10-2018

Beam-Target Helicity Asymmetry E in K0Λ and K0Σ0 Photoproduction on the Neutron

D. H. Ho
R. A. Schumacher
A. D'Angelo
A. Deur
J. Fleming

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Nuclear Commons

Repository Citation
https://digitalcommons.odu.edu/physics_fac_pubs/305

Original Publication Citation

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Beam-target helicity asymmetry E in $K^0\Lambda$ and $K^0\Sigma^0$ photoproduction on the neutron

(The CLAS Collaboration)

1Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3Arizona State University, Tempe, Arizona 85287-1504, USA
4California State University, Dominguez Hills, Carson, California 90747, USA
5Canisius College, Buffalo, New York 14208, USA
6Catholic University of America, Washington, DC 20064, USA
7IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
8Université Blaise Pascal, Clermont-Ferrand, Aubière Cedex 63178, France
9Christopher Newport University, Newport News, Virginia 23606, USA
10University of Connecticut, Storrs, Connecticut 06269, USA
11Duke University, Durham, North Carolina 27708-0305, USA
12Fairfield University, Fairfield, Connecticut 06824, USA
13Università di Ferrara, 44121 Ferrara, Italy
14Florida International University, Miami, Florida 33199, USA
15Florida State University, Tallahassee, Florida 32306, USA
16Particle and Nuclear Physics Institute, Orlowa Rossa 1, 188300 Gatchina, Russia
17Università di Genova, Dipartimento di Fisica, 16146 Genova, Italy
18The George Washington University, Washington, DC 20052, USA
19Helmholtz-Institut für Strahlen- und Kernphysik der Rheinischen Friedrich-Wilhelms Universität, Nussallee 14-16, 53115 Bonn, Germany
20Idaho State University, Pocatello, Idaho 83209, USA
21University of Iowa, Iowa City, Iowa 52242, USA
22INFN, Sezione di Ferrara, 44100 Ferrara, Italy
23INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
24INFN, Sezione di Genova, 16146 Genova, Italy
25INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
26INFN, Sezione di Torino, 10125 Torino, Italy
27Institut de Physique Nucléaire, CNRS/IN2P3 and Université Paris Sud, Orsay, France
28Institute of Theoretical and Experimental Physics, Moscow 117259, Russia
29James Madison University, Harrisonburg, Virginia 22807, USA
30Kyungpook National University, Daegu 41566, Republic of Korea
31Mississippi State University, Mississippi State, Mississippi 37962-5167, USA
32University of New Hampshire, Durham, New Hampshire 03824-3568, USA
33Norfolk State University, Norfolk, Virginia 23504, USA
34Ohio University, Athens, Ohio 45701, USA

PHYSICAL REVIEW C 98, 045205 (2018)
I. INTRODUCTION

An accurate description of excited nucleons and their interaction with probes such as photons at GeV energies has remained elusive for decades. The standard model [1,2] underpins the structure of the nucleons and their excitations, but in the low-energy nonperturbative regime, competing semiphenomenological models of specific reaction dynamics are all that are available. Present-day lattice QCD calculations [3,4] and quark models [5–10] predict a richer baryon spectrum than experimentally observed [11–13]: the so-called missing resonance problem. There are theoretical approaches to the nucleon resonance spectrum that predict that some quark-model states do not exist, including models with quasistable diquarks [14], AdS/QCD string-based models [15], and “molecular” models in which some baryon resonances are dynamically generated from the unitarized interaction among ground-state baryons and mesons [16]. But finding such missing states may in part be an experimental problem: high-mass nucleon resonances may couple weakly to πN and may thus have escaped detection in the analysis of πN elastic scattering experiments. Further, they are wide and overlapping, and partial-wave analysis (PWA) of reaction data for specific final states remains difficult due to channel-coupling effects and insufficient experimental constraints. The experimental results discussed here represent one step in the direction of adding constraints to the hyperon photoproduction database, which ultimately impacts models for nucleon excitations.

