Corrected Numbers for fish on Red List

Bruce B. Collette
Beth Polidoro
Kent Carpenter

Old Dominion University, kcarpent@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs

Part of the Aquaculture and Fisheries Commons, Environmental Monitoring Commons, and the Marine Biology Commons

Repository Citation
Collette, Bruce B.; Polidoro, Beth; and Carpenter, Kent, "Corrected Numbers for fish on Red List" (2013). Biological Sciences Faculty Publications. 304.
https://digitalcommons.odu.edu/biology_fac_pubs/304

Original Publication Citation

This Letter to the Editor is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Corrected numbers for fish on Red List

Kelly Swing gives inaccurate numbers for marine fish species on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. He also mistakenly conflates the scientific process of species assessment for the Red List with the separate political process of IUCN member voting (Nature 494, 314; 2013).

About one-quarter, or 4,337, of some 17,000 species of marine fish are on the IUCN Red List (not fewer than 100 species out of 25,000, as Swing writes). Of those, 416 species have been placed in a threatened category (Critically Endangered, Endangered or Vulnerable) and 1,180 species were classed as Data Deficient. The IUCN Tuna and Billfish Specialist Group has assessed all 10 species of billfish and 51 species of tuna and mackerel through a series of regional workshops, unhindered by the “IUCN’s worldwide voting procedures”. Seven species meet the IUCN threshold for a threatened category (B. B. Collette et al. Science 333, 291–292; 2011). The sale of billfish has since been banned in the continental United States.

The IUCN Marine Biodiversity Unit’s Global Marine Species Assessment programme is now evaluating all remaining marine fish, and aims to finish within 5 years (http://sci.edu/gmsa).

Bruce B. Collette National Marine Fisheries Service, Washington DC, USA. collettb@si.edu

Beth Polidoro Arizona State University, Phoenix, USA.

Kent Carpenter Old Dominion University, Norfolk, Virginia, USA.

Regulating stem-cell therapies worldwide

Japan’s drive to regulate experimental stem-cell treatments is a welcome step (Nature 494, 5; 2013). However, it could be hard to define universally applicable criteria that ensure the safety and effectiveness of such treatments worldwide.

There is a risk that the social and economic circumstances of patients and researchers might blur or compromise crucial criteria, such as evidence-based support (including adequate preclinical and clinical testing), ethical review and no-fee experimental treatment.

Stem-cell therapies are all too often unsupported by scientific evidence, but many patients are prepared to accept the risks. And nations with inadequate health-care resources may expect patients to pay for experimental treatments.

Proliferation of experimental stem-cell therapies may even be indirectly encouraged in countries such as China, where ultra-light regulation through official notification (see www.moh.gov.cn) has uncertain regulatory value.

Margaret Sleeboom-Faulkner University of Sussex, Brighton, UK. m.sleeboom-faulkner@sussex.ac.uk

Modelling genetics within ecosystems

Safeguarding genetic diversity is one of the Convention on Biological Diversity’s main targets, because genetics underpins ecosystems. General models of whole ecosystems (D. Purves et al. Nature 493, 295–297; 2013) therefore need to incorporate genetic data if they are to represent natural systems and guide conservation policy.

Yet it is important to understand that species diversity and genetic diversity do not always correlate; that the interplay between phylodiversity and functional diversity can be highly complex and regulated by interactions between cornerstone species; and that ecosystem resilience is tied to evolutionary history and genetic diversity. An ecosystem’s full genetic potential, as represented by ancient lineages and maximally diverse taxa and key species, must be realized.

Niall McCann, Pablo Orozcor Meneg, David Stanton Cardiff University, Cardiff, UK. mccannmp@cardiff.ac.uk

Evaluate gender equality in journals

The European Association of Science Editors established a gender policy committee last year to develop a set of standards for adoption by scientific journals. As co-chairs of the committee, our first step is to invite science editors to contribute to a survey of gender-equality policies in their journals (see go.nature.com/wor7ks; survey closes on 10 April).

In this survey, we ask editors for their views on considering sex and gender in experimental design and data analysis, and on presenting data that are broken down by sex. Information is also requested on gender balance and its promotion among editorial staff, editorial boards and peer reviewers.

Our hope is that all journals will eventually follow Nature’s example in promoting gender equality in science (see www.nature.com/women).

Shirin Heidari Journal of the International AIDS Society, Geneva, Switzerland. shirin.heidari@iasociety.org

Tom Babor University of Connecticut School of Medicine, Farmington, Connecticut, USA.

© 2013 Macmillan Publishers Limited. All rights reserved