (RPI) using Python scripts. The RPI is hard wired to the Cube Orange using two different 

serial links. One serial link was dedicated to data acquisition connected to the telemetry 2 port. In 

contrast, a second serial link dedicated to setting failure modes and general MAVlink commands 

was connected to the GPS 2 port. Respectively, the baud rate for each serial link is 921600 and 

57600. In addition, to execute the Python scripts, 433 MHz Rnode radios are used. These radios 

use a LoRa network to provide a long-range, low power remote connection from one computer to 

another [44]. In this case, the RPI flight computer and the Ground Control Station (GCS) are the 

two computers connected via the Rnode radios, as illustrated in Figure 14. 
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Figure 14-RNode radio installed in-plane and second RNode connected to GCS 

 

In the event of a failure mode or if the Cube Orange malfunctions, an 8-channel Multiplexer 

(MUX) board is used to bypass all Cube Orange and RPI related commands, as shown in Figure 

15. The MUX board has two inputs and one output. Input A is the master, and B is secondary. 

The output is where control actuators and the electronic speed controller (ESC) are connected. 

The AUX 2 channel on the Spectrum AR 9320T controls whether input A or B passes through 

the MUX board based on a Pulse Width Modulated (PWM) value. A PWM value ranges from 

1.0 ms to 2.0 ms. When the AUX 2 signal is above 1.5 ms, commands from input A or 

commands from the pilot can pass through. If AUX 2 is less than 1.5 ms, commands from the 

Cube Orange can pass. Notice the intersection between the output of the receiver and the input A 

of the MUX board. This intersection eliminates the need to use two separate receivers, as the 

Cube Orange also requires pilot input to operate for general flight commands and flight mode 

changes. However, even though the Cube Orange is always receiving signals from the receiver, 



 

 

 

45 

the Cube Orange commands are ignored if the MUX input selection is A. A complete wiring 

diagram in detail for the EdgeTRA is shown in APPENDIX A.       

  

 

Figure 15-MUX board implementation 

 

4.2 SOFTWARE AND FIRMWARE 

ArduPlane 4.0.5 is the selected firmware to be run on the Cube Orange, which is a 

popular open-source firmware used by many commercial entities and hobbyists from around the 

world. ArduPlane provides the Cube Orange with the flexible setup configuration required for 

this work. For example, the ability to have each control surface actuator on independent channels 

such as aileron one and aileron two. Independent control surfaces allow for failures of individual 

servos to be tested. Also, autonomous capabilities to fly waypoint missions, return to launch, and 

loiter, to name a few, are used in this work. Lastly, the firmware provides access for the RPI 

companion computer, so pertinent sensor data can be collected for controllability diagnostics. 

Firmware setup and telemetry feedback of ArduPlane firmware are done using a GCS.   

Mission Planner and QGroundControl are two GCS programs used by the ArduPlane 

firmware. The majority of this work utilized QGroundControl to set up the ArduPlane firmware, 

while Mission Planner helped the gain tuning process. The setup performed involved calibrations 

PWM Commands 

from PIC 
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of the accelerometer, compass, and airspeed sensor of the Cube Orange. Failsafe parameters are 

also configured with QGroundControl, such as in the event of a loss of radio link, low battery 

conditions, and geofences. During flight operations, QGroundControl is used to provide 

telemetry information of the aircraft location via a satellite imagery map, airspeed, battery 

voltage, and altitude, as shown in Figure 16. 

  

 

Figure 16-QGroundControl telemetry display and map while the EdgeTRA is in flight 

 

 In addition to ArduPlane, Python, a high-level scripting language, is used to develop the 

controllability diagnostic. Python offers plotting tools, dynamic systems, and control toolboxes 

similar to commercial MATLAB variants with serial connection interfaces. The main benefit is 

that Python runs on most operating systems and can be used on small single-board computers 

such as the RPI. A Python-based communication framework had already been developed to 

communicate from ArduPlane to a companion computer called DroneKit. DroneKit is a Python 

package that allows a user to send commands and receive data between a companion computer 
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and a Cube Orange flight controller. DroneKit uses Pymavlink, which is the framework that 

processes Micro Aerial Vehicle messages (MAVLink) to send and receive from the Cube Orange 

flight controller [45]. There are two general categories of MAVLink messages. The first category 

contains messages sent from the companion computer to the Cube Orange, such as setting a 

value to change the vehicle's airspeed, position, and altitude. These messages utilize either 

COMMAND_INT or COMMAND_LONG encoding structure. COMMAND_INT is essential 

when the coordinate reference frame is important, such as sending a waypoint location to fly to. 

COMMAND_LONG is more suitable for sending desired changes in airspeed, dropping a 

payload, or retracting the landing gear, to name a few examples. The second category is the 

companion computer receives MAVLink messages from the Cube Orange. As these messages 

are being sent from the Cube Orange, Pymavlink provides a function called rev_match() to 

gather the desired message, as many different messages are streaming at the same time. IMU 

data is an example of the Cube Orange's desired message, which is published under the 

RAW_IMU message name. Attributes within the RAW_IMU message define the acceleration, 

angular velocity, and magnetic field for each axis shown in Table 12. Many other messages can 

also be viewed, such as the RC transmitter commands to the Cube Orange. The full listing of 

available messages is found in the MAVLink documentation [46]. 
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RAW_IMU 

Field Name Units Description 

Time_usec 𝑢𝑠 Timestamp since boot 

xacc 𝑚/𝑠2 X acceleration 

yacc 𝑚/𝑠2 Y acceleration 

zacc 𝑚/𝑠2 Z acceleration 

xgyro 𝑟𝑎𝑑/𝑠 Angular speed around the X-axis 

ygyro 𝑟𝑎𝑑/𝑠 Angular speed around the Y-axis 

zgyro 𝑟𝑎𝑑/𝑠 Angular speed around the Z-axis 

xmag 𝑔𝑎𝑢𝑠𝑠 X Magnetic field 

ymag 𝑔𝑎𝑢𝑠𝑠 Y Magnetic field 

zmag 𝑔𝑎𝑢𝑠𝑠 Z Magnetic field 

Table 12-RAW_IMU message contents 

 

Additionally, Sim_vehicle.py, a simulation written in Python, was used [47]. This simulation 

runs the ArduPlane firmware on a computer as if the Cube Orange was running the firmware. 

Sim_vehicle.py utilizes Software in The Loop (SITL), where no hardware is used. Local network 

connections through the computer running the simulation are created, as shown in Figure 17. 

These local network connections allow developed Python scripts that utilize DroneKit to be 

connected to the simulation and tested similarly to real hardware. These connections also allow 

GCS applications, such as Mission Planner or QGroundControl, to connect to the simulated 

Cube Orange and perform vehicle setup, change a parameter, and view telemetry while the 

simulation is running. 
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The benefit is the ability to test and debug developed Python scripts that control the aircraft. For 

example, a Python script is developed using the DroneKit package to send MAVLink messages 

to the Cube Orange to fly to four waypoints in an oval racetrack pattern. Using the SITL reduces 

the risk in that the waypoints to fly to, altitude, and flight duration can be verified before using 

any actual hardware. However, Sim_vehicle.py SITL alone can only provide a two-dimensional 

view of the aircraft flight path, as shown in Figure 18. This two-dimensional view limits the 

ability to see how an aircraft behaves in the roll, pitch, and yaw axis. 

 

 

Figure 18-SITL map view during flight simulation 

Figure 17-SITL diagram 
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Visual aids from 3rd party 3D flight simulators can be connected to Sim_vehicle.py. This work 

used X-plane 10, an aircraft simulator typically used for full-scale aircraft and supports model 

aircraft, such as the Great Planes 40 high wing trainer shown in Figure 19. This three-

dimensional view provides an inflight experience that allows all the control surfaces to be 

observed and is particularly useful in testing the described failure modes. Each failure mode 

implementation could be visually verified. 

  

 

Figure 19-Model of Great Planes high wing trainer in X-plane 10 

 

 Lastly, the simulation of the Great Planes 40 was a way to determine the feasibility of 

the System Identification Package for Python (SIPPY) for building the ARX transfer function 

angular velocity models. SIPPY is currently one of the few Python packages covering the MIMO 

transfer function and state-space identification methods of SID [48]. SIPPY is focused on linear 
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modeling methods in the discrete-time domain that utilize only input and output data sets for the 

black-box modeling technique.   
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CHAPTER 5 

EXPERIMENTAL CONFIGURATION AND OPERATION 

 Flight experiments used three different Python codes developed for this work called the 

Data Recorder, Servo Failure, and Plane flyer, which could be used either under manual or auto 

control, as shown in Figure 20. The Data Recorder was used to collect, record, and process any 

collected data and was used in conjunction with the Servo Failure or Plane Flyer scripts. The 

Servo Failure code was used to communicate with the Cube Orange to command specific control 

actuators to stop functioning and how. Plane Flyer communicates with the Cube Orange to 

upload a four-point mission, change the flight mode, and provide an excitation input. Before 

each flight, a Secure Shell (SSH) connection is established between the GCS laptop and the RPI 

companion computer in the EdgeTRA, which allowed for any of these Python scripts to be 

started in flight if necessary. However, the Data Recorder was always started before the 

EdgeTRA took off as this code would idle, waiting for pilot input to start or stop taking data with 

the RC transmitter. More detail on these codes' specific use, manual and auto control methods 

are included in this chapter's following sections. 

 

 

Figure 20-Flight operations types and Python code used with each 
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5.1 MANUAL CONTROL 

 Initial flight testing showed that the controllability diagnostic running autonomously 

would be complex and would require more than one Python script functioning simultaneously. 

Therefore, initial work focused on the aircraft being manually piloted while the aircraft was 

underway with the Cube Orange in STABILIZE flight mode. This controllability check’s final 

intent is to use it while the aircraft is under a fully autonomous mode, such as the AUTO mode, 

where the plane is flying to waypoints. However, while in AUTO mode, the Cube Orange flight 

controller has its own Proportional, Integral, and Derivative (PID) gains, affecting how the ARX 

model is built. Therefore, STABILIZE mode is used during manual control testing, and the Cube 

Orange flight controller is still in the loop, and its effect is captured just as if AUTO mode is 

used. 

 In manual control, the basic operation is that the pilot provides some RC input to the 

aircraft to excite it in a way that is as non-invasive as possible to its trajectory. For example, a 

roll input that follows a sine wave trajectory allows the aircraft to start neutral roll left or right, 

depending on the sign convention, and return to neutral. This sine wave input is non-invasive in 

that the aircraft is left on its original heading when the maneuver is completed. The sine wave 

input can also be applied to the pitch and yaw axis similarly. 

 Before starting the input excitations, the pilot flies the plane downwind to the desired 

altitude of 300ft approximately using an RC transmitter from a 3rd person view and visually 

checks the aircraft for wings level trim condition. An example of what the pilot would consider 

wings level was captured using a GoPro Max 360 camera, as shown in Figure 21.  
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Figure 21-EdgeTRA in wings-level condition 

 

Once these conditions were met, the data recorder was started using an auxiliary switch on the 

RC transmitter. Approximately two seconds of no excitations were provided to allow the data 

recorder to capture some trim condition data. After this period, the pilot then executed sine wave 

inputs to the aircraft via the RC transmitter. First, the roll, then pitch, then yaw was excited in 

this order one at a time manually. Once the yaw excitation was complete, the aircraft was set 

back to trim condition for approximately two seconds before data collection was stopped with 

the RC transmitter. The run's entire duration is about 15 seconds but dependent on how long the 

pilot spends with each excitation and air space available. This routine is performed two times but 

with the pilot changing the input excitation slightly each time. This is once to collect data to 

build the ARX transfer function model and a second time to validate how well the ARX model 

predicts.  



 

 

 

55 

Immediately after the switch on the RC transmitter is set to the stop taking data position, 

the Data Recorder Python code (shown in APPENDIX B) processes the collected data. If the 

data collected from the run is the first data set, this data is used to identify the ARX model. Any 

data sets thereafter use the ARX model to estimate the angular velocity responses. The data 

recorder also calculates the TIC values for each data set and creates pertinent plots of the data 

collected. Therefore, just after two laps around the field, roll, pitch, and yaw angular velocity 

models have been built with data collected on the first lap and validated with collected data on 

the second lap.               

5.2 AUTOMATIC CONTROL 

 Automatic control was used to fly the aircraft in an oval racetrack pattern similar to the 

manual control mode. Auto control is done using the Fly Plane Python code shown in 

APPENDIX D. The pilot manually takes off and flies to an altitude of approximately 300 ft. 

From this point, the ground control station operator starts the Fly Plane Python script and the 

Data Recorder script. The Fly Plane script performs multiple tasks. First, using the GPS 

coordinates from where the EdgeTRA is initially powered, a home point is established. Four 

waypoints relative to the home location form a rectangle approximately 1,000 ft x 400 ft, as 

shown in Figure 22. This mission is then sent from the RPI to the Cube Orange, and the Cube 

Orange flight mode is set to AUTO, all via the Fly Plane script. 
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Figure 22-Auto control waypoints and flight path 

 

 While en route, the Fly Plane script is responsible for providing the excitations to the 

EdgeTRA in a similar manner to the manual control method. However, these excitations were 

only to be performed on the straightaway section between WP two and three, as shown in Figure 

22. Waypoint three is established to be the target waypoint. Therefore, when the Plane Flyer 

script reads from the Cube Orange that the next waypoint is three, excitations are introduced. 

However, as the plane flies from waypoint one to two, the Cube Orange accepts that waypoint 

two had been reached prematurely due to acceptance criteria that waypoint two has been 

reached. Prematurely accepting waypoint two being reached is problematic as the next waypoint 

is the target heading, and the aircraft is still turning to achieve the target heading when the sine 

wave excitations are performed. Therefore, to know when the EdgeTRA is to start sine wave 

maneuvers, a method is developed, as shown in Figure 23. Since the coordinates of the target 

waypoint (waypoint 3) and the airplane are known from GPS, the desired heading relative to 

these coordinates is calculated. Then the desired heading can be compared to the actual heading 

of the EdgeTRA. The difference between the two vectors is called theta. If theta is ±10 degrees 
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and the next waypoint is three, then it is known that excitations can be started. Also, as the 

EdgeTRA is in flight, the desired heading is calculated every tenth of a second.   

 

 

Figure 23-Aircraft target heading determination diagram 

 

 Once the EdgeTRA is between waypoints two and three, the Fly Plane script starts the 

Data Recorder by sending a low PWM signal on the same channel the pilot uses in the manual 

control method. A few seconds of delay is allowed to collect neutral conditions, then sine wave 

inputs are sent to the Cube Orange from the Fly Plane script using the RC_OVERRIDE 

MAVLink message. Sine wave inputs for roll, pitch, and yaw are excited independently in this 

order. After excitations are completed, the data recorder is stopped, and the collected data is 

processed, which all happens before reaching waypoint three. Similar to the manual control 

method, the first data set collected is used to build the angular velocity models. A second data set 

is used for the validation of the models. After the second data set is collected, the aircraft is 

manually landed by the pilot.   
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5.3 FAILURE MODES 

 Failure modes are tested by having the pilot take off and climb to approximately 300 ft. 

Just as before, two laps around an oval track pattern are performed. However, in this case, the 

first lap is used to build the angular velocities model. The applied sine wave excitations are the 

same as before where roll, pitch, and then yaw are independently excited in that order. Before the 

second circuit, the GCS operator executes the Servo Failure Python script (found in APPENDIX 

C). This script requires the GCS operator input for failure mode to enable and duration. A 

message reports on the GCS operator's screen once the desired surface is failed. The timing of 

this is critical. If the failure mode starts too early, the selected failure mode time duration may 

expire before maneuvers are complete. Therefore, the aircraft is under normal conditions when 

the test for abnormal conditions is in progress. The duration of the failed control surface or 

surfaces can be increased, but this runs the risk the aircraft still has a failed control surface after 

data collection is complete, making it hard to control when resetting to collect more data. To 

mitigate these issues, the EdgeTRA is loitered near waypoints 1 and 2, as shown in Figure 24. 

Then the GCS operator executes the Servo Failure Python script with the duration set to 15 

seconds. Once the GCS operator reports the failure has occurred, the PIC immediately stops 

loitering, starts the data recorder, and flies towards waypoint three, performing excitations en 

route. After excitations are completed, the data recorder is then stopped, normal and abnormal 

data are compared, and the EdgeTRA is landed.  
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Figure 24-Flight path with failure modes 
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CHAPTER 6 

DATA COLLECTION 

6.1 SENSORS AND DATA COLLECTED 

 For this work, the use of specialty sensors such as strain gauges is to be excluded so that 

the typical user can implement the controllability diagnostic. Therefore, all collected data must 

be provided by the Cube Orange flight controller and its auxiliary sensors. Table 13 shows the 

available sensors that can be used for the controllability diagnostic. Many of these sensors are 

redundant between the Cube Orange and the auxiliary Here 2 GPS module. This redundancy is 

needed due to a lack of space requiring the Cube Orange to be installed near other wires, 

equipment, and metallic aircraft structure. This proximity to metallic objects causes errors in the 

compass readings. The Here 2 module requires a clear view of the sky. Therefore, it is mounted 

in the open, reducing compass interference. Additionally, these sensors' redundancy allows the 

ArduPlane health diagnostic to perform checks on the listed sensors for correct operation. 

         

Cube Orange 

Accelerometer ICM20948 / ICM20649 / ICM20602 

Gyroscope ICM20948 / ICM20649 / ICM20602 

Compass ICM20948 

Barometric Pressure Sensor MS5611 ×2 

Here 2 GPS 

GPS 72-channel u-blox M8N /QZSS L1C/A 

Accelerometer  ICM20948 

Gyroscope ICM20948 

Compass ICM20948 

Barometric Pressure Sensor MS5611 

Auxiliary Sensors on I2C Bus 

Airspeed 4525 Digital Pressure Transducer 

Table 13-Available sensors for controllability diagnostic 
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In Chapter 3, the relevant data to collect was presented and shown to be gyroscope data, 

commands to the servos, and aircraft airspeed to model angular velocities, as shown in Figure 25. 

  

 

Figure 25-Data used as the input and output to the ARX MIMO model 

 

Table 14 shows all the data collected, such as all PWM commands into the Cube Orange marked 

by RC_Channel_X while the Cube Orange's output commands are denoted as Servo_X. 

  

RC_Channel_1 (PWM) Ailerons 

RC_Channel_2 (PWM) Elevators 

RC_Channel_3 (PWM) Throttle 

RC_Channel_4 (PWM) Rudder 

RC_Channel_5 (PWM)  Cube Orange flight mode select 

RC_Channel_6 (PWM) Data record start and stop 

Servo_1 (PWM) Aileron one  

Servo_2 (PWM) Elevator one 

Servo_3 (PWM) Throttle 

Servo_4 (PWM) Rudder  

Servo_5 (PWM) Aileron Two 

Servo_6 (PWM) Elevator Two 

Servo_7 (PWM) Rudder Two 

Angular velocity x (rad/sec) Roll rate 

Angular velocity y (rad/sec) Pitch rate 

Angular velocity z (rad/sec) Yaw rate 

Airspeed (m/s) Aircraft airspeed 

Table 14-Data collected from Cube Orange 
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 The inputs are RC commands from the PIC, while the output is an altered signal 

depending on the flight mode. For example, there is no flight control algorithm in MANUAL 

mode, and the controls are directly passed without alterations. In this work, data collection is 

either occurring in a STABILIZED or AUTO mode. Both modes alter the RC input to the Cube 

Orange as the control algorithm tries to maintain level flight due to windy conditions or is 

navigating to a waypoint. Therefore, to account for this alteration in the input due to the Cube 

Orange control algorithm, the output to the servos is utilized as the input to the ARX model, as 

shown in Figure 26. 

 

 

Figure 26-Cube Orange input vs. output 

 

Additionally, as shown in Table 14, RC_Channels 5 and 6 are collected for debugging to ensure 

the desired flight mode and proper state of the data recorder were achieved during a run. Angular 

velocity data were collected from only one of the three gyroscopes, as the MAVLink protocol 

used to collect the data is limited by the number of messages and transmission rate. Therefore, 

additional data such as battery voltage, location, altitude, and a plethora of other telemetry data 

were recorded on the SD card of the Cube Orange. This data is important, but only data required 
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to build the ARX transfer function models and perform the controllability diagnostic is collected 

on the RPI companion computer for further processing.     