Cross-section measurements alone are not enough to constrain PWA models of meson production amplitudes. Polarization observables related to the spins of the beam photons, target, and recoiling baryons are also needed. Photoproduction of pseudoscalar mesons is governed by four complex $\gamma n \rightarrow K^0 \Lambda$ and $K^0 \Sigma^0$ channels in the energy range $1.70 \leq W \leq 2.34$ GeV. The CLAS system at Jefferson Lab uses a circularly polarized photon beam and a target consisting of longitudinally polarized solid molecular hydrogen deuteride with low background contamination for the measurements. The multivariate analysis method boosted decision trees is used to isolate the reactions of interest. Comparisons with predictions from the KaonMAID, SAID, and Bonn-Gatchina models are presented. These results will help separate the isospin $I = 0$ and $I = 1$ photocoupling transition amplitudes in pseudoscalar meson photoproduction.

DOI: 10.1103/PhysRevC.98.045205

We report the first measurements of the E beam-target helicity asymmetry for the $\gamma n \rightarrow K^0 \Lambda$ and $K^0 \Sigma^0$ channels in the energy range $1.70 \leq W \leq 2.34$ GeV. The CLAS system at Jefferson Lab uses a circularly polarized photon beam and a target consisting of longitudinally polarized solid molecular hydrogen deuteride with low background contamination for the measurements. The multivariate analysis method boosted decision trees is used to isolate the reactions of interest. Comparisons with predictions from the KaonMAID, SAID, and Bonn-Gatchina models are presented. These results will help separate the isospin $I = 0$ and $I = 1$ photocoupling transition amplitudes in pseudoscalar meson photoproduction.

DOI: 10.1103/PhysRevC.98.045205
proton- and neutron-target observables are necessary to study $I = 1/2$ transitions and isolate the separate $\gamma p N^*$ proton and $\gamma n N^*$ neutron photo-couplings [24]. Information from neutron targets is comparatively scarce [25], particularly in the hyperon channels [26,27], which is why the present measurement is of value. Furthermore, the hyperon photoproduction channels $\gamma N \rightarrow K\Lambda(\Sigma^*)$ are attractive for analysis for two reasons. First, the threshold for two-body hyperon final states is at $W \approx 1.6$ GeV, above which lie numerous poorly known resonances. Two-body strange decay modes, rather than cascading nonstrange many-body decays, may be easier to interpret. Second, the hyperon channels give easy access to recoil polarization observables on account of their self-analyzing weak decays. While the present work does not involve measurement of hyperon polarizations, previous work has shown the benefit of using such information to extract properties of higher-mass nucleon resonances [28–35]. Thus, pursuing “complete” amplitude information in the hyperon photoproduction channels can be complimentary to the analogous quest in, say, pion photoproduction.

In this article, we present first-time measurements of the beam-target observable E on a longitudinally polarized neutron bound in deuterium in the quasi-free reaction $\gamma n(p) \rightarrow K^0\Lambda(p)$. The helicity asymmetry E is formally defined as the normalized difference in photoproduction yield between antiparallel (σ^A) and parallel (σ^P) configurations, i.e., settings where the incident photon beam polarization is antialigned or aligned, respectively, with the longitudinal polarization of the target. Following Refs. [18] and [22], write

$$E = \frac{\sigma^A - \sigma^P}{\sigma^A + \sigma^P}.$$

This helicity asymmetry, E, is related to the cross section by

$$\left(\frac{d\sigma}{d\Omega} \right)_0 = \left(\frac{d\sigma}{d\Omega} \right) (1 - P_T P_\circ E),$$

where $(d\sigma/d\Omega)_0$ is the differential cross section averaged over initial spin states and summed over the final states, and P_T and P_\circ are the target longitudinal and beam circular polarizations, respectively.

The asymmetry results obtained are compared with several model predictions. The first is a single-channel effective Lagrangian approach, KaonMAID [36,37], with parameter constraints largely imposed from SU(6). Without experimental constraints on the $N^*\Lambda K^0$ and $\gamma n N^*$ vertices, the reaction of interest is difficult to model accurately. The second model giving predictions for the present results is the data description given by SAID [38,39]. In general, SAID is more up to date than KaonMAID; for the present reaction channels the SAID predictions are a polynomial fit to all available data before 2008, assuming that final-state interactions for these polarization observables can be neglected [40]. The third comparison is made to the multichannel K-matrix formalism of the Bonn-Gatchina [41] group, which is the most up to date, being constrained by recent first-time measurements [26] of the differential cross section for the reaction $\gamma n(p) \rightarrow K^0\Lambda(p)$ [with (p) as the spectator proton].

