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Pair densities and associated correlation functions provide a critical tool for introducing many-body 
correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-
densities exhibit strong spin and isospin dependence. However, such calculations are not available for 
all nuclei of current interest. We therefore provide a simple model, which involves combining the short 
and long separation distance behavior using a single blending function, to accurately describe the two-
nucleon correlations inherent in existing ab initio calculations. We show that the salient features of the 
correlation function arise from the features of the two-body short-range nuclear interaction, and that the 
suppression of the pp and nn pair-densities caused by the Pauli principle is important. Our procedure for 
obtaining pair-density functions and correlation functions can be applied to heavy nuclei which lack ab 
initio calculations.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Correlation functions are a valuable tool for describing inter-
acting many-body systems, providing a means of encapsulating 
complex many-body dynamics. In the absence of correlations, a 
many-body probability density, such as that from a many-body 
quantum mechanical wave-function, can be written as an anti-
symmetrized product of single-particle probability densities. The 
correlation function describes important deviations from this pic-
ture. Our aim here is to explain the basic physics inputs that 
determine the nuclear pair-density functions and the correlation 
functions derived from them. This is done by blending the short-
distance behavior, as determined by the contact formalism [1–3], 
with the known long distance behavior. The input needed to use 
the contact formalism is accessible from experimental data, as 
shown in Ref. [2].

Correlation functions are widely used in nuclear physics. For re-
cent reviews see Refs. [4,5]. The nucleus is a strongly-interacting, 
quantum mechanical, many-body system with high density and a 
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complicated interaction between constituent nucleons. There is no 
fundamental central potential, so correlations must exist. An early 
paper that modeled nuclear correlation functions [6] was used in 
a wide variety calculations (see the early review [7]) involving the 
strong and weak interactions, demonstrating the impact of cor-
relation functions on the field. More recent examples in which 
correlation functions are crucial ingredients include: calculations 
of neutrinoless double beta decay [8–13], nuclear transparency in 
quasielastic scattering [14–19], shadowing in deep inelastic scat-
tering [20], and parity violation in nuclei [21,22].

Despite the wide use of correlation functions, their spin and 
isospin dependence has received less attention. The nucleon–
nucleon interaction is both spin and isospin dependent, and these 
dependencies become very important at short-range, leading to 
phenomena such as the strong preference for proton–neutron 
short-range correlated pairs [23–29].

The calculations in this paper use the formalism of nuclear con-
tacts [2,3] to determine the spin and isospin decomposition of the 
two-body density that determines the correlation function. This 
formalism is based on the separation of scales inherent in the 
long- and short-range structure of nuclei [2,3]. At short distances, 
the aggregate effect of long-range interactions can be encapsu-

https://doi.org/10.1016/j.physletb.2018.07.069
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Fig. 1. In the two-body density from contact formalism [2,3], the np two-body 
density is dominated by spin-1 pairs. 40Ca, shown here, illustrates this universal 
behavior. For r ≤ 0.9 fm, these results reproduce those of Cluster Variational Monte 
Carlo (CVMC) [34] calculations. The pp/nn spin-0 density (peak value 0.5) is en-
hanced by a factor of 2 to provide some separation from np spin-0. The pn density 
peaks at 0.2 for spin 0, and 0.8 for spin 1 . (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

lated into coefficients, called “contacts,” which are nucleus-specific, 
while the underlying short-range behavior is a universal property 
of the two-body nuclear interaction. In the contact formalism, the 
two-body density, ρN N,s(r), defining the probability for finding a 
nucleon–nucleon pair with separation distance r, can be modeled 
at short distance (r � 1 fm) by:

ρcontact
N N,s (r) = C N N,s

A × |ϕN N,s(r)|2 (1)

for nucleus, A, where C A is the contact coefficient, N N stands 
for proton–proton (pp), proton–neutron (pn), or neutron–neutron 
(nn) pairs and the index s denotes the spin 0, 1 of the two-
nucleon systems. The wave functions ϕN N,s(r) are zero-energy 
(S- or S-D wave) solutions to the Schrödinger equation with a 
modern nucleon–nucleon potential, e.g., AV18 [30]. Equation (1)
assumes angle averaging, and the zero-energy nature restricts the 
number of contacts. The key assumption in this formalism is that 
these functions, ϕN N,s(r) can be used for all nuclei. Contact coeffi-
cients can be determined for the different possible spin and isospin 
configurations of a nucleon–nucleon pair from experiment or from 
fitting ab initio calculations. Previous studies [2], show that the N N
state with deuteron quantum numbers is dominant: the peak value 
of the product Cnp,s=1

A |ϕnp,s=1(r)|2 is four times larger than for 
any other combination. This dominance is caused by the tensor 
force [31–33] As an example, the decomposition of the two-body 
density from contact formalism for 40Ca is shown in Fig. 1.