6.2 MAVLINK MESSAGES 

MAVLink messages are used to communicate with the Cube Orange to either send or 

receive data. This type of serial communication is used with the Cube Orange and is widely used 

in other flight controller platforms as well, making a data collection system built around 

MAVLink messages versatile [46]. Traditionally, MAVLink messages are used in conjunction 

with a telemetry radio pair, allowing GCS to send commands and receive telemetry data from a 

flight controller. In this work, MAVLink messages are transmitted over a wire directly between 

the RPI and Cube Orange. Table 15 shows a list of the messages used. In the received column, 

the previously discussed RC_CHANNELS_RAW, SERVO_OUTPUT_RAW, VFR_HUD, and 

RAW_IMU were used in the ARX angular velocity model building. Also, the PARAM_VALUE 

messages are used during failure modes of operation to determine if the failure mode sent to the 

Cube Orange is received. In the transmitted column is all messages sent via a Python script 

running on the RPI. The RC_OVERRIDE message provides RC input to the Cube Orange as if 

an RC Transmitter is used, which is essential when building models autonomously as there is no 

human interaction, and excitation is required. 

  

Received Transmitted 

RC_CHANNELS_RAW RC_OVERRIDE 

SERVO_OUTPUT_RAW MAV_CMD_DO_SET_SERVO 

VFR_HUD PARAM_SET 

RAW_IMU MAV_DATA_STREAM 

PARAM_VALUE  

Table 15-List of MAVLink messages used to receive and transmit information 



 

 

 

64 

MAV_CMD_DO_SET_SERVO message is used during the implementation of a stuck 

control surface failure mode. This message is sent with a desired servo output number and PWM 

value to drive the servo. As a safety feature, ArduPlane does not allow 

MAV_CMD_DO_SET_SERVO to be used on any servo output of the Cube Orange designated 

for flight control. Therefore, this message is inoperable on any output of the Cube Orange listed 

as aileron, elevator, throttle, and rudder. The PARAM_SET message is used to work around this 

by temporarily changing the servo output assignments. Then the 

MAV_CMD_DO_SET_SERVO message can be implemented to set a servo to the desired PWM 

value. For example, to fail aileron two, which is physically connected to servo output five on the 

Cube Orange, the PARAM_SET message is set to temporally change the function of servo 

output five from aileron to none. Setting the function of output five to none allows the 

MAV_CMD_DO_SET_SERVO to be implemented, simulating a stuck control surface failure. 

Once the failure is complete, PARAM_SET is used to return the function of SERVO five to its 

original state nullifying the failure. For the limited travel failure mode, only the PARAM_SET 

message is used to reduce the allowable throw limits of the desired servo, and it is also used to 

revert the limited failure mode to nominal conditions.    

 Lastly, MAV_DATA_STREAM is used to set the Cube Orange rate to transmit 

MAVLink messages from its ports. ArduPlane separates the data into eight categories, with a 

data rate assigned to each category, as shown in Table 16. For this work, only RAW_SENSORS, 

RC_CHANNELS, and EXTRA2 are needed. Therefore, the remaining categories’ data rates 

were set to zero. As each category's rate was increased, or as more categories were added, the 

maximum attainable rate for all categories was affected. For example, if all categories are set to a 

requested rate of 50Hz, the RAW_SENSORS category can only be received at 15Hz. The other 
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categories such as the RC_CHANNELS are affected as well. Setting unnecessary categories to 

requested data rates of 0 Hz, the RAW_SENSORS category is found to be the requested rate of 

50Hz. Therefore, limiting to only the necessary categories, RAW_SENSORS, RC_CHANNELS, 

and EXTRA2, allowed the data to be collected at 50 Hz, 25Hz, 25Hz, respectively. 

   

MAV_DATA_STREAM 

RAW_SENSORS IMU, Compass, Location 

EXTENDED_STATUS  

RC_CHANNELS RC_Input, Servo_Output 

RAW_COTROLLER  

POSITION  

EXTRA1  

EXTRA2 Airspeed Sensor 

EXTRA3  

Table 16-Attributes of MAV_DATA_STREAM 

 

6.3 RASPBERRY PI FLIGHT COMPUTER 

 The RPI 3B is a lightweight, compact single-board computer that runs the Raspbian 

Stretch operating system using 1GB of RAM and a Quad-Core 1.2Ghz BCM2837 64 CPU. As a 

companion computer to the Cube Orange, the RPI runs the developed Python scripts explained in 

Chapter 5. Figure 27 shows an overview of the three Python scripts that run on the RPI, which 

are used to control the Cube Orange and collect all data via MAVLink messages.  
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Figure 27-Developed Python scripts that run on the RPI 

  

The RPI offers four USB serial ports, as shown in Figure 28. General Purpose Input 

Output (GPIO) and I2C pins are just a few. For data collection, one of the four USB serial ports 

is devoted to the Data Recorder.py script. A second USB port is used for either the Fly Plane.py 

or the Servo Failure.py scripts, while the remaining ports are used for communicating with the 

RPI over the RNode radio SSH connection to start and stop the developed Python scripts. Also, 

to aid in data processing, the time and date of each run were collected. A real-time clock (RTC) 

was added to the RPI, as usually the RPI syncs the date and time when connected to the internet, 

but that is not the case, of course, in flight. A PCF8523 real-time clock is used to keep the date 

and time, even after shutdown. Therefore, all collected data sets are saved with the time and date, 

allowing the data to be compared with the flight log notes if there is a discrepancy. 
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Figure 28-Raspberry Pi USB ports used to connect to Cube Orange 

  

6.4 START AND STOP OF DATA COLLECTION 

 The data collection process needed to be dynamic, in that the time duration between the 

start and stop was not always the same due to imperfect human excitation inputs and delays in 

Python scripts. For example, when the PIC would provide the sine wave input in the manual 

control mode, the duration of the time spent rolling the aircraft can vary from time spent exciting 

pitch and yaw. Therefore, if the data recorder only collects data for a predetermined period and 

the PIC has not finished the input, then only a portion of the run is collected. The same is also 

true for when the Fly_plane.py code is providing the inputs. In the event the Fly_Plane.py code 

is delayed, not all of the input commands would be captured if the data recorder only collects 

data for a fixed period. Therefore, the Data Recorder.py script was made to run continuously in 

the background waiting for a command from an RC transmitter switch. The data recorder 

continuously monitors channel 6 of the Cube Orange RC input, controlled by a three-position 
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switch on the RC transmitter. If the switch sends a low-PWM value, this tells the data recorder to 

start collecting data. When a high-PWM value is received, the data recorder stops taking data, 

and the data is further processed. However, in the case that an excitation maneuver did not go as 

intended, the middle position of channel 6 is used, sending a mid-PWM value of 1500, instead of 

a high-PWM. A mid-PWM value stops the data recorder but does not process or save any of the 

data. Doing this allows another run to be made in that the data recorder idles until the low PWM 

values are received again. Every time a low value is seen, any previous data that has not been 

processed is cleared. This process worked for both manual and auto control methods. However, 

in auto control, channel 6 is controlled using the RC_OVERRIDE MAVLink messages rather 

than the three-position switch on the RC transmitter.    
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CHAPTER 7 

DATA PROCESSING 

 One of the requirements for this work is that all data processing is to be done while in 

flight, and all data is saved and processed using the onboard RPI. After the data is collected, it is 

first discretized. MAVLink messages are secondary to any flight control computations within the 

ArduPlane firmware architecture, meaning the rate at which data is collected may not be 

constant. Figure 29 shows this inconsistent data rate for the IMU, RC Channels input and output, 

and airspeed categories, respectively, versus the number of MAVLink messages collected. 

However, the average message rate is the requested rate of 50 Hz for IMU data, 25 Hz for RC 

channels data, and 25 Hz for airspeed data. This nonconstant data rate is problematic, as the 

change in time for discrete transfer functions must be fixed intervals when building ARX models 

of the roll, pitch, and yaw angular velocities.  

 

Figure 29-Change of time between MAVLink messages 
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Therefore, linear interpolation is used to fix the data into discrete intervals. Before interpolation, 

a verification process is performed. This checks that the average data rate obtained meets the 

requested data rate, and if so, interpolation is performed.  For example, if the IMU average data 

rate is ±5 Hz of the requested 50 Hz, then the data set is interpolated. This verification is to 

ensure the gaps to be interpolated are small. Verification is also done with the RC channels and 

airspeed messages. However, the verification is for ±5 Hz of the requested 25 Hz data instead of 

50 Hz for IMU messages. Another need for interpolation is to make the input and output data set 

arrays the same length. Since the input data, RC channels, and airspeed are collected at 25 Hz 

while the output data, IMU, is at 50 Hz for a given period, there are only half the input data 

points compared to the output data points. Therefore, the inputs are interpolated to provide 50 Hz 

data, making the input and output data sets arrays the same length. The data is then passed to 

SIPPY where the inputs and outputs are used to build the ARX transfer function model. 

This interpolation process is visually verified, as shown in Figure 30. On the y-axis, the 

input to the aileron, elevator, throttle, rudder, and the measured airspeed is shown. The x-axis is 

the time in seconds since the Cube Orange has been powered. Interpolation verification is 

provided by the blue plus and orange triangle symbols. The blue plus symbols represent data in 

the raw form where the change in time is not discrete, while the orange triangles are the 

interpolated data points in discrete time intervals of 0.02 sec. Since the symbols overlap, an 

informal verification of interpolation is provided.  
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Figure 30-Interpolation verification from MIMO_Model_Input_03_14_2020__15_28_51 

 

 Data were temporarily stored in memory on the RPI during the data collection process, 

and for data to be saved for future post-processing, it is saved in a CSV file format in three 

different files using Pandas, a Python library. The first saved file contains data in its raw form, 

while the data used to build the ARX model and the identified MIMO transfer function is saved 

in a second CSV file. The third CSV file contains data used to validate the model and TIC 

results. Each CSV file is saved with the name as the time and date in the 24-hour clock format 

and dependent on the run; they are sorted into a folder named “Model” or “Validation”. Saving 

the data this way allows for a model building run to be paired with its respected validation run. 

Data processing also included calculating the TIC values and saving them in their respective 
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CSV files, whether for model building or validation. However, TIC is also printed on the GCS 

operators screen for inflight fit performance evaluation of the runs, as shown in Figure 31. 

 

Figure 31-SSH terminal screen from RPI on the GCS reporting TIC values  

 

 Furthermore, plots of all collected models and validation data are created and saved for 

further inspection if need be. The plots include data in the raw format vs. interpolated data to 

inspect for proper interpolation. Also, model predictions and measured angular velocity are 

overlaid on one another for a visual inspection of the fit, which gives the ability to quickly check 

the fit of the model versus the measured angular velocity following the landing of the EdgeTRA. 

These plots are saved as PNG files similarly to the CSV files in that the time and date is used as 

the file name and sorted into folders of “Model” or “Validation” as well.   
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CHAPTER 8 

RESULTS 

8.1 MANUAL RC CONTROL MODEL BUILDING 

 As discussed in Chapter 5, manual control uses input excitation commands from the PIC 

while the EdgeTRA is in the STABILIZE flight mode, including the flight controller algorithm 

in a similar way AUTO mode would. The first step in this work is to determine a nominal model 

of the EdgeTRA roll, pitch, and yaw angular velocities. Figure 32 shows all inputs recorded via 

the Data Recorder.py script.  Aileron, elevator, rudder, and airspeed are used as input data to 

build an ARX model. It is shown that the input excitation occurs for roll, pitch, and yaw in that 

order with respect to time. The inputs applied are attempted sine waves from the PIC between 

0.5 and 1Hz frequencies. However, the inputs applied to the servos are not a smooth sine wave, 

as the Cube Orange flight controller is in the loop. Therefore, when excitation is not performed 

on an axis, the input signal is not constant. For example, in the Ele/Ch2 plot between 262 to 266 

and 272 to 277 seconds, the elevator servo input is sporadic about a small magnitude. This small 

change in command is due to the Cube Orange attempting to maintain a constant altitude. 

Additionally, a maximum bank angle of ±45 degrees and a pitch limit of ±30 degrees are 

configured. In this run, the PIC did not achieve the roll limit, although the pitch limit was 

achieved, shown in the Ele/Ch_2 plot at 269 sec. An increase in PWM on the elevator channel 

correlates to the EdgeTRA pitching upward. Therefore, the PIC is commanding the EdgeTRA to 

pitch up. However, the pitch angle of 30 degrees is achieved, and the Cube Orange flight 

controller reduces the PWM value to the elevator servo. The reached pitch limit of 30 degrees 

forms a valley at the peak of the sine wave input, and the purpose of this is to show the 

importance of using the actual input to the servos after the Cube Orange flight controller. Using 
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the inputs directly via the PIC to the Cube Orange results in improper modeling because this 

would not account for these described limits. 

         

Figure 32-Inputs used to identify ARX model for run MIMO_4_05_2020__18_03_08 
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 Figure 33 shows the output or response from the applied input in Figure 32. Roll, Pitch, 

and Yaw rate are shown respectively, while the x-axis shows the time since the Cube Orange has 

been powered. Similar to the applied inputs, the response is not a perfectly smooth sine wave. 

The discussed limit is achieved when looking at the pitch rate at 269 seconds when there is a 

change in the pitch rate magnitude. It is also important to note that the aileron is mixed with the 

rudder movement by 10%. This mixing is used to aid in the navigation of the EdgeTRA while in 

AUTO mode since there is no active control on the yaw axis. Mixing effects can be seen in the 

yaw rate response between 262 and 267 seconds while the ailerons are moved. Mixing of the 

aileron to rudder is only one way, in that if the rudder is moved, the ailerons are unaffected.  

However, it can be seen in the roll rate plots at 272 and 276 seconds there is some rolling 

movement when the rudder is excited. This rolling movement is not due to mixing but rather the 

coupling of the aircraft dynamics. 

  

 

Figure 33-Outputs used to build ARX model for run MIMO_4_05_2020__18_03_08 
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Using the input and output data from Figure 32 and Figure 33, Table 17 shows the 

MIMO identified transfer function used to model the response of the roll, pitch, and yaw angular 

velocities. Developing a MIMO model includes any coupling within the EdgeTRA as each 

input's effect can be related to each output. In the case of the EdgeTRA, the coupling effect of 

the aileron and rudder should be negligible due to the zero degree dihedral angle of the wing 

[49]. However, the rudder may still cause some rolling since the rudder area is not evenly 

distributed about the longitudinal centerline. Additionally, for each column, it is shown that the 

denominator has the same coefficients, while the numerator differs. As previously discussed, the 

transfer function relates the inputs to the outputs. Therefore, the denominator remains the same 

as the output data remains the same throughout a column, and the numerator changes base on the 

applied input. For example, focusing on the roll rate output column, the roll rate output data's 

polynomial is identified and placed into the transfer function's denominator. Then, the aileron 

input data polynomial is identified and placed in the numerator of the transfer function. This 

process repeats for the elevator, rudder, and airspeed inputs. However, only the numerator needs 

to be identified thereafter because the column's roll rate output curve is the same. 

      

Inputs Roll Rate Output Pitch Rate Output Yaw Rate Output 

Aileron 

(PWM) 

4.148𝑧 − 2.435

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧
 

0.1036𝑧 − 0.2063

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧
 

−0.3238𝑧 + 0.3188

𝑧4 − 1.674𝑧3 + 0.453𝑧2 − 0.2403𝑧
 

Elevator 

(PWM) 

0.1924𝑧 − 0.5182

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧
 

−2.386𝑧 + 1.592

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧
 

−0.07169𝑧 + 0.06467

𝑧4 − 1.674𝑧3 + 0.453𝑧2 + 0.2403𝑧
 

Rudder 

(PWM) 

0.5386𝑧 − 0.851

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧
 

0.2618𝑧 − 0.2458

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧
 

−1.05𝑧 + 1.019

𝑧4 − 1.674𝑧3 + 0.453𝑧2 − 0.2403𝑧
 

Airspeed 

(m/s) 

7.506𝑧 − 7.34

𝑧4 − 1.764𝑧3 + 0.9605𝑧2 − 0.1428𝑧
 

21.75𝑧 − 21.44

𝑧4 − 1.284𝑧3 + 0.1198𝑧2 − 0.2287𝑧
 

−7.825𝑧 + 7.936

𝑧4 − 1.674𝑧3 + 0.453𝑧2 + 0.2403𝑧
 

Table 17-Identified ARX transfer function model for roll, pitch, and yaw rates 
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 Figure 34 shows the identified model plotted over the measured response. The blue dots 

represent angular velocity measured from the Cube Orange gyroscope for roll, pitch, and yaw, 

while the orange plus symbol is the model predicted values. The measured and estimated angular 

velocities overlap one another well. However, in this figure, the same input data used to identify 

the ARX model is used to estimate the shown response. Therefore, the fit is expected to be good. 

A second run is performed to validate this model to show that the modeling works even when a 

different input is applied. 

    

 

Figure 34-Fitted output using input from the same data used to build the ARX model for run 

MIMO_4_05_2020__18_03_08 
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 Figure 35 shows the inputs used to validate the previously built ARX model. The inputs 

are applied similarly as before in that roll, pitch, and yaw are excited in this order. Inputs are still 

sine waves. However, the frequency has been reduced by about half, and the amplitude varies 

approximately 25 PWM more than the input used to build the model. Also, in this validation run, 

no limits were achieved. Therefore, the inputs mimicked the sine wave more in the validation 

than in the previous model building run. 

   

 

Figure 35-Inputs used to validate ARX model for run MIMO_4_05_2020__18_03_08 
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 Figure 36 shows the outputs, or the response, from Figure 35 validation inputs. An 

increase in amplitude is seen in the roll rate plot at 309 seconds. The maximum magnitude 

achieved is 3000 milliradians/sec compared to 2200 milliradians/sec in the model building run. 

There also is more activity from the Cube Orange to maintain level flight when an input is not 

applied. Specifically, looking at the roll rate after 311 seconds, the plotted response is jagged. 

The jagged response is also seen in the pitch rate plot before 311 and after 316 seconds. 

  

 

Figure 36-Outputs used to validate ARX model for run MIMO_4_05_2020__18_03_08 
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Figure 37 shows an overlay of the estimated and measured angular velocities for 

validation data. The blue dots show measured angular velocities, while the orange plus symbols 

are estimated angular velocities based on validation inputs. The fit of the two lines visually 

appears to be suitable for roll and pitch. Due to non-linearity, the yaw rate does not fit well, 

which is discussed further in the next chapter. For this run, the TIC metric of fit values is 0.126, 

0.096, and 0.372 for roll, pitch, and yaw, respectively, which supports the assumption that as a 

TIC value tends to zero, the fit is considered to be better. Results from Dorobantu et al. are found 

to be similar with TIC values of  0.12, 0.07, and 0.26 for roll, pitch, and yaw, respectively, using 

a high-wing ultra stick [31]. 

  

 

Figure 37-Fitted output using validation input for run MIMO_4_05_2020__18_03_08 
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In total, 29 runs were performed while under manual control to understand the variance 

in the TIC value from run to run. Figures 38 through 40 show the TIC values for roll, pitch, and 

yaw, respectively, vs. the run number from validation runs. Of the 29 runs, four runs were 

omitted as outliers because the EdgeTRA had reached the end of the field, and the PIC had to 

abort excitations before completion. There is a general trend that as the run number increases, the 

TIC values decrease, indicating a better fit of the angular velocity models. The trend is believed 

to be caused by human errors, such as the PIC is learning to perform the excitations in a more 

repeatable fashion as the run number increases. Weather also affected this decrease in the TIC 

coefficient. Runs 1-10 were performed on days where the flight logbook stated wind conditions 

gusting 11 to 13 mph on the ground. The remaining runs were performed in calm conditions or 

winds of 3 to 5 mph. 

  

 

Figure 38-Manual control roll TIC vs. run number 
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Figure 39-Manual control pitch TIC vs. run number 

 

 

Figure 40-Manual control yaw TIC vs. run number 
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8.2 AUTOMATIC CONTROL MODEL BUILDING 

 With the ability to build roll, pitch, and yaw angular velocity models with manual control 

proven, the focus was shifted to automatic control. Automatic control occurs when the EdgeTRA 

is flying with no human input, invoking the Fly_Plane.py script, as discussed in Chapter 5. 