II. EXPERIMENTAL PROCEDURES

The experiment was performed at the Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF Large Acceptance Spectrometer (CLAS) [42]. This setup has been used for several studies of K^+ photoproduction of hyperonic final states on a proton target [29–31,33,34,43–45] and on an effective neutron (deuteron) target [26,27]. The present results stem from the so-called “g14” run period between December 2011 and May 2012, from which nonstrange results have been previously reported [46]. The CEBAF accelerator provided longitudinally polarized electron beams with energies of $E_e = 2.281, 2.257, \text{and } 2.541 \text{ GeV}$, and an average electron beam polarization for the present study of $P_e = 0.82 \pm 0.04$, which was measured routinely by the Hall-B Möller polarimeter [47]. The electron beam helicity was pseudorandomly flipped between +1 and −1 at a 960-Hz flip rate. The electron beam was incident on the thin gold radiator of the Hall-B Tagger system [48] and produced circularly polarized tagged photons. The polarization of the photons was determined using the Maximon and Olsen formula [49],

$$P_\circ = P_e \frac{4k - k^2}{4 - 4k + 3k^2},$$

where P_\circ and P_e are the photon and electron polarizations, respectively, and $k = E_e/E_\gamma$ is the ratio between the photon energy and the electron beam energy.

A 5-cm-long solid target of hydrogen deuteride (HD) was used in the experiment [50,51]. It achieved vector polarizations of 25%–30% for deuterons, i.e., for bound neutrons in the deuteron with relaxation times of about a year. The polarized target was held at the center of CLAS using an in-beam cryostat that produced a 0.9-T holding field and operated at 50 mK. The target polarization was monitored using nuclear magnetic resonance measurements [50]. The orientation of the target longitudinal polarization direction was inverted between periods of data taking, either parallel or antiparallel to the direction of the incoming photon beam. Background events from the unpolarizable target wall material and aluminum cooling wires [51] were removed using empty-target data, as discussed in Secs. III A and III B.

The specific reaction channel for this discussion came from events of the type $\gamma d \rightarrow \pi^+\pi^-\pi^0\rho(X)$ using a readout trigger requiring a minimum of two charged particles in different CLAS sectors. After particle identification we required the “spectator,” X, to be an undetected low-momentum proton and possibly a photon, via the missing mass technique, as explained in the next section. In order to determine the E asymmetry experimentally, the event yields in a given kinematic bin of W and kaon center-of-mass angle were obtained by counting events with total c.m. helicity $h = 3/2$ (laboratory-frame antiparallel configuration), called N_A, and events with $h = 1/2$ (laboratory-frame parallel configuration), called N_P, respectively. The E observable was then computed as

$$E = \frac{1}{P_T P_\circ} \frac{N_A - N_P}{N_A + N_P},$$

where P_T and P_\circ are the run-averaged target and beam polarizations, respectively.
III. DATA ANALYSIS

The performance of the system was extensively studied for a reaction with much higher count rates than the present one. The nonstrange reaction $\gamma d \rightarrow \pi^- p (X)$ was investigated using many of the same analysis steps and methods discussed in this article to extract the E observable for $\gamma n \rightarrow \pi^- p$ [46]. The analysis steps outlined below were all tested on that reaction. In particular, the boosted decision tree (BDT) selection procedure [52,53] used below was validated against alternative “cut-based” and kinematic fit methods, with the result that the BDT procedure resulted in $\sim 30\%$ larger yields of signal events and therefore gave better statistical precision on the final E asymmetry.

A. Particle identification

For this particular analysis, we required that every selected event consists of at least two positive tracks and two negative tracks with associated photon tagger hits [48]. The CLAS detector system determined the path length, the charge type, the momentum and the flight time for each track [54–56]. For each track of momentum \vec{p}, we compared the measured time of flight, TOF_{m}, to a hadron’s expected time of flight, TOF_{h}, for a pion and proton of identical momentum and path length. CLAS-standard cuts were placed on the difference between the measured and the expected time of flight, $\Delta \text{TOF} = \text{TOF}_{m} - \text{TOF}_{h}$. We selected events for which the two positively charged particles were the proton and π^+, and the two negatively charged were both π^-. Well-established CLAS fiducial cuts were applied to select events with good spatial reconstruction.

Events originating from unpolarized target material—aluminum cooling wires and polychlorotrifluoroethylene (pCTFE)—dilute E and must be taken into account. A period of data taking was dedicated to an empty target cell in which the HD material was not present. This set of data was used to study and remove the bulk of the target material background on the basis of a loose missing mass cut. Figure 1 shows the resulting reconstructed reaction vertex for four-track data along the beam line both for a full target and for an empty target scaled to match the counts in several downstream target foils. The full-to-empty ratio of about 3.3:1 in the target region was important in selecting the optimal BDT cut discussed below.