2. Describing the pair (two-body) density

The two-body pair density distribution ρN N,s(�r), is defined as 
the probability density for finding a nucleon–nucleon pair sepa-
rated by �r, with relative spin s, normalized so that its integral is 
the number of possible N N, s pairs. The two-body density is ex-
pressed as a matrix element of the nuclear wave function |ψ〉 by

ρN N,s(�r) ≡
∑

i, j∈N N
i< j

〈ψ |δ(�r −�ri j)P s|ψ〉, (2)

where �ri j is the separation between nucleons i and j and P s is a 
projection operator onto the spin s of the nucleon pair.

Our aim here is to provide a simple understanding of the un-
derlying mechanisms that produce the isospin dependence and 

other features. We will compare our results for ρN N (r) to ab ini-
tio calculations performed using Cluster Variational Monte Carlo 
(CVMC) [34] of 16O and 40Ca, the two heaviest nuclei studied so 
far using CVMC [35]. Several other calculations that include the 
necessary spin and isospin dependence in computing densities are 
those of Refs. [31,34,36–39]. A nice ab initio treatment of light nu-
clei has recently appeared [40]. See also Ref. [41], which is based 
on nuclear matter calculations.

To achieve the desired understanding we design a model in 
which the two-body density is formed from a combination of the 
correlated density coming from nuclear contact formalism (Fig. 1), 
which accounts for the behavior for r ≤ 0.9 fm and a longer-ranged 
term, ρ(0)

N N(r), for which correlations are expected to be unimpor-

tant. We define this term as ρ(0)
N N (r), given by

ρ
(0)
N N(�r) ≡ SN N

∫
d3 �RρN(�R +�r/2)ρN(�R −�r/2), (3)

where ρN is the one-body density, normalized to proton or 
neutron number, �R represents the center-of-mass position of a 
nucleon–nucleon pair, and SN N represents a symmetry factor, 
which equals 1 for pn pairs, equals Z(Z − 1)/2Z 2 for pp pairs – 
since there are only Z(Z −1)/2 unique pp pairs in a nucleus – and 
equals N(N − 1)/2N2 for nn pairs.

Then the full two-body density combines the short and long 
distance behavior, with the relative weighting determined by a 
blending function, gN N (r), and constant, κ , such that

ρN N(r) = gN N(r)ρcontact
N N (r) + κ(1 − gN N(r))ρ(0)

N N(r). (4)

We can understand how the correlated and uncorrelated densities 
contribute to produce the specific behavior of the correlation func-
tion seen through CVMC by assessing the quality of this model and 
by determining the blending function.

In order to parameterize gN N(r), we consider the short- and 
long-range constraints. At short-distance, where ρcontact

N N (r) is an 
accurate description of the two-body density [2], gN N(r) equals 1. 
For large distances, ρN N must approach ρuncorr.

N N . Since ρcontact
N N

falls off approximately as 1/r2 for r > 2 fm, gN N must approach 
(κ −1)/κ in the long-range limit, in order that the pair density ap-
proach ρ(0)

N N . We propose the following model which meets these 
requirements:

gN N(r) =
{

1 r ≤ 0.9 fm,
1
κ

(
κ − 1 + e(0.9 fm−r)/a

)
r > 0.9 fm.

(5)

For r < 0.9 fm, ρN N(r) is modeled well by the contact expres-
sion Eq. (1) (see [2]). For r > 0.9 fm, the contact density and the 
uncorrelated densities are blended, with a characteristic length-
scale, a. In principle, a would depend on the isospin of the pairs 
and on the specific nucleus being studied.