Figure 41 shows the inputs applied via MAVLink messages from the Fly_Plane.py script. Sine 

wave inputs of 1 Hz, 0.5 Hz, and 1 Hz for roll, pitch, and yaw are applied, respectively. The sine 

waves' amplitude is 200 PWM about the trim PWM signal used to neutralize the control surface, 

and excitations were once again performed in the order of roll, pitch, and yaw. Aileron, elevator, 

rudder, and airspeed are used to build the ARX transfer function model of the inputs shown. Just 

as in manual control model building, the inputs shown are not smooth sine waves as the Cube 

Orange flight controller alters the input for stability, navigation, or if a limit is achieved. A 

reached limit example is shown in the Rudd/Ch4 subplot at 400 seconds; the tops of the sine 

wave’s inputs are truncated. The plateau is caused by the commanded PWM signal being greater 

or less than the allowable PWM limit set for the rudder channel. Until the commanded PWM 

signal is back in range, the Cube Orange keeps sending the maximum or minimum PWM signal, 

which gives the plateau in the input.  
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Figure 41-Inputs used to identify ARX model with auto control for run 

MIMO_6_13_2020__16_18_37 
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Figure 42 shows the output, or response, to the applied inputs in Figure 41. After 399 

seconds, there is more movement in the pitch rate than in manual control runs as the flight 

controller is attempting to maintain a desired altitude in the AUTO flight mode. This additional 

movement was deemed insignificant, as it minimally affected the TIC coefficient for the pitch 

axis. This output is used in addition to the input to identify the ARX transfer function model. 

 

 

Figure 42-Outputs used to identify ARX model with auto control for run 

MIMO_6_13_2020__16_18_37 
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Table 18 shows the identified ARX transfer function model while under automatic 

control based on the input and output data shown in Figure 41 and Figure 42. Just as in the 

manual control mode, the model is based on MIMO. Therefore, any coupling between the axis is 

captured in the model. Additionally, the denominator is the same for each column as it relates to 

the output data curve. Simultaneously, the numerators are all different because they relate each 

input's effect on the desired output. The summation of each column provides the complete model 

for each axis. 

  

Inputs Roll Rate Output Pitch Rate Output Yaw Rate Output 

Aileron 

(PWM) 

2.412𝑧 − 1.431

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧
 

−0.01323𝑧 − 0.0146

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧
 

−0.06946𝑧 + 0.0861

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧
 

Elevator 

(PWM) 

0.179𝑧 − 0.2505

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧
 

−0.9721𝑧 + 0.6156

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧
 

−0.1153𝑧 + 0.1184

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧
 

Rudder 

(PWM) 

0.3203𝑧 − 0.4617

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧
 

0.1452𝑧 − 0.135

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧
 

−0.4781𝑧 + 0.5526

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧
 

Airspeed 

(m/s) 

−34.81𝑧 + 34.15

𝑧4 − 2.131𝑧3 + 1.505𝑧2 − 0.3361𝑧
 

9.365𝑧 − 7.845

𝑧4 − 1.771𝑧3 + 0.7341𝑧2 + 0.0709𝑧
 

−12.14𝑧 + 12.77

𝑧4 − 1.926𝑧3 + 0.9247𝑧2 + 0.01303𝑧
 

Table 18- Identified ARX transfer function model for roll, pitch, and yaw rates for auto control 

 

Figure 43 shows the identified ARX model plotted over the measured angular velocity 

data used to identify the model. The blue dots represent the measured angular velocity from the 

Cube Orange flight controller. In contrast, the orange plus symbol represents the estimated 

angular velocity based on the input data used to build the model. The estimated and measured 

angular velocity appear to correlate well based on an informal visual inspection. However, in the 

pitch rate plot after 399 seconds, there is a mismatch in the model. Once the pitch excitation is 
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completed, the EdgeTRA is no longer at the desired altitude of 75 meters set via the 

Fly_Plane.py script. Therefore, the Cube Orange attempts to reacquire the desired altitude by 

driving the elevator with small inputs. However, based on the measured response, these small 

inputs do not correlate linearly to the output. As the ARX modeling structure is for linear 

modeling, the fit is not expected to be good in this period.    

 Additionally, in the roll rate plot, after 399 seconds, there is a rolling motion. This rolling 

motion is partially due to coupling in the lateral axis between the rudder and aileron. However, 

while the rudder excitation is performed, the elevator maintains the desired altitude of 75 meters. 

When the elevator and rudder are moved simultaneously, this creates a force that rolls the 

EdgeTRA [50]. However, the Cube Orange is in the loop and counteracts the rolling motion 

created by the rudder and elevator. Therefore, the motion found in the roll rate plot after 399 

seconds is attributed to the Cube Orange reacting to the rolling motion produced by the elevator 

and rudder movement at the same time. 
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Figure 43-Fitted output using input from the same data used to build the ARX model for run 

MIMO_6_13_2020__16_18_37 

 

 Figure 44 shows the input used to validate the previously identified ARX model for 

automatic control. Figure 45 shows the blue dots' measured responses and the modeled responses 

shown by the orange plus signs based on this validation input. As discrepancies were seen in the 

fit of the measured and estimated angular velocities for the model building run, this validation 

run shows similar discrepancies. In the pitch rate subplot, after 456 seconds, the pitch excitations 

have been completed. However, there is still a nonlinear change in pitch rate relative to the 

applied input. Also, there is still a rolling motion seen in the roll rate subplot after 454 seconds 

due to the rudder and elevator's simultaneous actuation. However, with these discrepancies, the 

TIC fit coefficients were not drastically affected as they are still similar to TIC values from the 
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manual control method. For this validation run, the TIC values are 0.184, 0.198, 0.214 for roll, 

pitch, and yaw, respectively. 

   

 

Figure 44-Inputs used to validate ARX model for run MIMO_6_13_2020__16_18_37 
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Figure 45-Fitted output using validation for run MIMO_6_13_2020__16_18_37 

 

 In total, 13 nominal runs were collected using the automatic control method. Figures 46 

to 48 show the TIC values for the 13 runs, except for run 4, which is omitted because the yaw 

excitation was incomplete before the end of the run. For roll, pitch, and yaw, TIC values appear 

to have a neutral slope. Compared to the manual control method, using the auto control method 

with excitations commanded by the Fly_Plane.py script appears to provide more repeatable 

results, indicated by the TIC standard deviation values for automatic control being less than 

manual control as shown in Table 19. 
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 Manual Control TIC 

Standard Deviation 

Automatic Control TIC 

Standard Deviation 

Roll 0.0466 0.0275 

Pitch 0.0473 0.0163 

Yaw 0.0623 0.0345 

Table 19- Comparison of manual vs. automatic standard deviation of TIC values 

 

Also, automatic control runs were performed over varying weather conditions, similar to weather 

conditions when manual control runs were performed. Automatic control runs 1-8 were 

performed with ground speed wind conditions of 8-12 mph, while the remaining runs were 

performed in weather conditions with wind 5 mph or less.  

 

 

Figure 46-Automatic control roll TIC vs. run number 
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Figure 47-Automatic control pitch TIC vs. run number 

 

 

Figure 48-Automatic control yaw TIC vs. run number 
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8.3 LACK OF CONTROLLABILITY DETECTION 

 With the baseline model of the angular velocities established, this work is now focused 

on detecting a lack of controllability. In Table 8, the failure modes were described and 

demonstrated using the manual control method. Each failure mode was implemented one at a 

time, and the results were collected. A lack of controllability can be seen visually in Figure 49. In 

this run, both aileron two and elevator two are stuck in a neutral position. In the roll rate versus 

time subplot between 502 and 506 seconds, the ARX model indicates that the roll rate should 

have a greater magnitude than the measured roll rate. A greater pitch rate is also indicated in the 

pitch rate subplot between 505 and 511seconds. 

      

 

Figure 49-Fitted output after aileron two and elevator two are stuck neutral for run 

MIMO_4_05_2020__16_55_18 



 

 

 

94 

Before the introduced failure, as shown in Figure 49, a nominal run was made with results shown 

in Figure 50. The roll, pitch, and yaw angular velocity subplots show the ARX model estimate, 

and the measured angular velocities agreed before the failure was introduced. 

   

 

Figure 50-Fitted output under nominal conditions for run MIMO_4_05_2020__16_55_18 

 

Therefore, the discrepancy between the ARX model and the measured angular velocity increases 

the TIC value and is flagged as a lack of controllability detection on the respective axis. Results 

are shown for all failure mode’s TIC values in detail in the following sections. 
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8.3.1 AILERON TWO STUCK NEUTRAL 

Figure 51 shows the TIC values for all collected data under nominal conditions, as shown 

by the red circles. In addition, runs shown by black squares with checkmarks indicate when 

aileron two was stuck in the neutral position. A lack of controllability is detected if the TIC value 

of a run is greater than the prediction interval, as shown by the light blue dashed line. The 

prediction interval is based on the mean and standard deviation of the TIC values for the 29 

nominal runs and the alpha choice. Alpha equal to 20% is selected, as this allows for greater 

sensitivity for lack of controllability detection. When aileron two is stuck in the neutral position, 

the TIC value for these runs is clearly above the nominal range established by the prediction 

interval, indicating a lack of controllability in the roll axis. 

        

 

Figure 51-Roll TIC vs. run number showing runs when aileron two is failed neutral 
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 While aileron two was stuck in the neutral position, no failure is implemented on the 

pitch axis. Therefore, pitch TIC values should be at or below the prediction interval threshold, 

which is the case for most runs made with this failure, as shown in Figure 52, denoted by the 

black squares with checkmarks. However, run 33 is found to be above the PI, indicating a false 

alarm for the pitch axis.    

 

 

Figure 52-Pitch TIC vs. run number showing runs when aileron two is failed neutral 
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Similarly, for the yaw axis, while aileron two is stuck in the neutral position, the yaw axis had no 

failure introduced. Therefore, the yaw TIC values are at or below the prediction interval, as 

shown in Figure 53 for most failure mode runs, denoted by the black checked squares. However, 

run 32 is above the threshold in the yaw axis, indicating a false alarm on the yaw axis. 

        

 

Figure 53-Yaw TIC vs. run number showing runs when aileron two is failed neutral 
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8.3.2 AILERON TWO WITH LIMITED TRAVEL 

Figure 54 shows the lack of controllability detection for the limited throw by ±25% of 

the aileron two case, shown by the black squares with checkmarks above the prediction interval. 

Compared to the stuck in neutral position aileron case, the limited aileron case has lower TIC 

values, which are expected, as the failure is not as drastic. Also, for pitch and yaw, the TIC 

values do not detect a failure since no failure is introduced on those axes. 

      

 

Figure 54-Roll TIC vs. run number with aileron two having limited travel 
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8.3.3 ELEVATOR TWO STUCK NEUTRAL 

When elevator two is stuck in the neutral position, the TIC values are indicated by the black 

squares with checkmarks, as shown in Figure 55, and are all found to be above the prediction 

interval. This indicates that the failure mode has been detected. However, some of the initial 

nominal runs collected have TIC values near the same magnitude as failure mode runs 31 and 33. 

The TIC values above the PI are believed to be due to gusty weather conditions and insufficient 

PIC input excitation when initial nominal runs were collected. 

 

 

Figure 55-Pitch TIC vs. run number with elevator two stuck neutral 
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8.3.4 ELEVATOR TWO WITH LIMITED TRAVEL 

  For the limited travel of the elevator failure mode, the travel was limited to ± 25%. The 

TIC values for this failure mode are indicated by black squares with checkmarks, as shown in 

Figure 56. All failure mode tests are above the prediction interval, indicating a detection of a lack 

of controllability. 

 

  

Figure 56-Pitch TIC vs. run number with elevator two travel limited 
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8.3.5 AILERON TWO STUCK NEUTRAL AND ELEVATOR TWO LIMITED TRAVEL 

 Combinations of failure modes are also tested. For this failure mode, aileron two is fixed 

at its neutral point, while elevator two is limited to only ± 25% of its full travel simultaneously.  

The TIC value results during the roll axis's failure mode are marked by the black squares with 

checkmarks, as shown in Figure 57. As the TIC values for the runs to test the failure mode in the 

roll axis are above the prediction interval, there is a detection of a lack of controllability in the 

roll axis. 

 

 

Figure 57-Roll TIC vs. run number with aileron two neutral and elevator two travel limited 
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Additionally, since this failure mode contains two compromised control surfaces, the pitch axis 

is also reviewed. As expected, the pitch axis detection of a lack of controllability is found by the 

black squares with checkmarks above the prediction interval, as shown in Figure 58. 

 

 

Figure 58-Pitch TIC vs. run number with aileron two neutral and elevator two travel limited 
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8.3.6 AILERON TWO LIMITED TRAVEL AND ELEVATOR TWO STUCK NEUTRAL 

 The failure mode combination of aileron two with its travel limited to ± 25% of its 

original travel, and elevator two fixed to its neutral position, results are shown in Figure 59 for 

the roll axis. As failure mode runs with the black squares with checkmarks are above the 

prediction interval, there is a detection of a lack of controllability. 

  

 

Figure 59-Roll TIC vs. run number with aileron two limited and elevator two neutral 
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The same is also found for the pitch axis, indicated by the black squares' TIC values with 

checkmarks above the prediction interval, as shown in Figure 60. In comparison to failure modes 

where a surface is fixed to its neutral position or is limited in travel, these results show how more 

drastic failure modes affect the chance of detection. Such as with the failed neutral elevator, the 

TIC values have a larger magnitude than the limited elevator case. 

  

 

Figure 60-Pitch TIC vs. run number with aileron two limited and elevator two neutral 
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8.3.7 AILERON TWO AND ELEVATOR TWO STUCK NEUTRAL 

 When aileron two and elevator two are fixed in their neutral position, a detection of a 

lack of controllability is definitively found for the roll axis. As shown in Figure 61, the black 

squares with checkmarks are for runs 30 to 32. 

                  

 

Figure 61-Roll TIC vs. run number with aileron two and elevator two stuck neutral 
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For the pitch axis, detection of a lack of controllability is also found due to the fixed aileron and 

elevator failure mode combination, indicated by the black squares with checkmarks above the 

prediction interval, as shown in Figure 62. 

   

 

Figure 62-Pitch TIC vs. run number with aileron two and elevator two stuck neutral 
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8.3.8 AILERON TWO AND ELEVATOR TWO WITH LIMITED TRAVEL 

 Results from both aileron two and elevator two having limited travel of ± 25% of their 

original travel show a lack of controllability for the roll axis, which is denoted by the black 

squares with checkmarks, as shown in Figure 63. However, for the roll axis, approximately only 

50% of the runs made with this combination failure mode fall above the prediction interval. This 

partial detection of a lack of controllability is believed to be due to elevator two having limited 

travel while elevator one has full travel. This mismatch in the travel between elevators one and 

two aids in rolling the EdgeTRA. Therefore, even with aileron two being compromised, the roll 

axis angular velocity is closer to its nominal rate due to the travel mismatch between elevator one 

and two, which drives down the roll axis TIC value, indicating a better fit. 

      

 

Figure 63-Roll TIC vs. run number with aileron and elevator travel limited 
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Additionally, for the pitch axis, this combination failure mode is showing detection of a lack of 

controllability indicated by the black squares with checkmarks, as shown in Figure 64. 

Compared to the single failure mode of just elevator two having its travel limited to ± 25% of its 

original travel, the TIC values of the runs made with this combination failure mode appear not to 

be affected for the pitch axis, which is unlike the roll axis. 

  

 

Figure 64-Pitch TIC vs. run number with aileron and elevator travel limited 
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8.3.9 RUDDER LIMITED TRAVEL 

 For the rudder travel limited to ± 25% case, a lack of controllability is found, which is 

indicated by the black squares with checkmarks, as shown in Figure 65. The yaw axis angular 

velocity was the most challenging axis to model due to its moment of inertia, explained in detail 

in Chapter 9. The yaw axis had a large variance in the TIC values for nominal runs, which means 

the chance for false positives for the yaw axis is high. However, the rudder-limited failure mode 

runs still show TIC values above the prediction interval, indicating a problem in the yaw axis. 

   

 

Figure 65-Yaw TIC vs. run number with rudder travel limited 
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8.3.10 RUDDER LIMITED TRAVEL AND ELEVATOR TWO LIMITED TRAVEL  

 A combination of both the rudder and elevator two limited to ± 25% of their original 

throw are tested simultaneously. For the pitch axis, a lack of controllability is found by the black 

squares with checkmarks above the prediction interval, as shown in Figure 66. 

   

  

Figure 66-Pitch TIC vs. run number with elevator two and rudder two travel limited 
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For the yaw axis, the detection of a lack of controllability is found, indicated by the black 

squares with checkmarks above the prediction interval, as shown in Figure 67. Compared to the 

single failure mode of just the rudder limited to ± 25%, results from this combination failure 

mode runs show TIC values of greater magnitude. This is believed to be due to angular velocity 

models being built for each run, and the yaw axis has a significant variance. Since models are 

built for each run, this changes the prediction effectiveness from run to run. Also, as the variance 

is large for the yaw axis's nominal runs, sometimes a model from one run predicts better than 

other runs. Therefore, when the runs are made with the combination failure mode of limited 

travel for both the rudder and elevator two, it is found that these models had higher TIC values 

than when a nominal input was applied. When the failure mode is implemented, the yaw axis 

TIC values only increase, which explains the difference in the yaw axis TIC values for just the 

rudder limited and the combination failure mode of the rudder and elevator two limited.  
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Figure 67-Pitch TIC vs. run number with elevator two and rudder two travel limited 

 

 

 

 

 

 



 

 

 

113 

CHAPTER 9 

DISCUSSION 

9.1 MOMENT OF INERTIA STUDY 

 Results show that ARX angular velocity models fit the roll and pitch axis better than the 

yaw axis, which is based on the fact that TIC values for roll and pitch are closer to zero while at 

the same time have less variance than the yaw axis TIC values. To further understand the 

reasoning behind this, the mass properties of the EdgeTRA are studied. Specifically, the 

moments of inertia (MOI) were measured for the fully configured EdgeTRA in a flight-ready 

state, including the flight battery. Since MOIs are not known for the EdgeTRA, the MOIs are 

experimentally determined using a Bifilar pendulum method, allowing variables in equation (34) 

to be determined. 

 

 
𝐼 =

𝑊𝐴2𝑡2𝑔

16𝑝𝑖2𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟
 (34) 

 

In this method, the EdgeTRA is suspended from two wires oscillating about each principal axis. 

Simultaneously, the time duration for a desired number of cycles is recorded to calculate the 

period [51, 52]. Using two support lines with a known length, 𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟, which are separated by 

some known distance, 𝐴, the Bifilar pendulum method suspends the EdgeTRA about its center of 

gravity. While these two variables are constants, the lengths vary due to the changing orientation 

of the EdgeTRA in determining the MOI for each axis. For example, for estimation of the 𝐼𝑥𝑥 

MOI, the EdgeTRA was required to be oriented nose up, and the two Bifilar lines were attached 
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to a mounting point 8 feet above the ground. The value of 𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟 for 𝐼𝑥𝑥 is relatively short, 

which prevents the 6 foot long fuselage of the EdgeTRA from touching the ground in the nose up 

configuration, as shown in Figure 68. In comparison, the same 8-foot mounting point was used in 

a setup to oscillate about the z-axis, as shown in Figure 68 for 𝐼𝑧𝑧. This configuration allows the 

𝐿𝐵𝑖𝑓𝑖𝑙𝑎𝑟 lines to be longer, as the EdgeTRA is close to resting on its landing gear rather than the 

rudder. 

 

 

Figure 68-Bifilar MOI suspension configuration for Ixx and Izz 

 

A total of 10 oscillations were timed with a stopwatch to determine the oscillation period for 

each axis. Since the stopwatch's exact start and stop is subject to human error, five sets of 10 

oscillations each were timed so the period could be averaged. All periods for each experiment 

and Bifilar wire lengths are shown in APPENDIX E.   
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  The determined MOIs from the Bifilar experiment are shown in Table 20, in addition to 

the mass and center of gravity locations for the flight-ready EdgeTRA. 

 

Mass 3.89 kg 

CoG_x 0.107 m 

CoG_z 0.012 m 

Ixx 0.157 𝑘𝑔 𝑚2 

Iyy 0.527 𝑘𝑔 𝑚2 

Izz 0.589 𝑘𝑔 𝑚2 

Ixz 0.331 𝑘𝑔 𝑚2 

Table 20-Mass and experimentally determined MOI properties of the EdgeTRA 

 

The MOIs describe how a rotational movement about an axis resists a change in direction [53].  

