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Abstract
Online streaming feature selection (OSFS), as an online learning manner to handle
streaming features, is critical in addressing high‐dimensional data. In real big data‐related
applications, the patterns and distributions of streaming features constantly change over
time due to dynamic data generation environments. However, existing OSFS methods rely
on presented and fixed hyperparameters, which undoubtedly lead to poor selection
performance when encountering dynamic features. To make up for the existing short-
comings, the authors propose a novel OSFS algorithm based on vague set, named OSFS‐
Vague. Its main idea is to combine uncertainty and three‐way decision theories to improve
feature selection from the traditional dichotomous method to the trichotomous method.
OSFS‐Vague also improves the calculation method of correlation between features and
labels. Moreover, OSFS‐Vague uses the distance correlation coefficient to classify
streaming features into relevant features, weakly redundant features, and redundant fea-
tures. Finally, the relevant features and weakly redundant features are filtered for an
optimal feature set. To evaluate the proposed OSFS‐Vague, extensive empirical experi-
ments have been conducted on 11 datasets. The results demonstrate that OSFS‐Vague
outperforms six state‐of‐the‐art OSFS algorithms in terms of selection accuracy and
computational efficiency.

KEYWORD S
data mining, feature selection, fuzzy set

1 | INTRODUCTION

Feature selection is an efficient method for processing datasets
[1–3]. When data volume has increased and data space size is
unknown, traditional feature selection methods fail to handle
such data well [4]. Online streaming feature selection is
developed from the traditional feature selection method [5–9].
The processing of continuous data streaming is the main focus
of online streaming feature selection, and it has received a lot
of attention recently. Considering data streaming from a real

large scale data application, and online streaming feature se-
lection exhibits the capacity to adapt to constantly streaming
and changing data. This method is essential for dealing with
high‐dimensional data since it can process data in real‐time.

The ability to flexibly react to various data is the essence of
online streaming feature selection. However, most online
streaming feature selection algorithms require preset hyper-
parameters. Different types of datasets necessitate distinct
hyperparameters. Appropriate hyperparameters contribute to
accelerating the training process, while incorrect parameter
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settings adversely affect prediction results. For instance, in α‐
investing [10], setting two hyperparameters in advance before
learning is essential to obtain accurate prediction results.
However, it is challenging to specify hyperparameters for all
datasets. The temporal complexity of some online feature se-
lection methods is too high, which is another problem. Given
that the quantity of the datasets used for online streaming
feature selection is unknown, the algorithms with high time
complexity will consume a lot of time to process large datasets.
As a result, the algorithm is only suitable for small datasets. An
excellent online feature selection algorithm should both ensure
the accuracy of prediction results and control time consump-
tion [11–14].

In recent years, many researchers have conducted experi-
ments related to online streaming feature selection. For
example, Wu combined related attributes to remove unnec-
essary features and improve accuracy while speeding up the
learning process [6]. Rough set theory is popular in artificial
intelligence and is a useful technique for feature selection and
data mining [15–19]. For instance, Eskandari proposed an
online streaming feature selection method, named OS‐
NRRSARA‐SA. Based on classical rough set theory, OS‐
NRRSARA‐SA does not require setting any hyperparameters
in advance [20]. However, this method fails to directly handle
numerical data. To address this limitation, Zhou proposed a
new method called OFS‐Density by integrating uncertainty
theory into online feature selection for both discrete and
continuous data [21]. An efficient method for processing
feature streaming is OFS‐Density based on neighbourhood
that does not call for pre‐setting hyperparameters. However,
OFS‐Density has two problems. Firstly, it has a high time
complexity, making it difficult to process data with higher di-
mensions. Secondly, it does not consider the impact of
excluding features on subsequent features and fails to reflect
the uncertainty in datasets. Causal feature selection has
received considerable attention because of its interpretability
and predictability, but the current feature selection based on
(Markov blanket) MB method cannot deal with streaming
features. Therefore, Ou proposes an online streaming feature
selection method based on MB [12], named OCFSSFs. This
method effectively solves the problems such as long training
time and small application range. To speed up the training
process, Zhou proposed a new method, named OSFS‐ET.
After a certain amount of feature training, OSFS‐ET speeds up
the training process according to active intervening, but it fails
to guarantee to search for the optimal results [22].

To improve the application of feature selection methods to
data in different environments, the following researchers
conducted different studies. Wang presents an Information‐
theory‐based Non‐dominated Sorting ACO (called INSA) to
improve the multiobjective feature selection to handle the
problematic characteristics originated from the feature in-
teractions and highly discontinuous Pareto fronts [23]. Gong
proposes a length‐adaptive non‐dominated sorting genetic al-
gorithm (LA‐NSGA) with a length‐variable individual encod-
ing and a length‐adaptive evolution mechanism for bi‐objective

high‐dimensional feature selection [24]. The new method can
introduce to guide individuals to explore promising search
space adaptively to solve the problem of too long training time
for high‐dimensional data. To solve the problem of multimodal
MOPs (MMOPs), Han proposed a lot of new methods to
improve solution diversity in decision space and performance
in objective space [25–27].

To address the issues with the current feature selection
method, this paper proposes a unique online streaming feature
selection algorithm based on vague set [28], named OSFS‐
Vague. To combine vague set and three‐way decision theories
to dynamically analyse the patterns and distributions of
streaming features to capture the constantly changing re-
lationships between features and labels [29, 30]. The OSFS‐
Vague method has the following characteristics.

� OSFS‐Vague requires no preset and fixed hyperparameters,
making a better selection performance plus the explanations
of selected important features.

