
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1989

Optical Machine Recognition of Lower-Case Greek Characters of Optical Machine Recognition of Lower-Case Greek Characters of

Any Size Any Size

Ivan X. D. D'Cunha
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Engineering Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
D'Cunha, Ivan X.. "Optical Machine Recognition of Lower-Case Greek Characters of Any Size" (1989).
Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI:
10.25777/qk4j-vz38
https://digitalcommons.odu.edu/ece_etds/324

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/324?utm_source=digitalcommons.odu.edu%2Fece_etds%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

OPTICAL MACHINE RECOGNITION OF LOWER-CASE

GREEK CHARACTERS OF ANY SIZE

by

Ivan X. D. D'Cunha
B.E. June 1987, Osmania University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment

of the Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
November, 1989

Ap roved by:

S. A. Zahorian

S. M. Park

ABSTRACT

OPTICAL MACHINE RECOGNITION OF LOWER-CASE
GREEK CHARACTERS OF ANY SIZE

Ivan X. D. D'Cunha

Old Dominion University, 1989

Director: Dr. Nicolas Alvertos

An algorithm utilizing a syntactic approach and a criterion based on normalized

moments is defined for the reliable, automatic, machine recognition of handwritten and

printed Greek characters of any size and font. In this approach a binary image of the

character in question is obtained initially; its skeleton is then produced by utilizing a

standard thinning algorithm. The classification process then incorporates the topologi-

cal features of the characters such as existence of closed curves, number of intersec-

tions, number and location of free ends, axial symmetry, and the criteria derived from

normalized moments to uniquely identify each pattern. Experiments conducted demon-

strated recognition rate of 100 Io with this approach. An alternate approach involving a

mathematical (geometricall modeling of each character is also proposed.

ACKNOWLEDGEMENTS

At the outset I would like to express my gratitude to Dr. Nicolas Alvertos for his

guidance, encouragement and the insight he provided throughout the course of this

research. I thank him for the endless hours of helpful and lively discussions and

above all the patience which successfully got me through this research.

I would like to thank Dr. S. A. Zahorian and Dr. S. M. Park for being in my

committee and reviewing this thesis.

I would also like to thank Gursel Serpen and Jagadeesh Gullapalli for their help

whenever needed.

LIST OF TABLES

LIST OF FIGURES

CHAPTER

TABLE OF CONTENTS

PAGE

lv

I. INTRODUCTION .

Objective and Organization of thesis

II. BACKGROUND .

Proposed Methods .

Operating the KRM

III. GENERAL SYSTEM DESCRIPTION ...

Preprocessing .

Recognition Features

IV. CLASSIFICATION PROCESS .

Classifier for Printed Characters
Classifier for Handwritten Characters ...
Geometrical Modeling Approach

V. EXPERIMENTAL RESULTS .

VI. CONCLUSIONS .

LIST OF REFERENCES

APPENDIXES

A. Images of Characters

B. Program listings

7
8

10

10
12

22

22
24
27

33

43

45

48

59

LIST OF TABLES

TABLE PAGE

4.1. Equations of standard geometrical curves .

5.1. Feature values of lowercase printed greek characters

5.2. Feature values of lowercase handwritten greek characters ...

5.3. Comparison of the seven invariant moments

28

34

35

42

LIST OF FIGURES

FIGURE PAGE

1.1.

3.1.

3.2a

3.2b

3.3.

4.1.

4.2

4.3.

4.4.

5. 1.

5.2.

5.3a

5.3b

54
A. 1.

A.2.

A.3.

A.4.

A.5.

A.6.

A.7.

A.8.

A.9.

Modeling of a few Greek characters

Recognition based on Geometrical modeling approach ...

Captured image of phi Q&) .

Thinned binary image of phi (0)

Character phi (0) enclosed in a rectangular grid

Number of closed areas in phi (y)

Intersections and free ends in phi (p)

Captured image of alpha (a) .

Thinned image of alpha (a) .

Captured image of beta ((I)

Thinned mage of beta (0) .

Captured image of mu (tt) .

Thinned image of mu (tt)

Captured image of kst (4)

Thinned image of ksi (() .

Captured image of psi (y) .

A.10. Thinned image of psi (y) .

A character reading device

System used for recognition of Greek characters

Neighboring pixels used for assignment for step 1

Neighbors used for assignment for step 2

Neighbors used for the determination of intersections ...

Classifier for Printed Greek Characters

Classifier for Handwritten and Printed Greek Characters

14

14

16

23

25

29

32

36

37

38

39

40

49

50

51

52

53

54

55

56

57

58

CHAPTER I

INTRODUCTION

In the world of industry and commerce, the number of characters that have to be

recognized each year is astronomically large. Though exact figures are not available,

but it is safe to say that even today only a small percentage of all characters that have

to be recognized are in fact recognized by machine fl]. During the last 15 years opti-

cal character recognition, a new field then in technology, has come into being and has

been nurtured intensively.

Devices now exist for reading conventional typescript and specially constructed

fonts at thousands of character per second with relatively small reject rates. Hand

written letters and numbers have been automatically recognized with high accuracy,

and carefully handwritten cursive script has been successfully read by machines. As

powerful as some of the automatic techniques are, the machine capabilities are yet not

xtremely flexible; they only begin to match human capability, except for speed.

Really potent or deeply sophisticated algorithms for machine recognition of print and

script still lies in the future.

The use of automatic magnetic-ink character recognition for sorting bank checks

has been well established for many years because the number of checks per day has

been far too large for manual sorting. In the U.S and Japan, the colossal volume of

mail has driven post offices to use optical character recognition (OCR) equipment for

postal sorting. This equipment is cost effective even though it rejects a considerable

percentage of mail pieces as unreadable.

Any character-reading device, whether it uses magnetic, optical or any other sys-

tems, contains the basic components shown in Figure 1.1. Traditionally, expensive

equipment has been required to transport documents physically past a scanner. If char-

acters are read while the document is actually in motion, the mechanical equipment is

simpler than in the case where characters are read while the document is stationary [2].

Mechanical document handling has been the most costly part of character recognition

equipment. Recently, hand-held "wand" scanners have been developed. A human

operator simply wipes the pen-like reading head along a line read [3]. This is slower

than the fully automatic methods for transporting documents past a reading head, but

much less expensive.

As mentioned before, there are four different aspects to a practical character

recognition system. The first is to feed and position the character with respect to some

scanning device. The second is scanning in order to provide signals which represent

the optical image. Thirdly, these signals must be assembled into a coder which

represents the image effectively. Finally, a decision-making process operates on this

coder to complete classification[4].

OBJECTIVE AND ORCANIZATION OF THESIS

The objective of this thesis is to develop an algorithm for the automatic recogni-

tion of handwritten and printed Greek characters. Recognition of printed Greek char-

acters has been investigated in [21] where only topological features were incorporated.

This thesis puts forward two schemes for the successful recognition of handwritten and

printed Greek characters independent of font and size. Chapter II discusses in brief

the two approaches in general. A review of existing character recognition techniques

is also presented in this chapter. In chapter III, the general system description is

presented. A detailed explanation of the various features utilized in the recognition

schemes is also described. Chapter IV presents two different classification processes.

The first classification process recognizes only printed Greek characters, while the

second classification process which is an improvization of the first one, recognizes

both printed and handwritten Greek characters. The recognition process based on the

second approach is also discussed in this chapter. Chapter V summarizes and

discusses the results and finally chapter VI presents the conclusions from this research.

A few pictures of captured images and their thinned images are shown in appendix A,

while the complete program listing is given in appendix B.

CHAPTER H

BACKGROUND

Several character recognition techniques [5,6,7,8,9] that have been proposed the

past few years can be broadly classified into four categories: the feature extraction

approach, the statistical- decision theoretic approach, and the syntactic or linguistic

approach.

Although a significant amount of research has been devoted to handwritten char-

acter recognition, most research has been concentrated on the automatic recognition of

printed characters. Automatic character recognition has been accomplished to some

extent for Chinese, Latin, Japanese, Hebrew, and several Asian-Indian Languages. In

this work we present an algorithm for recognizing handwritten lower case characters of

the Greek language, which are also used in engineering and mathematics, regardless of

their font and size. In relation to font and size, Kahan er al. [10] describe a method

that removes the font, size and tilt restrictions of characters while maintaining overall

rates close to those of the limited-font commercial machines. No effort is made to

find text lines in advance; they begin by detecting and recognizing blobs after which

they proceed on with line formation. The Line Adjacency Graph [11] is constructed

from a scanned and run length encoded image of the document to be read. Thinning

is used as a basic feature extractor yielding a set of strokes approximating the skeleton,

resulting in the following features: (i) Number of Holes, (ii) Approximate hole location

and size from subgraph matching on the Line Adjacency Graph, (iii) Concavities in the

skeletal structure, (iv) Crossings of strokes, and (v) Endpoints in the vertical direction.

Another paper [12] demonstrates the use of polygonal boundary approximation

for shape recognition and handwritten character recognition in general. The basic

feature of this approach is the use of significant numerical preprocessing of the data

without the use of semantic information, followed by an analysis of the reduced data

which is based heavily on semantics. First, the boundary points are identified by a

tracing algorithm. During this process the number of holes in the figure is determined.

After an ordered list of the boundary is obtained, a piecewise linear approximation of

only the external boundary is performed. Again the presence of concave arcs, the

number and location of holes were significant classifying features of the algorithm.

Though it was demonstrated that polygonal approximation generates quite powerful

features for classification the results obtained were not as good as when extensive use

of semantic information was made.

Baptista and Kulkarni [13] used segmentation and the position of endpoints of the

resulting segments as the basic features to describe a character. A syntactic approach

is used to parse the character and segment it, while a deterministic approach is used to

identify the segment features. Again a syntactic approach is used to provide a com-

plete structural description of the character, and finally the deterministic approach is

used to identify the character from a previously stored look up table.

In another paper [14] the combination of a statistical and a structural technique is

employed for recognizing numerals. The algorithm is divided into two stages. It first

uses concavity measurements to characterize the pattern and a linear discrimination

technique which assigns one character to one cluster. The second stage controls the

results of the first stage and makes new decisions if necessary. The pre-recognition

algorithm is a set of simple rules that performs a rough estimate of the shape of the

different "forms" before and after any treatment. The principal criteria are statistical

for different characteristics such as: (i) Local height and width of characters with

correction according to slant, (ii) Vertical and horizontal transition between characters

and background, (iii) Number of pixels enclosed within characters.

Jeng [15] has developed a new scheme for recognition of chinese characters,

where the features selected show the relative position of strokes and the relation

between the object and the background. The use of accumulated stroke features that

reflect the geometrical and topological properties of a character can account for the

pattern variation in multifonts and constrained handwritten chinese characters.

Recently several algorithms have been developed demonstrating the role of neural

networks in the field of character recognition [16,17,18,19,20]. Though much of the

preprocessing is the same as in pattern recognition, the training and matching process

is performed using a large network of neurons.

PROPOSED METHODS

Two algorithms are presented here for the reliable, automatic machine recognition

of handwritten and printed Greek characters regardless of size and font. In the first

algorithm, which is syntactic in nature, initially a binary image of the character in

question is obtained; its skeleton is then produced by utilizing a standard thinning

algorithm. To uniquely identify each pattern, the classification process incorporates

features of the characters such as existence of a closed curve, number of intersections,

number and location of free ends, axial symmetry, as well as criteria derived from nor-

malized moments, The second approach is based on the mathematical modeling of

each character with a standard geometrical shape. Considering the morphological and

topological features of the Greek characters, each character can be modeled with a sin-

gle or a combination of standard curves such as, lemniscates, cardioids, ellipses, circles

and straight lines. Once the skeleton of the image is obtained, during the recognition

process, a best fit to a particular test pattern is obtained from the several equations

characterizing each of the twenty-four characters. To demonstrate this approach

characters alpha, beta, gamma, omicron, theta, epsilon, omega, and rho have been

selected as sample models.

Since the ultimate goal of this research is to incorporate the Greek character

recognizer into a reading machine for the blind, a brief mention of one such machine

known as the Kurzweil Reading Machine follows next.

The Kurzweil Reading Machine, or KRM for short, was developed by Raymond

Kurzweil. It is a special scanning device which converts several hundred types and

styles of print into speech for use by the blind and visually impaired. Although its pri-

mary application is as a reading machine, it has several applications as a scanning dev-

ice, in general KRMs come in various modes and are currently being used in schools,

libraries, employment agencies of and for the blind.

OPERATING THE MACHINE

The reader places the book on the glass surface of the machine, presses the top

of page button and the automatic page scanner then scans the book, finds the first line

and begins to read aloud. As one reads one can stop the machine to spell out a partic-

ular word, or one can make the machine read one line at a time and stop or read a

paragraph and stop. The machine also remembers the last three hundred characters it

has read and hence by pressing the appropriate button, one can go back into its

memory and read any number of words or lines again. The beauty of the KRM is its

unique shape recognition system, which allows the system to "learn" new characters

and type styles and can read, therefore, many books and typeset materials. Since the

KRM can leam new characters, its reading improves and becomes accurate with use.