Motion about the roll axis (x) is relatively unimpeded due to the low magnitude of 𝐼𝑥𝑥, allowing 

roll changes to happen quickly. In comparison, 𝐼𝑧𝑧 was found to have a large order of magnitude, 

which means more resistance to change in the yaw direction. The larger magnitude in 𝐼𝑧𝑧 is 

understandable as the combination of the mass of the fuselage and wings affects this axis, which 

allows the EdgeTRA to yaw more than commanded. For example, the EdgeTRA is flying in a 

straight line at trim conditions. The rudder is commanded to yaw the EdgeTRA to the right for a 

0.5 second period and then immediately following, commanded to yaw left for 0.5 seconds. 

Since 𝐼𝑧𝑧 is large, the change in yaw direction is not instantaneous, allowing the EdgeTRA yaw 

motion to overshoot the commanded yaw input. Drifting past the commanded yaw input is 

problematic, as it introduces nonlinearity into the yaw axis in that the response does not directly 

correlate to the provided input, therefore making the linear ARX model incapable of predicting 

as well as shown in Figure 69. In the yaw rate versus time subplot, between 409 and 415 
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seconds, the estimated yaw rate indicated by the orange plus signs does not fully capture the 

measured yaw rate indicated by the blue dots. 

  

Figure 69-Fitted output under nominal conditions for run MIMO_04_05_2020__18_21_23 

 

However, it was found that if greater amplitude input deflections of the rudder are applied, this 

produces a large enough yawing moment capable of overcoming  𝐼𝑧𝑧  more quickly, which 

allowed for a more linear input to output relation, as shown in Figure 70. The yaw rate versus 

time plot between 327 to 332 seconds, as the model Yaw_Rate_Val, fits the measured data, 

Yaw_Rate_Interp, better visually as indicated by the yaw TIC value of 0.257. In comparison to 

Figure 69, a smaller rudder deflection input was applied, which resulted in a larger yaw TIC 

value of 0.336, indicating a less desirable fit.    
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Figure 70-Fitted output under nominal conditions for run MIMO_04_05_2020__18_19_57 

 

This phenomenon did not occur for the roll or pitch axis, although the pitch axis MOI, 𝐼𝑦𝑦, was 

lower but close to 𝐼𝑧𝑧. Not seeing nonlinearity in the pitch axis is believed to be due to the 

elevators having double the surface area compared to the rudder. Having double the surface area 

increases the force capable of overcoming the pitch MOI and aids in a more linear input to 

output relation, similar to when greater amplitude inputs to the rudder were applied. The fit was 

found to be better. In summary, when using the linear ARX modeling technique, the proper 

amplitude of excitation is critical to acquire a model that predicts well. 

9.2 XFLR5 DYNAMIC STABILITY 

An XFLR5 model of the EdgeTRA, as shown in Figure 71, was developed to give a 

better understanding of the dynamic stability. The model is built by providing mass properties, 

physical dimensions, and the airfoil for the wing and tail. The exact airfoil for the wing and 
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empennage of the EdgeTRA is unknown. However, the NACA 0011 airfoil is a close match and 

used throughout in the XFLR5 model. 

  

 

Figure 71- EdgeTRA XFLR5 dynamic model 

 

 Aircraft dynamics are divided into longitudinal and lateral groups. Within the 

longitudinal group, two modes are contained, phugoid and short-period mode. Phugoid mode is 

slow, lightly damped oscillations, and short-period mode is a high frequency or fast oscillations 

that are moderately damped in the pitch axis. Within the lateral group, there are three different 

modes: roll, spiral, and dutch roll. Roll mode pertains to moderately damped low-frequency 

oscillations, the spiral mode has low dampening with low frequency, and the dutch roll mode is 

moderately damped with high frequency. Using eigenvalues, each of these modes can be 

identified for the EdgeTRA. Table 21 shows the eigenvalues of the dynamic modes of the 

EdgeTRA obtained from XFLR5. 
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Table 21- Eigenvalues from XFLR for EdgeTRA 

 

Plotting the eigenvalues in a root locus plot allows dynamic modes of the EdgeTRA to be 

visually shown as in Figure 72 for longitudinal modes and Figure 73 for lateral modes. For the 

imaginary axis, as a closed-loop pole moves further away from the origin, the frequency 

increases. If a closed-loop pole moves more negative in the real axis, then this relates to 

increased dampening. Therefore, each mode can be identified based on the expectation of how 

the mode behaves. For example, the longitudinal phugoid mode is known to have low frequency 

with a small dampening amount, which can be found on the longitudinal root locus near the 

origin.    

Longitudinal Eigenvalue 

Phugoid −0.0091 ± 0.5859𝑖 
Short Period −5.7136 ± 6.1030𝑖 

Lateral Eigenvalue 

Roll Mode 0.1411 ± 0.00𝑖 
Spiral Mode 85.22 ± 0.00𝑖 
Dutch Roll −2.0422 ± 4.7302𝑖 



 

 

 

120 

 

Figure 72-Root locus plot of longitudinal modes for EdgeTRA 

 

 

Figure 73-Root locus plot for lateral modes for EdgeTRA 
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Knowing the eigenvalues of the EdgeTRA, can provide additional reasoning for why the 

yaw angular velocity model does not predict as well as the roll and pitch models. The lateral 

eigenvalues for the roll and spiral modes show the EdgeTRA to be unstable laterally. The Cube 

Orange provides active control to the roll and pitch axis in both manual PIC input and automatic 

input control methods. However, no active control is provided to the yaw axis. Therefore, the roll 

axis's lateral instability is compensated for by the Cube Orange, but that is not the case for the 

yaw axis. 

Not compensating for this instability affects the modeling by allowing a response to be 

present when there is no correlated input, as shown in the red box in Figure 74. Specifically, it is 

shown that even when the rudder input is constant, between 335 seconds and 349 seconds, there 

are still oscillations in the yaw axis output believed to be due to lateral instability. This instability 

reduces the direct correlation of rudder input to the yaw rate response, making it non-linear, 

which reduces the linear yaw rates model ability to predict well. During the time frame 

encompassed by the red box, roll and pitch input maneuvers are implemented. The rudder input 

applied between 340 seconds and 345 seconds is due to the previously discussed mixing of the 

aileron and the rudder. Otherwise, the input signal should be constant until it's time for the yaw 

axis to be excited by the rudder.   
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Figure 74-Rudder input and yaw rate response without active control 

 

Compared to the roll axis, which is also affected by the same lateral instability, the 

aileron input is never truly constant as the flight controller compensates for instability and 

external disturbances, such as wind. By compensating, this provides the model with a more 

correlated roll input to roll rate output for the linear roll rate model since this compensated input 

is used to build the roll rate model, which provides a better fit. An example of this is shown in 

Figure 75. After the roll excitation has been completed, 345 sec and greater, the measured 

Roll_Rate_Interp data fits the roll rate model data, Roll_Rate_Val better throughout the run, in 

the output subplot.  
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Figure 75-Aileron input and roll rate response with active control 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

 This work has shown that it's possible to use response models for roll, pitch, and yaw 

angular velocities as a function of primary control inputs to detect a lack of controllability in a 

sUAV. An entirely onboard controllability detection system was demonstrated using a COTS 

flight controller and aircraft model with no knowledge of mass properties or servo deflection 

angles and a minimum additional sensor suite consisting of airspeed, GPS antenna, and RPI.  

Data collection was performed using MAVLink messages, a common serial 

communication protocol used by the Cube Orange flight controller running ArduPlane firmware. 

MAVLink messages gathered sensor data from the Cube Orange and transmitted them to the RPI 

companion computer. These messages transmitted commands from the RPI to the Cube Orange 

to perform maneuvers and change flight modes. It was found that these messages have secondary 

priority to any main flight control functions. Therefore, the messages' rate was not constant, 

which was problematic as the ARX model was in discrete time. In order to correct this 

inconsistent message rate, MAVLink messages were linearly interpolated based upon the 

average data rate of a particular message group.       

The MIMO ARX black-box modeling technique was used to identify transfer function 

models of the roll, pitch, and yaw angular velocities using only the input and the system's output. 

The models were validated using newly collected input and output data, where the input is 

passed through the model to estimate the output, which is then compared to the measured output. 

Using TIC as a metric for goodness of fit allowed the comparison of the modeled and the 

measured angular velocity on a scale from zero to one. A simple threshold for TIC based on a 
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prediction interval proved useful in this first effort but may be improved upon with a TIC rating 

scale in the future rather than a go/no-go value. 

Since the collected data is experimental, it was found to be susceptible to sensor noise, 

pilot learning, and weather disturbances such as wind. The TIC value varies from run to run 

because of this. A series of nominal runs are made to determine the TIC value threshold of the 

EdgeTRA under nominal conditions. A prediction interval is used as the threshold, created from 

nominal runs, determining if a run is nominal or abnormal based on its TIC value. If the 

prediction interval is increased by reducing alpha, this gives greater acceptance that the aircraft is 

nominal while reducing the acceptance that the EdgeTRA is abnormal. A decreased prediction 

interval or an increased choice of alpha does the opposite, by accepting more of the TIC range as 

abnormal and less nominal. Therefore, based on the collected results of the nominal runs, a 

compromise was made to set the prediction interval to 80%. Setting alpha to 80% increases the 

chance for a false positive but simultaneously increases the chance to detect a lack of 

controllability. Again, future work could look at a graded scale. 

 For this work, a Lack of Controllability is defined as any roll, pitch, or yaw axis with a 

TIC value that falls above the established prediction interval of 80%. A total of 10 different 

failure modes were developed to simulate possible modes of failure to test for the controllability 

of the EdgeTRA. The failure modes tested the control authority of a single axis as well as 

multiple axes simultaneously. Failures were simulated by either completely failing a servo or 

limiting the travel. Results show that a lack of controllability is detected when appropriate with 

minimal false alarms. Even in the case of the limited throw authority, detection of a lack of 

controllability still occurred, showing the method is sensitive to small changes from nominal 
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conditions. This finding is felt to be significant as detecting small changes in controllability is 

essential before it catastrophically affects the aircraft.   

In future work, this controllability diagnostic could benefit from real-time 

implementation. Currently, the developed lack of controllability detection system only runs and 

reports the status of the aircraft when commanded. However, the developed method does not 

disrupt the mission of the sUAV, and testing can be done en route to the next waypoint and can 

be performed many times during a flight.  

Additionally, the ability to detect the direct cause of the controllability problem would be 

a subject for future work. For example, there is a lack of controllability detected on the roll axis. 

The reason could be due to a failing servo, damaged linkage, loss of covering to the wing, or 

wing structural failure. Knowing the cause of failure would help resolve the problem and decide 

the next action for resolution.   

As the foundation of this work's data collection is based on MAVLink messages, future 

work would include investigating other airframe types such as multi-copters and VTOL sUAVs. 

The same concept of roll, pitch, and yaw angular velocity models can be used, except that many 

more inputs can be added. For example, in an octocopter, the signal to each motor can be used as 

the input, which replaces the aileron, elevator, and rudder used for traditional fixed-wing sUAVs. 

The output stays the same as roll, pitch, and yaw angular velocity. A VTOL vehicle, such as the 

Langley Aerodrome No. 8, which is a mix of a multi-copter and fixed-wing sUAV again, could 

follow the same approach. This aircraft has 21 different inputs that affect roll, pitch, and yaw 

angular velocities, which differ in hover and forward flight conditions. Therefore, future work 

could increase understanding of how well this controllability detection diagnostic functions as 

more inputs are added to the system, and complexity increases.  
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APPENDIX A 
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APPENDIX B 

#!/usr/bin/env python 

################################################################ 

#Writen by Brian Duvall January 2020 

#Collects Data from ArduPlane Firmware and builds MIMO models of p,q,r 

#DT is fixed by interpolating all data after recoding to  the Time  

#Debug help: 

#import code 

#code.interact(local=locals()) 

################################################################ 

 

import sys, os 

from optparse import OptionParser 

import time 

import numpy as np 

import math 

import matplotlib 

matplotlib.use('Agg')  #This lets plts run over ssh but prevents output 

try: 

    from SIPPY import * 

except ImportError: 

    import sys, os 

    sys.path.append(os.pardir) 

    from SIPPY import * 

from SIPPY import functionset as fset 

from SIPPY import functionsetSIM as fsetSIM 

import control as cnt 

from control.matlab import * 

import pandas 

import matplotlib.pyplot as plt 

from datetime import datetime 

from pymavlink import mavutil 

from distutils.version import StrictVersion 

if StrictVersion(cnt.__version__) >= StrictVersion('0.8.2'): 

    lsim = cnt.matlab.lsim 

else: 

    def lsim(sys, U = 0.0, T = None, X0 = 0.0): 

        U_ = U 

        if isinstance(U_, (np.ndarray, list)): 

            U_ = U_.T 

        return cnt.matlab.lsim(sys, U_, T, X0) 

 

ROLL_DATA_SET = 0 

PITCH_DATA_SET = 0 

YAW_DATA_SET = 0 

All_AXIS_DATA_SET = 0 

Roll_ID_SYS = None 

Pitch_ID_SYS = None 

Yaw_ID_SYS = None 

MIMO_ID_SYS = None 

Data_Model = None 

File_Name = None 

Data_RAW_Model = None 
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def handle_heartbeat(msg): 

    mode = mavutil.mode_string_v10(msg) 

    is_armed = msg.base_mode & mavutil.mavlink.MAV_MODE_FLAG_SAFETY_ARMED 

    is_enabled = msg.base_mode & mavutil.mavlink.MAV_MODE_FLAG_GUIDED_ENABLED 

 

def handle_rc_raw(msg):                                                              

#This is the input from RX to Pixhawk 

    channel_1 = msg.chan1_raw #Aileron Right                                                       

    channel_2 = msg.chan2_raw #Elevator 

    channel_3 = msg.chan3_raw #Throttle 

    channel_4 = msg.chan4_raw #Rudder 

    channel_5 = msg.chan5_raw #Mode switch 

    channel_6 = msg.chan6_raw #Data record start stop  

    rc_in_time = (msg.time_boot_ms)*0.001  #Time since boot of each message   

    return channel_1, channel_2, channel_3, channel_4, channel_5, channel_6, 

rc_in_time 

 

def handle_rc_raw_out(msg):                                                          

#This is the output side from Pixhawk to the servo  

    channel_1_out = msg.servo1_raw #Aileron Right 

    channel_2_out = msg.servo2_raw #Elevator Left 

    channel_3_out = msg.servo3_raw #Throttle 

    channel_4_out = msg.servo4_raw #Rudder 

    channel_5_out = msg.servo5_raw #Aileron Left 

    channel_6_out = msg.servo6_raw #Elevator Right 

    rc_out_time = (msg.time_usec)*0.000001 # Time when the mavlink message is 

created 

    return channel_1_out, channel_2_out, channel_3_out, channel_4_out, 

channel_5_out, channel_6_out, rc_out_time 

 

def handle_attitude(msg): 

    attitude_data = (msg.roll, msg.pitch, msg.yaw, msg.rollspeed,  

    msg.pitchspeed, msg.yawspeed) 

 

def handle_raw_imu(msg): 

    raw_imu_time = (msg.time_usec)*0.000001 #Time at which the IMU message is 

created 

    raw_imu_roll = msg.xgyro #Roll rate 

    raw_imu_pitch = msg.ygyro #Pitch rate 

    raw_imu_yaw = msg.zgyro # Yaw rate 

    return raw_imu_time,raw_imu_roll, raw_imu_pitch, raw_imu_yaw 

     

def handle_VFR_HUD(msg): 

    air_speed = msg.airspeed 

    return air_speed 

 

def Store_Model_Data_CSV(MIMO_ID_SYS, Roll_Rate_Model, Pitch_Rate_Model, 

Yaw_Rate_Model, TIC_Roll_Model, TIC_Pitch_Model, TIC_Yaw_Model): 

    global File_Name 

    Data_Model = pandas.DataFrame({'Id_SYS':MIMO_ID_SYS.G, 

'Roll_Rate_Model':Roll_Rate_Model, 'Pitch_Rate_Model':Pitch_Rate_Model, 

'Yaw_Rate_Model':Yaw_Rate_Model, 'TIC_Roll_Model':TIC_Roll_Model, 

'TIC_Pitch_Model':TIC_Pitch_Model, 'TIC_Yaw_Model':TIC_Yaw_Model) 

     

    Data_Model.to_csv('MODEL_DATA/MIMO/MODEL/MIMO_Model_'+ str(File_Name) ) 

    return 
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def Store_Validation_SIM_Data(Roll_Rate_Val, Pitch_Rate_Val, Yaw_Rate_Val, 

TIC_Roll_Val, TIC_Pitch_Val, TIC_Yaw_Val): 

    global File_Name 

    Data_Val = pandas.DataFrame({'Roll_Rate_Val':Roll_Rate_Val, 

'Pitch_Rate_Val':Pitch_Rate_Val, 'Yaw_Rate_Val':Yaw_Rate_Val, 

'TIC_Roll_Val':TIC_Roll_Val, 'TIC_Pitch_Val':TIC_Pitch_Val, 

'TIC_Yaw_Val':TIC_Yaw_Val}) 

    Data_Val.to_csv('MODEL_DATA/MIMO/VALIDATION/MIMO_Val'+ str(File_Name) ) 

    return 

 

def Store_Data_RAW_CSV(Channel_1_interpolated, Channel_2_interpolated, 

Channel_3_interpolated, Channel_4_interpolated, Channel_5_interpolated, 

Channel_6_interpolated, 

                       Channel_1_OUT_interpolated, 

Channel_2_OUT_interpolated, Channel_3_OUT_interpolated, 

Channel_4_OUT_interpolated, Channel_5_OUT_interpolated, 

Channel_6_OUT_interpolated, 

                       Roll_Rate_Interpolated, Pitch_Rate_Interpolated, 

Yaw_Rate_Interpolated, Air_speed_VFR_interpolated, MIMO_DATA_SET, Time, DT, 

DT_avg_IMU, DT_avg_RC, DT_avg_VFR): 

    global Data_RAW_Model #Saves first data set until the second one is 

collected 

    global File_Name 

  

    if MIMO_DATA_SET == 0: 

        File_Save_Time = datetime.now()  

        File_Name = File_Save_Time.strftime("%m_%d_%Y__%H:%M:%S") 

        Data_RAW_Model = pandas.DataFrame({'Channel_1 (PWM)': 

Channel_1_interpolated,'Channel_2 (PWM)':Channel_2_interpolated,'Channel_3 

(PWM)':Channel_3_interpolated, 'Channel_4 (PWM)':Channel_4_interpolated, 

'Channel_5 (PWM)':Channel_5_interpolated, 'Channel_6 

(PWM)':Channel_6_interpolated,  

                                   'Channel_1_OUT 

(PWM)':Channel_1_OUT_interpolated,'Channel_2_OUT 

(PWM)':Channel_2_OUT_interpolated, 'Channel_3_OUT 

(PWM)':Channel_3_OUT_interpolated, 'Channel_4_OUT 

(PWM)':Channel_4_OUT_interpolated,'Channel_5_OUT 

(PWM)':Channel_5_OUT_interpolated, 'Channel_6_OUT 

(PWM)':Channel_6_OUT_interpolated, 

                                   'Roll_Rate 

(millirad/sec)':Roll_Rate_Interpolated, 'Pitch_Rate (millirad/sec)': 

Pitch_Rate_Interpolated,'Yaw_Rate (millirad/sec)':Yaw_Rate_Interpolated, 

'Air_Speed_VFR':Air_speed_VFR_interpolated, 'Time (sec)':Time, 'DT':DT, 

'DT_avg_IMU':DT_avg_IMU, 'DT_avg_RC':DT_avg_RC, 'DT_avg_VFR':DT_avg_VFR}) 

          

    if MIMO_DATA_SET != 0: 

        Data_RAW_Val = pandas.DataFrame({'Channel_1 (PWM)': 