� Different from the traditional feature selection method, the
feature is divided into three parts by the three‐way decision
theory. In the OSFS‐Vague method, features are divided
into relevant features, weakly redundant features, and
redundant features. The correlation of weakly redundant
features is between relevant features and irrelevant features,
so we reserve weakly redundant features. Finally, weakly
redundant features compare the features in the optimal
feature subset, and the inferior features are replaced. This
classification improves prediction accuracy and is more
consistent with the cognitive process of the real world for
humans.

� A novel method is designed to obtain the relationship be-
tween features and labels based on vague set. Different from
labels calculated separately, OSFS‐Vague combines positive
and negative evidence to describe the features. The corre-
lation and redundancy between features are described from
multiple perspectives to improve training speed while
ensuring prediction accuracy.

To sum up, this paper starts with uncertainty theory and
integrates Vague and three‐way decision theory into the feature
selection framework. The feature screening method is
improved by vague set theory. Then, the three‐way decision
theory is used to improve the process of obtaining the optimal
feature subset, so that the decision process is more consistent
with the human cognitive process. This new method can
effectively improve the accuracy and training speed of feature
screening, and expand the application of uncertainty theory in
the selection of stream features. Subsequent experiments will
prove the effectiveness of this method.

The remainder of the paper is organised as follows: Sec-
tion 2 discusses related work. Section 3 presents a brief
introduction to uncertain theory and a new method based on
vague set for online streaming feature selection. Section 4 re-
ports experimental results. Lastly, Section 5 concludes the
paper.
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2 | RELATED WORK

In this section, we review various representative traditional
feature selection methods and online streaming feature selec-
tion methods.

2.1 | Traditional feature selection methods

The key step of data preprocessing is feature selection that
offers a wide range of benefits, such as reducing the dimen-
sionality of the datasets, improving model training speed,
preventing over‐fitting, and minimising processor re-
quirements in data processing and analysis [31].

There are several feature selection types, such as filter,
wrapper, and embedded [32–34]. The filter method is a tech-
nique that assesses features in isolation from the model and
classifier, and takes into account their correlation with other
features. This approach allows for efficient filtering and de-
creases the computational burden. However, it may sacrifice
some accuracy. In contrast, the wrapper method tightly in-
tegrates feature evaluation with the learning algorithm, result-
ing in higher accuracy, but with increased computational cost.
In the embedded, the model learning training process is con-
nected with the feature selection procedure. It is reducing
training costs, but the results may be more biased towards the
classifier used for training.

The most traditional feature selection only focuses on the
relationship between individual features and labels. More spe-
cifically, ReliefF calculates the weight of each feature by finding
its neighbours from different samples [35]. Laplacian Score
determines the weight of features according to the fluctuation
of the Euclidean distance sample value [36]. Fisher Score cal-
culates the weight of each feature by the ratio of inter‐class
separation and intra‐class differentiation [37]. Mutual Infor-
mation (MI) measures the independence of data that was
introduced. It primarily takes into account the distribution of a
particular feature to other features [38]. Information Networks
Feature (INF) is an unsupervised filtering method proposed
and it treats each feature as a node, and multiple nodes are
combined to form a graph [39]. The more node is connected to
other nodes, the higher the corresponding node score, indi-
cating the more important the feature is. Tsai analysed the effect
of combining multiple feature selection algorithms [40]. This
study categorised the types of combinations into three groups:
nine parallel combinations, and nine serial combinations.

To improve the application range and prediction accuracy
of the feature selection method, researchers have applied new
search methods based on the traditional methods. The whale
optimization algorithm (WOA) has low population diversity
and a poor search strategy. M.H. Nadimi‐Shahraki adopts a
pooling mechanism and three effective search strategies to
overcome these problems, named BE‐WOA [41]. The current
diagnostic methods are too single to effectively diagnose the
coronavirus disease 2019 (COVID‐19). Thus, Hu constructed
a new framework by exploring problems such as the slight
appearance difference between mild cases and severe cases, the

interpretability, the High Dimensional and Low Sample Size
(HDLSS) data, and the class imbalances, named MM‐SVM
[42]. Incremental feature selection can retain the previous
training results to update the optimal feature set based on the
added‐in data. However, this method has too many redundant
calculations, which reduces the training speed and wastes
memory. Therefore, Yang proposed a new method to solve
repetitive computation based on sample selection and a
feature‐based accelerator, named IFS‐SSFA [43]. Zhou pro-
posed a new balanced spectral feature selection (BSFS) method
based on the traditional unsupervised spectral feature selection
method. This method can obtain optimal features and also
reveal the balanced structure of data [44].

Traditional feature selection has a good performance on
traditional datasets, but it is not suitable for datasets with un-
known sizes. Because traditional feature selection will spend
more time waiting for the arrival of the feature. Moreover,
when the dataset is updated, traditional feature selection needs
to be retrained while online streaming feature selection con-
tinues training according to the last results to avoid wasting
time.

2.2 | Online feature selection methods

Online streaming feature selection can effectively to cope with
high‐dimensional data, so it has attracted many scholars'
attention in recent years [45, 46].

Online feature selection algorithms not only calculate the
relationship between features and labels but also focus on the
relationship between features. Therefore, the training time for
online streaming feature selection is longer than that of
traditional feature selection, but the prediction accuracy is
higher because redundant features are excluded.

In recent years, there have been efforts to tackle online
streaming feature selection. For instance, Zhou et al. proposed
α‐investing, which requires pre‐set hyperparameters [10]. The
effectiveness of the algorithm and the number of feature se-
lection rely heavily on the chosen parameter settings.