Figure 2 shows the resulting target-full missing mass distribution for spectator X in $\gamma d \rightarrow \pi^- \pi^+ \pi^- p (X)$, after these cuts. A clear peak corresponding to the spectator proton is seen at point 1 for events that produced a Λ particle. A loose cut was applied to reject events with a missing mass larger than 1.4 GeV/c^2 at point 4 because of the presence of $\Sigma^0 \rightarrow \pi^- p (\gamma)$ events. These have a 73-MeV photon in the final state in addition to the proton, and the distribution peaks at point 2 and has a kinematic tail to about point 3.

B. $K^0\gamma Y$ event selection using BDT analysis

Because of the small reaction cross section in this experiment, a method was needed to optimally isolate the events of interest with minimal statistics loss. The multivariate analysis tool called the boosted decision tree approach was used to select the exclusive events of interest in this study. Three steps were needed to achieve this result. The first BDT was created to select events from both the $\gamma d \rightarrow \pi^- \pi^+ \pi^- p (p_S)$ and the $\gamma d \rightarrow \pi^- \pi^+ \pi^- p (p_{S\gamma})$ final states, consistent with quasi-free production from a deuteron. This was to reject target-material background and events with a high missing momentum of the undetected spectator nucleon, p_S. The second BDT was created to remove the nonstrange pionic background with the same final states, that is, to pick out events with Λ and Σ^0 intermediate-state particles. The third BDT was to separate the $K^0\Lambda$ and $K^0\Sigma^0$ events.
This BDT algorithm is more efficient than a simple “cut” method in both rejecting background and keeping signal events \[53,57\]. The method builds a “forest” of distinct decision trees that are linked together by a boosting mechanism. Each decision tree constitutes a disjunction of logical conjunctions (i.e., a graphical representation of a set of if-then-else rules). Thus, the entire reaction phase-space is considered by every decision tree. Before employing the BDT for signal and background classification, the BDT algorithm needs to be constructed (or trained) with training data—wherein the category of every event is definitively known. We used the ROOT implementation of the BDT algorithm \[58\]. Every event processed by the constructed BDT algorithm is assigned a value of between \(-1\) and \(+1\) that quantifies how likely the processed event is a background event (closer to \(-1\)) or a signal event (closer to \(+1\)). An optimal cut on the BDT output is chosen to maximize the \(S/\sqrt{S+B}\) ratio, where \(S\) and \(B\) are the estimations, based on training data, of the initial number of signal and background events, respectively.

The initial assignment of the \(\pi^-\) particles to either \(K^0\) or \(\Lambda\) decay was studied with Monte Carlo simulation, and a loose selection based on invariant masses was made. Specific details of these cuts are given in Ref. \[57\].

The first BDT was trained using real empty-target data for the background training. A signal Monte Carlo simulating quasifree hyperon production on the neutron was used for signal training data. The momentum distribution of the spectator proton, \(p_s\), followed the Hulthén potential \[59,60\] for the deuteron. Based on this training, an optimal BDT cut that maximized the estimated initial \(S/\sqrt{S+B}\) ratio was selected. Figure 3 shows the total (blue histogram) and rejected (black histogram) events by the first BDT cut. In comparing Figs. 1 and 3, two items should be noted. First, the BDT was trained to remove target-material background events with missing momentum not consistent with a Hulthén distribution.

Second, the BDT background-rejection efficiency was not perfect, leaving some target-material background events that were removed in a subsequent step (Sec. III C). We then rejected events with \(z > -2\) cm on the reaction vertex to remove remaining unambiguous background events due to various cryostat foils.