If the machine has difficulty with a type style the first time around, it may become

more accurate by running the pages through a second time. This Machine unlike most

OCRs- recognizes shape, not type faces, a process which more closely approximates

human reading. Other than the price, the KRM has some difficulty with some types of

print, although far less than other OCRs. The variety of type fonts, proportional spac-

ing, pictures, and graphs makes it difficult for the computer to analyze the data

correctly. The quality of paper is another factor. Thin paper may not work if the

camera lights see through it and the print bleeds through from the reverse side. Pic-

tures present obstacles for the OCR when it tries to convert the light and dark images

into letters. A third problem with the KRM is that it cannot read handwriting, nor can

any other OCR, and here is where the algorithm proposed in this study may have a

direct application. The recognition system configuration and the recognition features

are dealt with in the next chapter.

CHAPTER III

GENERAL SYSTEM DESCRIPTION

As shown in Figure 3.1, the optical character recognition system used consists of

an optical scanner, a digitizer, a preprocessor, and finally the classifier. Isolated char-

acters which are considered for input are scanned by a CCD camera and then digitized.

Before the first level of the decision tree is applied, the following preprocessing steps

are considered: (i) Thresholding, (ii) Noise Removal, (iii) Character enclosure and thin-

ning.

THRESHOLDING

Since isolated characters are being considered, segmentation is not necessary for

it is used for partioning text into individual characters prior to recognition. Threshold-

ing results into the binary image where only two grey levels exist, black and white.

This process is also known as binarization. A particular threshold value in the process

of creating the binary image, results, to some extent in the thinning of the character. It

should be noted that the black pixels refer to the character and the white pixels refer to

the background. Also, sparse noise in the form of neighborless pixels is removed.

CHARACTER ENCLOSURE AND THINNING

The noise-free binary image of the character is then bounded by a rectangular

array which we shall refer to as the character array: The first black pixel encountered

in the character array, if the image is scanned horizontally, belongs to the top row of

the array and the last black pixel encountered belongs to the bottom row of the charac-

ter array, Similarly, if the character array is scanned vertically, the first black pixel

10

12

encountered belongs to the first (left) column of the array and the last black pixel

encountered belongs to the last column of the character array. This operation results

in a rectangular character array of size N x M.

The character array is then thinned using a standard thinning algorithm [IL22].

Since no normalizing techniques such as averaging have been used, no noise or distor-

tions are introduced in the image. A description of the classification process, which is

represented by the final block of the system (Figure 3.1), follows next.

RECOGNITION FEATURES

The unique classification of each of the characters is based on the following

features: (i) Existence of closed curve, (ii) Number of intersections, (iii) Number of

free ends, (iv) Location of free ends with respect to the horizontal and the vertical

reference axis, (v) Horizontal symmetry, (vi) Verdcal symmetry, and (vii) Comparisons

of the seven invariant moments.

EXISTENCE OF CLOSED CURVE

This feature is utilized at the first level of the classification tree, where the com-

plete set of twenty-four characters is separated into two subsets: one with closed curve

characters and the other without. Characters having closed curves are those characters

which when written enclose an area. Alpha, Beta, Gamma, Theta, Phi, Omicron, Rho,

Delta, and Sigma are the only characters which have some form of area enclosed

within them. The remaining characters fall into the other category. The procedure

used to detect the existence and the number of closed areas is as follows.

13

The N x M character array is augmented by two columns (one to the left and one

to the right) and two rows (one to the top and the other to the bottom) all filled with

white pixels.

The white pixels of the first row are all assigned an arbitrary value v. Beginning

with the second row, whenever a white pixel is encountered the minimum assigned

value of the two neighboring points, as shown in Figure 3.2a, is assigned to this pixel.

All the black pixels encountered are assigned the value of NM + v, where NM is the

total number of all the pixels (black and white) in the character array and v is the ini-

tial value assigned to the white pixels of the first row. This value of NM + v never

changes. Whenever a white pixel has two neighboring black pixels as in Figure 3.2a,

the value of v is incremented and the new value is assigned to this white pixel. The

second step of the process involves the reassignment of all the white pixels with the

minimum assigned value of the four neighboring sites as shown in Figure 3.2b. The

assignment remains the same (NM + v) for black pixels. The number of enclosed

areas existing in that character is the absolute difference between the maximum

assigned value among all white pixels in the character array and the initial value v.

This procedure can be summarized as follows. Let the pixels of the character

array be denoted as

p(i d) 1&i &M + 2, 1&j ~& + 2.

p(i,j)= 0 refers to a white pixel and

p(i,j)= I refers to a black pixel.

For all p(l,j), 1&j&~ + 2, we assign the value n„= v.

Beginning from the second row, for 2&~ &M + 2, 1&j&~ + 2

If p (ij) = 1, assign n;, = hiM + v

If p (i,j) = 0, then

15

if p(i — l,j) = p(i,j -1) = 1, then n;„= max (n,s) + 1,

for ail i&i, k&j where n,s w NM + v

otherwise assign n;, =min(n;,, n;, &)

During the second step, for

3&i &N + 2, 1&j«M + 2,

for each pixel p(i-l,j), with assignment n; «wNM +v

assign n; « = min (n; xi, n;,„,, n;,„, n; «,, n;;)

Finally, the number of enclosed areas is

max(n; „) — v

NUMBER OF INTERSECTIONS

The efficiency in utilizing this particular feature depends on the performance of

the thinning algorithm. The character array is scanned horizontally. Whenever a black

pixel is encountered, the sum of all the black pixels at the eight neighboring sites, as

shown in Figure 3.3, is obtained. It has been determined that if this sum is equal to or

greater than four, then an intersection has occured.

That is,

For 1&i &M, 1&j&~,

If p(ij) = 1, then evaluate

SUM = p(i —l,j-l) + p(i — 1J) + p(i — 1 j+1) + p(i,j-l) + p(i j+I) + p(i+1j -I)

+ p(i+1,j) + p(i+1,j+1)

If SUM & 4, shen Number of jnterseedons I =I + l,where I is initially set at

zero.

After all the pixels have been scanned, the final value of I equals the number of

Intersections in the character.

16

17

NUMBER OF FREE ENDS

As before, the character array is scanned horizontally. Whenever a black pixel is

encountered, the sum total of black pixels at the eight neighboring sites, as shown in

Figure 3.3, is evaluated. If this sum is equal to one (implying that the pixel under

question has a single neighbor), then a free end exists.

That is,

For 1&i &M, 1&j &~,

If p(ij) = 1, then evaluate

SUM = p(i-1 j-1) + p(i-1j) + p(i — 1 j+1) + p(i,j-l) + p(i j+1)

+ p(i+lj — 1) + p(i+lj) + p(i+1j +1)

if SUM = 1, then Number of Free ends F = F + 1,

where F is initially set to zero. The final value of F gives the number of Free ends

after all the pixels of the character array are scanned.

LOCATION OF FREE ENDS

The — row of the N x M character array is considered as the reference horizontalN
2

axis. Using the procedure described above, the number of free ends above and below

the horizontal reference axis is determined.

Similarly, the — column of the N x M character array is considered as the refer-M

ence vertical axis. Using the same procedure discussed above, the number of free ends

to the left and right of the vertical reference axis is determined.

18

HORIZONTAL SYMMETRY

This feature is not required for the recognition of handwritten characters, how-

ever, when it is known that the character is printed it can be used instead of the

feature regarding the location of free ends.

Let R» R, R, R„be the N rows of the character array.

Rt has elements p» ptz ptst and similarly Rtt has elements pttt ptts ptnt.

A sequential row comparison of the pixels is initialized, i.e., the first row is compared

with the last one, the second with the second last and so on. If

Rt = Rtt Rs=Rtt t ..J4=Rtt e for all k&tVt2 then the character under test is horizon-

tally symmetric.

VERTICAL SYMMETRY

The approach to determine vertical symmetry in a character is similar to that for

determining horizontal symmetry. This feature, also, is not required for recognition of

handwritten characters.

Let C» Cz Cs Cst be the M columns of the character array.

Ct has elements p» pzt pttt and similarly Cst has elements ptst ptss pttst.

A sequential column comparison of the pixels is initialized, i.e., the first column is

compared with the last one, the second with the second last and so on. If

Ct —— Cst Cs = Cst t„,Ce= Cst e for all k& M t2 then the character under test has vertical

symmetry.

19

CRITERION BASED ON NORMALIZED MOMENTS

Given any two dimensional continuous function f(x, y), a moment of order (p+@

is defined by,

where p, q= 0,1,2..

mpq f f xP y' (x,y)dxdy

The central moment for the same function f(x, y) is given as

U = f f (x — x)P (y — y)q f (x y)dxdy

where

m 1 0 11101y=
moo 'oo

For a digital image, the above equations become,

where

M1o Mot
j =

Moo 'oo
The central moments have been shown [22] to be invariant to translation of an image.

Another set of moments have been derived [22] from the central moments which

are invariant to the size of the image. These normalized central moments are denoted

by q)pq and are defined as

where

Ppq

(tt)'or

p+q = 2,3,...

I= — + Ii1+1i

2

20

Hu [23,241 derived the following set of seven moments invariant to size and

orientation.

MMi —— 7bo+ ilo2

MM2 —
(7)m — 7)oy2+ 47)

MM3 (7)30 — 37h2)'+ (37121 7103)'M4

—— (rl3Q+ f72) + (7b, + 71Q3)

MM5 (7)30 37112)(7130 + rh7)((7)30 + 7)i7)' 3(u21 + 103)'l

+ (37127 — 7103)(7127 + 7103)(3(7) 30 + 7172)' (712i + 7103)'I

MMQ = (rl~ — uodKrl~+ tlirt' (u21+ 903)') + 4n»(n30+ 012)(821+ %03)

MM7 = (3712i — 7130)(7130+ rt77)K7130+ rti7)' 3(712i + 7)03)'I

+ (3"112 "130)(121 + 103)P(130+ "112) (121 + 103)'I

where 71~ is the normalized central moment.

Let MM7, (i = 1,...,7, and j = 14,,24) be the invariant moments of each character

with index j evaluated and stored in a database before the recognition process.

Let 7v; x M; be the size of the character array in the database, where i= 1,...,24

(total number of characters). Let the test character be of size n x L

If inn in2, m3, in4, in3, mo, and m7 are the seven moments evaluated for the test

character while in the recognition process, then

mi 4
JY;

* M;
MT; = MM;*n*l

MT; are the normalized test moments, where i= 1,....,7.

If MT (i = 1,2,,7) are the invariant moments obtained for the character in ques-

tion, with index value k, in the recognition process,

then

7

MSE{j) = g [MM7 — MT;)2
7=1

where j= 1,2,3,......, 24 (the total number of characters), represents the mean-square

error between the moments of the test pattern and every set of moments stored in the

database for each character.

If the minimum of all MSE(j) occurs when j = k then the character in question is

identified as the one from the database with index value k.

The Classification process of the classifier which recognizes just the printed char-

acters and the second classifier which recognizes both handwritten and printed Greek

characters simultaneously is dealt with next. A separate section on the second

approach referring to the mathematical modeling aspect follows at the end of the

classification processes.

CHAPTER IV

CLASSIFICATION PROCESS

CLASSIFIER FOR PRINTED GREEK CHARACTERS

The tree structure of the classifier for recognizing printed Greek characters is

shown in Figure 4.1.

The first level of the tree which determines the existence of closed curve in a

character divides the character set {a, {I, Z, 5, s, q, I, u x; X, It, v, co, o, 8, x, F, p, a, r, 8,

u, E„ I,) into two groups, one with closed curves (a, {I, I, 5, 8, 8, p, a, o}, and the other

without {X,s,q, t,x,k,p.,v,x,m,(,F,(, r,u}.

The character set (a, {}, I, 8, 8, 0, p, a, o), upon application of the second level of

the tree, which determines the number of enclosed areas in a character, is divided into

two groups, the first consists of characters with one enclosed area (a, I, p, a,5, o),

and the other of characters with two enclosed areas {{}, 8, 8). The third level of the

tree which utilizes the feature determining the number of free ends in a character

classifies the set {(I, 8, 8) into{8), {{}), and {0), with the free ends being zero, one,

and two respectively. The set {a, I, p, a, 5, o}, on the other hand, upon application of

the feature regarding horizontal and vertical symmetry is divided into (o) and (a, I

, p, o, 5). The fourth level of the tree which tests for horizontal symmetry in a charac-

ter results in {ct) and (y, p, a,5). The fifth level of the tree which determines verti-

cal symmetry in a character subdivides (y, p, o, 5) into (I) and { p, a, 8). The set

(p, o, S) is next classified utilizing the moment invariance principle.

22

24

The character set {y, e, tt, u x, A,, It, v, x, t0, g, y, l;, ~, u} which does not consist of

closed curves, during the second level of the tree, utilizes the feature determining the

number of free ends to result in three sets, {t, f„v, u), (r, tt, e, X, M) and {(, tt, x, x, q,

tt), with free ends two, three, and four respectively. In the third level of the tree the

feature determining vertical symmetry in a character separates the set (u f„v, u) into

(v) and (u (, u), whereas the set (t, tt, s, L, t0) is divided into {&o} and (~, {I, c, I,).

At the same level the set {4, Z, x, x, F, tt) is subdivided into the set (g}, having both

horizontal and vertical symmetry, and the other {I„x, x, tf, tt) without this feature.