Although the training speed of α‐investing is very fast, the
prediction accuracy is low. Therefore, Wu et al. introduced two
online streaming feature selection algorithms called OSFS and
Fast‐OSFS [6], which effectively improved the prediction ac-
curacy. The algorithm has two key steps.

1) Relevance analysis, which is to exclude irrelevant features.
2) Redundancy analysis, which eliminates redundant features.

OSFS relies on conditional uncertainty to select features,
which results in the issue of needing a lot of training instances.
OSFS generates unreliable results when the size of the datasets
is limited.

OSFS and Fast‐OSFS have better prediction accuracy than
other online stream feature selection methods, but the training
time is very long and the efficiency of processing data sets is
low. Yu et al. presented SAOLA, a highly scalable feature se-
lection method [4]. SAOLA has advantages in data processing
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speed and is often used to process high‐dimensional datasets.
SAOLA sets a threshold to determine the relevance between
two features.

SAOLA can't deal with redundant features effectively, so
the number of features obtained after feature selection is too
large and the prediction accuracy is low. To solve this problem,
Zhou et al. introduced an OFS‐Density, an online streaming
feature selection method based on neighbourhood rough set
[21]. The algorithm calculates the correlation of the new
arriving feature through the neighbourhood relation. When a
new feature arrives, it will be chosen if its correlation is higher
than the average correlation. When a feature is selected, the
algorithm will judge and remove redundant features. The al-
gorithm incorporates uncertainty theory to effectively elimi-
nate redundant features and train faster.

OSFS‐Density proves the effect of rough set in streaming
feature selection, but there is no systematic analysis of the
relationship between rough set and streaming feature selection
framework. Thus, Zhou et al. propose a generalised assembly
rough set‐based framework for streaming feature selection,
named RS‐SFSF [15]. This method can measure the selected
features as integral without any domain knowledge.

To make feature selection consistent with real‐world
cognitive processes, we put forward OSFS‐Vague by inte-
grating three‐way decision theory into online streaming feature
selection. OSFS‐Vague overcomes the shortcomings of current
streaming feature selection methods without grasping the
global features. Meanwhile, the vague set theory is used to
describe the relationship between features and labels from
positive and negative aspects, evaluating the accuracy of feature
description in a more comprehensive way. Therefore, the
OSFS‐Vague method can effectively improve the prediction
accuracy.

In the next section, we will improve the original framework
model of feature selection and integrate vague set and three‐
way decision into correlation and redundancy analysis.

3 | ONLINE STREAMING FEATURE
SELECTION METHODS BASED ON
VAGUE SET

First, we cover some fundamental definitions in this section.
Then describe the algorithm in three parts and illustrate the
overall algorithm training process through an example.

3.1 | Symbols and notations

The adopted symbols of this article are summarised and
explained in Table 1.

3.2 | Basic related definitions

According to their feature values for attribute B, objects are
grouped into equivalence classes in the traditional rough set

model [47], denoted by [x]B.
�
½xi�Bjxi ∈U

�
denotes a system

to describe an arbitrary subset of the sample space, where
U = {x1, x2, …, xn} is a non‐empty finite set of objects called
the universe. Rough set theory is often applied to data mining
and classification tasks. For subset X, the following are the
definitions of lower and upper approximation.

BX ¼
�
½xi�Bj½xi�B ⊆ X; xi ∈U

�
; ð1Þ

BX ¼
�
½xi�Bj½xi�B ∩ X ≠ ∅; xi ∈U

�
: ð2Þ

The maximum union of granules in X is represented by the
lower approximation, while the minimum union of granules in

TABLE 1 SYMBOL annotations.

Symbol Annotations

U The set of objects to be discussed within a range is called the
domain.

B B is relation of equivalence on U.

V A vague set on U.

tV (x) A truth‐membership function on V.

nV (x) A false‐membership function on V.

A A fuzzy set on U.

λ Control the stringency of filtering feature on online streaming
feature selection.

D A data set on U.

M All samples in the feature set.

F A feature set on U.

f An item of F.

fM,n A vector corresponding to M instances.

μA(x) Represents the degree to which element x conforms to the
definition of set A.

O Attribute values for sets K and L.

I The feature set at time t.

W A weakly redundant feature set on F.

K The set of all the different feature sets.

L A label set on F.

l An item of L.

G The set is sorted by L.

g An item of G.

S An optimum feature set on F.

Tx The quantity of object sets with x as a label value that is
consecutive.

numx The quantity of labels having x as their value.

∂ A function that provides information about each object's attribute
value.

T A feature streaming on U.

4 - YANG ET AL.
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X is represented by the upper approximation. Then, the ob-
jects in U can be divided into three parts, called the positive
regions, boundary regions and negative regions.

POSBðXÞ ¼ BX; ð3Þ

BNDBðXÞ ¼ BX − BX; ð4Þ

NEGBðXÞ ¼U − BX: ð5Þ

The vague set has a more capacity to handle uncertain
information than the fuzzy set as a traditional soft computing
tool. Vague value is characterised by a truth‐membership
function tV (x) and a false‐membership function nV (x). The
evidence for x delivers the lower bound tV (x) of the grade of
membership of x, while the evidence against x delivers the
lower bound nV (x) of the negation of x. The vague set model
supports handling both continuous and discrete datasets. This
section briefly discusses relative basic concepts.

Definition 1 (Fuzzy set) [48]: Let U denote a universe
of discourse. Then a fuzzy set A in U is defined as a set of
ordered pairs A = {< x, μA(x) > |x ∈ U}, where μA: U→ [0,
1] is the membership function of A and μA is the grade of
belongingness of x in A.