The second-step BDT was trained using a four-body phase-space \(\gamma d \rightarrow \pi^- \pi^+ \pi^- p(p_S)\) simulation as background training data and the \(\gamma d \rightarrow K^0 \Lambda(p_S)\) simulation as signal training data. There were two negative pions in each event: one from the decay of the \(K^0\) and one from the decay of the hyperon. The goal of the BDT analysis was to use the available correlations among all particles to sort the pions correctly and to select events with decaying strange particles. The main training variables at this stage of the analysis included the 3-momenta of all the particles and the detached decay vertices of the \(K^0\)s and the hyperons. After the optimized BDT cut was placed, Fig. 4 shows the total (red histogram) and rejected (black histogram) events after this second BDT analysis step. The efficiency of the second BDT was less than 100%, thus, there are remaining target background events in the selected data sample. The dips near the signal maxima in the background spectra show that the background is slightly
undersubtracted. This issue is discussed and corrected below. A fit with a Breit-Wigner line shape and a polynomial was used to estimate that the strange-to-nonstrange ratio of events in the data set at this stage was about 2.3:1 in the peak regions.

For the final task, separating the $K^0\Lambda$ and $K^0\Sigma^0$ channels, the third BDT was trained using $\gamma d \rightarrow K^0\Sigma^0(p_S)$ simulation as “background” training data and $\gamma d \rightarrow K^0\Lambda(p_S)$ simulation as “signal” training data. Note that the term background used here is just for semantic convenience, since both channels were retained after applying the third optimized BDT cut. Figure 5 shows the classification success of the third BDT on $[\gamma d \rightarrow K^0\Lambda(p_S)]$ simulation data. The histograms reveal that a small number of $K^0\Lambda$ events would be misclassified as $K^0\Sigma^0$ events, and vice versa. In the next section, the correction for the contamination on both final data sets is discussed. Figure 6 shows the separation result from the third BDT on real data.

C. Corrections for remaining backgrounds and asymmetry calculation

The E asymmetry values for both target-material and nonstrange background events were statistically consistent with 0 [57]; therefore, we implemented an approximation procedure to correct for the dilution effect from the remaining background. We estimated two ratios: one for the remaining fraction of target background (TGT), R_{TGT}, and one for the fraction of remaining nonstrange (NS) final-state events mixed with the hyperon events, R_{NS}. We write $R_{TGT} = N_{\text{remain}}/N_{\text{HD}}$ and $R_{NS} = Y_{\text{remain}}/Y_{K^0\Lambda}$. N_{remain} and N_{HD} are the estimated number of remaining target-material background events and true deuteron events after the first BDT and $z = -2$ cm vertex cuts, respectively. Y_{remain} and $Y_{K^0\Lambda}$ are the estimated number of remaining nonstrange and true $K^0\Lambda$ events after the second BDT cut, respectively. Next, let Y_{BDT} be the number of events that passed the z-vertex cut and the first two BDT selections; then Y_{BDT} can be partitioned into

$$Y_{\text{BDT}} = (1 + R_{NS})Y_{K^0\Lambda} = (1 + R_{NS})[Y_{YK^0\Lambda} + Y_{YK^0\Lambda}] , \quad (5)$$

since $Y_{K^0\Lambda}$ also comprises events from the remaining target-material background and the bound signal events. If we further allow $Y_{YK^0\Lambda} = N_{\text{remain}}/N_{\text{HD}} = R_{TGT}$, then Y_{BDT} can finally be expressed as

$$Y_{\text{BDT}} = (1 + R_{NS})(1 + R_{TGT})Y_{YK^0\Lambda} \quad (6)$$

or

$$Y_{YK^0\Lambda} = (1 + R_{NS})^{-1}(1 + R_{TGT})^{-1}Y_{\text{BDT}} . \quad (7)$$

These relations should remain valid for both $Y_{YK^0\Lambda}$ and $Y_{YK^0\Lambda}$, which are the $K^0\Lambda$ and $K^0\Sigma^0$ signal events from bound

![Figure 5. Distributions of missing mass from the reconstructed K^0, $\gamma n \rightarrow \pi^-\pi^+X$ for simulation data, assuming that the target is an at-rest neutron. Left: The magenta histogram represents events with correct $K^0\Lambda$ classification, while the cyan histogram represents events with the wrong $K^0\Sigma^0$ classification. Right: The cyan histogram represents events with the correct $K^0\Sigma^0$ classification, while the magenta histogram represents events with the wrong $K^0\Lambda$ classification.](image)