Existence of horizontal symmetry isolates (e} from the set {~, u, s, X} in the fourth

level of the tree, whereas the rest (x, tt, X) are classified distinctly utilizing the criteria

of moment invariance during the fifth level of the tree. The set (u i;, u} upon appli-

cation of the feature determining the number of intersections in a character is separated

into {u u) with zero intersections and (t;} with one intersection. The principle of

moment invariance subsequently classifies the set (t, u) into {t} and {u}. The set (4,

x, x, y, tt) on the other hand utilizes the feature involving the existence of vertical

symmetry, to be separated into two sets, (x, 5} and (tf, x, tt). In the fifth level of the

tree, character (x) with horizontal symmetry is isolated from the set (F, x, tt), leaving

(y, tt) to be separated with the moment invariance principle. The set {x, ()

meanwhile, upon application of the feature determining the number of intersections in

a character is separated into {(} and (x) with one and two intersections respectively.

CLASSIFIER FOR HANDWRITTEN AND PRINTED GREEK CHARACTERS

The tree structure of the classifier for recognizing handwritten and printed Greek

characters is shown in Figure 4.2.

The first level of the tree which determines the existence of closed curve in a

character divides the character set {a, {I, It, 5, e, tl, I, u x, X, p., v, t0, o, 0, x, F, p, o, r, 0,

26

u, 4, t;) into two groups, one with closed curves {a, }3, y, 5, 0, 0, p, a, o), and the other

without (X,e,u, ux,A„tt,v,x,co,g,y,t;, r,u).

The character set {a, {l, y, 5, 0, 0, p, a, o), upon application of the second level of

the tree, which determines the number of enclosed areas in a character, is divided into

two groups, the first with one enclosed area (u, y, p, a, 5, o), and the second with two

enclosed areas (fi, 9, 4). The third level of the tree which utilizes the feature deter-

mining the number of free ends in a character classifies the set (}l, e, y) into (a), {(i),

and (0), with the free ends being zero, one, and two respectively. The set (n,y

, p, o, 5, o), however, upon application of this feature, is divided into three subsets (o),

(p, a,5), and (a, y), with the free ends being zero, one and two respectively. The

fourth level of the tree, which determines the number of free ends above the horizontal

axis, breaks down the set (p, a, 5) into two groups, (6, a) with one free end above the

horizontal axis, and (p) with zero free ends above the horizontal axis. The set (a, y)

is divided into {a) and {y) with the free ends above the horizontal axis being one and

two respectively. The fifth level of the tree utilizes the moment invariance principle to

classify (5) and (u) distinctly.

The character set (y,, e, ti, u x, X, g, v, x, t0, (, y, t;, ~, u} which does not consist of

closed curves, during the second level of the tree, utilizes the feature determining the

number of free ends to result in (u (, v, u), (x, t), a, A,, to) and (F„g, x, tt, tf, tt), with

free ends two, three, and four respectively. The third level of the tree utilizes the

feature evaluating the number of free ends above the horizontal to decompose the set

(u i;, v, u) into (u t;) and (v, u), with the feature values being one and two respec-

tively. The set {t, rt, c, k, t0} on the other hand utilizes the feature determining the

free ends to the left and right of the vertical to result in three subsequent sets (c), (to,

x) and (X, tt) with feature values being zero, one, and two respectively. The third set

which has resulted after the application of the second level, namely ((, y,, x, tt, tt, tt) is

separated by the feature determining the number of intersections resulting in (5, rt, tt)

27

and (y, y, x) with the intersections being two and one respectively. The fourth level

of the tree incorporating the feature determining the number of free ends to the left

and right of the vertical axis, separates the set (u t;) into (t) and (t;) distinctly. The

set (v, u) is divided by the feature determining the number of intersections resulting in

(v), and (u), with the number of intersections being one and zero respectively each of

the cases. Character sets (to, r) and (L, tt) are to be classified using the moment

invariance principle. Also, the sets (F„ tt, tt) and (y, I„x) use the feature involving

the detection of the number of intersections to result in (f,), (tt, u) with feature values

three and two, and (y), (X, x) with feature values three and two again, respectively.

The fifth level of the tree utilizes the principle of moment invariance to separate the

sets (x, tt) and (z, x) into (tt), (tt), (z), and (x).

The features involving the vertical and horizontal symmetry of a character are not

used for handwritten characters, however, they may be used as optional features,

replacing the features determining the number of free ends, when recognizing printed

characters.

GEOMETRICAL MODELING APPROACH

Let us now consider the second approach attempted for the Recognition of

handwritten Greek characters. Among the characters successfully modeled are alpha,

beta, gamma, omicron, theta, rho, epsilon, and gamma. Mathematical modeling refers

to the process of representing each character with a single or a combination of stan-

dard geometrical shapes. The geometrical shapes considered in our case are Lemnis-

cates, Cardioids, Ellipses, Circles, and finally Straight lines. Table 4.1., gives the

equations [25] describing each of the curves mentioned above, and Figure 4.3 shows

some of the characters successfully modeled and recognized as the geometrical shapes

shown next to them.

28

TABLE 4.1

29

30

Theory

Since most of the characters can be represented by a single or a combination of

geometrical shapes, each has a unique equation describing it. Once the character array

is obtained, the one among the twenty four equations which best fits the test character

maps the test character to the correct one in the database. The least square error

approach is utilized to obtain the best fit.

Let

(x,y i),(x2y2)...,.....,(x„y„)

be the coordinates of the pixels comprising of the test character.

y =f(x)
is a relation satisfying any of the five geometrical shapes discussed above, then the

particular equation for which

ply, -f(xi)l'=i

is minimum resembles to that particular character. Scaling is considered next.

Let 'k'e a scaling factor, which means the equation is of the form

y = kf (x) (4.1)

Now mean square error for (4.1) is obtained by minimizing

1

Ziq — fi*;il'4yi
IZlf (xj)II
j=1

Upon substitution of (4.1), minimizing (4.2), is the same as minimizing

31

For any j,

yj — f (xj) = 5j

where 5, =&0 for the closest match.

(4.4)

N N

Under this condition, i.e., for gyj = gkf (xj), minimizing (4.3) is the same as minimiz-

ing

f (x;)
N N

gkf (xj) ~(xJ)
(45)

which then leads to

" yjr Zfq -f('ll*;

[Elf (xj) I)

j=1

which is (4.2) with which we started with.

Hence, to summarize, minimizing (4.2), is the same as minimizing (4.3) which

does not contain the scaling factor k. The objective of eliminating k is thus achieved,

thereby keeping the above procedure size invariant. It has been shown in figure 4.4

that each of the sample characters have a unique representation using the approach of

geometrical modeling. Experimental results are discussed in the next chapter.

32

CHAPTER U

EXPERIMENTAL RESULTS

The algorithms described in this thesis were implemented in FORTRAN on a

DEC VAX ll/750. A 256 x 256 image of the character was captured and subse-

quently digitized. The preprocessing steps, thresholding, character enclosure and thin-

ning, generate the character array of the image.

The database library consists of a single set of feature vectors, where each vector

has the following features: number of enclosed areas, number of intersections, total

number of free ends, number of free ends above the reference horizontal axis and

finally the number of free ends to the left of the reference vertical axis. Experiments

were performed for five different sets of printed Greek characters and seven different

sets of lower case handwritten Greek characters. Table 5.1 and Table 5.2 illustrate the

topological features for each of the twenty four characters in both printed and

handwritten characters.

Figure 5.1 shows the original captured image of the character phi (y). The thinned

character array of the same image is illustrated in Figure 5.2. The rectangular grid in

which phi (y) is enclosed is shown in figure 5.3a. The number of enclosed areas in

phi (y) is shown evaluated in Figure 5.3b. It is seen in the figure that the initial

assignment to v is one, and by the time the entire character array is scanned, this

assignment changes to three. As described in chapter III, from the figure, the number

of enclosed areas is maxin;,&-v, i.e., 3-1 as in this case, resulting in two enclosed areas.

33

34

35

TABLE 5.2

Feature values of the lower case Greek characters

character tt of Areas
¹ of Free ends ¹of Free ends above¹ of Intersections

¹ of Cree ends to tbc

alpha, ct

beta, P

chi, X

delta, 5

epsilon, c

(total) the horizontal axis left of the vertical axis

gamma, y
iota, t
kappa, tc

lambd, X

mu, tt
nu, v
omega, m

omicron, o

phi, tt

pt, lt

pst, ttr

rho, p
sigma, a
tau, 'r

t.heta, 8

upsilon, u

zeta, t„'

36

000000000
00
0000000000000000111
000000000000000111
0000000000000000111
00000000000000000111
00000000000000001111
000000000000000001111
0000000000000001111111110000000$XN0000
000000000000011100111011111000000000000
000000000000111000111000111100000000000
000000000001110000111100111100000000000
000000000011100000111000011110000000000
000000000011100000011000001110000000000
00000000001110000001110000011100$N0000
000000000001110000011100000111000000000
000000000000111000111000011100000000000
000000000000011100011100111000000000000
000000000000000111111111100000000000000

111111
000000000000000000111
000000000000000000111
00000000000000000001110000$XN000000000
0000000000000000000111
000000000000$XN00111

Figure 5.1. Captured image of character phi (P),

37

1

0000$XXXN000000001
0000$XN00000000011
0000000000000001100111
0000000000000010000100110(XXXXX0NOOO
0000000000000110001100001000000$XXNOOO
000000000000100000010000011000000000000
000000000001000000010000001000$XXXXNOO
000000000001100000010000000110000000000
00000$XXN00100000011000000010000000000
000000000001100000010000001100000000000
0000000000000100000100000001000000$XXN
000000000000011000010000011000000000000
000000000000000110010000100000000000000
0000000000000000011100110000000000$XXN
00 1001
000000000000000000011

I
0 1

1

Figure 5.2. Thinned image of character phi (P).

38

39

11111111111111111111
11111141111111111111
111111*1111111111111
111111*1111111,111111
1111111*111111111111
1111111*111111111111
1111111***1111111111
11111**22"**11111111
1111*2222*33**111111
111**222**3333*11111
11*222222*33333**111
1*2222222*333333*111
1**222222*3333333**1
11*222222**3333333*1
1~*222222*333333**11
111*22222*3333333*11
111**2222*33333**111
11111**22*3333*11111
1111111***33**111111
11111111*33*11111111
111111111**111111111
111111111*1111111111
111111111*1111111111
111111111*1111111111
11111111111111111111

Figure 5.3b. The procedure to detect the number of closed
areas in the character phi (P) results in two
such areas. "*" refers to the black pixels in
the character array.

40

The intersections and the free ends in the character phi (y) are marked as shown

in Figure 5.4. As it can be seen from the figure, the number of intersections is two

and the number of free ends is also two.

The principle of moment invariance is mostly utilized to classify a few sets of

characters belonging to the sub-group having zero enclosed areas. Table 5.3 lists the

seven invariant moments for the characters that are uniquely recognized only when the

moment criterion is applied. Each set of experiments resulted in a 100% recognition

42

TABLE 5.3

Comparison of the Seven Invariant Moments(MM;)
Character MM1 MM2 MM5 MM6 MM7

delta, 8 1.0986 2.302 3.178 2.39 5.739 4.304 4.6051

sigma, a 10.052 9.1519
6.459 6.008kappa, x

7.778

7.001

5.89
4.454

3.09 4.6051 3.583

4.43 4.6051 3.496

pk R 7.196 5.94 7.329 5.176 2.639 4.094 4.6051

xi,f, 6.652 6.770

omega, m 2.944 3.828

2.564 3.891

lambda, X 1.791 2.197

2.890 2.484

upsilon, u 5.45 4.077 4.744

6.073

4.234

4.043

4.043

4.043

4.454

5.424

2.564

2.944

3.526

3.044 3.091 4.6051

5.446 5.924 4.6051

4.6051 3.806 2.079

5.416 4.779 4.6051

4.248 3.218 4.6051

5.54 3.951 4.6051

CHAPTER VI

CONCLUSIONS

In this thesis we have presented two approaches for the reliable, automatic

machine recognition of handwritten and printed Greek characters invariant to the size

and font.

Most of the previous works in the field of character recognition are based on

feature extraction techniques and a syntactic approach for classification. Moments as

such have been utilized [26] for character recognition whereby the experimentations

were carried out on only printed latin characters. Large sets of apriori data in the

library were required and above all the recognition rate was not very satisfactory.

The first approach presented in this thesis is a combination of the syntactic and

the moment invariant properties. In this approach, the binary image of the character is

obtained, enclosed in a rectangular grid and finally thinned to one pixel thick skeleton

utilizing a standard thinning algorithm. Topological features of the characters such as

the existence of closed curves, number of intersections, number and location of free

ends, axial symmetry and principle of moment invariance are incorporated in the pro-

cess to correctly classify each of the characters.

Unlike most of the techniques and approaches which have been utilized for char-

acter recognition, the second approach presented in this thesis is an entirely different

and new technique for character recognition. In this approach, considering the mor-

phological and topological features of the Greek characters, each character is to be

mathematically modeled with a standard geometrical shape. After having undergone

similar preprocessing as the first approach, each pattern is modeled with a single or a

43

44

combination of standard geometrical shapes such as lemniscates, cardioids, ellipses,

circles and straight lines. During the recognition process, a best fit to a particular pat-

tern is obtained from each equation characterizing each of the twenty-four characters.

The mean-square-appraoch is utilized for determing the best fit. This approach would

be more time efficient than the syntactic one. Research will be conducted on the utili-

zation of additional geometrical shapes other than the ones already being used. In the

future, work will be performed to come up with a certain set of invariant moments

other than the ones already in existence, which will be sufficient to uniquely classify

the characters without considering the other topological features.