Channel_1_interpolated,'Channel_2 (PWM)':Channel_2_interpolated,'Channel_3 

(PWM)':Channel_3_interpolated, 'Channel_4 (PWM)':Channel_4_interpolated, 

'Channel_5 (PWM)':Channel_5_interpolated, 'Channel_6 

(PWM)':Channel_6_interpolated,  

                           'Channel_1_OUT 

(PWM)':Channel_1_OUT_interpolated,'Channel_2_OUT 

(PWM)':Channel_2_OUT_interpolated, 'Channel_3_OUT 

(PWM)':Channel_3_OUT_interpolated, 'Channel_4_OUT 

(PWM)':Channel_4_OUT_interpolated,'Channel_5_OUT 
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(PWM)':Channel_5_OUT_interpolated, 'Channel_6_OUT 

(PWM)':Channel_6_OUT_interpolated, 

                           'Roll_Rate (millirad/sec)':Roll_Rate_Interpolated, 

'Pitch_Rate (millirad/sec)': Pitch_Rate_Interpolated,'Yaw_Rate 

(millirad/sec)':Yaw_Rate_Interpolated, 

'Air_Speed_VFR':Air_speed_VFR_interpolated, 'Time (sec)':Time, 'DT':DT, 

'DT_avg_IMU':DT_avg_IMU, 'DT_avg_RC':DT_avg_RC, 'DT_avg_VFR':DT_avg_VFR}) 

        All_Data = pandas.concat([Data_RAW_Model,Data_RAW_Val], 

keys=['Model_Data', 'Validation_Data']) 

         

        All_Data.to_csv('RAW_DATA/MIMO/MIMO_Raw_Data_'+ str(File_Name) ) 

    return 

 

def Delta_Time(time): 

    i=0 

    sdeltatime=[] 

    while i < len(time)-1:  

        delta_time= time[i+1]-time[i] 

        i=i+1 

        sdeltatime= np.append(sdeltatime,delta_time) 

    dt_avg = np.average(sdeltatime) 

    return dt_avg, sdeltatime 

 

def Master_Time(time, dt):  

    Number_of_Samples = (time[len(time)-1] - time[0])/dt -1                

#Not accounting for first and last sample  

    Time = np.linspace(time[0], time[len(time)-1], Number_of_Samples + 2)  

#The plus 2 accounts for the start and stop parts of linspace  

    return(Time) 

     

def TIC(Measured, Predictions): 

    NUM = np.sqrt(((Predictions - Measured) ** 2).mean()) 

    DOM1 = np.sqrt(((Predictions)**2).mean()) 

    DOM2 = np.sqrt(((Measured)**2).mean()) 

    DOM_TOT = DOM1 + DOM2 

    return NUM/DOM_TOT 

 

def Airspeed(q):                                                          

#Not currently used 

    rho = 1.225 #kg/m^3 

    velocity = np.sqrt((q*0.1*2)/rho) 

    print "velocity" 

    return velocity 

 

def Centering(array): 

    mean = np.mean(array) 

    centered_value = array-mean 

    return centered_value 

 

def Make_Model(y,u,dt,axis): 

    ordersna = [2]                                                              

#Order for Output  

    ordersnb = [[1,1]]                                                          

#Order for Input 

    theta_list = [[1,0]]                                                        

#Time delay list 

    id_sys=system_identification(y,u, 'ARX',centering='MeanVal', 
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ARX_orders=[ordersna, ordersnb, theta_list], tsample=dt)#Built SIMO model 

    #print "Transfer function built for:", axis, "axis",id_sys.G                

#Prints built TF model 

    return(id_sys) 

 

def Make_Model_MIMO(y,u,dt,axis): 

    ordersna = [3,3,3]                                                                                                              

#Order for Output  

    ordersnb = [[2,2,2,2],[2,2,2,2],[2,2,2,2]]                                                                                      

#Order for Input 

    ordersnc = [[1,1,1,1],[1,1,1,1],[1,1,1,1]] 

    theta_list = [[2,2,2,2],[2,2,2,2],[2,2,2,2]]                                                                                    

#Time delay list 

    #id_sys=system_identification(y,u, 'ARMAX',centering='MeanVal', 

ARX_orders=[ordersna, ordersnb,ordersnc, theta_list], tsample=dt, 

ARMAX_max_iterations = 500)#Built MIMO model 

    id_sys=system_identification(y,u, 'ARX',centering='MeanVal', 

ARX_orders=[ordersna, ordersnb, theta_list], tsample=dt) 

    #print "Transfer function built for:", axis, "axis",id_sys.G                

#Prints built TF model 

    return(id_sys) 

 

   

def SIM_OUTPUT(sys,u,master_time):                                                            

#master_time= Time for the run with fiexed width dt intervals see def 

master_time 

    time = master_time - master_time[0]                                                       

# Time must start at zero 

    sim_output, T_lsim, Xsim = lsim(sys.G,u,time) 

    return(sim_output) 

 

def Process_All_Axis_MIMO(Channel_1, Channel_2, Channel_3, Channel_4, 

Channel_5, Channel_6, Channel_IN_Time, 

                          Channel_1_OUT, Channel_2_OUT, Channel_3_OUT, 

Channel_4_OUT, Channel_5_OUT, Channel_6_OUT, Channel_Out_Time, 

                          Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR 

,Air_speed_VFR, MIMO_DATA_SET, Time, DT, DT_avg_IMU, SDelta_Time_IMU, 

DT_avg_RC, SDelta_Time_RC, DT_avg_VFR, SDelta_Time_VFR): 

    global MIMO_ID_SYS 

    global File_Name 

    Axis_type = "MIMO" 

    

#############################################################################

############################################## 

    #Reciver input to Pixhawk 

    Channel_1_interpolated = np.interp(Time, Channel_IN_Time, Channel_1)#Roll 

    Channel_2_interpolated = np.interp(Time, Channel_IN_Time, 

Channel_2)#Pitch 

    Channel_3_interpolated = np.interp(Time, Channel_IN_Time, 

Channel_3)#Throtle 

    Channel_4_interpolated = np.interp(Time, Channel_IN_Time, Channel_4)#Yaw 

    Channel_5_interpolated = np.interp(Time, Channel_IN_Time, Channel_5)#Mode 

switch 

    Channel_6_interpolated = np.interp(Time, Channel_IN_Time, Channel_6)#Data 

recorded start stop 

    

#############################################################################
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############################################## 

    #Pixhawk input to servos 

    Channel_1_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_1_OUT)#Aileron Right 

    Channel_2_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_2_OUT)#Elevator 

    Channel_3_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_3_OUT)#Throttle 

    Channel_4_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_4_OUT)#Rudder 

    Channel_5_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_5_OUT)#Aileron Left 

    Channel_6_OUT_interpolated = np.interp(Time, Channel_Out_Time, 

Channel_6_OUT)#Extra channel that can be used in the future 

    

#############################################################################

############################################## 

    #Sensor input 

    Air_speed_VFR_interpolated = np.interp(Time, Time_VFR, Air_speed_VFR) 

    

#############################################################################

############################################## 

    #Interpolated measured responses 

    Roll_Rate_Interpolated = np.interp(Time, Time_IMU, Roll_Rate) #Roll Rate 

    Pitch_Rate_Interpolated = np.interp(Time, Time_IMU, Pitch_Rate) #Pitch 

Rate 

    Yaw_Rate_Interpolated = np.interp(Time, Time_IMU, Yaw_Rate) #Yaw Rate 

    

#############################################################################

############################################## 

    #Input data used for lsim centered 

    Roll_In_Center = Centering(Channel_1_OUT_interpolated) 

    Pitch_In_Center = Centering(Channel_2_OUT_interpolated) 

    Yaw_In_Center = Centering(Channel_4_OUT_interpolated)       

    Velocity_Center = Centering(Air_speed_VFR_interpolated) 

    

#############################################################################

############################################## 

    #Input and Output arrays built for modeling or lsim 

    U = np.array([Channel_1_OUT_interpolated, Channel_2_OUT_interpolated, 

Channel_4_OUT_interpolated, Air_speed_VFR_interpolated])  

    U_Center = np.array([Roll_In_Center, Pitch_In_Center, Yaw_In_Center, 

Velocity_Center]) 

    Y = np.array([Roll_Rate_Interpolated, Pitch_Rate_Interpolated, 

Yaw_Rate_Interpolated]) 

    

#############################################################################

############################################## 

 

    #Saveing data that is all the same length 

    Store_Data_RAW_CSV(Channel_1_interpolated, Channel_2_interpolated, 

Channel_3_interpolated, Channel_4_interpolated, Channel_5_interpolated, 

Channel_6_interpolated, 

                       Channel_1_OUT_interpolated, 

Channel_2_OUT_interpolated, Channel_3_OUT_interpolated, 

Channel_4_OUT_interpolated, Channel_5_OUT_interpolated, 

Channel_6_OUT_interpolated, 
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                       Roll_Rate_Interpolated, Pitch_Rate_Interpolated, 

Yaw_Rate_Interpolated, Air_speed_VFR_interpolated, MIMO_DATA_SET, Time, DT, 

DT_avg_IMU, DT_avg_RC, DT_avg_VFR) 

     

    if MIMO_DATA_SET == 0: 

        MIMO_ID_SYS = Make_Model_MIMO(Y, U, DT, Axis_type) #Makes MIMO 

transfer function model 

         

          

        MIMO_ID_Model = SIM_OUTPUT(MIMO_ID_SYS,U_Center,Time) #Based on 

MIMO_ID_SYS the input data is used to simulate the responses 

         

        Roll_Rate_Model = MIMO_ID_Model[:,0]  #Simulated Roll Rate 

(millirad/sec) 

        Pitch_Rate_Model = MIMO_ID_Model[:,1] #Simulated Pitch Rate 

(millirad/sec) 

        Yaw_Rate_Model = MIMO_ID_Model[:,2]   #Simulated Yaw Rate 

(millirad/sec) 

         

        TIC_Roll_Model = TIC(Y[0,:], Roll_Rate_Model)   #Estimates how well 

the model fits the measured for roll rate with data used to build the model 

        TIC_Pitch_Model = TIC(Y[1,:], Pitch_Rate_Model) #Estimates how well 

the model fits the measured for pitch rate with data used to build the model 

        TIC_Yaw_Model = TIC(Y[2,:], Yaw_Rate_Model)     #Estimates how well 

the model fits the measured for yaw rate with data used to build the model 

        print"TIC for Roll model is: " + str(TIC_Roll_Model) 

        print"TIC for Pitch model is: " + str(TIC_Pitch_Model) 

        print"TIC for Yaw model is: " + str(TIC_Yaw_Model) 

 

         

         

        #Saveing the ID_TF and simulated responses from model data as well as 

the TIC values   

        Store_Model_Data_CSV(MIMO_ID_SYS, Roll_Rate_Model, Pitch_Rate_Model, 

Yaw_Rate_Model,TIC_Roll_Model, TIC_Pitch_Model, TIC_Yaw_Model) 

 

         

         

        #Check of interpolation for input model-building data set  

        plt.figure(1) 

        plt.subplot(511) 

        Ch_1, = plt.plot(Channel_Out_Time, Channel_1_OUT,'+', label='Ch_1') 

        Ch_1_interp, = plt.plot(Time, 

Channel_1_OUT_interpolated,'^',markerfacecolor='None', label='Ch_1_interp') 

        plt.ylabel('Aile/Ch_1 (PWM)') 

        plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right') 

        plt.title('Recorded vs Interpolated RC Input of Model Data Set') 

         

        plt.subplot(512) 

        Ch_2, = plt.plot(Channel_Out_Time, Channel_2_OUT,'+', label='Ch_2') 

        Ch_2_interp, = plt.plot(Time, 

Channel_2_OUT_interpolated,'^',markerfacecolor='None', label='Ch_2_interp') 

        plt.ylabel('Ele/Ch_2 (PWM)') 

        plt.legend(handles=[Ch_2, Ch_2_interp],loc='upper right') 

         

        plt.subplot(513) 

        Ch_3, = plt.plot(Channel_Out_Time, Channel_3_OUT,'+', label='Ch_3') 
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        Ch_3_interp, = plt.plot(Time, 

Channel_3_OUT_interpolated,'^',markerfacecolor='None', label='Ch_3_interp') 

        plt.ylabel('Thr/Ch_3 (PWM)') 

        plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right') 

         

        plt.subplot(514) 

        Ch_4, = plt.plot(Channel_Out_Time, Channel_4_OUT,'+',label='Ch_4') 

        Ch_4_interp, = plt.plot(Time, 

Channel_4_OUT_interpolated,'^',markerfacecolor='None', label='Ch_4_interp') 

        plt.ylabel('Rud/Ch_4 (PWM)') 

        plt.legend(handles=[Ch_4, Ch_4_interp],loc='upper right') 

         

        plt.subplot(515) 

        Air_Speed, = plt.plot(Time_VFR, Air_speed_VFR,'+', 

label='Air_Speed_VFR') 

        Air_Speed_interp, = plt.plot(Time, 

Air_speed_VFR_interpolated,'^',markerfacecolor='None',label='Air_Speed_VFR_in

terp') 

        plt.ylabel('Air_Speed (m/s)') 

        plt.xlabel('Time(sec)') 

        plt.legend(handles=[Air_Speed, Air_Speed_interp],loc='upper right') 

 

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Input_' + str(File_Name)) 

#Saveing Input data set plots used to build the model 

         

 

        #Check of interpolation for output model-building data set   

        plt.figure(2) 

        plt.subplot(311) 

        Roll_rate, = plt.plot(Time_IMU, Roll_Rate,'+', label='Roll_Rate') 

        Roll_rate_interp, = plt.plot(Time, 

Roll_Rate_Interpolated,'^',markerfacecolor='None', label='Roll_Rate_Interp') 

        plt.ylabel('Roll_Rate (millirad/sec)') 

        plt.title('Recorded vs Interpolated Response of Model Data Set') 

        plt.legend(handles=[Roll_rate, Roll_rate_interp],loc='upper right') 

         

        plt.subplot(312) 

        Pitch_rate, = plt.plot(Time_IMU, Pitch_Rate,'+', label='Pitch_Rate') 

        Pitch_rate_interp, = plt.plot(Time, 

Pitch_Rate_Interpolated,'^',markerfacecolor='None',label='Pitch_Rate_Interp') 

        plt.ylabel('Pitch_Rate (millirad/sec)') 

        plt.legend(handles=[Pitch_rate, Pitch_rate_interp],loc='upper right') 

         

        plt.subplot(313) 

        Yaw_rate, = plt.plot(Time_IMU, Yaw_Rate,'+', label='Yaw_Rate') 

        Yaw_rate_interp, = plt.plot(Time, 

Yaw_Rate_Interpolated,'^',markerfacecolor='None', label='Yaw_Rate_Interp') 

        plt.ylabel('Yaw_Rate (millirad/sec)') 

        plt.xlabel('Time(sec)') 

        plt.legend(handles=[Yaw_rate, Yaw_rate_interp],loc='upper right') 

         

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Output_' + str(File_Name)) 

#Saveing Output data set plots used to build the model 
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        plt.figure(3) 

        #Mesured Roll and Model roll 

        plt.subplot(311) 

        Roll_Rate_Interp, = plt.plot(Time, Roll_Rate_Interpolated,'-o', 

label='Roll_Rate_Interp') 

        Roll_Rate_model, = plt.plot(Time, Roll_Rate_Model,'-+', 

label='Roll_Rate_Model')  

        plt.ylabel('Roll_Rate (millirad/sec) ') 

        plt.title('Measured vs. Modeled Angular Rates With Model Data Set') 

        plt.legend(handles=[Roll_Rate_Interp, Roll_Rate_model],loc='upper 

right') 

        # Measured Pitch and Model Pitch 

        plt.subplot(312) 

        Pitch_Rate_Interp, = plt.plot(Time, Pitch_Rate_Interpolated, '-o', 

label='Pitch_Rate_Interp') 

        Pitch_Rate_model, = plt.plot(Time, Pitch_Rate_Model, '-+', 

label='Pitch_Rate_Model') 

        plt.ylabel('Pitch Rate (millirad/sec)') 

        plt.legend(handles=[Pitch_Rate_Interp, Pitch_Rate_model],loc='upper 

right') 

        # Measured Yaw and Model Yaw 

        plt.subplot(313) 

        Yaw_Rate_Interp, = plt.plot(Time, Yaw_Rate_Interpolated, '-o', 

label='Yaw_Rate_Interp') 

        Yaw_Rate_model, = plt.plot(Time, Yaw_Rate_Model, '-+', 

label='Yaw_Rate_Model') 

        plt.ylabel('Yaw Rate (millirad/sec) ') 

        plt.xlabel('Time (s)') 

        plt.legend(handles=[Yaw_Rate_Interp, Yaw_Rate_model],loc='upper 

left') 

 

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Fitted_Input_Output_' + 

str(File_Name)) #Saveing mesured and modeled responses for model data set 

         

 

        #Check time interval between messages 

        plt.figure(4) 

        #Time_IMU 

        plt.subplot(311) 

        plt.plot(SDelta_Time_IMU, '+') 

        plt.ylabel('Time_IMU_DT (sec) ') 

        #plt.xlabel('Number of intervals') 

        #Time_RC 

        plt.subplot(312) 

        plt.plot(SDelta_Time_RC, '+') 

        plt.ylabel('Time_RC_DT (sec) ') 

        #plt.xlabel('Number of intervals') 

        #Time_VFR 

        plt.subplot(313) 

        plt.plot(SDelta_Time_VFR, '+') 

        plt.ylabel('Time_VFR_DT (sec) ') 

        plt.xlabel('Number of intervals') 

 

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/MODEL/MIMO_Model_Delta_Time_' + 

str(File_Name)) #Saveing change of time for diffrent mavlink messaages for 
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model data set 

 

 

        plt.close(1) 

        plt.close(2) 

        plt.close(3) 

        plt.close(4) 

        print "Data processing for model building compleat!" 