![Figure 6. Distribution of missing mass from the reconstructed K^0, $\gamma n \rightarrow \pi^-\pi^+X$ for real data, assuming that the target is an at-rest neutron, after rejecting nonhyperon background by the second BDT cut. The magenta (cyan) histogram was classified as $K^0\Lambda$ ($K^0\Sigma^0$) using the third BDT selection step.](image)
and neutron polarizations, respectively. The backgrounds that leak through the BDT filters will be helicity independent and will be subtracted in the numerator of Eq. (4). Using Eq. (7) to correct the summed yields in the denominator gives the corrected asymmetry as

\[E_{K^0Y}^{\text{corrected}} = (1 + R_{\text{NS}}) \times (1 + R_{\text{TGT}}) E_{\text{BDT}}^{K^0Y}, \]

where \(E_{\text{BDT}}^{K^0Y} \) is obtained from \(Y_{\text{BDT}}^{K^0Y} \) (or, more exactly, \(Y_{\text{BDT}}^p \) and \(Y_{\text{BDT}}^\Lambda \)) of the \(K^0Y \) parallel and antiparallel subsets. From the simulations we found average values of \(R_{\text{TGT}} \) and \(R_{\text{NS}} \) of 0.09 and 0.17, respectively, with some dependence on the specific run period.

Next we discuss a correction for the third BDT classification recall. That the third BDT selection separates the true signal \(K^0 \Lambda \) events into two subsets: one is mostly \(K^0 \Lambda \) events, and the other is mostly \(K^0 \Sigma^0 \). If we denote \(N_{\Lambda}^{\text{BDT}} \) and \(N_{\Sigma^0}^{\text{BDT}} \) as the number of events the third BDT identified as \(K^0 \Lambda \) and \(K^0 \Sigma^0 \) events, respectively, then we have the expressions

\[N_{\Lambda}^{\text{BDT}} = \omega_{\Lambda} N_{\Lambda}^{\text{true}} + (1 - \omega_{\Sigma^0}) N_{\Sigma^0}^{\text{true}}, \]

\[N_{\Sigma^0}^{\text{BDT}} = (1 - \omega_{\Lambda}) N_{\Lambda}^{\text{true}} + \omega_{\Sigma^0} N_{\Sigma^0}^{\text{true}}, \]

where \(\omega_{\Lambda} \) and \(\omega_{\Sigma^0} \) are the fractions of events correctly identified; these values were estimated based on simulation data. After rearrangement, we arrive at the expressions

\[N_{\Lambda}^{\text{true}} = \left[\frac{1 - \omega_{\Sigma^0}}{\omega_{\Lambda}} - \frac{1 - \omega_{\Lambda}}{\omega_{\Sigma^0}} \right]^{-1} \times \left(N_{\Lambda}^{\text{BDT}} - \frac{1 - \omega_{\Sigma^0}}{\omega_{\Sigma^0}} N_{\Sigma^0}^{\text{BDT}} \right), \]

\[N_{\Sigma^0}^{\text{true}} = \left[\frac{1 - \omega_{\Lambda}}{\omega_{\Lambda}} - \frac{1 - \omega_{\Sigma^0}}{\omega_{\Sigma^0}} \right]^{-1} \times \left(N_{\Sigma^0}^{\text{BDT}} - \frac{1 - \omega_{\Lambda}}{\omega_{\Lambda}} N_{\Lambda}^{\text{BDT}} \right). \]

The corrected \(E \) asymmetry was obtained using the derived \(N_{\Lambda}^{\text{true}} \) and \(N_{\Sigma^0}^{\text{true}} \) by using Eq. (4). From the simulations we found average values of \(\omega \) of 0.87 and 0.91 for \(\Lambda \) and \(\Sigma^0 \) events, respectively.

The neutron polarization in the deuteron is smaller than the deuteron polarization because the deuteron wave function has, in addition to an \(S \)-wave component, a \(D \)-wave component in which the spin of the neutron need not be aligned with the deuteron spin. This was studied using data for the \(\gamma n \rightarrow \pi^0 p \) reaction and reported in our previous publication [46]. It was found that for spectator recoil momenta of less than 100 MeV/c the correction was negligible. Had we cut on the recoil momentum at 200 MeV/c rather than 100 MeV/c, a measured dilution factor of \((8.6 \pm 0.1)\% \) would have been necessary for the nonstrange channel. But different reaction channels may exhibit different sensitivities to the recoil momentum. For the reaction under discussion here we could not afford the statistical loss by cutting on the recoil momentum, and we elected to make a conservative correction based on the general considerations in Ref. [61]. The neutron polarization can be estimated as \(P_n = P_d (1 - \frac{1}{2} P_d) \), where \(P_n \) and \(P_d \) are neutron and deuteron polarizations, respectively, and \(P_d \) denotes the deuteron \(D \)-state probability. The latter is not strictly an observable and needs only to be treated consistently within a given \(NN \) potential. Following Ref. [61], we take the \(D \)-state contribution averaged over a range of \(NN \) potentials as about 5\%, which implies that the neutron polarization is 92.5\% of the deuteron polarization, or a 7.5\% dilution factor.