Definition 2 (Vague set) [28]: A vague set V in U is
characterised by a truth‐membership function tV (x) and a
false‐membership function nV (x), tV (x) is a lower boundary
on the grade of membership of x derived from the evidence
for x, and nV (x) is a lower boundary on the negation of x
derived from the evidence against x. Both tV (x) and nV (x) are
associated with a real number in the interval [0,1] with each
point in U, where tV (x) þ nV (x) ≤ 1. That is, tV (x): U → [0,
1] and nV (x): U → [0, 1].

If U is continuous, a vague set V is depicted as follows:

V ¼
Z

U

½tV ðxÞ; 1 − nV ðxÞ�=xdx: ð6Þ

If U is discrete, a vague set V is depicted as follows:

V ¼
Xn

i¼1
½tV ðxV Þ; 1 − nV ðxV Þ�=xi: ð7Þ

Here, tV (x) ≤ 1 − nV (x), 1 ≤ i ≤ n. When tV (x) = 1 − nV
(x), the vague set will transform to the fuzzy set. Fuzzy set is a
special vague set.

Definition 3 (Streaming Features) [6]: Assume a
dataset D, which has M instances and a feature set K. K = {F1,

F2, …, FN} where Fn ¼
h
f1;n; f2;n;…; fM;n

iT
, n ∈ {1, 2, …, N}

is a vector corresponding to M instances. The features are
obtained gradually with time.

Definition 4 (Online streaming feature selection)
[6]: In−1 = {F1, F2, …, Fn−1} be obtained from streaming fea-
tures set at time n‐1. We also obtain the optimal feature set Sn−1
from In−1 by selection feature at time n ‐ 1, where Sn−1 ⊆ In−1.

Definition 5 (Distance Correlation coefficient)
[49]: Suppose two objects X and Y, where X = [x1, x2, …, xn],
Y = [y1, y2, …, yn]. dcorr (X, Y) is the value of distance
correlation of X and Y. dcorr (X, Y) is defined as follows:

dcorrðX;Y Þ ¼
dcovðX;Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcovðX;XÞdcovðY ;Y Þ

p : ð8Þ

Where, dcov2ðX;Y Þ ¼ S∧
1 þ S∧

2 − 2S∧
3 . S∧

1; S∧
2 and

S∧
3 is defined as follows.

S∧
1
¼

1
n2
Xn

i¼1

Xn

j¼1

�
�xi − xj

�
�
dX

�
�
�yi − yj

�
�
�
dY;

ð9Þ

S∧
2
¼

1
n2
Xn

i¼1

Xn

j¼1

�
�xi − xj

�
�
dX

1
n2
Xn

i¼1

Xn

j¼1

�
�
�yi − yj

�
�
�
dY;
ð10Þ

S∧
3
¼

1
n2
Xn

i¼1

Xn

j¼1

Xn

l¼1

kxi − xlkdX
�
�
�yj − yl

�
�
�
dY:

ð11Þ

3.3 | A new definition of correlation

Definition 6 (Regular value of feature): Given an object
of finite and non‐empty U. F = {f1, f2, …, fm} is a feature set,
and L is the label set. Different features correspond to
different Regular values of features. Sorting the samples ac-
cording to the value of the current feature. L = {l1, l2, …, ln} is
the label value after sorting. G = {g1, g2, …, gn} is the regular
value for li. G is derived from both positive and negative ev-
idence functions. When we have chosen one label as positive
evidence, other labels are negative evidence. Evidence function
is defined as follows:

tV ¼ 1 −
Tx
numx

; ð12Þ

1 − nV ¼ 1 −
Ty
numy

: ð13Þ

Tx represents the number of sets of objects with a
consecutive label value of x and numx represents the number
of labels with a value of x. If x is 0, Tx more approaches 0,
which indicates that the current feature is more useful for
classifying. Conversely, if Tx more approaches numx, it in-
dicates that the current feature is more unuseful for classifying.
Finally, we integrate the regular value of the current feature,
where gi = [tV (li), 1 − nV (li)]. Table 2. Shows an example.

Features f1 to f4 have 10 samples (x1 to x10) and a label
value (0 or 1).

Firstly, we sort the sample value, △f1= {0.5,1.1,1.2,2.5,3.6,
4.2,5.1,8.4,9.8,12.3} and o1 = {0,0,0,1,1,0,1,1,0,0}. We assume
that x is 0 in Equation (12), and y is one in Equation (13).
Thus, Tx = 3, numx = 6. Similarly, Ty = 2, numy = 4. Finally,
the regular value is g1 = [0.5, 0.5] = 0.5. Based on this, the
regular values of all features are calculated as in Table 3.

YANG ET AL. - 5
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It is obviously that g4 > g2 > g1 > g3.

3.4 | A new algorithm

In this study, we suggest a unique strategy for online streaming
feature selection that is based on vague set [28], called OSFS‐
Vague. This method has the following characteristics.

1) Existing methods tend to focus only on the relationship
between features and labels, ignoring the relationship of
different label values. OSFS‐Vague calculates the correla-
tion of different features with label value and uses vague set
theories to decide the advantage of a feature from multiple
perspectives rather than from a single perspective.

2) Existing some methods use the Pearson Correlation Co-
efficient (PCC) to describe the relevance between different
features [50]. However, PCC is only effective for linearly
describe dependent data. OSFS‐Vague combines the vague
set with the distance correlation coefficient [49], which
solves the problem of linearly independent data, thus
improving the accuracy of excluding redundant features.