Both of the greek character recognition processes can be incorporated in the read-

ing machine for the blind.

LIST OF REFERENCES

[1] K. S. Fu, Applications of Pattern Recognition, CRC press, 1983.

[2] J. D Erwin, D. R Duvall, and R. K Habitzreiter, "Single Read station Acquisition
for Character Recognition," U.S Patent 4,013,999, 1977.

[3] S. C Requa, "Hand-operated Optical Character Reader Wand," U.S patent
3,947,817, 1976.

[4] L. D Harmon, "Automatic Recognition of Print and Script," Proc. of the IEEE,
voL 60, no. 10, October 1972.

[5] C. Y, Suen, M. Berthod, and S. Mori, "Automatic Recognition of Hand-Printed
Characters- The State of the Art," Proc. IEEE 68, pp. 469-487, 1980.

[6] S. L. Xie and M. Suk, "On Machine Recognition of Hand-Printed Chinese Char-
acters by Feature Relaxation," Pattern Recognition, vol. 21, no. 1, pp. 1-7, 1988.

[7] I. Sekita, K. Toraichi, R. Mori, K. Yamamoto, and H. Yamada, "Feature Extrac-
tion of Handwritten Japanese Characters by Spline Functions for Relaxation
Matching," Pattern Recognition, vol. 21, pp. 9-17, 1988.

[8] P. D. Deighton, "A Statistical Approach to Optical Character Recognition,"
Research Department Report 559, Post Office Research Center, Martlesham
Heath, Ipswich, England, 1976.

[9] I. K. Sethi and B. Chatterjee, "Machine Recognition of Constraint Hand Printed
Devanagari," Pattern Recognirion, voL 9, pp. 69-75, 1977.

[101 S. Kahan, T. Pavlidis, and H. S. Baird, "On the Recognition of Printed Characters
of Any Font and Size," IEEE Trans. PAMI, vol. PAMI-9, no. 2, pp. 274-288,
March 1987.

[11] T. Pavlidis, Algorithms for Graphics and Image Processing, Rockville, MD,
Computer Science Press, 1982.

[12] T. Pavlidis and F. Ali, "Computer Recognition of Handwritten Numerals by
Polygonal Approximation," IEEE Trans. on Systems, Man and Cybernencs, vol.
SMC-5, no, 6, Nov. 1975.

45

46

[13] G. Baptista and K. M. Kulkarni, "A High Accuracy Algorithm for Recognition of
Handwritten Numerals," Pattern Recognition, voL 21, no. 4, pp. 287-291, 1988.

[14] JL Lecolinet and Jean-Vincent Moreau, "A New System for Automatic Segmenta-
tion and Recognition of Unconstrained Handwrinen Zip Code," The 6th Scandina-
vian Conference on Image Analysis, Oulu, Finland, pp. 585-592, June 19-22,
1989.

[15] Bor-Shen Jeng, "Optical Chinese Character Recognition using Accumulated
Stroke Features," Optical Engineering, vol. 28, no. 7, pp. 793-799, July 1989.

[16] W. L. Reber and J. Lyman, "An Artificial Neural System Design for Rotation and
Scale Invariant Pattern Recognition," IEEE First Int. Conf. on Neural Networks,
San Diego, CA, voL iv, pp. 277-283, June 1987.

[17] D. Mehr and S. Richfield, "Neural Net Application to Optical Character Recogni-
tion," IEEE First Int. Conf. on Neural Networks, San Diego, CA, vol. iv, pp.
771-777, June 1987.

[18] T. F. Pawlicki, Dar-Shyang Lee, J. J. Hull, and S. N. Srihari, "Neural Network
Models and their Application to Handwritten Digit Recognition," IEEE First Int.
Conf, on Neural Networks, San Diego, CA, vol. ii, pp. 63- 70, June 1987.

[19] A. Khotanzad and J. H. Lu, "Distortion Invariant Character Recognition by a
Multi-Layer Perceptron and Back Propagation Learning," IEEE Int. Conf. on
Neural Networks, San Diego, CA, vol. 2, pp. 625-632, July 1988.

[20] L. D. Jackel, H. P. Graf, W. Hubbard, J. S. Denker, D. Henderson, and I. Guyon,
"An Application of Neural Net Chips: Handwritten Digit Recognition," IEEE Int.
Conf. on Neural Networks, San Diego, CA, voL 2, pp. 107- 115, July 1988.

[21] N. Alvertos and I. D'unha, "Optical Machine Recognition of Greek Characters
of Any Size," IEEE Proc. Southeastcon, vol. 2, pp. 623-626, 1989.

[22] R. C. Gonzalez and P. Wintz, Digital Image Processing, Addison Wesley, Read-
ing, MA, 1977.

[23] M. K. Hu, "Pattern Recognition by Moment Invariants," Proc. IRE 49, pp. 1428,
1961.

[24] M. K. Hu, "Visual Pattern Recognition by Moment Invariants," IRE Trans. Inf.
Theory IT-8, pp. 179-187, 1962.

47

[25] G. B. Thomas Jr, Calculus and Analyric Geometry, Addison-Wesley Publishing
Company, Inc., 1972.

[26] G. L. Cash and M. Hatamian, "Optical Character Recognition by Method of
Moments," Proc. Computer vision, Graphics, and Image Processing 39, pp.
291-310, 1987.

APPENDIX A

The figures that follow next are the captured and thinned images of characters

ALPHA, BETA, MU, KSI, and PSI respectively.

The thinned arrays are obtained succeeding the preprocessing step which determines

the rectangular enclosure of the characters.

48

49

001110000
001110000
00000000001111100000000000000000000000011110000
00000000111111111100000000000000000000011110000
00000001111111111111000000000000000000111100000
00000111111111111111110000000000000000111100000
00001111100000001111111000000000000001111000000
00001111000000000011111110000000000001111000000
00011100000000000000111111000000000011110000000
00111000000000000000001111100000000011110000000
00111000000000000000000111110000000111100000000
01111000000000000000000011111000000111100000000
01110000000000000000000001111100001111000000000
01110000000000000000000000111110001111000000000
11100000000000000000000000011111011110000000000
11100000000000000000000000001111111110000000000
11100000000000000000000000000111111100000000000
11100000000000000000000000000011111100000000000
11100000000000000000000000000011111100000000000
11100000000000000000000000000011111110000000000
11100000000000000000000000000111111111000000000
11100000000000000000000000001111001111100000000
11100000000000000000000000011110001111110000000
11110000000000000000000000111100000111111000000
11110000000000000000000001111000000011111100000
11110000000000000000000011110000000000111110000
11110000000000000000000111110000000000111111100
01111000000000000000000111100000000000011111100
01111000000000000000001111000000000000001111110
01111100000000000000011110000000000000000111111
00111110000000000000111100000000000000000011111
00011111000000000011111000000000000000000011111
00011111110000011111110000000000000000000000110
00001111111111111111000000000000000000000000000
00000011111111111100000000000000000000000000000
00000001111111110000000000000000000000000000000

Figure A.i. Captured image of character ALpHA.

50

000
000
001000000
00010000000
0000000000011111100000000000000000000000010000000
0000000001100000011000000000000000000000100000000
0000000011000000000110000000000000000000100000000
0000001100000000000001000000000000000001000000000
0000011000000000000000110000000000000001000000000
0000010000000000000000001000000000000010000000000
0000100000000000000000000100000000000010000000000
0000100000000000000000000010000000000100000000000
0001000000000000000000000001000000000100000000000
0001000000000000000000000000100000001000000000000
0010000000000000000000000000010000001000000000000
0010000000000000000000000000001000010000000000000
0010000000000000000000000000000111110000000000000
0100000000000000000000000000000110000000000000000
0100000000000000000000000000000111000000000000000
0100000000000000000000000000000100100000000000000
0100000000000000000000000000000100010000000000000
0100000000000000000000000000000100011000000000000
0100000000000000000000000000001100001100000000000
0100000000000000000000000000011000000110000000000
0100000000000000000000000000110000000001000000000
0010000000000000000000000001100000000001100000000
0010000000000000000000000001000000000000110000000
0010000000000000000000000010000000000000011000000
0011000000000000000000000100000000000000000100000
0001000000000000000000001000000000000000000100000
0000100000000000000000011000000000000000000011000
0000110000000000000000110000000000000000000000000
0000011000000000000011100000000000000000000000000
0000000110000000001110000000000000000000000000000
0000000011111111110000000000000000000000000000000
000
000

Figure A.2. Thinned image array of character
ALPHA.

0000000000000001010000000000000000000
0000000000111111111111100000000000000
0000000011111100111111111100000000000
0000000111100000000000111110000000000
0000111100000000000000000111100000000
0001110000000000000000000001111000000
0111100000000000000000000000111100000
0111100000000000000000000000111100000
0111100000000000000000000000011100000
0011100000000000000000000000011100000
0011100000000000000000000000011100000
0011100000000000000000000000111100000
0011100000000000000000000000111100000
0011110000000000000000000001110000000
0011110000000000000000000011110000000
0011110000000000000000000011100000000
0011110000000000000000000111000000000
0011110000000000000000011110000000000
0011110000000000000000111100000000000
0011110000000000000111111100000000000
0011110000000001111111111110000000000
0011110000000111111111111111110000000
0011111111111111110000000011111100000
0011111111111100000000000000111110000
0011111000000000000000000000001111000
0011110000000000000000000000000111110
0011110000000000000000000000000011110
0011110000000000000000000000000001111
0011110000000000000000000000000001111
0011110000000000000000000000000001111
0011110000000000000000000000000001111
0011110000000000000000000000000001110
0011110000000000000000000000000011100
0001100000000000000000000000000111100
0011110000000000000000000000001111000
0011110000000000000000000000111100000
0011111100000000000000000011111000000
0011111111111100000011111111100000000
0011111101111111111111111000000000000
0011100000000000000000000000000000000
0011100000000000000000000000000000000
0011100000000000000000000000000000000

Figure A.3. Captured image of character BETA.

52

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000111111111110000000000000000
000000000011000000000001110000000000000
000000000100000000000000011000000000000
000000011000000000000000001100000000000
000000110000000000000000000110000000000
000001100000000000000000000011000000000
000011000000000000000000000001000000000
000010000000000000000000000001000000000
000010000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000000100000000
000100000000000000000000000001000000000
000100000000000000000000000010000000000
000100000000000000000000000100000000000
000100000000000000000000011000000000000
000100000000000000000011100000000000000
000100000000000000111100011000000000000
000100000000000111000000000111000000000
000111111111111000000000000001110000000
000100000000000000000000000000011000000
000100000000000000000000000000001100000
000100000000000000000000000000000110000
000100000000000000000000000000000010000
000100000000000000000000000000000010000
000100000000000000000000000000000010000
000100000000000000000000000000000010000
000010000000000000000000000000000010000
000010000000000000000000000000000010000
000010000000000000000000000000001000000
000010000000000000000000000000110000000
000011100000000000000000000011000000000
000110011111110000000011111100000000000
000100000000001111111100000000000000000
000100000000000000000000000000000000000
000100000000000000000000000000000000000

Figure A.4. Thinned image array of character
BETA.

53

000000000000000000000000011110000000000000000000000
000000000000000000000000111100000000000000000000000
000000000000000000000001111000000000000000000000000
000000000000000000000001111000000000000000000000010
000000000000000000000011110000000000000000000000111
000000000000000000000011110000000000000000000001111
000000000000000000000011110000000000000000000001111
000000000000000000000111100000000000000000000011110
000000000000000000000111100000000000000000000011110
000000000000000000001111000000000000000000000111100
000000000000000000011111000000000000000000011111000
000000000000000000011110000000000000000000011110000
000000000000000000111110000000000000000000111100000
000000000000000000111100000000000000000001111000000
000000000000000000111100000000000000000011111000000
000000000000000001111100000000000000000011110000000
000000000000000001111000000000000000000111100000000
000000000000000001110000000000000000001111100000000
000000000000000011110000000000000000011111000000000
000000000000000011110000000000000000011111000000000
000000000000000011100000000000000000111111000000000
000000000000000111100000000000000000111110000000000
000000000000000111100000000000000001111110000000000
000000000000011111000000000000001111011110000000000
000000000000011111000000000000011110011110000000000
000000000000011111000000000000111100011110000000000
000000000000111111000000000001111000011110000000000
000000000000111111100000000011110000011110000000000
000000000001111111100000000111100000011110000000000
000000000001110111100000001111100000011110000000000
000000000001110011110000111111000000001110000000000
000000000011110011111111111100000000001111000000000
000000000011100001111111111000000000001111100000000
000000000011100000111111110000000000001111100000000
000000000111100000001110000000000000000111100000000
000000000111000000000000000000000000000000000000000
000000000111000000000000000000000000000000000000000
000000001111000000000000000000000000000000000000000
0000000011100
0000000011100
0000000111100
0000000111000

Figure A.5. Captured image of character MU.