D. Systematic uncertainties

We implemented four systematic studies to quantify the robustness of the trained BDT algorithms and the sensitivity of our results on the correction procedures introduced in the previous section. Two tests studied the effect of loosening the first and the second BDT cuts, respectively. One test focused on the sensitivity of the \(E \) results on the third correction—the correction procedure that was implemented to “purify” the final selected \(K^0 \Sigma^0 (K^0 \Lambda) \) sample. Finally, we reduced the beam and target polarizations by one standard deviation of their respective total uncertainties (statistical and systematic) to study the changes in the \(E \) results.

Finally, we note a complication that could occur when summing \(\Lambda \) yields to create the \(E \) asymmetries. The relative angular distribution between the \(\pi^- \) and the \(p \) that are used to reconstruct a \(\Lambda \) carries information on the recoil polarization of the latter. When summed over azimuthal angles, this information is lost. However, limitations in detector acceptance could result in incomplete integration, which in principle could introduce into Eq. (2) a dependence on six additional observables [22]. The gaps in CLAS acceptance are modest, and due to the lower than expected production cross sections, the data below are presented in broad kinematic bins, which tends to dilute such effects. On the scale of our statistical uncertainties, such corrections are expected to be negligible and we have not attempted to correct for them.

IV. RESULTS

We present here the results for the \(E \) asymmetry in two \(W \) energy bins. The lower bin is from 1.70 to 2.02 GeV and denoted \(W_1 \), while the higher bin is from 2.02 to 2.34 GeV and referred to as \(W_2 \). Due to small cross sections for \(K^0Y \) photoproduction, and to detector inefficiencies that are amplified by the required identification of four charged particles, our statistics are sufficient for only three bins in the \(K^0 \) center-of-mass production angle. The measurements for the \(\gamma n \rightarrow K^0 \Lambda \) reaction are plotted together with predictions from the KaonMAID, SAID, and Bonn-Gatchina (BnGa) models in Fig. 7. The data show that the \(K^0 \Lambda \) asymmetry is largely positive below 2 GeV and mostly negative above 2 GeV, without more discernible trends. Values of \(E \) must approach \(+1 \) at \(\cos \theta_{K^0}^{\text{cm}} \to \pm 1 \) to conserve angular momentum. Thus, the values for \(E \) in bin \(W_2 \) must change rather rapidly near the extreme angles.

For comparison, the PWA combines results from many experiments at different energies, and this results in varying degrees of sensitivity to energy and angle. This is illustrated in Fig. 7 by the SAID and BnGa PWA predictions at the
FIG. 7. Helicity asymmetry E for the $K^0\Lambda$ final state (with combined statistical and systematic uncertainties) vs $\cos \theta_{K^0}$. The asymmetries are shown with the neutron-target theoretical models KaonMaid [36] (dashed red curve) and SAID [38] (dot-dashed blue curve) and Bonn-Gatchina [32,41] (solid black curve). Because of the 0.32-GeV-wide W bins, each model is represented by two curves, computed at the bin endpoint W values, as labeled.

The results for the $K^0\Lambda$ channel at lower W hint at less positive values for E. In the bin for W above 2 GeV, the data are also consistent with 0 for $K^0\Sigma^0$, whereas the $K^0\Lambda$ data tended to be negative. In fact, the $K^0\Sigma^0$ asymmetry is consistent with 0 in all available bins. The model comparisons show that the KaonMAID prediction for the $K^0\Sigma^0$ channel in the higher W bin are probably not consistent with the data, while the SAID result is consistent with the data. For the $K^0\Sigma^0$ case we do not have predictions from the Bonn-Gatchina model because the unpolarized differential cross section has not been measured yet, and without it the model does not have a prediction available.

In order to show one other comparison between data and theory, we plot some of the present results for a neutron target together with the model predictions for the $K^+\Lambda$ reaction on a proton target in Fig. 9. This is intended to show the difference in the model predictions on the proton versus the neutron. One sees how different the three model predictions are for protons versus neutrons. One notes that the predictions for the proton-target calculations all tend to be closer to the new data we are presenting for a neutron target. This suggests that calculations of the E observable for a neutron target can be improved. Thus, we may expect these present results to have some impact on the further development of these models.