        #plt.show() 

 

       

 

    if MIMO_DATA_SET != 0: 

        MIMO_ID_Val = SIM_OUTPUT(MIMO_ID_SYS,U_Center,Time)  

 

        Roll_Rate_Val = MIMO_ID_Val[:,0]  #Simulated Roll Rate (millirad/sec) 

with calidation data 

        Pitch_Rate_Val = MIMO_ID_Val[:,1] #Simulated Roll Rate (millirad/sec) 

with validation data 

        Yaw_Rate_Val = MIMO_ID_Val[:,2]   #Simulated Roll Rate (millirad/sec) 

with validation data 

         

        TIC_Roll_Val = TIC(Y[0,:], MIMO_ID_Val[:,0])  #Estimates how well the 

model fits the mesured for roll rate with validation data 

        TIC_Pitch_Val = TIC(Y[1,:], MIMO_ID_Val[:,1]) #Estimates how well the 

model fits the mesured for pitch rate with validation data 

        TIC_Yaw_Val = TIC(Y[2,:], MIMO_ID_Val[:,2])   #Estimates how well the 

model fits the mesured for yaw rate with validation data 

        print("TIC for Roll_Validation is: " + str(TIC_Roll_Val)) 

        print("TIC for Pitch_Validation is: " + str(TIC_Pitch_Val)) 

        print("TIC for Yaw_Validation is: " + str(TIC_Yaw_Val)) 

 

        #Saveing the simulated responses for validation as well as the TIC 

values 

        Store_Validation_SIM_Data(Roll_Rate_Val, Pitch_Rate_Val, 

Yaw_Rate_Val, TIC_Roll_Val, TIC_Pitch_Val, TIC_Yaw_Val) 

 

        if TIC_Roll_Val < 0.16: 

            print " Roll Okay!!!!" 

        elif TIC_Roll_Val > 0.18: 

            print "Problem with Roll Axis" 

         

 

        ##Check of interpolation for input validation data set 

        plt.figure(1) 

        plt.subplot(511) 

        Ch_1, = plt.plot(Channel_Out_Time, Channel_1_OUT,'+', label='Ch_1') 

        Ch_1_interp, = plt.plot(Time, 

Channel_1_OUT_interpolated,'^',markerfacecolor='None', label='Ch_1_interp') 

        plt.ylabel('Aile/Ch_1 (PWM)') 

        plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right') 

        plt.title('Recorded vs Interpolated RC Input of Model Data Set') 

         

        plt.subplot(512) 

        Ch_2, = plt.plot(Channel_Out_Time, Channel_2_OUT,'+', label='Ch_2') 

        Ch_2_interp, = plt.plot(Time, 

Channel_2_OUT_interpolated,'^',markerfacecolor='None', label='Ch_2_interp') 
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        plt.ylabel('Ele/Ch_2 (PWM)') 

        plt.legend(handles=[Ch_2, Ch_2_interp],loc='upper right') 

         

        plt.subplot(513) 

        Ch_3, = plt.plot(Channel_Out_Time, Channel_3_OUT,'+', label='Ch_3') 

        Ch_3_interp, = plt.plot(Time, 

Channel_3_OUT_interpolated,'^',markerfacecolor='None', label='Ch_3_interp') 

        plt.ylabel('Thr/Ch_3 (PWM)') 

        plt.legend(handles=[Ch_1, Ch_1_interp],loc='upper right') 

         

        plt.subplot(514) 

        Ch_4, = plt.plot(Channel_Out_Time, Channel_4_OUT,'+',label='Ch_4') 

        Ch_4_interp, = plt.plot(Time, 

Channel_4_OUT_interpolated,'^',markerfacecolor='None', label='Ch_4_interp') 

        plt.ylabel('Rud/Ch_4 (PWM)') 

        plt.legend(handles=[Ch_4, Ch_4_interp],loc='upper right') 

         

        plt.subplot(515) 

        Air_Speed, = plt.plot(Time_VFR, Air_speed_VFR,'+', 

label='Air_Speed_VFR') 

        Air_Speed_interp, = plt.plot(Time, 

Air_speed_VFR_interpolated,'^',markerfacecolor='None',label='Air_Speed_VFR_in

terp') 

        plt.ylabel('Air_Speed (m/s)') 

        plt.xlabel('Time(sec)') 

        plt.legend(handles=[Air_Speed, Air_Speed_interp],loc='upper right') 

 

 

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Input_' + str(File_Name)) 

#Saveing Input data set plots used for model validation 

         

         

        plt.figure(2) 

        plt.subplot(311) 

        Roll_rate, = plt.plot(Time_IMU, Roll_Rate,'+', label='Roll_Rate') 

        Roll_rate_interp, = plt.plot(Time, 

Roll_Rate_Interpolated,'^',markerfacecolor='None', label='Roll_Rate_Interp') 

        plt.ylabel('Roll_Rate (millirad/sec)') 

        plt.title('Recorded vs Interpolated Response of Model Data Set') 

        plt.legend(handles=[Roll_rate, Roll_rate_interp],loc='upper right') 

         

        plt.subplot(312) 

        Pitch_rate, = plt.plot(Time_IMU, Pitch_Rate,'+', label='Pitch_Rate') 

        Pitch_rate_interp, = plt.plot(Time, 

Pitch_Rate_Interpolated,'^',markerfacecolor='None',label='Pitch_Rate_Interp') 

        plt.ylabel('Pitch_Rate (millirad/sec)') 

        plt.legend(handles=[Pitch_rate, Pitch_rate_interp],loc='upper right') 

         

        plt.subplot(313) 

        Yaw_rate, = plt.plot(Time_IMU, Yaw_Rate,'+', label='Yaw_Rate') 

        Yaw_rate_interp, = plt.plot(Time, 

Yaw_Rate_Interpolated,'^',markerfacecolor='None', label='Yaw_Rate_Interp') 

        plt.ylabel('Yaw_Rate (millirad/sec)') 

        plt.xlabel('Time(sec)') 

        plt.legend(handles=[Yaw_rate, Yaw_rate_interp],loc='upper right') 
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        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Output_' + 

str(File_Name)) #Saveing Output data set plots used for model validation        

 

        plt.figure(3) 

        #Mesured Roll and Model roll 

        plt.subplot(311) 

        Roll_Rate_Interp, = plt.plot(Time, Roll_Rate_Interpolated,'-o', 

label='Roll_Rate_Interp') 

        Roll_Rate_val, = plt.plot(Time, Roll_Rate_Val,'-+', 

label='Roll_Rate_Val')  

        plt.ylabel('Roll_Rate (millirad/sec) ') 

        plt.title('Measured vs Modeled Angular Rates With Validation Data 

Set') 

        plt.legend(handles=[Roll_Rate_Interp, Roll_Rate_val],loc='upper 

right') 

        # Measured Pitch and Model Pitch 

        plt.subplot(312) 

        Pitch_Rate_Interp, = plt.plot(Time, Pitch_Rate_Interpolated, '-o', 

label='Pitch_Rate_Interp') 

        Pitch_Rate_val, = plt.plot(Time, Pitch_Rate_Val, '-+', 

label='Pitch_Rate_Val') 

        plt.ylabel('Pitch Rate (millirad/sec)') 

        plt.legend(handles=[Pitch_Rate_Interp, Pitch_Rate_val],loc='upper 

right') 

        # Measured Yaw and Model Yaw 

        plt.subplot(313) 

        Yaw_Rate_Interp, = plt.plot(Time, Yaw_Rate_Interpolated, '-o', 

label='Yaw_Rate_Interp') 

        Yaw_Rate_val, = plt.plot(Time, Yaw_Rate_Val, '-+', 

label='Yaw_Rate_Val') 

        plt.ylabel('Yaw Rate (millirad/sec) ') 

        plt.xlabel('Time (s)') 

        plt.legend(handles=[Yaw_Rate_Interp, Yaw_Rate_val],loc='upper left') 

 

 

        plt.gcf().set_size_inches(11,8.5)        

        plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Fitted_Input_Output_' + 

str(File_Name)) #Saveing mesured and modeled responses for validation data 

set 

 

 

        #Check time interval between messages 

        plt.figure(4) 

        #Time_IMU 

        plt.subplot(311) 

        plt.plot(SDelta_Time_IMU, '+') 

        plt.ylabel('Time_IMU_DT (sec) ') 

        #plt.xlabel('Number of intervals') 

        #Time_RC 

        plt.subplot(312) 

        plt.plot(SDelta_Time_RC, '+') 

        plt.ylabel('Time_RC_DT (sec) ') 

        #plt.xlabel('Number of intervals') 

        #Time_VFR 

        plt.subplot(313) 

        plt.plot(SDelta_Time_VFR, '+') 
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        plt.ylabel('Time_VFR_DT (sec) ') 

        plt.xlabel('Number of intervals') 

 

        plt.gcf().set_size_inches(11,8.5) 

        plt.savefig('PLOTS/MIMO/VALIDATION/MIMO_Val_Delta_Time_' + 

str(File_Name)) #Saveing change of time for diffrent mavlink messaages for 

model data set 

        print "Data processing for validation compleat!" 

        #plt.show() 

 

    return 

 

def Process_Data(Channel_1, Channel_2, Channel_3, Channel_4, Channel_5, 

Channel_6, Channel_IN_Time, 

                 Channel_1_OUT, Channel_2_OUT, Channel_3_OUT, Channel_4_OUT, 

Channel_5_OUT, Channel_6_OUT, Channel_Out_Time, 

                 Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR 

,Air_speed_VFR): 

    global ROLL_DATA_SET 

    global PITCH_DATA_SET 

    global YAW_DATA_SET 

    global All_AXIS_DATA_SET 

 

    #First check for correct DT value                             

    DT_avg_IMU, SDelta_Time_IMU = Delta_Time(Time_IMU)      #DT stats on IMU 

mavlink messages 

    DT_avg_RC, SDelta_Time_RC = Delta_Time(Channel_IN_Time) #DT stats on RC 

Channel mavlink messages 

    DT_avg_VFR, SDelta_Time_VFR = Delta_Time(Time_VFR)      #DT stats on 

Time_VFR 

    print "IMU_Message_Rate_Avg (Hz)", 1/DT_avg_IMU, "\tRC_Message_Rate_Avg 

(Hz)", 1/DT_avg_RC , "\tVFR_Message_Rate_Avg (Hz)", 1/DT_avg_VFR  

     

     

         

 

    if (DT_avg_IMU > 0.015) and (DT_avg_IMU < 0.07): 

        DT = 0.02                             #Sets the time interval for all 

samples to collected at 

        print "50 Hz data" 

    if (DT_avg_IMU >0.002) and (DT_avg_IMU < 0.01): 

        DT = 0.005 

        print "200 Hz data" 

         

    Time = Master_Time(Time_IMU, DT)     #Creates Time vector based on length 

of the test used as the baseline for all interpolation 

    

##    if (any(Channel_1_OUT>1500)) and (any(Channel_1_OUT<1450)): 

##        if (any(Channel_2_OUT>1700)) and (any(Channel_2_OUT<1535)): 

##            if (any(Channel_4_OUT>1600)) and (any(Channel_4_OUT<1500)): 

    print "Going into MIMO" 

    Process_All_Axis_MIMO(Channel_1, Channel_2, Channel_3, Channel_4, 

Channel_5, Channel_6, Channel_IN_Time, 

                          Channel_1_OUT, Channel_2_OUT, Channel_3_OUT, 

Channel_4_OUT, Channel_5_OUT, Channel_6_OUT, Channel_Out_Time, 

                          Time_IMU, Roll_Rate, Pitch_Rate, Yaw_Rate, Time_VFR 

,Air_speed_VFR, All_AXIS_DATA_SET, Time, DT, DT_avg_IMU, SDelta_Time_IMU, 
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DT_avg_RC, SDelta_Time_RC, DT_avg_VFR, SDelta_Time_VFR)  

    All_AXIS_DATA_SET = All_AXIS_DATA_SET + 1 

    return    

 

def read_loop(m): 

    stime_channel = np.array([]) 

    schannel_1 = np.array([]) 

    schannel_2 = np.array([]) 

    schannel_3 = np.array([]) 

    schannel_4 = np.array([]) 

    schannel_5 = np.array([]) 

    schannel_6 = np.array([]) 

    ######################### 

    stime_channel_out = np.array([]) 

    schannel_1_out = np.array([]) 

    schannel_2_out = np.array([]) 

    schannel_3_out = np.array([]) 

    schannel_4_out = np.array([]) 

    schannel_5_out = np.array([]) 

    schannel_6_out = np.array([]) 

    ########################## 

    stime_imu= np.array([]) 

    sxgyro = np.array([]) 

    sygyro = np.array([]) 

    szgyro = np.array([]) 

    ######################### 

    svfr_time = np.array([]) 

    sair_speed = np.array([]) 

   

     

    while True: 

         

         

        #print"Waiting to get data" 

        channel_6 =1500 

        msg = None 

        while not msg: 

            msg = m.recv_match() 

                       

              

        msg_type = msg.get_type() 

        if msg_type == "BAD_DATA": 

                if mavutil.all_printable(msg.data): 

                        sys.stdout.write(msg.data) 

                        sys.stdout.flush() 

        elif msg_type == "RC_CHANNELS": 

                channel_1, channel_2, channel_3, channel_4, channel_5, 

channel_6, rc_in_time  = handle_rc_raw(msg) 

                 

         

        last_imu_time = None  

        while channel_6 < 1450: 

 

            if last_imu_time == None: 

                print("Takeing Data") 

                 

            msg = None 
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            while not msg: 

                msg = m.recv_match() 

                 

                                     

            # handle the message based on its type 

            msg_type = msg.get_type() 

            if msg_type == "BAD_DATA": 

                    if mavutil.all_printable(msg.data): 

                            sys.stdout.write(msg.data) 

                            sys.stdout.flush() 

            elif msg_type == "RC_CHANNELS": 

                    channel_1, channel_2, channel_3, channel_4, channel_5, 

channel_6, rc_in_time  = handle_rc_raw(msg) 

                    stime_channel= np.append(stime_channel, rc_in_time) 

                    schannel_1 = np.append(schannel_1, channel_1) 

                    schannel_2 = np.append(schannel_2, channel_2) 

                    schannel_3 = np.append(schannel_3, channel_3) 

                    schannel_4 = np.append(schannel_4, channel_4) 

                    schannel_5 = np.append(schannel_5, channel_5) 

                    schannel_6 = np.append(schannel_6, channel_6) 

                                             

            elif msg_type == "SERVO_OUTPUT_RAW": 

                    channel_1_out, channel_2_out, channel_3_out, 

channel_4_out, channel_5_out, channel_6_out, rc_out_time = 

handle_rc_raw_out(msg) 

                    stime_channel_out = np.append(stime_channel_out, 

rc_out_time) 

                    schannel_1_out = np.append(schannel_1_out, channel_1_out) 

                    schannel_2_out = np.append(schannel_2_out, channel_2_out) 

                    schannel_3_out = np.append(schannel_3_out, channel_3_out) 

                    schannel_4_out = np.append(schannel_4_out, channel_4_out) 

                    schannel_5_out = np.append(schannel_5_out, channel_5_out) 

                    schannel_6_out = np.append(schannel_6_out, channel_6_out) 

                                    

            #elif msg_type == "HEARTBEAT": 

                    #handle_heartbeat(msg) 

                                

            elif msg_type == "RAW_IMU": 

                    raw_imu_time,raw_imu_roll, raw_imu_pitch, raw_imu_yaw = 

handle_raw_imu(msg) 

                    stime_imu= np.append(stime_imu,raw_imu_time) 

                    sxgyro = np.append(sxgyro, raw_imu_roll)  

                    sygyro = np.append(sygyro, raw_imu_pitch) 

                    szgyro = np.append(szgyro, raw_imu_yaw) 

                    last_imu_time = raw_imu_time 

                     

                  

            elif msg_type =="VFR_HUD": 

                    air_speed = handle_VFR_HUD(msg) 

                    #if last_imu_time is not None: 

                    if (last_imu_time != None) and (air_speed > 1):      

#This eliminates zeros airspeed values!!!!!!!!!!!!!!!! need to check!!!!! 

                        svfr_time = np.append(svfr_time, last_imu_time) 

                        sair_speed = np.append(sair_speed, air_speed) 

                                             

            elif msg_type == "ATTITUDE": 

                    handle_attitude(msg) 
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        if (schannel_1.size > 1) and (channel_6 > 1600): 

                print("Entering Data Processing....") 

                Process_Data(schannel_1, schannel_2, schannel_3, schannel_4, 

schannel_5, schannel_6, stime_channel, schannel_1_out, schannel_2_out, 

schannel_3_out, schannel_4_out, schannel_5_out, schannel_6_out, 

stime_channel_out, stime_imu, sxgyro, sygyro, szgyro, svfr_time ,sair_speed) 

                stime_channel = np.array([]) 

                schannel_1 = np.array([]) 

                schannel_2 = np.array([]) 

                schannel_3 = np.array([]) 

                schannel_4 = np.array([]) 

                schannel_5 = np.array([]) 

                schannel_6 = np.array([]) 

                ######################### 

                stime_channel_out = np.array([]) 

                schannel_1_out = np.array([]) 

                schannel_2_out = np.array([]) 

                schannel_3_out = np.array([]) 

                schannel_4_out = np.array([]) 

                schannel_5_out = np.array([]) 

                schannel_6_out = np.array([]) 

                ########################## 

                stime_imu= np.array([]) 

                sxgyro = np.array([]) 

                sygyro = np.array([]) 

                szgyro = np.array([]) 

                ######################### 

                svfr_time = np.array([]) 

                sair_speed = np.array([]) 

 

 

       

def main(): 

 

    # read command-line options 

    parser = OptionParser("readdata.py [options]") 

    parser.add_option("--baudrate", dest="baudrate", type='int', 

                                      help="master port baud rate", 

default=921600) 

    parser.add_option("--device", dest="device", default= 

"/dev/ttyPIXHAWK_DATA", help="serial device") 

    parser.add_option("--rate", dest="rate", default=50, type='int', 

help="requested stream rate") 

    parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int', 

                                      default=255, help='MAVLink source 

system for this GCS') 

    parser.add_option("--showmessages", dest="showmessages", 

action='store_true', 

                                      help="show incoming messages", 

default=False) 

     

 

 

     

    (opts, args) = parser.parse_args() 
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    if opts.device is None: 

            print("You must specify a serial device") 

            sys.exit(1) 

 

    # create a mavlink serial instance 

    master = mavutil.mavlink_connection(opts.device, baud=opts.baudrate) 

 

    # wait for the heartbeat msg to find the system ID 

    master.wait_heartbeat() 

 

    # request data to be sent at the given rate for IMU 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_RAW_SENSORS, 50, 1) 

    # request data to be sent at the given rate for EXTENDED STATUS 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_EXTENDED_STATUS, 25, 0) #Not used 

    # request data to be sent at the given rate for RC 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_RC_CHANNELS, 25, 1) 

    # request data to be sent at the given rate for RAW_CONTROLLER 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_RAW_CONTROLLER, 0, 0) #Not used  

    # request data to be sent at the given rate for the position 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_POSITION, 0, 0)#Not used 

    # request data to be sent at the given rate EXTRA 1 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_EXTRA1, 5, 0) #Not used 

    # request data to be sent at the given rate EXTRA 2 (VFR) 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_EXTRA2, 25, 1) 

    # request data to be sent at the given rate EXTRA 3 

    master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

            mavutil.mavlink.MAV_DATA_STREAM_EXTRA3, 0, 0) #Not used 

     

 

     

    print "Connected going to data collection" 

 

 

    read_loop(master) 

 

      

 

if __name__ == '__main__': 

   main() 
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APPENDIX C 

#!/usr/bin/env python 

""" 

Servo_Failer 

Code was written by Brian Duvall March 2020 

Danger this code changes SERVOX_FUNCTION params when run!!! 

Danger this code changes SERVOX_MAX and MIN endpoints!!! 

DO NOT USE WITHOUT MUX BOARD!!! 

Gets servo trim PWM value 

Sets desired servo to its trim condition to simulate a fail-safe 

import code 

code.interact(local=locals()) 

""" 

 

import sys, os 

from optparse import OptionParser 

import time 

from pymavlink import mavutil 

import math 

 

 

    

def Set_RC_Channel_PWM(master, id, pwm=1500): 

    """ Set RC channel PWM value 

    Args: 

        id (TYPE): Channel ID 

        pwm (int, optional): Channel pwm value 1100-1900 

    """ 

    if id < 1: 

        print("Channel does not exist.") 

        return 

 

    # We only have 8 channels 

    # https://mavlink.io/en/messages/common.html#RC_CHANNELS_OVERRIDE 

    if id < 9: 

        rc_channel_values = [65535 for _ in range(8)] 

        rc_channel_values[id - 1] = pwm 

        master.mav.rc_channels_override_send( 

            master.target_system,                # target_system 

            master.target_component,             # target_component 

            *rc_channel_values)                  # RC channel list, in 

microseconds. 

    return 

 

 

def Channel_Overide(master, ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8): 

    msg = master.mav.rc_channels_override_send( 

    0,#master.target_system, 

    0,#master.target_component, 

    ch1, 

    ch2, 

    ch3, 

    ch4, 

    ch5, 

    ch6, 



 

 

 

152 

    ch7, 

    ch8) 

    master.mav.send(msg) 

    print ("Sent message") 

    return 

 

def Read_Param_Value(master,param): 

    while True:  

        master.mav.param_request_read_send(master.target_system, 

master.target_component,param,-1) 

        message = master.recv_match(type='PARAM_VALUE', 

blocking=True).to_dict() 

        time.sleep(0.02) 

        if param == message['param_id']: 

            #print('name: %s\tvalue: %d' % (message['param_id'].decode("utf-

8"), message['param_value'])) 

            return message['param_value'] 

 

def Set_Param(master, param, param_value): 

    master.mav.param_set_send( 

    master.target_system, master.target_component, 

    param, 

    param_value, 

    mavutil.mavlink.MAV_PARAM_TYPE_REAL32 

    ) 

def Set_Servo(master, servo_number, pwm_value): 

    msg = master.mav.command_long_encode( 

    master.target_system, 

    master.target_component, 

    mavutil.mavlink.MAV_CMD_DO_SET_SERVO, 

    0, 

    servo_number, 

    pwm_value, 

    0, 0, 0, 0, 0) 

 

    master.mav.send(msg) 

    return 

     

 

def read_loop(m): 

    Ch1=1 

    Ch2=2 

    Ch3=3 

    Ch4=4 

    Ch5=5 

    Ch6=6 

     

    Ch1_Trim = Read_Param_Value(m,'SERVO1_TRIM') #Right_Aileron 

    CH1_Min_Orig = Read_Param_Value(m,'SERVO1_MIN') 

    CH1_Max_Orig = Read_Param_Value(m,'SERVO1_MAX') 

    ###################################################### 

    Ch5_Trim = Read_Param_Value(m,'SERVO5_TRIM') #Left_Aileron 

    CH5_Min_Orig = Read_Param_Value(m,'SERVO5_MIN') 

    CH5_Max_Orig = Read_Param_Value(m,'SERVO5_MAX') 

    ###################################################### 

    Ch2_Trim = Read_Param_Value(m,'SERVO2_TRIM') #Right_Elevator 

    CH2_Min_Orig = Read_Param_Value(m,'SERVO2_MIN') 
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    CH2_Max_Orig = Read_Param_Value(m,'SERVO2_MAX') 

    ###################################################### 

    Ch6_Trim = Read_Param_Value(m,'SERVO6_TRIM') #Left_Elevator 

    CH6_Min_Orig = Read_Param_Value(m,'SERVO6_MIN') 

    CH6_Max_Orig = Read_Param_Value(m,'SERVO6_MAX') 

    ###################################################### 

    Ch7_Trim = Read_Param_Value(m,'SERVO7_TRIM') #Rudder 

    CH7_Min_Orig = Read_Param_Value(m, 'SERVO7_MIN')   #Rudder Min 

    CH7_Max_Orig = Read_Param_Value(m, 'SERVO7_MAX')   #Rudder Max 

 

    #Failure combo 

    #C1 = F_AL5_ELE6 

    #C2 = F_AL5_L_ELE6 

    #C3 = L_AL5_F_ELE6 

    #C4 = L_AL5_ELE6 

    while (True): 

        #print"C1 = F_AL5_ELE6, C2 = F_AL5_L_ELE6, C3 = L_AL5_F_ELE6, C4 = 

L_AL5_ELE6" 

        print"C5 = L_ELE6_L_RUDD7, C6 = F_ELE6_L_RUDD7, C7 = L_AL5_L_RUDD7, 

C8 = F_AL5_L_RUDD7"     

        failure_mode = raw_input("Enter a failure mode, LIM_AL5, AL5, 

LIM_ELE6, ELE6, RUDD7, C1, C2, C3, C4, C5, C6, C7, C8:") 

        duration = input("Enter the time duration of failure:") 

         

        if failure_mode == 'LIM_AL1': 

            CH1_Min_New = int(Ch1_Trim - abs((CH1_Min_Orig - Ch1_Trim)/4))  

#Get new Min PWM limit 

            CH1_Max_New = int(Ch1_Trim + abs((CH1_Max_Orig - Ch1_Trim)/4))  

#Get new Max PWM limit 

 

             

            CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

            CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

            while (CH1_Min != CH1_Min_New) and (CH1_Max != CH1_Max_New):  

                Set_Param(m,'SERVO1_MIN',CH1_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO1_MAX',CH1_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

                CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

            print"AL1 Limited!" 