3) OSFS‐Vague compares the weakly redundant feature set
with the optimal feature set to exclude poor features. Based
on vague set theories [28, 51], OSFS‐Vague works well with
real‐world datasets and doesn't require any hyperparameters
to be supplied before training.

In this paper, we extend the traditional framework by weak
redundancy analysis and the three‐way decision theories [29,
30]. The specific procedure is shown in Figure 1. First, when a
new feature arrives, we calculate its correlation by Defining 6,
and Equation (14) to classify features into relevant and irrele-
vant features [6, 52–54]. Second, relevant features need to be
analyzed by Definition 7 and Definition 8, and the feature will
be divided into optimal features, weakly redundant features, and
redundant features. Finally, we compare the optimal feature set
with the weakly redundant features, and the poor features in the
optimal feature set are replaced by the weakly redundant fea-
tures. Each step will be discussed in detail as follows.

3.4.1 | Correlation analysis

To select the highly correlation features from the feature
streaming, we calculate g for each feature and comparewithR. If
gis greater than R, we consider the feature is highly correlation.

TABLE 2 AN example dataset.

x ∈ U f1 f2 f3 f4 L

x1 1.2 −1.2 −1.3 −9.9 0

x2 5.1 7.6 −1.3 −6.4 0

x3 12.3 −2.1 12.5 1.6 0

x4 0.5 5.7 7.5 −8.8 0

x5 8.4 7.8 9.6 −4.2 1

x6 3.6 4.3 3.6 −1.5 1

x7 2.5 4 −1.7 −5.1 1

x8 1.1 −5.5 2.7 3.2 0

x9 4.2 −2.4 −5.6 1.8 0

x10 9.8 2 −1.5 −7.9 0

TABLE 3 REGULAR value of different features.

f1 f2 f3 f4

Tx 3 1 4 1

numx 6 6 6 6

Ty 2 1 3 0

numy 4 4 4 4

gi 0.5 0.82 0.27 0.99

F I GURE 1 A new framework for online streaming feature selection.

6 - YANG ET AL.
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There is a feature streaming as F = {f1, f2, …, fn} and the
optimal feature set S, S ⊆ F. At time t, the arriving feature is ft.
If gt > R, ft is high correlation feature. Where, R is defined as
follow:

R¼
1
jSj

X

fi∈S
gt: ð14Þ

Algorithm 1 illustrates the precise filtering method of
feature selection.

Algorithm 1 Correlation calculation

1: Input: X (Sample value), Y (Label value),
C (Total number of classes)

2: Output: Average correlation of feature
3: Let Total_a = 0, Total_b = 0, result = 0.
4: for each i in C
5: Total_a = calculate the correlation

of label i by Y
6: for c range (i þ 1, C þ 1)
7: temper = calculate the correlation

of label c by Y
8: Total_b = Total_b þ temper
9: end for
10: Total_b = Total_b/(C - i)
11: result = result þ int (Total_a,

Total_b)
12: end for
13: return result/(C - 1)

3.4.2 | Redundancy analysis

Redundancy analysis is the calculation of the degree of simi-
larity between different features. If two features describe
concepts that are very similar and one of them needs to be
removed. If the feature that needs to be removed belongs to
the optimal feature set, delete it directly. Otherwise, we remove
it and add it to the weakly redundant feature set.

To measure the redundant relationship between each
feature, the current feature is contrasted with the features in
the optimal feature set.

Definition 7 (Distance correlation analysis): As-
sume a feature set F = {f1, f2, f3, …, fn}, and the current feature
set is I = {f1, f2, f3, …, ft}, F ⊇ I. The current feature is ft. dcorr
( ft, fi) to calculate the distance correlation between ft and fi,
fi ∈ I (i = 1, 2, 3…, t − 1).

I
�
f i; S
�
¼ 1
jSj
P

fk∈S

�
dcorr

�
f t; fk

��
(S ⊆ I, fi ∉ S and ft ∈ S).

If the distance correlation between ft and all other features
is smaller than the distance correlation between fi and other
features, then the current feature is not redundant.

In the real world, many results are not so strict. As long as
the result fluctuates within range λ, we think the result is
correct. λ is set to 0.05 as the default value.

j
I
�
f i; S
�

− dcorr
�
f t; f i

�

I
�
f i; S
� j ≤ λ ð15Þ

Definition 8 (Regional subdivided of the three‐
way decision on feature streaming): Given a decision
system p = (U, K ∪ L, O, ∂). F1 ⊆ F2 ⊆…⊆ Fn ⊆ K and T is a
feature streaming on U. O is the range of F and L, ∂ is an
information function that specifies the value of each object in
U. Following is a denotation for the three disjoint regions:

POSFiðTÞ ¼
�

f ∈Ujgi > R; j
Iðf ;SÞ−dcorrðfi;f Þ

Iðf ;SÞ j ≤ λ
�

,

BNDFiðTÞ ¼
�
f ∈Ujgi > R

�
,

ENGFiðTÞ ¼
�
f ∈Ujgi < R

�
.

Combining Equation (14) and (15). If fi is partitioned into
POSF(T ), the feature considered is highly correlation. If fi is
partitioned into ENGF(T ), the feature is considered to be the
irrelevant feature. If f is partitioned into BNDF(T ), the feature is
considered to be theweakly redundant feature, and the judgment
is postponed. The change of regions is shown in Figure 2.

The specific filtering method is shown in Algorithm 2.

3.4.3 | Weakly redundant analysis

In the three‐way decision, the features in the boundary domain
may be divided into positive or negative domains with the
change of conditions. Therefore, it is necessary to filter again at
the end of streaming feature selection.