54

000
00000000000000000000000000010000000000000000000000000
00000000000000000000000000100000000000000000000000000
00000000000000000000000001100000000000000000000000000
00000000000000000000000011000000000000000000000000000
00000000000000000000000010000000000000000000000000000
00000000000000000000000010000000000000000000000000100
00000000000000000000000100000000000000000000000010000
00000000000000000000000100000000000000000000000010000
00000000000000000000001000000000000000000000000100000
00000000000000000000001000000000000000000000000100000
00000000000000000000011000000000000000000000001000000
00000000000000000000010000000000000000000000010000000
00000000000000000000010000000000000000000000100000000
00000000000000000000100000000000000000000001000000000
00000000000000000000100000000000000000000001000000000
00000000000000000001000000000000000000000010000000000
00000000000000000001000000000000000000000100000000000
00000000000000000011000000000000000000000100000000000
00000000000000000010000000000000000000001100000000000
00000000000000000010000000000000000000001000000000000
00000000000000000010000000000000000000001000000000000
00000000000000000100000000000000000000010000000000000
00000000000000000100000000000000000000100000000000000
00000000000000000100000000000000000000100000000000000
00000000000000001000000000000000000001100000000000000
00000000000000001000000000000000000100100000000000000
00000000000000010000000000000000001000100000000000000
00000000000000010000000000000000011000100000000000000
00000000000000010000000000000000110000100000000000000
00000000000000101100000000000011000000010000000000000
00000000000001000100000000000010000000010000000000000
00000000000001000100000000001100000000010000000000000
00000000000010000010000000011000000000010000000000000
00000000000010000001111111100000000000010000000000000
000000000000100
000000000001000
000000000001000
000000000001000
0000000000100
0000000000100
0000000000100
0000000001000

Figure A.6. Thinned image array of character MU.

55

00000000000000000000000000000000111100000000
00000000000000000111110111111111111110000000
00000000011111111111111111111111111110000000
11111111111111111111111111111110001100000000
11111111111111111111111111110000000000000000
01111111111100011111111000000000000000000000
00000000000000111111100000000000000000000000
00000000000000111110000000000000000000000000
00000000000111110000000000000000000000000000
00000000001111100000000000000000000000000000
00000000001111100000000000000000000000000000
00000000001111000000000000000000000000000000
00000000001111000000000000000000000000000000
00000000001111000000000000000000000000000000
00000000000111100000000000000000000000000000
00000000000111110000000000000000001111110000
00000000000011111111000000000011111111110000
00000000000001111111111111111111111111111000
00000000000000011111111111111111111111110000
00000000000000000011111111111111000000000000
00000000000000000011111111110000000000000000
00000000000000000111111110000000000000000000
00000000000000011111100000000000000000000000
00000000000000111110000000000000000000000000
00000000000011110000000000000000000000000000
00000000000011110000000000000000000000000000
00000000000111100000000000000000000000000000
00000000000111100000000000000000000000000000
00000000000111100000000000000000000000000000
00000000000011110000000000000000000000000000
00000000000011111000000000000000000000000000
00000000000000111111111111111111111111100000
00000000000000011111111111111111111111111000
00000000000000000111111111111111111111111100
00000000000000000000000000000000000000011110
001111
001111
001111
00000000000000000000000000000000000000011111
00000000000000000000000000000000000000011110
00000000000000000000000000000000000000111110
00000000000000000000000000000000000001111100
00000000000000000000000000000000000011111000

Figure A.7, Captured image of character KSI.

56

00
0000000000000000000000000000111111110000000000
ooooooooooooo111111111111111oooooooooooooooaoo
0000000001111000100000000000000000000000000000
0001111110000000100000000000000000000000000000
0000000000000000100000000000000000000000000000
0000000000000000100000000000000000000000000000
0000000000000001100000000000000000000000000000
0000000000000001000000000000000000000000000000
oooooooooooooo1ooooooooooooooooooooooaoooooooo
0000000000001100000000000000000000000000000000
0000000000001000000000000000000000000000000000
0000000000001000000000000000000000000000000000
0000000000001000000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000010000000000000000000000000000000
0000000000000001111000000000000001111110000000
0000000000000000000111111111111110000001000000
0000000000000000000100000000000000000000000000
0000000000000000000100000000000000000000000000
0000000000000000001100000000000000000000000000
0000000000000000110000000000000000000000000000
0000000000000001000000000000000000000000000000
0000000000000010000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000100000000000000000000000000000000
0000000000000010000000000000000000000000000000
0000000000000001000000000000000000000000000000
0000000000000000100000000000000000000000000000
0000000000000000011111111111111111111100000000
0000000000000000000000000000000000000011100000
00010000
00010000
00010000
00010000
00010000
00010000
00110000
00100000
0000000000000000000000000000000000000001000000

Figure A.8. Thinned image array of character
KSI.

57

000000000000000000001100000000000000000
000000000000000000011110000000000000000
000000000000000000001110000000000000000
000000000000000000011110000000000000000
000000000000000000011110000000000000000
000000000000000000011100000000000000000
001100000000000000011100000000000000000
011100000000000000011100000000000000000
111100000000000000111100000000000000000
111100000000000000111100000000000000110
111100000000000000111100000000000001111
111100000000000000111100000000000001111
111100000000000000111100000000000001110
111100000000000000111000000000000001110
111100000000000000111000000000000001110
111100000000000000111000000000000011110
111100000000000000111000000000000011110
111100000000000001111000000000000011110
011100000000000001111000000000000011100
011110000000000001111000000000000011100
011110000000000001111000000000000111100
011110000000000001111000000000000111100
011110000000000001111000000000000111000
011111000000000001111000000000000111000
001111000000000001111000000000001111000
001111100000000001111000000000011110000
001111100000000001111000000000011110000
000111110000000001111000000000111100000
000011111000000001111000000000111100000
000001111100000001111000000001111000000
000000111110000001111000000011110000000
000000111111000001111000001111110000000
000000011111111111111000111111100000000
000000001111111111111111111111000000000
000000000111111111111111111100000000000
000000000001111111111111100000000000000
000000000000000111111100000000000000000
000000000000000011111000000000000000000
000000000000000011110000000000000000000
000000000000000011110000000000000000000
000000000000000011110000000000000000000
000000000000000011110000000000000000000
000000000000000011110000000000000000000

Figure A.9. Captured image of character PSI.

58

000
00000000000000000000010000000000000000000
00000000000000000000010000000000000000000
00000000000000000000010000000000000000000
00000000000000000000100000000000000000000
00000000000000000000100000000000000000000
00000000000000000000100000000000000000000
00000000000000000000100000000000000000000
00010000000000000000100000000000000000000
00100000000000000000100000000000000000000
00100000000000000000100000000000000000000
01000000000000000001000000000000000000000
01000000000000000001000000000000000010000
01000000000000000001000000000000000010000
01000000000000000001000000000000000010000
00100000000000000001000000000000000010000
00100000000000000001000000000000000010000
00100000000000000001000000000000000100000
00100000000000000001000000000000000100000
00100000000000000010000000000000000100000
00100000000000000010000000000000000100000
00010000000000000010000000000000001100000
00010000000000000010000000000000001000000
00010000000000000010000000000000001000000
00010000000000000010000000000000001000000
00001000000000000010000000000000001000000
00001000000000000010000000000000010000000
00000100000000000010000000000000010000000
00000100000000000010000000000000110000000
00000011000000000010000000000000100000000
00000001000000000010000000000001000000000
00000001100000000010000000000001000000000
00000000110000000010000000000010000000000
00000000011000000010000000000110000000000
00000000001111111110000000011000000000000
00000000000000000111111111100000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000
00000000000000000100000000000000000000000

Figure A.10. Thinned image array of character
PSI.

APPENDIX B

The programs in the following few pages are executed in the order they appear in

the listing.

The program "Character array formation" converts the captured 256 x 256 image

of the character after having performed thresholding, isolates the background and

retains the original size of the character. The second program "Thinning" operates on

the output array of the last program and yields the thinned image of the character in

the file "Test.tin". The third program "Features selection" operates on the character

array "Test.tin" and determines the classification features, namely, number of enclosed

areas, number of intersections, and number and location of the free ends. The fourth

program "Moments" evaluates the seven invariant moments of each of the test charac-

ters, and finally the fifth and last program "Classifier" utilizes the results obtained from

the third and fourth programs to classify each of the input test character.

59

60

PROGRAM LISTINGS

CA******%'*0'**************************************0***%***+**
C***** PROGRAM CHARACTER ARRAY FORMATION
C***** THIS PROGRAM CONVERTS THE 256X256 IMAGE FILE INTO A
C***** INTEGER FORMAT
C***** IN ORDER TO CONVERT IN A BINARY FILE, ALL INTENSITY
C***** VALUES LESS THAN 100 AND GREATER THAN 0 ARE
C++~+* ASSIGNED THE VALUE 1 AND THE REST ARE ASSIGNED 0.
C***k* THE RESULTING ARRAY IS STORED IN "TEST.BIN"
0*A******%'4'**+***

DIMENSION
CHARACTER+I
INTEGER+2
INTEGER*2
INTEGER*2
INTEGER+2
INTEGER
INTEGER
INTEGER
INTEGER *2
INTEGER
INTEGER
INTEGER *2
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER+2
INTEGER
INTEGER
INTEGER~2
REAL*8
REAL+8
REAL*8
REAL
REAL
REAL
REAL
REAL
REAL
REAL

BIT BYTE(256)
SETUP(256)
VALUES(256,256),VAL UES(256,256),SUM
Y(2560),V
ABS LUT(2560),SUM1(2560),C(256,256)
IINDEX(5000),JINDEX(5000),K,Z,MAX,MIN
COUNT,ST(2560),T,NNEW,MNEW,LOCATEI(20),Q
LOCATE2(20)
D(0:256,0:256),MEAN1,MEAN2,MEAN3
A(256,256)
UPPER, LOWER,P,LEFT, RIGHT,LOCATE3(20)
AREA(300,300),M2
Pl,P2,P3,P4,P5,P6,P7,PS,P9,IIINDEX(5000),
Yl,W,LEFT1
Dl,D2,D3,D4,D5,D6,D7,DB,P11,P22,SUM2,G,
JJINDEX(5000)
F,NN,ONES,RIGHT1
IMG(300,300),TEST(300,300),REST(300,300)
LT, COUNT1
Kl,K2,YA,SMLST(5000),NF,TN(7000)
FINAL(5000)
M 00, M 01, M 02, M 03, M 10, M 11
M 12, M 13, M 20, M 21, M 22, M 23
M 30, M 31, M 32, M 33,I,J
X BAR, Y BAR,N,M
MU OO,MU 11,MU 01,MU 02,MU 03,MU 10,MU 12
MU 13,MU 20,MU 21,MU 22,MU 23,MU 30,MU 31
MU 32,MU 33
ETA 00, ETA 11, ETA 12, ETA 13, ETA 10,
ETA 20
ETA 21, ETA 22, ETA 23, ETA 30, ETA 31,

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

ETA 32
ETA 33, ETA 01, ETA 03, ETA 02
PHI 1, PHI 2, PHI 3, PHI 4, PHI 5,
PHI 6,PHI 7

MIMI.MM1,MM2,MM3
MM4,MM5,MM6,MM7,NORM,MSE1,MSE2
NMIN,NMM1,NMM2,NMM3,NMM4,NMM5,NMM6,NMM7

MSE3,MSE4,MSE5,MSE6,MSE7,MSES,MSE9,MSE10
MSE11,MSE12,MSE13,MSE14,MSE15,MSE16,MSE17

OPEN(UNIT=I,FILE='TEST.PIP',ACCESS-'DIRECT',STATUS='old')
OPEN(UNIT-2,FILE-'TEST.INT',RECL-1024,STATUS-'UNKNOWN'
OPEN(UNIT-4,FILE-'TEST.NOR',RECL-1024,STATUS-'UNKNOWN'
OPEN(UNIT-S,FILE-'TEST.MON',STATUS-'UNKNOWN'
OPEN(UNIT 9,FILE-'TEST.TIN',RECL-1024,STATUS-'UNKNOWN'
OPEN(UNIT-16,FILE='TEST.MOM',STATUS='UNKNOWN')

N-256
M=256
SUM-0

DO 10 I=3,N
K-I

16
6

READ(1,REC-K) (BIT BYTE(J),J-1,M)
DO 20 J-l,M

VALUES(I,J)-ICHAR(BIT BYTE(J))
IF (J.LE.10)THEN

GOTO 210
ELSE
IF ((VALUES(I,J).GE.1).AND.(VALUES(I,J).LE.100))THEN
VAL UES(I,J)-1
ELSE

210 VAL UES(I,J)-0

20
10
110

ENDIF
ENDIF

CONTINUE
CONTINUE
FORMAT(256I4)

62

C*%'***
C***** THIS PROGRAM OPERATES ON THE BINARY IMAGE TEST.BIN.
C***** THREE SETS OF OUTPUTS ARE OBTAINED. THE FIRST OUTPUT
C***** IS AN ARRAY CONSISTING OF THE NUMBER AND THE
C***** LOCATION OF THE ROWS HAVING A PIXEL OF VALUE 1. THE
C***** SECOND OUTPUT CONSISTS OF ALL THE ROWS OF THE PIXELS
C***** WITH VALUE ONE WITH ALL THE 256 ELEMENTS. THE SIZE
C***** OF THE REDUCED IMAGE IS ALSO DISPLAYED ON THE
C***** SCREEN. THE LAST OUTPUTCONSISTS OF THE ARRAY GIVING
C+**** THE SUM OF ALL THE ONES IN THE 256 RECORDS.
C**********************************%*******%**********+*****