                 

            time.sleep(duration) 

 

            CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

            CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

            while (CH1_Min != CH1_Min_Orig) and (CH1_Max != CH1_Max_Orig): 

                Set_Param(m,'SERVO1_MIN',CH1_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO1_MAX',CH1_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')   #Aileron1 Min 

                CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')   #Aileron Max 
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            print"AL1 Limit Removed!" 

 

        if failure_mode == 'LIM_AL5': 

            CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))  

#Get new Min PWM limit 

            CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))  

#Get new Max PWM limit 

                        

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New):  

                Set_Param(m,'SERVO5_MIN',CH5_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MAX',CH5_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

                 

            print"AL5 Limited!" 

                 

            time.sleep(duration) 

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig): 

                Set_Param(m,'SERVO5_MIN',CH5_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MAX',CH5_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.1) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')   #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')   #Aileron5 Max 

            print"AL5 Limit Removed!" 

 

        if failure_mode == 'LIM_AL': 

            CH1_Min_New = int(Ch1_Trim - abs((CH1_Min_Orig - Ch1_Trim)/4))  

#Get new Min PWM limit 

            CH1_Max_New = int(Ch1_Trim + abs((CH1_Max_Orig - Ch1_Trim)/4)) 

#Get new Max PWM limit 

            CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4)) 

#Get new Min PWM limit 

            CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))  

#Get new Max PWM limit 

 

             

            CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

            CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            while (CH1_Min != CH1_Min_New) and (CH1_Max != CH1_Max_New) and 

(CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New):  

                Set_Param(m,'SERVO1_MIN',CH1_Min_New)           #Setting the 

new Min PWM Limit 
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                time.sleep(0.02) 

                Set_Param(m,'SERVO1_MAX',CH1_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MIN',CH5_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MAX',CH5_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                                 

                CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

                CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            print"AL Limited!" 

                 

            time.sleep(duration) 

 

            CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')    #Aileron1 Min 

            CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')    #Aileron1 Max 

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            while (CH1_Min != CH1_Min_Orig) and (CH1_Max != CH1_Max_Orig) and 

(CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig): 

                Set_Param(m,'SERVO1_MIN',CH1_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO1_MAX',CH1_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MIN',CH5_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO5_MAX',CH5_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                                 

                CH1_Min = Read_Param_Value(m, 'SERVO1_MIN')   #Aileron1 Min 

                CH1_Max = Read_Param_Value(m, 'SERVO1_MAX')   #Aileron1 Max 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')   #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')   #Aileron5 Max 

            print"AL Limit Removed!" 

     

        if failure_mode == 'AL5': 

            ServoFunctionValue= Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy 

servo function is disabled 

            while ServoFunctionValue != 0: 

                Set_Param(m, 'SERVO5_FUNCTION', 0) #Disables aileron 

                ServoFunctionValue= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled 

                time.sleep(0.02) 

            print"AL5 FAILED!" 

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,5,Ch5_Trim)#Do set servo command 
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                time.sleep(0.02) 

                 

            ServoFunctionValue= Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy 

servo function is disabled 

            while ServoFunctionValue != 4: 

                Set_Param(m, 'SERVO5_FUNCTION', 4) #Enalbles aileron 

                ServoFunctionValue= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled 

            print"AL5 Restored!" 

             

 

        if failure_mode == 'LIM_ELE2': 

            CH2_Min_New = int(Ch2_Trim - abs((CH2_Min_Orig - Ch2_Trim)/4))  

#Get new Min PWM limit 

            CH2_Max_New = int(Ch2_Trim + abs((CH2_Max_Orig - Ch2_Trim)/4))  

#Get new Max PWM limit 

 

             

            CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

            CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

            while (CH2_Min != CH2_Min_New) and (CH2_Max != CH2_Max_New):  

                Set_Param(m,'SERVO2_MIN',CH2_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO2_MAX',CH2_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

                CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

            print"ELE2 Limited!" 

                 

            time.sleep(duration) 

 

            CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

            CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

            while (CH2_Min != CH2_Min_Orig) and (CH2_Max != CH2_Max_Orig): 

                Set_Param(m,'SERVO2_MIN',CH2_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO2_MAX',CH2_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')   #Elevator2 Min 

                CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')   #Elevator2 Max 

            print"ELE2 Limit Removed!" 

 

        if failure_mode == 'LIM_ELE6': 

            CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))  

#Get new Min PWM limit 

            CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4)) 

#Get new Max PWM limit 

 

             

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):  

                Set_Param(m,'SERVO6_MIN',CH6_Min_New)           #Setting the 
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new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MAX',CH6_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            print"ELE6 Limited!" 

                 

            time.sleep(duration) 

             

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig): 

                Set_Param(m,'SERVO6_MIN',CH6_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MAX',CH6_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')   #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')   #Elevator6 Max 

            print"ELE6 Limit Removed!" 

 

        if failure_mode == 'LIM_ELE': 

            CH2_Min_New = int(Ch2_Trim - abs((CH2_Min_Orig - Ch2_Trim)/4))  

#Get new Min PWM limit 

            CH2_Max_New = int(Ch2_Trim + abs((CH2_Max_Orig - Ch2_Trim)/4))  

#Get new Max PWM limit 

            CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))  

#Get new Min PWM limit 

            CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4))  

#Get new Max PWM limit 

             

            CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

            CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH2_Min != CH2_Min_New) and (CH2_Max != CH2_Max_New) and 

(CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):  

                Set_Param(m,'SERVO2_MIN',CH2_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO2_MAX',CH2_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MIN',CH6_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MAX',CH6_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                 

                CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

                CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 
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            print"ELE Limited!" 

                 

            time.sleep(duration) 

 

            CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')    #Elevator2 Min 

            CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')    #Elevator2 Max 

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH2_Min != CH2_Min_Orig) and (CH2_Max != CH2_Max_Orig) and 

(CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig): 

                Set_Param(m,'SERVO2_MIN',CH2_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO2_MAX',CH2_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MIN',CH6_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO6_MAX',CH6_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                 

                CH2_Min = Read_Param_Value(m, 'SERVO2_MIN')   #Elevator2 Min 

                CH2_Max = Read_Param_Value(m, 'SERVO2_MAX')   #Elevator2 Max 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')   #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')   #Elevator6 Max 

            print"ELE Limit Removed!" 

             

 

        if failure_mode == 'ELE6': 

            ServoFunctionValue= Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy 

servo function is disabled 

            while ServoFunctionValue != 0: 

                Set_Param(m, 'SERVO6_FUNCTION', 0) #Disables aileron 

                ServoFunctionValue= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled 

                time.sleep(0.02) 

            print"ELE6 FAILED!" 

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,6,Ch6_Trim)#Do set servo command 

                time.sleep(0.02) 

                 

            ServoFunctionValue= Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy 

servo function is disabled 

            while ServoFunctionValue != 19: 

                Set_Param(m, 'SERVO6_FUNCTION', 19) #Enalbles Elevator 

                ServoFunctionValue= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled 

            print"ELE6 Restored!" 

             

 

        if failure_mode == 'RUDD7': 

            CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/2))  

#Get new Min PWM limit 
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            CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/2))  

#Get new Max PWM limit 

 

             

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudder Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudder Max 

            while (CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New):  

                Set_Param(m,'SERVO7_MIN',CH7_Min_New)           #Setting the 

new Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO7_MAX',CH7_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudder Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudder Max 

            print"Rudder Limited!" 

                 

            time.sleep(duration) 

 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudder Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudder Max 

            while (CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig): 

                Set_Param(m,'SERVO7_MIN',CH7_Min_Orig)           #Setting 

back to original Min PWM Limit 

                time.sleep(0.02) 

                Set_Param(m,'SERVO7_MAX',CH7_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudder Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudder Max 

            print"Rudder Limit Removed!" 

#############################################################################

############################### 

        #Combination failure modes: F_AL5_ELE6, F_AL5_L_ELE6, L_AL5_F_ELE6, 

L_AL5_ELE6, L_ELE6_L_RUDD, F_ELE6_L_RUDD 

        if failure_mode == 'C1': 

            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled 

            while (ServoFunctionValue5 != 0) and (ServoFunctionValue6 != 0): 

                Set_Param(m, 'SERVO5_FUNCTION', 0) #Disables aileron 

                Set_Param(m, 'SERVO6_FUNCTION', 0) #Disables elevator 

                time.sleep(0.02) 

                ServoFunctionValue5 = 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled 

                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled 

                        

            print"AL5 and ELE6 FAILED!" 

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,5,Ch5_Trim)#Do set servo command 

                time.sleep(0.02) 

                Set_Servo(m,6,Ch6_Trim)#Do set servo command 

                time.sleep(0.02) 
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            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function is disabled 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function is disabled 

            while (ServoFunctionValue5 != 4) and (ServoFunctionValue6 != 19): 

                Set_Param(m, 'SERVO5_FUNCTION', 4) #Enalbles aileron 

                Set_Param(m, 'SERVO6_FUNCTION', 19) #Enalbles Elevator 

                ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function  

                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function  

            print"AL5 and ELE6 Restored!" 

#############################################################################

################# 

        if failure_mode == 'C2': 

            CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4)) 

#Get new Min PWM limit 

            CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4)) 

#Get new Max PWM limit 

 

             

            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function  

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

             

            while (ServoFunctionValue5 != 0) and (CH6_Min != CH6_Min_New) and 

(CH6_Max != CH6_Max_New): 

                Set_Param(m,'SERVO5_FUNCTION', 0)       #Disables aileron 

                Set_Param(m,'SERVO6_MIN',CH6_Min_New)   #Setting the new Min 

PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_New)   #Setting the new Max 

PWM Limit 

                time.sleep(0.02) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

                ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

                 

            print"AL5 FAILED ELE6 LIMITED!" 

             

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,5,Ch5_Trim)#Do set servo command 

                time.sleep(0.02) 

 

                 

            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (ServoFunctionValue5 != 4) and (CH6_Min != CH6_Min_Orig) 

and (CH6_Max != CH6_Max_Orig): 

                Set_Param(m,'SERVO5_FUNCTION', 4)       #Enalbles aileron 

                Set_Param(m,'SERVO6_MIN',CH6_Min_Orig)  #Setting back to 
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original Min PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_Orig)  #Setting back to the 

original Max PWM Limit 

                time.sleep(0.02) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')   #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')   #Elevator6 Max 

                ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

            print"AL5 Restored ELE6 LIMIT REMOVED!" 

                  

             

#############################################################################

################### 

        if failure_mode == 'C3': 

            CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))  

#Get new Min PWM limit 

            CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))  

#Get new Max PWM limit 

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            while (ServoFunctionValue6 != 0) and (CH5_Min != CH5_Min_New) and 

(CH5_Max != CH5_Max_New): 

                Set_Param(m,'SERVO6_FUNCTION', 0)       #Disables aileron 

                Set_Param(m,'SERVO5_MIN',CH5_Min_New)   #Setting the new Min 

PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_New)   #Setting the new Max 

PWM Limit 

                time.sleep(0.02) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

                 

            print"AL5 LIMITED ELE6 FAILED!" 

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,6,Ch6_Trim)#Do set servo command 

                time.sleep(0.02) 

                 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            while (ServoFunctionValue6 != 19) and (CH5_Min != CH5_Min_Orig) 

and (CH5_Max != CH5_Max_Orig) : 

                Set_Param(m,'SERVO6_FUNCTION', 19)         #Enalbles Elevator 

                Set_Param(m,'SERVO5_MIN',CH5_Min_Orig)     #Setting back to 

original Min PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_Orig)     #Setting back to 

the original Max PWM Limit 

                time.sleep(0.02) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')   #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')   #Aileron5 Max 
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                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            print"AL5 LIMIT REMOVED ELE6 RESTORED!" 

             

#############################################################################

####################             

        if failure_mode == 'C4': 

            CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))  

#Get new Min PWM limit 

            CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))  

#Get new Max PWM limit 

            CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))  

#Get new Min PWM limit 

            CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4)) 

#Get new Max PWM limit 

                        

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New) and 

(CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New):  

                Set_Param(m,'SERVO5_MIN',CH5_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_New)           #Setting the 

new Max PWM Limit 

                Set_Param(m,'SERVO6_MIN',CH6_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

                 

            print"AL5 and ELE6 LIMITED!" 

                 

            time.sleep(duration) 

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig) and 

(CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig) : 

                Set_Param(m,'SERVO5_MIN',CH5_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                Set_Param(m,'SERVO6_MIN',CH6_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.1) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')   #Aileron5 Min 
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                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')   #Aileron5 Max 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')   #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')   #Elevator6 Max 

            print"AL5 and ELE6 LIMIT REMOVED!" 

#############################################################################

#################### 

          

        if failure_mode == 'C5':#L_ELE6_L_RUDD7 

             

            CH6_Min_New = int(Ch6_Trim - abs((CH6_Min_Orig - Ch6_Trim)/4))  

#Get new Min PWM limit 

            CH6_Max_New = int(Ch6_Trim + abs((CH6_Max_Orig - Ch6_Trim)/4)) 

#Get new Max PWM limit 

            CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))  

#Get new Min PWM limit 

            CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))  

#Get new Max PWM limit 

                        

                         

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (CH6_Min != CH6_Min_New) and (CH6_Max != CH6_Max_New) and 

(CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New) :  

                Set_Param(m,'SERVO6_MIN',CH6_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_New)           #Setting the 

new Max PWM Limit 

                Set_Param(m,'SERVO7_MIN',CH7_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

                 

            print"Rudd7 and ELE6 LIMITED!" 

                 

            time.sleep(duration) 

                         

            CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')    #Elevator6 Min 

            CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')    #Elevator6 Max 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (CH6_Min != CH6_Min_Orig) and (CH6_Max != CH6_Max_Orig) and 

(CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig) : 

                Set_Param(m,'SERVO6_MIN',CH6_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO6_MAX',CH6_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                Set_Param(m,'SERVO7_MIN',CH7_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_Orig)           #Setting 

back to the original Max PWM Limit 
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                time.sleep(0.1) 

                CH6_Min = Read_Param_Value(m, 'SERVO6_MIN')   #Elevator6 Min 

                CH6_Max = Read_Param_Value(m, 'SERVO6_MAX')   #Elevator6 Max 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')   #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')   #Rudd7 Max 

            print"Rudd7 and ELE6 LIMIT REMOVED!" 

 

#############################################################################

######################             

        if failure_mode == 'C6': # F_ELE6_L_Rudd 

            CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))  

#Get new Min PWM limit 

            CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4))  

#Get new Max PWM limit 

             

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            while (ServoFunctionValue6 != 0) and (CH7_Min != CH7_Min_New) and 

(CH7_Max != CH7_Max_New): 

                Set_Param(m,'SERVO6_FUNCTION', 0)       #Disables aileron 

                Set_Param(m,'SERVO7_MIN',CH7_Min_New)   #Setting the new Min 

PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_New)   #Setting the new Max 

PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

                 

            print"RUDD7 LIMITED ELE6 FAILED!" 

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,6,Ch6_Trim)#Do set servo command 

                time.sleep(0.02) 

                 

            ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (ServoFunctionValue6 != 19) and (CH7_Min != CH7_Min_Orig) 

and (CH7_Max != CH7_Max_Orig) : 

                Set_Param(m,'SERVO6_FUNCTION', 19)         #Enalbles Elevator 

                Set_Param(m,'SERVO7_MIN',CH7_Min_Orig)     #Setting back to 

original Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_Orig)     #Setting back to 

the original Max PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')   #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')   #Rudd7 Max 

                ServoFunctionValue6= 

Read_Param_Value(m,'SERVO6_FUNCTION')#Verifiy servo function 

            print"RUDD7 LIMIT REMOVED ELE6 RESTORED!" 

#############################################################################
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###################### 

        if failure_mode == 'C7': #L_AL5_L_Rudd 

            CH5_Min_New = int(Ch5_Trim - abs((CH5_Min_Orig - Ch5_Trim)/4))  

#Get new Min PWM limit 

            CH5_Max_New = int(Ch5_Trim + abs((CH5_Max_Orig - Ch5_Trim)/4))  

#Get new Max PWM limit 

            CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4))  

#Get new Min PWM limit 

            CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4)) 

#Get new Max PWM limit 

                        

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (CH5_Min != CH5_Min_New) and (CH5_Max != CH5_Max_New) and 

(CH7_Min != CH7_Min_New) and (CH7_Max != CH7_Max_New):  

                Set_Param(m,'SERVO5_MIN',CH5_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_New)           #Setting the 

new Max PWM Limit 

                Set_Param(m,'SERVO7_MIN',CH7_Min_New)           #Setting the 

new Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_New)           #Setting the 

new Max PWM Limit 

                time.sleep(0.02) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

                 

            print"AL5 and RUDD7 LIMITED!" 

                 

            time.sleep(duration) 

             

            CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')    #Aileron5 Min 

            CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')    #Aileron5 Max 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (CH5_Min != CH5_Min_Orig) and (CH5_Max != CH5_Max_Orig) and 

(CH7_Min != CH7_Min_Orig) and (CH7_Max != CH7_Max_Orig) : 

                Set_Param(m,'SERVO5_MIN',CH5_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO5_MAX',CH5_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                Set_Param(m,'SERVO7_MIN',CH7_Min_Orig)           #Setting 

back to original Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_Orig)           #Setting 

back to the original Max PWM Limit 

                time.sleep(0.1) 

                CH5_Min = Read_Param_Value(m, 'SERVO5_MIN')   #Aileron5 Min 

                CH5_Max = Read_Param_Value(m, 'SERVO5_MAX')   #Aileron5 Max 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')   #Elevator6 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')   #Elevator6 Max 

            print"AL5 and RUDD7 LIMIT REMOVED!" 