The filtered feature set falls between the optimal feature set
and the weakly redundant feature set, which has filtered most
of the irrelevant features, but some features can still be opti-
mised. The three‐way decision theories appear in the delayed
decision process [29, 30, 54]. The subsequent specific filter
method is shown in Algorithm 3.

Algorithm 2 Distance correlation calculation

1: Input: F_1 and F_2 is condition features,
C (Total number of classes)

2: Output: Distance correlation between
features

3: Let Total_a = 0, Total_b = 0, result = 0.
4: for each i in C
5: Total_a = calculate the distance

correlation between
6: F_1 and F_2 on label i
7: for c in range (i þ 1, C þ 1)
8: temper = calculate the distance

correlation
9: between F_1 and F_2 on label c
10: Total_b = Total_b þ temper
11: end for
12: Total_b = Total_b / (C - i)
13: result = result þ int (Total_a,

Total_b)
14: end for
15: return result / (C − 1)

YANG ET AL. - 7
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Algorithm example and analysis. A more specific
example illustrates the framework proposed in this paper. We
assume a feature set F = {f1, f2, f3, …, fn} and the optimal
feature set S, S ⊆ F. At time t, we will obtain a feature ft. Firstly,
the correlation of the feature in S with ft is compared by Al-
gorithm 1. If the Mean is greater than the correlation of ft, we
think ft is an irrelevant feature. Secondly, the distance corre-
lation between ft and each feature in S is calculated by Algo-
rithm 2. If the distance correlation between any features in S
and ft is smaller than the distance correlation between S, ft is
considered a non‐redundant feature, otherwise, ft is considered
a weakly redundant feature. Finally, when the feature selection
ends. Reevaluating the feature correlation in the optimal
feature set. Because with the increase of features, the feature
may not meet the requirements of the optimal feature set.
Features that are less than the average correlation of the
optimal feature are compared with the weakly redundant fea-
tures and replaced with the current feature if there are better
features in the weakly redundant features than the current
feature.

OSFS‐Vague can calculate the correlation between features
and labels to obtain features for classifying data sets. At the
same time, the correlation between different features is ob-
tained to eliminate redundant features and further improve the
prediction accuracy. OSFS‐Vague algorithm can get the best
features beneficial to data set classification, and the fast
training speed is suitable for processing large data sets. In the
experiment in Section 4, the ability of OSFS‐Vague to process
classified data sets is verified.

Time complexity analysis. The time complexity of
OSFS‐Vague is divided into three parts. Firstly, we suppose a
dataset has m samples, n features, and c labels. When new
features arrive with time, we sort them and do linear pro-
cessing, the complexity is O (n � (m2 þ a)). Secondly, the
features with high correlation needs to require redundancy
analysis. Time spent in feature computation redundancy is
related to the quantity of features in the optimal feature set.
The complexity is O (1/2 � n � b) in the worst‐case scenario.
Finally, in the worst case, we recalculate all the features for
weakly redundant analysis, and the time complexity is O (1/4
� n2 � b). The total time complexity is O (m2 þ n2).

Algorithm 3 Filter weakly redundant feature set

1: Input:S (Optimum feature set), W (Weakly
redundant feature set), mean (Average
correlation of optimum feature set)

2: Output:Optimum feature set

3: Let λ = 0.05, fS = ∅,fW = ∅ S_dis = 0, W
_dis = 0

4: for each fS in S
5: if(W = ∅)
6: break
7: end if
8: CofS = calculate the correlation of fS
9: if(CofS < mean)
10: continue
11: end if
12: for each fW in W
13: CofW = calculate the correlation

of fW
14: if(CofW < mean)
15: continue
16: end if
17: S_dis = calculate the

distance correlation by fS
18: W_dis = calculate

the distance correlation by fW
19: if(W_dis < S_dis or abs(W_dis -

S_dis) / S_dis < = λ)
20: S.remove(fS)
21: S.add(fW)
22: W.remove(fW)
23: end if
24: end for
25: end for
26: return S

4 | EXPERIMENTS

In the experiments, we mainly solve the following research
questions (RQs):

RQ 1. Does OSFS‐Vague outperform other algorithms in
the following test settings?

RQ 2. What are the influences of hyper‐parameter λ and
weakly redundant features for OSFS‐Vague?

4.1 | General settings

Datasets. In this paper, we have selected 10 benchmark
datasets from various sources, including DNA microarray
datasets [55] and UCI repositories [56]. Datasets have different
types and varying sizes. Datasets with large samples are mainly
used to test the efficiency of the algorithm in processing fea-
tures. Large feature sets are typically used to test the number of
feature selections and the precision of predictions. Table 4 lists
the different datasets used in the experiment.

Baselines. The algorithms are compared mainly by the
prediction accuracy. Prediction accuracy refers to the classifi-
cation tendency of the classifier after being trained by different
algorithms and then compared with the actual results of the
test prediction classification results. The following algorithms

F I GURE 2 The feature set is subdivided into feature regions of OSFS‐
Vague.

8 - YANG ET AL.
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are used in this paper: ReliefF [35], Fisher [37], MI [38], PCC
(Pearson Correlation Coefficient) [57], Laplacian [36], OFS‐
Density [21], OSFS [6], Fast‐OSFS [6], SAOLA [4], α‐invest-
ing [10] and NRS‐SFSF [15]. Table 5 displays the specifics of
the algorithms.