N 254
M-256
COUNT-0

50

198
40

K-1
DO 40 I-l,N

SUM1(I)=0
DO 50 J-l,M

SUM1(I)-SUM1(I)+VAL UES(I,J)
CONTINUE
IF (SUM1(I).NE.O) THEN
COUNT=COUNT+1
ST(K)-I
K=K+1
WRITE(2,198)(VAL UES(I,J),J-1,M)
ENDIF

FORMAT(256I4)
CONTINUE
CLOSE(2)

N COUNT

WRITE(*,*)N,M

63

C**%**********%***%%*
C&*&** THIS PROGRAM OPERATES ON THE REDUCED BINARY IMAGE
C***** TEST,INT".
C***** FOR EACH OF THE NON-ZERO ROWS, THE MINIMUM AND THE
C***** MAXIMUM LOCATIONS OF THE ONES IS OBTAINED. BASED
C***** UPON THESE OBSERVATIONS A FINAL REDUCTION OF THE
C***** IMAGE ARRAY FROM 256X256 TO THE NEW SIZE IS MADE.
C***~* THE OUTPUT FILE "TEST.NOR" IS NEXT MADE TO UNDERGO
C***** THINNING.
C%**%**%***

OPEN(UNIT-3,FILE-'TEST,INT',STATUS-'UNKNOWN'

N=COUNT
M-256

WRITE(*,*)N,COUNT
IINDEX(K)=0
JINDEX(K)-0
K 1
DO 60 I-1,N

READ(3,120)(VAL UES(I,J),J-1,M)
60 CONTINUE

DO 70 I 1,N
DO 80 J=1,256
IF (VAL UES(I,J).EQ.I)THEN
IINDEX(K)=I
JINDEX(K)=J
K=K+1
ENDIF
CONTINUE

CONTINUE

WRITE(*,*)K
MAXM INDEX(1)
MIN-JINDEX(1)

DO 90 Z-1,K-1

IF(JINDEX(Z).GT.MAX)THEN
MAX JINDEX(Z)
ENDIF

90
120

IF (JINDEX(Z).LT.MIN)THEN
MIN=JINDEX(Z)
ENDIF
CONTINUE
FORMAT(25614)
WRITE(*,*)MAX,MIN

64

DO 15 I-l,N
NRITE(4,120)(VAL UES(I,J),J-MIN,MAX)

15 CONTINUE

M2-MAX-MIN+1
CLOSE(4)

65

C***«*****~a="
C&*&*k PROGRAM THINNING
C&**** THIS PROGRAM PERFORMS THINNING ON THE FILE
C-'*PA'* "TEST.NOR". THE CHARACTER IS THINNED TO ONE PIXEL
0****a THICK. THE OUTPUT FILE IS "TEST.TIN". IT'S BEEN
C*&&** IMPLEMENTED FROM THE BOOK "DIGITAL IMAGE PROCESSING'+**'k*

BY GONZALEZ AND WINTZ.
C**+********4'**%**&t*

OPEN(UNIT=7,FILE='TEST.NOR',STATUS-'UNKNOWN'
M=M2

N=COUNT
WRITE(*,*)N,M

DO 25 I-l,N
READ(7,190)(D(I,J),J=l,m)

25 CONTINUE

190 FORMAT(256I4)

K-1
Z=l
IIINDEX(Z)=0
JJINDEX(Z)-0
DO 35 V=1,10
DO 45 I=1,N

DO 55 J=l,M
FLAG=0
G=O

IF(D(I,J).EQ.I)THEN
SUM2=D(I-1,J-1)+D(I-1,J)+D(I-1,J+1)+D(I,J-1)
+D(I,J+1)+D(I+1,J-1)+D(I+1,J)+D(I+1,J+1)
Pl=D(I,J)
P2=D(I-1,J)
P3=D(I-1,J+1)
P4=D(I,J+1)
P5-D(I+1,J+1)
P6=D(I+1,J)
P7-D(I+1,J-1)
P8-D(I,J-1)
P9=D(I-l,j-l)

Dl-P3-P2
D2-P4-P3
D3=P5-P4
D4=P6-P5
D5=P7-P6
D6=PB-P7
D7=P9-P8
DB-P2-P9

66

IF (SUM.LT.S)THEN
IF((SUM.LE.6).AND.(SUM.GE.2))THEN
IF(D1.EQ.1)THEN
G G+1
ENDIF
IF(D2.EQ.1)THEN
G=G+1
ENDIF
IF(DS.EQ.I)THEN
G-G+1
ENDIF
IF(D4.EQ.1)THEN
G-G+1
ENDIF
IF(D5.EQ.I)THEN
G-G+1
ENDIF
IF(D6.EQ.1)THEN
G=G+1
ENDIF
IF(D7.EQ.I)THEN
G=G+1
ENDIF
IF (DS.EQ.1)THEN
G=G+1
ENDIF

Pll=P2*P4*P6

IF (G.EQ.1)THEN
IF(P11.EQ.O)THEN
P22-P4*P6*PS
IF(P22.EQ.O)THEN
FLAG-1
IIINDEX(Z) I
JJINDEX(Z)=J
Z-Z+1
ELSE
D(I,J)-D(I,J)
ENDIF
ELSE
D(I,J)-D(I,J)
ENDIF
ELSE
D(I,J)-D(I,J)
ENDIF
ELSE
D(I,J)-D(I,J)
ENDIF

67

55
45

ELSE
D(I,J)-D(I,J)

ENDIF
ENDIF
CONTINUE
CONTINUE

65

DO 65 Yl=l,z-l
D(IIINDEX(Y1),JJINDEX(Y1))=0
CONTINUE
Z-l
IIINDEX(Z)-0
JJINDEX(Z)-0

DO 75 I 1,N
DO 85 J=l,M
FLAG-0
G-0
IF(D(I,J).EQ.1)THEN
SUM=D(I-1,J-1)+D(I-1,J)+D(I-1,J+1)+D(I,J-1)+

D(I,J+1)+ D(I+1,J-1)+D(I+1,J)+D(I+1,J+1)

Pl-D(I,J)
P2-D(I-1,J)
P3=D(I-1,J+1)
P4-D(I,J+1)
P5=D(I+1,J+1)
P6=0(I+1,J)
P7=D(I+1,J-1)
PB-D(I,J-I)
P9-D(I-1,J-1)

Dl-P3-P2
D2-P4-P3
D3 P5-P4
D4-P6-P5
D5-P7-P6
D6-PS-P7
Dj-P9-PS
DS-P2-P9

IF (SUM.LT.B)THEN
IF((SUM,LE.6).AND.(SUM.GE.2))THEN
IF(D1.EQ.1)THEN

G-G+1
ENDIF
IF(D2.EQ.1)THEN
G G+1
ENDIF
IF(D3.EQ.1)THEN

68

G G+1
ENDIF
IF(D4.EQ.1)THEN
G G+1
ENDIF
IF(D5.EQ.1)THEN
G-G+1
ENDIF
IF(D6.EQ.1)THEN
G=G+1
ENDIF
IF(D7.EQ.1)THEN
G=G+1
ENDIF
IF(D8.EQ.1)THEN
G=G+1
ENDIF

Pll-P2*P4*P6
IF (G.EQ.1)THEN
IF(P11.EQ.O)THEN
P22-P4*P6*P8
IF(P22.EQ.O)THEN
FLAG 1
IIINDEX(Z)=I
JJINDEX(Z)=J
Z=Z+1
ELSE
D(I,J)-D(I,J)
ENDIF
ELSE
D(I,J)-D(I,J)
ENDIF

85
75

95

ELSE
D(I,J) D(I,J)
ENDIF
ELSE
D(I,J) D(I,J)
ENDIF
ELSE
D(I,J)-D(I,J)
ENDIF
ENDIF
CONTINUE
CONTINUE

DO 95 Yl=l,z-l
D(IIINDEX(Y1),JJINDEX(Y1))-0
CONTINUE

69

35 CONTINUE
NNEW-N+2
MNEW M+2
DO 105 I-l,N+2

115
105

135
125

DO 115 J-l,M+2
AREA(I,J)-0
CONTINUE
CONTINUE
DO 125 I-l,N
DO 135 J-l,M
AREA(I+1,J+1)-D(I,J)
CONTINUE
CONTINUE

DO 145 I=1,NNEW
WRITE(8,130)(AREA(I,J),J 1,MNEV)
WRITE(9,180)(AREA(I,J),J=1,MNEV)

145
130
180

CONTINUE
FORMAT(256I1)
FORMAT(256I4)
N=NNEW

M-MNEV

CLOSE(7)
CLOSE(9)

70

Cxk*%'***************************************awe***axkw-"*xxx:".
Ck**** PROGRAM FEATURES SELECTION
C~~**** THIS PROGRAM CHECKS FOR INTERSECTIONS AND FREE ENDS
C***** IN CHARACTER. FOR EACH PIXEL OF VALUE ONE THE NUMBER
C4***~ OF NEIGHBORS WITH VALUE ONE ARE DETERMINED. WHEN
C4'4'*+* THIS VALUE EQUALS OR EXCEEDS FOUR, A INTERSECTION
C&~*** EXISTS. THE VALUE OF NN GIVES THE NUMBER OF
C***** INTERSECTIONS IN THE CHARACTER ARRAY. A SIMILAR
C***~* APPRAOCH IS FOLLOWED WHILE DETECTING THE
C***** FREE ENDS. THE NUBER OF PIXELDS OF VALUE ONE WHICH
C***** HAS JUST ONE NEIGHBOR OF VALUE ONE AT ITS EIGHT
C+***~ NEIGHBORING SITES ARE THE FREE ENDS OF THE
C***** CHARACTER. THE INPUT FILE IS "TEST.TIN".
C***** NN AND ONES DENOTE THE NUMBER OF INTERSECTIONS AND THE
C****k NUMBER OF FREE ENDS.
C***A**************%'***%'4'*********%**********%***&*a*~'*wmA*

OPEN(UNIT-10,FILE='TEST.TIN',STATUS='UNKNOWN')
N=NNEW

M-MNEW

NN=O
ONES=0
DO 295 I-l,N

READ(10,180)(AREA(I,J),J=1,M)
295 CONTINUE

MEAN1-(ININT(N/2))
LOCATE1(Q)=0
Q-1

MEAN2=(ININT(M/2))
WRITE(*,*)MEAN2
LOCATE2(P)-0
P=l

MEAN3=(ININT(M/4))
LOCATE3(W) 0

W 1
DO 300 I-l,n

DO 310 J-l,m
F-0
IF (AREA(I,J) .EQ. 1) THEN
IF (AREA(I-1,J-1).EQ.I)THEN
F-F+1
ENDIF
IF (AREA(I-1,J+1).EQ.1)THEN
F-F+1
ENDIF
IF (AREA(I+1,J-1).EQ.1)THEN
F F+1
ENDIF

IF (AREA(I+1,J+1).EQ.1)THEN
F-F+1
ENDIF
IF (AREA(I-1,J).EQ.1)THEN
F-F+1
ENDIF
IF (AREA(I+1,J).EQ.1)THEN
F-F+1
ENDIF
IF (AREA(I,J-1).EQ.1)THEN
F=F+1
ENDIF
IF (AREA(I,J+1).EQ.1)THEN
F-F+1
ENDIF
IF (F.EQ.1)THEN
ONES-ONES+1
LOCATE1(Q)-I
Q~+I

LOCATE2(P)-J
P-P+1
LOCATE3(W)=J
V-W+1
ENDIF
IF (F.GE.4)THEN

310
300

NN=NN+1
ENDIF
ENDIF
CONTINUE
CONTINUE

306

UPPER-0
LOVER-0
DO 306 I-I,Q-1
IF (LOCATE1(I).LT.MEAN1)THEN
UPPER UPPER+1
ELSE
LOWER-LOWER+1
ENDIF
CONTINUE

406

LEFT=0
RIGHT-0
DO 406 I-j,p-1
IF (LOCATE2(I).LT.MEAN2)THEN
LEFT-LEFT+1
ELSE
RIGHT-RIGHT+1
ENDIF
CONTINUE

72

LEFT1-0
RIGHT1-0

4060

DO 4060 I-j,W-1
IF (LOCATE3(I).LT.MEAN3)THEN
LEFT1 LEFT1+1
ELSE
RIGHT1-RIGHT1+I
ENDIF
CONTINUE

WRITE(*,*)NN,ONES
TYPE*,('THE NUMBER

WRITE(*,*)UPPER
TYPE*,('THE NUMBER

OF FREE ENDS ABOVE THE MEAN ARE:')

OF FREE ENDS BELOW THE MEAN ARE: ')

WRITE(*,*)LOWER
TYPE*,('THE NUMBER

WRITE(*,*)LEFT
TYPE*,('THE NUMBER

WRITE(*,*)RIGHT
TYPE*,('HE NUMBER

WRITE(*,*)LEFT1
TYPE*,('THE NUMBER

WRITE(*,*)RIGHT1
CLOSE(10)

OF FREE ENDS LEFT OF THE MEAN ARE:')

OF FREE ENDS RIGHT OF THE MEAN ARE;')

OF FREE ENDS LEFT OF MEAN3 ARE:')

OF FREE ENDS RIGHT OF MEAN3 ARE: ')

73

C**AA**%*A.Pw
Ck*~-'* THIS PROGRAM DETERMINES IF A PARTICULAR CHARACTER
C**+'&* HAS ANY ENCLOSED AREA OR NOT. IN CASE THERE'S SOME
C~A*kk AREA ENCLOSED, THE NUMBER OF THESE AREAS IS ALSO
Ci&*&& DETERMINED. THE INPUT FILE IS TEST TIN
Ci************+**4+*+*