So far unpublished CLAS results for the corresponding reaction $\gamma p \rightarrow K^+\Lambda$ have higher statistics and finer energy bins than the present results (since the identification of this final state requires the detection of fewer particles). The present $K^0\Lambda$ results are, within our uncertainties, similar to the $K^+\Lambda$ asymmetries in Ref. [62]. The numerical values of
TABLE I. Numerical values of the E asymmetry measurements for the $K^0\Lambda/K^0\Sigma^0$ channels. The uncertainties are statistical and systematic, respectively. Center-of-mass energy ranges are $1.70 < W_1 < 2.02$ GeV and $2.02 < W_2 < 2.34$ GeV.

<table>
<thead>
<tr>
<th>W_1</th>
<th>W_2</th>
<th>$K^0\Lambda$</th>
<th>$K^0\Sigma^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.834 ± 0.499 ± 0.287</td>
<td>-0.533 ± 0.752 ± 0.345</td>
<td>-0.144 ± 0.436 ± 0.098</td>
<td>-0.263 ± 0.618 ± 0.101</td>
</tr>
<tr>
<td>0.0002 ± 0.317 ± 0.150</td>
<td>0.581 ± 0.539 ± 0.144</td>
<td>1.066 ± 0.419 ± 0.231</td>
<td>-0.319 ± 0.541 ± 0.460</td>
</tr>
</tbody>
</table>

the measured $K^0\Lambda$ and $K^0\Sigma^0$ E asymmetries, together with their statistical and systematic uncertainties, are reported in Table I.

V. CONCLUSIONS

We have reported the first set of E asymmetry measurements for the reaction $\gamma d \rightarrow K^0Y(p_t)$ for $1.70 \text{ GeV} < W \leq 2.34 \text{ GeV}$. In particular, we have described the three-step BDT-based analysis method developed to select a clean sample of $\pi^+\pi^-\pi^-$ with intermediate hyperons. We have plotted the E asymmetry as a function of $\cos \theta_{K^0}$. Several systematic uncertainty tests led to the conclusion that statistical uncertainties dominated the final results. The numerical values of the measured E asymmetries and their statistical and systematic uncertainties are reported in Table I.

Evidently, this analysis is limited by the small cross sections of the channels of interest, leading to large uncertainties in the measurements of the E asymmetry. At present, comparison with several models makes no decisive selections among the model approaches. Overall, the BnGa predictions are of a quality similar to that of the SAID predictions. The Kaon-MAID predictions for both channels seem less successful. Among all three model comparisons, the distinction between proton- and neutron-target predictions are differentiated by the data: The proton-target predictions compare better than the neutron-target predictions with the experimental results. In principle, this information is valuable since it hints at the necessary isospin decomposition of the hyperon photoproduction mechanism.

At present, multipole analyses for K^0Y channels are severely limited by the available data. Higher statistical data on these channels for a number of other polarization observables, from a much longer (unpolarized) target, have been collected during the $g13$ running period with CLAS and are under analysis. A greater number of different polarization observables is generally more effective than precision at determining the photoproduction amplitude [22]. When these $g13$ results become available, the present data on the beam-target E asymmetry are likely to have a larger impact.

ACKNOWLEDGMENTS

We acknowledge the outstanding efforts of the staff of the Accelerator and Physics Divisions at Jefferson Lab who made this experiment possible. The work of the Medium Energy Physics group at Carnegie Mellon University was supported by DOE Grant No. DE-FG02-87ER40315. The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-84ER40150. Further support was provided by the National Science Foundation, the Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), the French Centre National de la Recherche Scientifique, the French Commissariat à l’Energie Atomique, the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, the Scottish Universities Physics Alliance (SUPA), and the United Kingdom’s Science and Technology Facilities Council.

[57] D. Ho, Measurement of the E Polarization Observable for $\gamma d \rightarrow \pi^- p(p_x)$, $\gamma d \rightarrow K^0\Lambda(p_x)$, and $\gamma d \rightarrow \pi^+\pi^-d(0)$ Using CLAS g14 Data at Jefferson Lab, Ph.D. thesis, Carnegie Mellon University (2015); http://www.jlab.org/Hall-B/general/clas_thesis.html.