#############################################################################
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###################### 

        if failure_mode == 'C8': # F_AL5_L_Rudd 

            CH7_Min_New = int(Ch7_Trim - abs((CH7_Min_Orig - Ch7_Trim)/4)) 

#Get new Min PWM limit 

            CH7_Max_New = int(Ch7_Trim + abs((CH7_Max_Orig - Ch7_Trim)/4)) 

#Get new Max PWM limit 

 

             

            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function  

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

             

            while (ServoFunctionValue5 != 0) and (CH7_Min != CH7_Min_New) and 

(CH7_Max != CH7_Max_New): 

                Set_Param(m,'SERVO5_FUNCTION', 0)       #Disables aileron 

                Set_Param(m,'SERVO7_MIN',CH7_Min_New)   #Setting the new Min 

PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_New)   #Setting the new Max 

PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

                ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

                 

            print"AL5 FAILED Rudd7 LIMITED!" 

             

            start_time = time.time() 

            end_time = start_time + duration 

            while time.time() < end_time: 

                Set_Servo(m,5,Ch5_Trim)#Do set servo command 

                time.sleep(0.02) 

 

                 

            ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

            CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')    #Rudd7 Min 

            CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')    #Rudd7 Max 

            while (ServoFunctionValue5 != 4) and (CH7_Min != CH7_Min_Orig) 

and (CH7_Max != CH7_Max_Orig): 

                Set_Param(m,'SERVO5_FUNCTION', 4)       #Enalbles aileron 

                Set_Param(m,'SERVO7_MIN',CH7_Min_Orig)  #Setting back to 

original Min PWM Limit 

                Set_Param(m,'SERVO7_MAX',CH7_Max_Orig)  #Setting back to the 

original Max PWM Limit 

                time.sleep(0.02) 

                CH7_Min = Read_Param_Value(m, 'SERVO7_MIN')   #Rudd7 Min 

                CH7_Max = Read_Param_Value(m, 'SERVO7_MAX')   #Rudd7 Max 

                ServoFunctionValue5= 

Read_Param_Value(m,'SERVO5_FUNCTION')#Verifiy servo function 

            print"AL5 Restored Rudd7 LIMIT REMOVED!" 
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    return 

       

       

def main(): 

 

   # read command-line options 

   parser = OptionParser("readdata.py [options]") 

   parser.add_option("--baudrate", dest="baudrate", type='int', 

                 help="master port baud rate", default=921600) 

   parser.add_option("--device", dest="device", 

default="/dev/ttyPIXHAWK_CONTROL", help="serial device") 

   parser.add_option("--rate", dest="rate", default=4, type='int', 

help="requested stream rate") 

   parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int', 

                 default=255, help='MAVLink source system for this GCS') 

   parser.add_option("--showmessages", dest="showmessages", 

action='store_true', 

                 help="show incoming messages", default=False) 

   (opts, args) = parser.parse_args() 

    

   if opts.device is None: 

      print("You must specify a serial device") 

      sys.exit(1) 

 

   # create a mavlink serial instance 

   master = mavutil.mavlink_connection(opts.device, baud=opts.baudrate) 

 

   # wait for the heartbeat msg to find the system ID 

   master.wait_heartbeat() 

 

   # request data to be sent at the given rate 

   master.mav.request_data_stream_send(master.target_system, 

master.target_component,  

      mavutil.mavlink.MAV_DATA_STREAM_ALL, opts.rate, 1) 

 

         

 

   # enter the data loop 

   read_loop(master) 

 

           

 

 

if __name__ == '__main__': 

   main() 
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APPENDIX D 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

 

""" 

Fly_Mission_and_Maneuver_Plane_Rev2 

Code Written by Brian Duvall April 2020 

Flys plane in an oval pattern about four waypoints,in addition, provides 

inputs between two of the four points 

import code 

code.interact(local=locals()) 

""" 

from __future__ import print_function, division 

from dronekit import connect, VehicleMode, LocationGlobalRelative, 

LocationGlobal, Command 

from my_vehicle import MyVehicle #Our custom vehicle class 

import time 

import math 

import numpy as np 

from pymavlink import mavutil 

#import matplotlib.pyplot as plt 

import os 

 

#Set up option parsing to get the connection string 

import argparse   

parser = argparse.ArgumentParser(description='Demonstrates basic mission 

operations.') 

parser.add_argument('--connect',default= "/dev/ttyPIXHAWK_CONTROL", 

help="vehicle connection target string") 

args = parser.parse_args() 

connection_string = args.connect 

# Connect to the Vehicle 

print('Connecting to vehicle on: %s' % connection_string) 

vehicle = connect(connection_string, wait_ready=True, baud=57600, 

vehicle_class=MyVehicle) 

 

point3 = None #Global value 

vehicle.channels.overrides['6'] = 1500 #Force to wait to take data 

#os.system('python /Data_Recorder/Ardupilot/Data_Recorder_MIMO.py ') # Trying 

to autostart data colection code 

 

 

 

def get_location_metres(original_location, dNorth, dEast): 

     

    """ 

    Returns a LocationGlobal object containing the latitude/longitude 

`dNorth` and `dEast` meters from the  

    specified `original_location`. The returned Location has the same `alt` 

value 

    as `original_location`. 

 

    The function is useful when you want to move the vehicle around 

specifying locations relative to  
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    the current vehicle position. 

    The algorithm is relatively accurate over small distances (10m within 

1km) except close to the poles. 

    For more information, see: 

    http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-

latitude-longitude-by-some-amount-of-meters 

    """ 

    earth_radius=6378137.0 #Radius of "spherical" earth 

    #Coordinate offsets in radians 

    dLat = dNorth/earth_radius 

    dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180)) 

 

    #New position in decimal degrees 

    newlat = original_location.lat + (dLat * 180/math.pi) 

    newlon = original_location.lon + (dLon * 180/math.pi) 

    return LocationGlobal(newlat, newlon,original_location.alt) 

 

 

def get_distance_metres(aLocation1, aLocation2): 

    """ 

    Returns the ground distance in meters between two LocationGlobal objects. 

 

    This method is an approximation, and will not be accurate over large 

distances and close to the  

    earth's poles. It comes from the ArduPilot test code:  

    

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py 

    """ 

    dlat = aLocation2.lat - aLocation1.lat 

    dlong = aLocation2.lon - aLocation1.lon 

    return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5 

 

 

 

def distance_to_current_waypoint(): 

    """ 

    Gets distance in meters to the current waypoint.  

    It returns None for the first waypoint (Home location). 

    """ 

    nextwaypoint = vehicle.commands.next 

    if nextwaypoint==0: 

        return None 

    missionitem=vehicle.commands[nextwaypoint-1] #commands are zero indexed 

    lat = missionitem.x 

    lon = missionitem.y 

    alt = missionitem.z 

    targetWaypointLocation = LocationGlobalRelative(lat,lon,alt) 

    distancetopoint = get_distance_metres(vehicle.location.global_frame, 

targetWaypointLocation) 

    return distancetopoint 

 

 

def download_mission(): 

    """ 

    Download the current mission from the vehicle. 

    """ 

    cmds = vehicle.commands 
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    cmds.download() 

    cmds.wait_ready() # wait until download is complete. 

 

 

def adds_takeoff_mission(aLocation): 

    """ 

    Only used when connected to SIM 

    Adds a takeoff command   

    The function assumes vehicle.commands matches the vehicle mission state  

    (you must have called download at least once in the session and after 

clearing the mission) 

    """     

    cmds = vehicle.commands 

    print(" Clear any existing commands") 

    cmds.clear()  

    print(" Define/add new commands.") 

    # Add new commands. The meaning/order of the parameters is documented in 

the Command class.  

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, aLocation.lat, 

aLocation.lon, 100)) 

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, aLocation.lat, 

aLocation.lon, 100)) 

      

    print(" Upload new commands to vehicle") 

    cmds.upload() 

 

def adds_fly_between_mission(aLocation): 

    """ 

    The function assumes vehicle.commands matches the vehicle mission state  

    (you must have called download at least once in the session and after 

clearing the mission) 

    """     

    global point3 #This is the target point to fly to when doing a mauver 

     

    cmds = vehicle.commands 

 

    #download_mission() 

 

    print(" Clear any existing commands") 

    cmds.clear()  

     

    print(" Define/add new commands.") 

    # Add new commands. The meaning/order of the parameters is documented in 

the Command class. 

##  (North/South, East/West)   

##    point1 = get_location_metres(aLocation, 120, 230) # Old points that 

worked well in sim 

##    point2 = get_location_metres(aLocation, 170, 150) # Old point that 

worked well in sim 

    point1 = get_location_metres(aLocation, 100, 300) 

    point2 = get_location_metres(aLocation, 170, 170) 

    point3 = get_location_metres(aLocation,-180, -70) 

    point4 = get_location_metres(aLocation,-200, 75) 
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    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point1.lat, 

point1.lon, 75)) 

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point2.lat, 

point2.lon, 75)) 

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point3.lat, 

point3.lon, 75)) 

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point4.lat, 

point4.lon, 75)) 

    cmds.add(Command( 0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, 

mavutil.mavlink.MAV_CMD_DO_JUMP, 0, 0, 1, 1, 0, 0, 0, 0, 0)) 

      

    print(" Upload new commands to vehicle") 

    cmds.upload() 

     

def arm_and_takeoff(aTargetAltitude): 

    """ 

    Arms vehicle and fly to aTargetAltitude. 

    """ 

     

    print("Basic pre-arm checks") 

    # Don't let the user try to arm until autopilot is ready 

    while not vehicle.is_armable: 

        print("Status",vehicle.is_armable) 

        print(" Waiting for vehicle to initialize...") 

        time.sleep(1) 

 

         

    print("Taking Off!") 

   #Confirm vehicle armed before attempting to take off   

    while not vehicle.armed:       

        print(" Waiting for arming...") 

        vehicle.armed = True 

        time.sleep(1) 

 

    while vehicle.mode != 'AUTO': 

        print("setting mode AUTO") 

        vehicle.mode = VehicleMode("AUTO") 

        time.sleep(1) 

     

    # Wait until the vehicle reaches a safe height before processing the goto 

(otherwise the command  

    while True: 

        print(" Altitude: ", vehicle.location.global_relative_frame.alt)       

        if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95: 

#Trigger just below target alt. 

            print("Reached target altitude changing") 

            vehicle.mode = VehicleMode("RTL") 

            break 

 

def Sin_wave_generator(S_Rate,freq,Duration, Amp, RC_Trim): 

    #y = Asin(2*PI*f*t+phi) 

    T= 1/S_Rate #Time period of one sample 

    N = S_Rate*Duration #Number of samples in the given duration 



 

 

 

172 

    omega = 2*np.pi*freq #Angular freqency 

    t_seq = np.arange(N)*T #Time Sequence 

    y = Amp*np.sin(omega*t_seq) + RC_Trim #Sin wave function 

    y = y.astype(int) #Convert to integers for PWM values  

    return(y, t_seq) 

     

def Home_Location_Check(): 

    while not vehicle.home_location: 

        cmds= vehicle.commands 

        cmds.download() 

        cmds.wait_ready() 

    print ("Got Home Location") 

 

def calculate_compass_bearing(pointA, pointB): 

    """ 

    Calculates the bearing between two points. 

    The formula used is the following: 

        θ = atan2(sin(Δlong).cos(lat2), 

                  cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong)) 

    :Parameters: 

      - `pointA: The tuple representing the latitude/longitude for the 

        first point. Latitude and longitude must be in decimal degrees 

      - `pointB: The tuple representing the latitude/longitude for the 

        second point. Latitude and longitude must be in decimal degrees 

    :Returns: 

      The bearing in degrees 

    :Returns Type: 

      float 

    """ 

    if (type(pointA) != tuple) or (type(pointB) != tuple): 

        raise TypeError("Only tuples are supported as arguments") 

 

    lat1 = math.radians(pointA[0]) 

    lat2 = math.radians(pointB[0]) 

 

    diffLong = math.radians(pointB[1] - pointA[1]) 

 

    x = math.sin(diffLong) * math.cos(lat2) 

    y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1) 

            * math.cos(lat2) * math.cos(diffLong)) 

 

    initial_bearing = math.atan2(x, y) 

 

    # Now we have the initial bearing but math.atan2 return values 

    # from -180° to + 180° which is not what we want for a compass bearing 

    # The solution is to normalize the initial bearing as shown below 

    initial_bearing = math.degrees(initial_bearing) 

    compass_bearing = (initial_bearing + 360) % 360 

 

    return compass_bearing 

 

def Input_Command_Builder_MIMO(): 

    """ 

    Inputs used in SIM 

     

    roll_S_Input, t = Sin_wave_generator(25,1,3,200,1480) 

    pitch_S_Input, t = Sin_wave_generator(25,1,3,200,1520) 
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    #yaw_S_Input, t = Sin_wave_generator(25,1,3,70,1500) 

    yaw_S_Input, t = Sin_wave_generator(25,1,3,200,1550) 

    """ 

    #Inputs used in plane 

    roll_S_Input, t = Sin_wave_generator(100,1,3,200,1480)# Go above 1480 to 

bias right roll from tail 

    pitch_S_Input, t = Sin_wave_generator(100,0.5,3,250,1520)#Go below 1520 

to bias pitch up 

    yaw_S_Input, t = Sin_wave_generator(100,1,3,200,1550)#Go below 1500 to 

bias right yaw 

 

    ##plt.plot(t,roll_S_Input,'+-') 

    ##plt.show() 

    # padding input arrays with Nones to send to the Cube Orange at one time 

    N = len(roll_S_Input) + len(pitch_S_Input) + len(yaw_S_Input) 

    Number_of_None_Padding_Roll= N-len(roll_S_Input) 

    Number_of_None_Padding_Pitch = N- len(pitch_S_Input) 

    Number_of_None_Padding_Yaw = N-len(yaw_S_Input) 

     

    i=1 

    while i <= Number_of_None_Padding_Roll: 

        roll_S_Input = np.append(roll_S_Input,0) 

        i=i+1 

    roll_padded = np.append(roll_S_Input,0) # added an extra None to array so 

rudder gose nutral 

    ##################################### 

    front = np.array([]) 

    back = np.array([]) 

    i=1 

    while i <= Number_of_None_Padding_Pitch/2: # Building front array of 

Nones 

        front = np.append(front,0) 

        i=i+1 

    i=1 

    while i <= Number_of_None_Padding_Pitch/2:# Building back array of Nones 

        back = np.append(back,0) 

        i=i+1 

 

    front_pitch = np.append(front,pitch_S_Input)# append the None's to the 

beginning of pitch signal 

    pitch_padded = np.append(front_pitch,back) # append beginning None's and 

pitch to the back 

    pitch_padded = np.append(pitch_padded,0)# added an extra None to array so 

rudder gose nutral 

         

    ##################################### 

    front = np.array([]) 

    i=1 

    while i <= Number_of_None_Padding_Yaw: 

        front = np.append(front,0) 

        i=i+1 

    yaw_padded = np.append(front,yaw_S_Input) 

    yaw_padded = np.append(yaw_padded,0) # added an extra None to array so 

rudder gose nutral 

     

    #################################### 

    #This is here to prevent the channel overrides from stoping data 
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recording 

    ch6_padded = np.array([]) 

    i=1 

    while i<=N: 

        ch6_padded = np.append(ch6_padded,1200) 

        i=i+1 

    ch6_padded = np.append(ch6_padded,1200) # Keeps arrays the same length 

due to adition None for rudder to go nutral 

     

       

    return(roll_padded, pitch_padded, yaw_padded, ch6_padded) 

 

def Channel_Override(roll,pitch,yaw,ch6): 

    vehicle.message_factory.rc_channels_override_send( 

    0,#master.target_system 

    0,#master.target_component 

    roll,  #Aileron  1 

    pitch, #Elevator 2 

    0,     #Throttle 3  

    yaw,   #Rudder   4 

    0,     #Channel  5 

    ch6,   #Channel  6 

    0,     #Channel  7 

    0)     #Channel  8 

     

 

def Manuver_Plane(roll_padded, pitch_padded, yaw_padded, ch6_padded): 

    nextwaypoint=vehicle.commands.next 

    while True: 

        nextwaypoint=vehicle.commands.next 

        Heading = vehicle.heading 

        Vehicle_Location = (vehicle.location.global_relative_frame.lat, 

vehicle.location.global_relative_frame.lon) 

        Waypoint_Location = (point3.lat, point3.lon) 

        Waypoint_Heading3 = calculate_compass_bearing(Vehicle_Location, 

Waypoint_Location) 

        roll_attitude = vehicle.attitude.roll  

##        print("Roll_Attitude",vehicle.attitude.roll) 

##        print("Roll_Target_Attitude", 

vehicle.nav_controller_output.nav_roll) 

##        print("Waypoint_Heading3",Waypoint_Heading3) 

##        print("Next waypoint", nextwaypoint) 

##        print('Distance to waypoint (%s): %s' % (nextwaypoint, 

distance_to_current_waypoint())) 

##        print ("Heading",Heading) 

         

        if (nextwaypoint == 3) and (Heading in range(int(Waypoint_Heading3)-

5, int(Waypoint_Heading3)+5)): 

            time.sleep(2)# Give some time for the plane to get trim 

conditions 

            print ("In-line ready to start maneuver") 

            ########################################## 

            vehicle.channels.overrides['6'] = 1200 # Start collecting data! 

            i=0 

            dt = 0.01 # send messages at this interval 

            while i < len(roll_padded):  

                Channel_Override(roll_padded[i], pitch_padded[i], 
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yaw_padded[i], ch6_padded[i]) #Simple version of channel override 

                time.sleep(dt) #wait to send the next message 

                i=i+1 

                 

            time.sleep(1) # Give some time for the plane to go back to 

neutral 

            vehicle.channels.overrides['6'] = 1900 # Stop collecting data and 

process! 

            ########################################## 

            count = 0 

            while nextwaypoint != 1: 

                if count == 0: 

                    print ("Done, waiting to go around") 

                    count= count+1 

                nextwaypoint=vehicle.commands.next 

        time.sleep(0.1) 

 

  

#############################################################################

#############################################################################

######################################## 

#Starting to run the script   

if connection_string == '127.0.0.1:14551':        

    adds_takeoff_mission(vehicle.location.global_frame) #Send to the comand 

to have the plane takeoff  

    arm_and_takeoff(50)# ARM the vehicle and set it to auto 

    time.sleep(10) 

#############################################################################

##### 

Home_Location_Check()                                              # Ensure 

home location is availibule 

adds_fly_between_mission(vehicle.home_location)                    # Writes 

waypoints for plane to fly to 

print("Mission Loaded") 

roll_padded,pitch_padded,yaw_padded,ch6_padded = Input_Command_Builder_MIMO() 

# Gets intput command sin_wave for roll pitch yaw 

print("Inputs_Built")  

 

 

print("Starting mission, setting mode to AUTO") 

# Reset mission set to first (0) waypoint 

vehicle.commands.next=0 

 

# Set mode to AUTO to start the mission 

while vehicle.mode != "AUTO": 

    vehicle.mode = VehicleMode("AUTO") 

 

Manuver_Plane(roll_padded,pitch_padded,yaw_padded,ch6_padded) 

#############################################################################

#############################################################################

###################################### 

 

 

 

#Close vehicle object before exiting the script 

print("Close vehicle object") 

vehicle.close() 
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APPENDIX E 

 



 

 

 

177 

 



 

 

 

178 

 



 

 

 

179 

 



 

 

 

180 

VITA 

Brian Edward Duvall was born in Charlottesville, Virginia, on January 7, 1991. During his high 

school years, he became interested in dynamics and decided to continue his education at Old 

Dominion University (ODU) to learn more. At ODU, Brian completed the curriculum for a B.S. 

degree in mechanical engineering. During the B.S. mechanical engineering program, he became 

interested in model aircraft, which led him to pursue an M.S. degree in aerospace engineering. 

Following his M.S. degree in August of 2016, Brian continued at ODU to obtain his Ph.D. in 

aerospace engineering to further his UAV technology knowledge. While pursuing his M.S. and 

Ph.D. degrees, he was able to help the Old Dominion University Society of Automotive 

Engineering Aero East team compete in a design-build and fly competition. This allowed him to 

further his knowledge of aircraft design and apply what he learned in the classroom to real-life 

applications. Brian received his Ph.D. degree in aerospace engineering in December 2020. 

 


	Onboard Autonomous Controllability Assessment for Fixed Wing sUAVs
	Recommended Citation

	tmp.1609776796.pdf._KhZ1