OPEN(UNIT-11,FILE-'TEST.TIN',STATUS 'OLD'
OPEN(UNIT 12,FILE='TEST.ARE',RECL-1024,STATUS='UNKNOWN')

113
13

BGST-1
FLAG=0
DO 400 I=1,N

READ(11,180)(IMG(I,J),J-1,M)
400 CONTINUE

DO 567 I=1,N
DO 765 J=l,M
IF(IMG(I,J).EQ.1)THEN
TEST(I,J)-2000
ENDIF

765 CONTINUE
567 CONTINUE

K-1
DO 13 I=1,l
DO 113 J-l,M
TEST(I,J)=1
CONTINUE
CONTINUE

31

DO 420 I=2,N
DO 430 J-l,M
IF (IMG(I,J).EQ.O)THEN
IF((I-1).GE.1)THEN
IF(IMG(I-1,J).EQ.O)THEN
TN(K)-TEST(I-1,J)
K-K+1
GOTO 31
ELSE

GOTO 31
ENDIF
IF((J-1).GE.1) THEN

IF(IMG(I,J-1).EQ.O)THEN
TN(K)-TEST(I,J-1)
IF(K.EQ.1)THEN

TEST(I,J)-TN(K)
ELSE
IF (TN(2).GE.TN(1))THEN
TEST(I,J)=TN(1)
ELSE

74

TEST(I,J)-TN(2)
ENDIF
ENDIF
ELSE
TEST(I,J)-TN(K-1)
ENDIF
ELSE
TEST(I,J)-TN(K-1)
ENDIF

430
420

965
234

BGST-BGST+1
TEST(I,J)-BUST
ENDIF
ENDIF
CONTINUE
CONTINUE
DO 234 I-2,N

DO 965 J-1,M
IF ((I-1).GE.1)THEN
IF (TEST(I,J).NE.2000)THEN
IF (TEST(I-1,J).NE.2000)THEN
IF(TEST(I-1,J).LT.TEST(I,J))THEN
TEST(I,J)-TEST(I-1,J)
ELSE
TEST(I,J)=TEST(I,J)
ENDIF
ENDIF

ENDIF
ENDIF

CONTINUE
CONTINUE

665
334

DO 334 I-2,N
DO 665 J-1,M
IF ((J-1).GE.1)THEN
IF (TEST(I,J).NE.2000)THEN
IF (TEST(I,J-1).NE.2000)THEN
IF(TEST(I,J-1).LE.TEST(I,J))THEN
TEST(I,J)=TEST(I,J-1)
ELSE
TEST(I,J)-TEST(I,J)
ENDIF
ENDIF
ENDIF
ENDIF
CONTINUE

CONTINUE

LST-1
DO 919 I-2,N
DO 1919 J-1,M

75

IF (TEST(I,J).NE.2000)THEN
IF (TEST(I,J).GT.LST)THEN
TEST(I,J)=LST+1
LST-TEST(I,J)
ELSE
TEST(I,J)=TEST(I,J)
ENDIF
ENDIF

1919
919

CONTINUE
CONTINUE

3000

DO 3000 I-l,N
WRITE(12,180)(TEST(I,J),J=I,M)
CONTINUE
CLOSE(12)

OPEN(UNIT=13,FILE='TEST.ARE',STATUS='UNKNOWN')
OPEN(UNIT-IS, FILE-'TEST.DEL',RECL=1024,STATUS='UNKNOWN')

123

DO 123 I=1,N
READ(13,180)(REST(I,J),J-1,M)
CONTINUE

555
444

DO 690 V=I,M
DO 444 I=1,N
DO 555 J-l,M
IF ((REST(I,J).NE.1).AND.(REST(I,J).NE.2000))THEN
IF((REST(I,J+1).NE.1).AND.(REST(I,J+1).NE.2000))THEN
IF (REST(I,J).LE.REST(I,J+1))THEN
REST(I,J+1)=REST(I,J)
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE

1555
1444

DO 1444 I-l,N
DO 1555 J-l,M
IF(REST(I,J).NE.2000)THEN
IF((REST(I,J-1).NE.1).AND.(REST(I,J-1).NE.2000))THEN
IF (REST(I,J).LE.REST(I,J-1))THEN
REST(I,J-1)=REST(I,J)
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE

76

2555
2444

DO 2444 I-1,N
DO 2555 J=1,M
IF(REST(I,J).NE.2000)THEN
IF((REST(I-1,J).NE.1).AND.(REST(I-1,J).NE.2000))THEN
IF (REST(I,J).LE.REST(I-1,J))THEN
REST(I-1,J)=REST(I,J)
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE
DO 24440 I 1,N
DO 25550 J=1,M

IF(REST(I,J).NE.2000)THEN
IF (REST(I+1,J).EQ.1)THEN
IF (REST(I,J).GE.REST(I+1,J))THEN
REST(I,J)=REST(I+1,J)
ENDIF
ENDIF
ENDIF

25550 CONTINUE
24440 CONTINUE

DO 2443 I=1,N
DO 2553 J-1,M
IF(REST(I,J).NE.2000)THEN
IF (REST(I,J-1),EQ.1)THEN

IF (REST(I,J).GE.REST(I,J-1))THEN
REST(I,J)-REST(I,J-1)

2553
2443

ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE

DO 3444 I 1,N
DO 3555 J-1,M
IF(REST(I,J).NE.2000)THEN
IF((REST(I+1,J).NE.1).AND.(REST(I+1,J).NE.2000))THEN
IF (REST(I,J).LE.REST(I+1,J))THEN
REST(I+1,J)=REST(I,J)

ENDIF
ENDIF

77

3555
3444

ENDIF
CONTINUE
CONTINUE

690 CONTINUE

9870
987
777

F-l
COUNT1 0
FINAL(T) 0
DO 987 I=1,N
DO 9870 J-j,M
IF ((REST(I,J).NE.1).AND. (REST(I,J).NE.2000))THEN
COUNT1 COUNT1+1
FINAL(COUNT1)-REST(I,J)
ENDIF
CONTINUE
CONTINUE
FORMAT(I4)

598
1800

DO 598 I-l,N
VRITE(18,1800)(REST(I,J),J-I,M)
CONTINUE
FORMAT(256I4)

Z-l
SMLST(Z)=FINAL(1)

IF (SMLST(Z).EQ.O)THEN
GOTO 722
ENDIF

1965

DO 1965 I-l,COUNT1
IF (FINAL(I).NE.SMLST(Z))THEN
Z=Z+1
SMLST(Z)-FINAL(I)
ELSE
ENDIF
CONTINUE

912

367

NF-0
DO 367 I-2,Z
LT-SMLST(1)
IF (SMLST(I).EQ.LT)THEN
SMLST(I)-0
ENDIF
CONTINUE
DO 3670 I-3,Z
LT SMLST(2)
IF (SMLST(I).EQ.LT)THEN
SMLST(I)-0

78

ENDIF

3670 CONTINUE
DO 456 I-I,Z
IF (SMLST(I).NE.O)THEN
NF-NF+1
ENDIF

456 CONTINUE

OPEN(UNIT-14,FILE-'TEST.AR',RECL-1024,STATUS='UNKNOWN')

DO 678 I-l,N
WRITE(14,180)(REST(I,J),J-1,M)

678 CONTINUE
WRITE(*,*)('THE NUMBER OF AREAS IN THE CHARACTER IS:')
WRITE(*,*)NF
GOTO 9089

5000 FORMAT(25611)
722 NF=O

WRITE(*,*)('THE NUMBER OF AREAS IN THE CHARACTER IS
GOTO 9089

2ERO')

9089 WRITE(*,*) ('SUBPROGRAM COMPLETED'
CLOSE(11)

79

C****~***+***************************~*********w**~****~~*~~
C***** PROGRAM MOMENTS
C***** THIS PROGRAM DETERMINES THE SEVEN INVARIANT
C-"~+-"+ NORMALIZED MOMENTS OF ANY TEST CHARACTER. THE INPUT
C***** FILE IS "TEST.TIN".
C***** THE NORMALIZED MOMENTS DETERMONED ARE MM1, MM2, MM3,
C****P MM4, MM5, MM6, MM7.
C*+**~****************************+************~**********="*

OPEN(15,FILE-'TEST.TIN',STATUS-'UNKNOWN'

700
710

DO 700 I-1,N
READ(15,710)(AREA(I,J),J-1,M)
CONTINUE
FORMAT(256I4)
MOO 0
M 01-0
M 02=0
M 03-0
M 10-0
M 11-0
M 12=0
M 13-0
M 21 0
M 22-0
M 23-0
M 20-0
M 30-0
M 31-0
M320
M 33-0
WRITE(*,*)N,M

DO 720 I-1,N
DO 730 J 1,M
M 00 M 00+AREA(I,J)
M 01 M 01 + J*AREA(I,J)

M 02-
M 03
M 10-
M 11
M 12
M 13
M 20-
M 21-

M 02+
M 03+
M 10+
M 11+
M 12+
M 13+
M 20+
M 21+

(J**2)*AREA(I,J)
(J**3)*AREA(I J)
I*AREA(I,J)
I*J*AREA(I,J)
I*(J**2)*AREA(I,J)
I*(J**3)*AREA(I,J)
(I**2)*AREA(I,J)
(I**2)*J*AREA(I,J)

80

730
720

M 22 M 22 + (I**2)*(J**2)*AREA(I,J)
M 23 M 23 + (I**2)*(J**3)*AREA(I,J)
M 30 M 30 + (I**3)*AREA(I,J)
M 31 M 31 + (1**3)*J+AREA(I,J)
M 32- M 32 + (1**3)*(J**2)*AREA(I,J)
M 33 M 33 + (I**3)*(J**3)*AREA(I,J)
CONTINUE
CONTINUE
WRITE(*,*)M 33

X BAR- M 10/ M 00
Y BAR M 01/ M 00

(X BAR~N 02)

MU 00- M 00
MU 10=0
MU 01=0
NU 20- M 20-(X BAR * M 10)
MU 02= M 02-(Y BAR * M 01)
MU 11- M 11 - (Y BAR * M 10)
MU 30- M 30 - (3*X BAR * M 20) + (2 ~ M 10
*(X BAR%'*2))
MU 12- M 12 - (2*Y BAR*M 11)
+(2*(Y BAR+*2)+N 10)
MU 21- M 21 - (2*X BAR+M 11) - (Y BAR*M 20) +
(2*(X BAR**2)*M 01)
NU 03- M 03 - (3*Y BAR+M 02) + (2*(Y BAR~~+2)*N 01)

ETA 02- NU 02/ (NU 00**2)
ETA 20- NU 20/ (NU 00**2)
ETA 11= MU 11/ (MU 00+*2)

ETA 12-
ETA 13=
ETA 21-
ETA 22-
ETA 23
ETA 30-
ETA 31-
ETA 32
ETA 33-

NU 12/ (MU 00**2.5)
MU 13/ (MU 00**3)
MU 21/ (MU 00**2.5)
MU 22/ (MU 00*+3)
MU 23/ (MU 00**3.5)
NU 30/ (NU 00*+2.5)
MU 31/ (MU 00**3)
MU 32/ (MU 00**3.5)
NU 33/ (MU 00*+4)

PHI 1- (ETA 20 + ETA 02)
PHI 2- (((ETA 20-ETA 02)**2) + 4*(ETA 11+*2))
PHI 3= (((ETA 30-3*ETA 12)**2) +
((3*ETA 21-ETA 03)+*2))
PHI 4 (((ETA 30 + ETA 12)**2) + ((ETA 21 +
ETA 03)**2))
PHI 5 ((ETA 30-(3*ETA 12))*(ETA 30+ETA 12)+
+ (((ETA 30+ETA 12)**2) -(((ETA 21+ETA 03)~*2))+
+ (3*ETA 21-ETA 03)+(ETA 21+ETA 03)*

+ ((3*(ETA 30+ETA 12)**2)-((ETA 21+ETA 03)»»2)))
PHI 6-((ETA 20-ETA 02)*(((ETA 30+ETA 12)»»2)
-((ETA 21+ETA 03)**2)+4*ETA 11*(ETA 30+ETA 12)
*(ETA 21+ETA 03)))
PHI 7-((3*ETA 21-ETA 30)»(ETA 30+ETA 12)
(((ETA 30+ETA 12)**2)+3*((ETA 21+ETA 03)»»2))+
(3*ETA 12-ETA 30)*(ETA 21+ETA 03)*
((3*(ETA 30+ETA 12)**2)-((ETA 21+ETA 03)**2)))

MINI-AMIN1(PHI 1,PHI 2,PHI 3,PHI 4,PHI 5,PHI 6,PHI 7)
NORM=MINI/100.0
WRITE(*,*)MINI,NORM
WRITE(*,*)(PHI 1,PHI 2,PHI 3,PHI 4,PHI 5,PHI 6,PHI 7)

MM1-ALOG(ANINT(ABS(PHI 1/NORM)))
MM2-ALOG(ANINT(ABS(PHI 2/NORM)))
MM3-ALOG(ANINT(ABS(PHI 3/NORM)))
MM4=ALOG(ANINT(ABS(PHI 4/NORM)))
MM5=ALOG(ANINT(ABS(PHI 5/NORM)))
MM6=ALOG(ANINT(ABS(PHI 6/NORM)))
MM7=ALOG(ANINT(ABS(PHI 7/NORM)))
WRITE(16,*) MM1,MM2,MM3,MM4,MM5,MM6,MM7