Varying the parameters of Eq. (5) to describe pp, nn and pn
pairs in 16O and 40Ca shows that the same blending function g(r)
can be used to describe all the two-body densities calculated us-
ing CVMC, shown in Fig. 2. CVMC correlation functions are shown 
as points, while our model, described in equation (4), is shown 
with bands, for which the dominant contribution to the uncer-
tainty comes from the contact coefficients, CN N . The uncorrelated 
density, ρ(0)

N N , used by our model is supplied by CVMC calculations 
of the one-body density ρN . The residuals show the difference be-
tween the CVMC density and those of the model, divided by the 
model, with the error bars showing the uncertainties in the CVMC 
densities. Our model is able to reproduce the correlation functions 
for both pp and pn pairs in two different nuclei (as these CVMC 
calculations treat p and n symmetrically, and since 16O and 40Ca 
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Fig. 2. (Color online) The model of equation (4), with only a single fitted parameter, 
can reproduce the two-body densities for both pp and pn pairs, and for both 16O 
and 40Ca, to within ±10%. The results here are shown for κ = 2.

are both symmetric nuclei, the results for pp and nn pairs are the 
same). In achieving this description we find that the parameter a
depends smoothly on κ . With κ = 2, a = 1.518 ± 0.001 fm. Fig. 2
shows that the simple model qualitatively reproduces CVMC calcu-
lations.

Fig. 2 demonstrates that the spin-isospin dependence of the 
two-body density function occur at short distances, and therefore 
originate from the contact densities of Eq. (1), while the long range 
behavior is universal between different kinds of pairs and in dif-
ferent nuclei.

3. Correlation function

The standard procedure for defining a correlation function, 
F N N,s(r), a function of the separation distance between nucleons 
r ≡ |�r|, is to take the ratio of the fully correlated to the two-body 
densities computed in the absence of dynamical correlations, i.e.,

F N N,s(r) ≡ ρN N,s(r)

ρuncorr.
N N (r)

. (6)

The notation, F N N,s(r), is meant to convey that there can be dif-
ferences in correlations between different spin and isospin config-
urations. In cases where we refer to a generic correlation function, 
we will suppress the indices and use F (r). The denominator must 
be treated with more sophistication than the function ρ(0)

N N used in 
the phenomenological fit presented above. The correlative effects 
of the Pauli principle must be included.

Typical applications of correlation functions in nuclear physics 
begin with anti-symmetrized wave functions, in the form of a 
Slater determinant. Using a Slater determinant, one can compute 
the uncorrelated two-body density as the matrix element of the 
two-body density operator. The result is

ρuncorr.
N N (�r) = 1

2

∑
α,β,∈occ

∫
d3r1d3r2δ(�r − (�r1 −�r2))φ

†
α(x1)φ

†
β(x2)

× [φα(x1)φβ(x2) − φβ(x1)φα(x2)], (7)

where xi represents several quantum numbers: x ≡ (�r, ms = ±1/2,

mt = ±1/2). For the case of proton–neutron pairs, this reduces to 
the expression of Eq. (3). However, for the case of two protons, one 
finds:

Fig. 3. (Color online) The model of equation (4), with only a single fitted parameter, 
can reproduce the correlation functions for both pp and pn pairs, and for both 16O 
and 40Ca, to within ±10%. The results here are shown for κ = 2. The predictions of 
Miller and Spencer [6], Simkovic et al. [12], Alvioli et al. [36], Benhar et al. [41], and 
the UCOM calculation by Roth et al. [44] are shown for comparison.

ρuncorr.
pp (�r) =1

2

∫
d3r1d3r2δ(�r − (�r1 −�r2))

×
[
ρ(�r1)ρ(�r2) − 1

2
ρ(�r1,�r2)ρ(�r2,�r1)

]
,

(8)

≡ Z

Z − 1
ρ

(0)
pp (�r) − ρexch.

pp (�r), (9)

where ρ(�r) is the proton one-body density, normalized to Z . The 
expression is the same for neutron–neutron pairs, substituting N
for Z and the neutron one-body density for the proton one-body 
density. The quantity ρ(�r1, �r2) is the density-matrix defined such 
that its diagonal elements yield the proton or neutron one-body 
density. The second term of Eq. (9) represents the influence of the 
Pauli exclusion principle: two spin-up protons cannot occupy the 
same orbital. This term is absent for the neutron–proton two-body 
density.

It is useful to avoid using a specific Slater determinant, which 
would depend on the nucleus. Instead, we apply a result based on 
nuclear matter (but using a local-density approximation) expressed 
as

ρexch.
N N (�r) = Z

2(Z − 1)
ρ

(0)
pp (r) ×

(
3 j1(k̄F r)

k̄F r

)2

, (10)

where k̄F is a Fermi momentum (averaged over the nuclear vol-
ume) and j1 is a spherical Bessel function. We use this approxi-
mation throughout, with k̄F assumed to be 200 MeV/c. This ap-
proximation amounts to using the local-density approximation to 
the first term of the density-matrix expansion of Ref. [42]. We ver-
ify the accuracy of Eq. (10) numerically, by comparing with the 
Slater determinant provided by the single-particle wave functions 
of Ref. [43].