Implementation Details. We conduct statistical tests us-
ing the Friedman test (F‐rank) and the Wilcoxon Signed‐Ranks
test based on prediction accuracy results [58]. The algorithm
performs better the lower the Rank value. If the p‐value is less
than 0.05, it indicates that there are significant differences
among the tested algorithms. We use K‐Nearest Neighbour
(KNN), Support Vector Machine (SVM), and Gradient
Boosting Regression Tree (GBRT) results as results of pre-
diction accuracy. The experiments are performed on a com-
puter with 16 GB RAM, 2.3 GHz, and Intel (R) i7‐11,800H
processor.

4.2 | OSFS‐Vague and other algorithm
comparison test (RQ. 1)

In this part, the feature selection number, prediction accuracy,
and consumption time of OSFS‐Vague are compared to those
of other approaches.

4.2.1 | Prediction accuracy for traditional feature
selection

To verify that OSFS‐Vague is more advantageous than other
traditional feature selection algorithms, we conducted precision
prediction tests between OSFS‐Vague and other feature se-
lection algorithms under three different classifiers. The pre-
diction accuracy test refers to the optimal feature set to predict
labels of different samples in the classifier. The higher the
accuracy, the better the algorithm. Hyperparameters of KNN,
SVM, and GBRT classifiers are all the same for different al-
gorithms in the same datasets.

Table 6 lists the prediction accuracy for different algo-
rithms in 11 datasets. In particular, the win‐loss‐tie ratio of
OSFS‐Vague is 23/3/7, which is the greatest advantage
compared with Fisher. On the contrary, compared with ReliefF,
OSFS‐Vague has little advantage, which the win‐loss‐tie ratio is
19/5/9. OSFS‐Vague is superior to other algorithms in average
prediction accuracy and F‐rank value. Although the all pre-
dction accuracy of OSFS‐Vague is not optimal, OSFS‐Vague is
superior to other algorithms in general.

4.2.2 | Feature number analysis for online feature
selection

The number of features will affect the time of data processing
by the classifier, thus affecting the overall efficiency.

From Table 7. The average number of features obtained by
OSFS‐Vague, OFS‐Density, OSFS, Fast‐OSFS, and NRS‐SFSF
are similar, and the results from various datasets are not
significantly different. The number of features obtained by

TABLE 4 Details of selected datasets.

Dataset Instance Feature Class

TOX_171 171 5748 4

Lymphoma 62 4026 3

Leukemia 72 7129 2

Parkinson disease classification 756 753 2

Colon 62 2000 2

Lung cancer 181 12,533 2

Gas sensor array under flow modulation 53 432 4

Prostate 102 6033 2

Lung 203 3312 5

DLBCL 77 5469 2

Arcene 200 10,000 2

TABLE 5 Descriptions of all the involved models.

Model Description

ReliefF [28] The correlation between feature and label is based on
the feature's ability to distinguish near samples.

Fisher [30] The algorithm obtains the correlation of features by the
ratio of inter‐class separation and intra‐class
differentiation.

MI [31] This method is based on information entropy and only
supports the calculation of discrete variables.

PCC [50] This method is used to detect the degree of linear
correlation between two continuous variables. The
greater the difference in values, the higher the
degree of linear correlation.

Laplacian [29] The method determines the weight of features
according to the fluctuation of the Euclidean
distance sample value.

OFS‐Density [19] It takes neighbourhood relations into account to
describe the relationship between the same feature
and different features.

OSFS [6] A traditional feature selection method that compares
the scores of different features to get the best
selection.

Fast‐OSFS [6] This method is an advanced version of OSFS, which
optimises the selection features and can speed up
most of the data training process.

SAOLA [4] Compared with other algorithms, this algorithm has the
advantage of training speed, but the prediction
accuracy is not high.

α‐investing [10] Compared with other algorithms, this algorithm
requires to pre‐set additional hyperparameters.

NRS‐SFSF [13] Compared with other algorithms, this algorithm
requires to pre‐set additional hyperparameters.

OSFS‐Vague A novel algorithm based on vague set theories is
proposed in this paper.

YANG ET AL. - 9
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SAOLA and α‐investing is significantly higher than that ob-
tained by other algorithms, obviously, the number of features
obtained by different datasets was also significantly different.
For example, SAOLA obtained 2 features in Colon and 45
features in Lymphoma.

4.2.3 | Prediction accuracy analysis for online
feature selection

To prove the advantage of OSFS‐Vague compared with other
algorithms, we use different classifiers to obtain prediction

TABLE 6 Prediction accuracy of OSFS‐Vague vs traditional feature selection algorithms.

Dataset Type OSFS‐Vague ReliefF Fisher MI PCC Laplacian

Lung cancer KNN 0.827 0.827 0.827 0.827 0.827 0.827

SVM 0.172 0.827◦ 0.827◦ 0.827◦ 0.827◦ 0.827◦

GBRT 0.979 0.861• 0.769• 0.726• 0.902• 0.756•

TOX_171 KNN 0.825 0.610• 0.573• 0.510• 0.667• 0.554•

SVM 0.641 0.477• 0.264• 0.264• 0.422• 0.264•

GBRT 0.489 0.322• 0.250• 0.220• 0.323• 0.244•

Lymphoma KNN 0.672 0.672 0.549• 0.672 0.672 0.672

SVM 0.672 0.672 0.672 0.672 0.672 0.672

GBRT 0.979 0.721• 0.615• 0.491• 0.873• 0.551•

Gas sensor array under flow modulation KNN 0.926 0.498• 0.823• 0.386• 0.528• 0.498•