CLOSE(15)

82

*k***%***************************************kk*kk*kkkkk."'***k*

PROGRAM CLASSIFIER
C***** THE RECOGNITION PROCESS IS SIMULATED NEXT.
0**********k********************************k*k****k*kkkk"-,",

3011

WRITE(*,*)NF,ONES, UPPER, LOWER

IF (NF.EQ.1)THEN

IF(ONES.EQ.2)THEN
IF(UPPER.EQ.1)THEN
IF(LOWER.EQ.1)THEN
IF (LEFT,EQ.O)THEN
TYPE*,('TEST CHARACTER IS : ALPHA')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF

IF(ONES.EQ.2)THEN
IF(UPPER.EQ.2)THEN
IF(LOWER.EQ.O)THEN
TYPE*,('TEST CHARACTER IS : GAMMA')
GOTO 11111
ENDIF
ENDIF
ENDIF

IF(ONES.EQ.O)THEN

IF(UPPER.EQ.O)THEN
IF(LOVER.EQ.O)THEN

MSE14-((MM1-13.33)**2)+((MM2-9.40)**2)+
((MM3-11.31)**2)+((MM4-8.022)**2)+
((MM5-4.6051)**2)+
((MM6-5.455)**2)+ ((MM7-4.962)k*2)
MSE15 ((MM1-1.0986)**2)+ ((MM2-2.302)*k2)+
((MM3-3.178)**2)
+((MM4-2,39)**2)+((MM5-5.739)**2)+((MM6-4.304)
2)+((MM7-4.6051)2)

IF (MSE14.LT.MSE15)THEN
TYPE*,('TEST CHARACTER IS : OMICRON'
GOTO 11111
ELSE
TYPE*,('TEST CHARACTER IS : DELTA')
GOTO 11111

83

ENDIF
ENDIF
ENDIF
ENDIF

IF(ONES.EQ.1)THEN
IF(UPPER.EQ.O)THEN
IF(LOVER.EQ.1)THEN
TYPE*,('TEST CHARACTER IS : RHO')
GOTO 11111
ENDIF
ENDIF
ENDIF

IF(ONES.EQ.2)THEN
IF(UPPER.EQ.1)THEN
IF(LOWER.EQ.1)THEN
IF (LEFT.EQ.1)THEN
TYPE*,('TEST CHARACTER IS : PHI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF

3015

IF(ONES.EQ.1)THEN
IF(UPPER.EQ.1)THEN
IF(LOVER.EQ.O)THEN
GOTO 3015
ENDIF
ENDIF
ENDIF
MSE1 ((MM1-1.0986)**2)+((MM2-2.302)**2)+
((MM3-3.178)**2)
+((MM4-2.39)**2)+((MM5-5.739)**2)+
((MM6-4.304)**2)+((MM7-4.6051)**2)
MSE2 ((MM1-10.05)**2)+((MM2-7.15)+*2)+
((MM3-7.77)**2)
+((MM4-5.891)**2)+((MM5-3.091)**2)
+((MM6-4.605)**2)+ ((MM7-3.583)*-"2)

IF (MSE1.LT.MSE2)THEN
TYPE*,('TEST CHARACTER IS : DELTA')
ELSE
TYPE*,('TEST CHARACTER IS : SIGMA ')
ENDIF
ENDIF

3021 IF (NF.EQ.2)THEN
IF(ONES.EQ.1)THEN
IF(UPPER.EQ.O)THEN
IF(LOVER.EQ.1)THEN

84

TYPE*, ('TEST CHARACTER IS: BETA'

ENDIF
ENDI F
ENDIF

IF(ONES.EQ.O)THEN
IF(UPPER.'EQ.O)THEN
IF(LOWER.EQ.O)THEN
TYPE*,('TEST CHARACTER IS : THETA')
ENDIF
ENDIF
ENDIF

IF(ONES.EQ.2)THEN
IF(UPPER.EQ.1)THEN
IF(LOWER.EQ.1)THEN
TYPE*,('TEST CHARACTER IS : PHI')
ENDIF
ENDIF
ENDIF
ENDIF

IF (NF.EQ.O)THEN
IF(ONES.EQ.2)THEN

IF (UPPER.EQ.1)THEN
IF (LOWER.EQ.1)THEN
MSE16- ((MM1-6.354)**2)+

((MM2-7.37)**2)+((MM3-6.05)**2)
+((MM4-4.744)**2)+((MM5-4.605)**2)+
((MM6-5.634)**2)+ ((MM7-4,624)*+2)
MSE17- ((MM1-3.135)**2)+

((MM2-4.653)**2)+((MM3-4.127)*~2)
+((MM4-2.995)**2)+((MM5-4.962)*a2)+
((MM6-2.63)**2)+((MM7-4.605)**2)

IF (MSE16.LT.MSE17)THEN
TYPE*, ('TEST CHARACTER IS : YOTA')
GOTO 11111
ELSE
TYPE*, ('TEST CHARACTER IS : ZETA'
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.3)THEN

85

IF (UPPER.EQ.2)THEN
IF (LEFT.EQ.2)THEN
IF (LEFT1.EQ.2)THEN
TYPE*,('TEST CHARACTER IS : KSI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.3)THEN
IF(LEFT1.EQ.O)THEN
IF (RIGHT1.EQ.3)THEN
TYPE*,('TEST CHARACTER IS : EPSILON'
GOTO 11111
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.2)THEN
IF (LEFT.EQ.1)THEN
IF (RIGHT.EQ.1)THEN

7015 MSE3- ((MM1-2.944)**2)+
((MM2-3.828)**2)+((MM3-4.234)**2)
+((MM4-2.564)**2)+((MM5-4.605)*+2)+
((MM6-3.806)**2)+((MM7-2,079)**2)
MSE4 ((MM1-5.493)**2)+
((MM2-2.484)~*2)+((MM3-6.129)**2)
+((MM4-4.290)**2)+((MM5-4.605)~*2)+
((MM6-2.890)**2)+ (MM7-4.488)**2)
MSE5 ((MM1-6.666)**2)+
((MM2-4.6051)**2)+((MM3-7.258)**2)
+((MM4-6.242)**2)+((MM5-7,944)**2)+((MM6-6.2) 2)+
((MM7-8.272)**2)

7030

7045

IF ((MSE3.LT.MSE4).AND.(MSE3.LT.MSE5))THEN
GOTO 7030
ENDIF
IF ((MSE4.LT.MSE3).AND.(MSE4.LT.MSE5))THEN
GOTO 7045
ENDIF
IF ((MSE5.LT.MSE3).AND.(MSE5.LT.MSE4))THEN
WRITE(*,*)('TEST CHARACTER IS : IPSILON')
GOTO 11111
ENDIF

WRITE(*,*)('TEST CHARACTER IS : OMEGA'

GOTO 11111
WRITE(*,*)('TEST CHARACTER IS : NU')
ENDIF
ENDIF

86

ENDIF

IF (ONES.EQ.3)THEN
IF (UPPER.EQ.2)THEN
IF (LEFT.EQ.2)THEN
TYPE*,('EST CHARACTER IS : NU ')
GOTO 11111
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.3)THEN
IF (UPPER.EQ.3)THEN
IF (LOWER.EQ.O)THEN
WRITE(*,*)('TEST CHARACTER IS : OMEGA'

ENDIF
ENDIF
ENDIF
IF (ONES.EQ.3)THEN
IF (UPPER.EQ.2)THEN
IF (LOWER.EQ.1)THEN

IF (LEFT.EQ.1)THEN
IF (RIGHT.EQ.2)THEN
WRITE(*,*)('TEST CHARACTER IS : TOU')
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

7060

IF (ONES.EQ.3)THEN
IF (UPPER.EQ.2)THEN
IF (LOWER.EQ.1)THEN
MSE6 ((MM1-2.564)**2)+((MM2-3.891)**2)+
((MM3-4.043)**2)
+ ((MM4-2.944)**2)+((MM5-5.416)**2)+

((MM6-4.779)**2)+ ((MM7-4.6051)**2)
MSE7 ((MM1-1.945)**2)+
((MM2-2.708)**2)+((MM3-3.850)**2)
+((MM4-2.833)**2)+((MM5-5.6666)**2)+
((MM6-4.499)**2) +((MM7-4.6051)**2)
MSE10- ((MM1-2.944)**2)+
((MM2-3.828)**2)+((MM3-4.234)**2)
+((MM4-2.564)**2)+((MM5-4.605)**2)+
((MM6-3.806)**2)+((MM7-2.079)**2)

87

IF((MSE6.LT,MSE7),AND.(MSE7,LT,MSE10))THEN
WRITE(*,*)('TEST CHARACTER IS : TOU')
GOTO 11111
ENDIF
WRITE(*,*)('TEST CHARACTER IS : OMEGA'

ENDIF
ENDIF
ENDIF

7890

IF (ONES.EQ.2)THEN
IF (LEFT.EQ.2)THEN
IF (RIGHT.EQ.O)THEN
VRITE(*,*)('TEST CHARACTER IS ; ZETA ')
GOTO 11111
ENDIF
ENDIF
ENDIF
IF (ONES.EQ.2)THEN
IF (LEFT1.EQ.O)THEN
IF (RIGHT.EQ.2)THEN
WRITE(*,*)('TEST CHARACTER IS : ZETA ')
GOTO 11111
ENDIF

ENDIF
ENDIF

7075

IF (ONES.EQ.3)THEN
IF (UPPER.EQ.1)THEN
IF (LOWER.EQ.2)THEN
GOTO 7075
MSEB- ((MM1-1.791)**2)+

((MM2-2.197)**2)+((MM3-4.043)**2)
w((MM4-2.079)**2)+((MM5-4.248)**2)
+((MM6-3.218)**2)+ ((MM7-4.6051)**2)
MSE9-((MM1-2.890)**2)+(MM2-2.484)**2)+
((MM3-4.043)**2)
+((MM4-3.526)**2)+((MM5-5.54)**2)+
((MM6-3.951)**2)+ ((MM7-4.6051)**2)

8015

IF (MSEB.LT.MSE9)THEN
WRITE(*,*)('TEST CHARACTER IS : LAMDA')
ELSE
WRITE(*,*)('TEST CHARACTER IS : ETA')
GOTO 11111

ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.3)THEN
IF (UPPER.EQ.O)THEN
IF (LOWER.EQ.3)THEN
GOTO 8015
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.4)THEN
IF (UPPER.EQ.3)THEN
IF (LOWER.EQ.1)THEN
IF (LEFT1.EQ.1)THEN
IF (RIGHT1.EQ.3)THEN
TYPE*,('TEST CHARACTER IS : PSI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.4)THEN
IF (UPPER.EQ.2)THEN
IF (LOWER.EQ.2)THEN
IF (LEFT1.EQ.1)THEN
IF (RIGHT1.EQ.3)THEN
TYPE*,('TEST CHARACTER IS : PI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.4)THEN
IF (UPPER.EQ.2)THEN
IF (LOWER.EQ.2)THEN
IF (LEFT.EQ.2)THEN
IF (RIGHT.EQ.2)THEN
IF (LEFT1.EQ.2)THEN
IF (RIGHT1.EQ.2)THEN
MSE11 ((HM1-6.459)**2)+

89

((MM2-6.008)**2)+((MM3-7.001)**2)
+((MM4-4.454)**2)+((MM5-4.43)+*2)+
((MM6-4.6051)**2)+ ((MM7-3.496)**2)
MSE12 ((MM1-7.196)**2)+((MM2-5.94)++2)+
((MM3-7.329)**2)
+((MM4-5.176)**2)+((MM5-2.639)**2)+
((MM6-4.094)**2)+ ((MM7-4.6051)**2)
MSE13 ((MM1-6.652)**2)+
((MM2-6.77)**2)+((MM3-6.073)**2)
+((MM4-5.424)**2)+((MM5-5.446)**2)+
((MM6-5.924)**2) + ((MM7-4.6051)~~2)
IF ((MSE11.LT.MSE12).AND.(MSE11.LT.MSE13))THEN
TYPE*,('TEST CHARACTER IS : KAPPA')
GOTO 11111
ENDIF
IF ((MSE12.LT.MSE11).AND.(MSE12.LT.MSE13))THEN
TYPE*,('TEST CHARACTER IS : PI')
GOTO 11111
ENDIF
IF ((MSE13.LT.MSE11).AND.(MSE13.LT.MSE12))THEN
TYPE*,('TEST CHARACTER IS : CHI')
GOTO 11111
ENDIF

ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.4)THEN
IF (UPPER.EQ.3)THEN
IF (LOWER.EQ.1)THEN
IF (LEFT1.EQ.2)THEN
IF (RIGHTI.EQ.2)THEN

TYPE*,('TEST CHARACTER IS : MI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

IF (ONES.EQ.4)THEN
IF (UPPER.EQ.3)THEN
IF (LOWER.EQ.1)THEN

90

TYPE*,('TEST CHARACTER IS : MI')
GOTO 11111
ENDIF
ENDIF
ENDIF
ENDIF

11111 WRITE(*,*)('PROGRAM COMLETED')

STOP

END

	Optical Machine Recognition of Lower-Case Greek Characters of Any Size
	Recommended Citation

	tmp.1721840393.pdf.zfdta