The points in Fig. 3 show correlation functions calculated using 
equations (3), (10), and (6), with CVMC providing the one- and 
two-body densities. As can be seen, the correlation functions are 
similar for 16O and 40C. But there is some isospin dependence, 
as displayed by the differences at r < 1.5 fm between pp- and 
pn-pairs (dominated by s = 1). Note also that because these CVMC 
calculations treat p and n symmetrically, and since N = Z for both 
16O and 40Ca, the results for pp and nn pairs are the same.

Fig. 3 also shows, for comparison, several other calculations 
of nuclear correlation functions, including the original model sug-
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Table 1
Parameters describing F (r), using the functional form of equation (11).

Parameter Units Value (pp/nn) Value (pn)

α fm−2 3.17 1.08
γ – 0.995 0.985
β1 fm−2 1.81 −0.432
β2 fm−3 5.90 −3.30
β3 fm−4 −9.87 2.01

Fig. 4. Pauli exchange has a significant effect on pp and nn correlations. Correlations 
taken relative to a classical uncorrelated density (blue) (Eq. (3)) appear significantly 
suppressed compared to correlations taken relative to an uncorrelated density that 
includes Pauli exchange (red).

gested by Miller and Spencer [6] as well as more recent work. The 
correlation functions from ab initio and from our model are close 
to that of Simkovic et al. [12] and to the 16O calculations of Alvioli 
et al. [36], but are higher than the correlation functions predicted 
by Benhar et al. [41] and by Miller and Spencer. The calculations by 
Alvioli et al. for 40Ca predict a significantly higher correlation func-
tion for both pp/nn and pn. A calculation using the Unitary Corre-
lation Operator Method (UCOM) [44] in the T = 0, S = 1 channel is 
slightly lower than our predictions for pn pairs. A study of Jastrow 
correlation functions [45] is relevant in the present context. These 
comparisons show that at the level of two-body cluster truncation, 
isospin symmetry is broken, and that the Miller–Spencer param-
eterization suffers from this problem. The Simkovic et al. model 
avoids this problem because of the bump (at about r = 1 fm) in 
their correlation function. Our present reproduction of the correla-
tion function of [12] shows that our work also avoids this problem. 
It is necessary to keep the effects of the Pauli principle in mind 
when making comparisons between correlation functions produced 
by different authors.

For convenience, we provide the following parameterization for 
the pp/nn and pn correlation functions determined from CVMC:

F (r) = 1 − e−αr2 ×
(
γ + r

3∑
i=1

βir
i

)
(11)

with parameter values given in Table 1. This function reproduces 
the correlation functions of both 16O and 40Ca.

Note that the Figs. 1 and 3 display a striking contrast. The huge 
differences between like and un-like nucleon pairs seen in the for-
mer figure do not show up in the latter figure. This is because 
of the influence of the Pauli principle (as manifest in the second 
term of Eq. (9), which strongly enhances the pp and nn correlation 
functions defined in Eq. (6). This effect is displayed in Fig. 4.

4. Discussion

Our model, defined in Eq. (4) and Eq. (5), for the pair-density 
(Eq. (2)) requires the minimal input of the blending function, the 
nuclear contact coefficients and the universal functions |ϕN N,s(r)|2
of Eq. (1). The isospin-dependence of the two-body pair density is 
produced by short-ranged interactions, driven by the two-nucleon 
tensor force. While the nuclear contacts used in this work were 
determined from CVMC calculations, they can also be determined 
from experimental data, as shown in Ref. [2]. Thus one may obtain 
the pair-density for heavy nuclei for which ab initio calculations do 
not exist.

The correlation function, Eq. (6), can also be obtained. One 
needs a one-body density function to form ρ(0)

N N (r). The effects of 
the Pauli principle must be included as (for example) in Eq. (10). 
One-body densities have been well-measured experimentally, and 
simple parameterizations exist for many different nuclei, e.g., 
Ref. [46].

In summary, we have provided a procedure that enables pre-
dictions of two-body densities and correlation functions for nuclei 
that are too large for adequate ab initio calculations.
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