SVM 0.776 0.344• 0.667• 0.344• 0.344• 0.344•

GBRT 0.762 0.448• 0.663• 0.220• 0.551• 0.379•

Prostate KNN 0.900 0.514• 0.485• 0.549• 0.485• 0.537•

SVM 0.514 0.514 0.485• 0.514 0.485• 0.485•

GBRT 0.864 0.846• 0.494• 0.514• 0.767• 0.554•

Lung KNN 0.683 0.683 0.683 0.683 0.029• 0.683

SVM 0.683 0.683 0.683 0.683 0.683 0.683

GBRT 0.696 0.631• 0.557• 0.423• 0.557• 0.410•

DLBCL KNN 0.250 0.749◦ 0.749◦ 0.749◦ 0.250 0.749◦

SVM 0.749 0.749 0.750◦ 0.749 0.250• 0.749

GBRT 0.907 0.733• 0.726• 0.615• 0.776• 0.693•

Leukemia KNN 0.788 0.943◦ 0.647• 0.647• 0.647• 0.647•

SVM 0.760 0.943◦ 0.746◦ 0.647• 0.915◦ 0.647•

GBRT 0.743 0.905◦ 0.703• 0.655• 0.916◦ 0.651•

Parkinson disease classification KNN 0.923 0.479• 0.932• 0.850• 0.935◦ 0.949◦

SVM 0.746 0.746 0.746 0.746 0.746 0.746

GBRT 0.750 0.746• 0.749• 0.746• 0.746• 0.746•

Colon KNN 1 0.926• 0.930• 0.885• 0.955• 0.910•

SVM 0.868 0.639• 0.717• 0.639• 0.852• 0.639•

GBRT 0.822 0.565• 0.676• 0.569• 0.778• 0.560•

Arcene KNN 0.562 0.537• 0.562 0.437• 0.437• 0.562

SVM 0.562 0.562 0.473• 0.562 0.437• 0.437•

GBRT 0.758 0.513• 0.652• 0.566• 0.660• 0.590•

Statistic Average 0.734 0.663 0.635 0.593 0.634 0.612

Win/Loss/Tie 108/17/40* 19/5/9 23/3/7 21/2/10 23/4/6 22/3/8

F‐rank 2.10 3.36 3.57 4.42 3.34 4.18

* The total Win/Loss/Tie cases of OSFS‐Vague. • The cases than OSFS‐Vague wins the other models in comparison. ◦ The cases that OSFS‐Vague loses the comparison.

10 - YANG ET AL.
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accuracy, and utilise the F‐rank and Wilcoxon signed‐ranks
tests in statistical tests to verify the credibility of the data in
this paper.

OSFS‐Vague and other online streaming feature algorithms
in hyperparameters of KNN, SVM, and GBRT classifiers are
all the same and all algorithms on the 5‐fold cross‐validation
prediction accuracy. Although some results of OSFS‐Vague
are lower than other algorithms, most results are better than
other algorithms in the next to last of Table 8. In particular, the
win‐loss‐tie ratio of OSFS‐Vague is 23/2/8, which is the
greatest advantage compared with the SAOLA. On the con-
trary, compared with the OFS‐Density, OSFS‐Vague has little
advantage, which the win‐loss‐tie ratio is 21/7/5. The F‐rank is
a widely used statistical technique for contrasting various al-
gorithms. The lower the F‐rank value, the greater the advan-
tage of the algorithm. In Table 8, the F‐rank value of OSFS‐
Vague is the smallest, so the method presented in this paper
has the highest overall prediction accuracy of the three
classifiers.

In addition, to prove whether OSFS‐Vague is significantly
different compared to other algorithms. We use the Wilcoxon
Signed‐Ranks to compare OSFS‐Vague with other methods,
and the outcomes are displayed in Table 9. It mainly includes
three results: Rþ, R−, and p‐Value. The p‐Value is the sig-
nificance level, which represents the difference between test
algorithms. Compared with other algorithms, and the p‐Value
of OSFS‐Vague is all less than 0.05, indicating OSFS‐Vague has
greater accuracy than its peers.

4.2.4 | Time consumption analysis

Data is complex and dynamic in real life, we selected datasets
with many samples or many features in the experiment. It is
mainly to observe whether there are differences in time con-
sumption under different data distributions. The specific re-
sults are shown in Table 10, more specifically, Lung cancer is

the longest dataset consumed by OSFS‐Vague and OFS‐
Density. However, OSFS‐Vague consumes less time on the
Lung dataset than the DLBCL dataset while OFS‐Density
consumes more time on the Lung than the DLBCL.

According to the F‐rank of the penultimate row in
Table 10, SAOLA has the fastest processing speed. It is fol-
lowed by OSFS‐Vague, whose processing time of datasets is
less than 1 minute. The processing time of α‐investing and
NRS‐SFSF was also less than 1 minute but longer than the
OSFS‐Vague. Finally, OFS‐Density, OSFS, and Fast‐OSFS take
the longest time to process datasets.

4.3 | The optimal parameter and weakly
redundant features analysis of OSFS‐Vague
(RQ. 2)

In this part, we will examine how parameter λ affects OSFS‐
Vague. The values are 0, 0.01, 0.05 and 0.1, respectively. The
influence of parameters on the OSFS‐Vague is explained in
classification accuracy and running duration. In the case of
λ = 0.05, the experiment also tested the changes in algorithm
accuracy and training time when Algorithm 3 was removed. To
verify the necessity of preserving weakly redundant features.

From Figure 3 and Table 11, the influence of λ on the
prediction accuracy of different classifiers. Specifically, SVM
has little difference in prediction accuracy of OSFS‐Vague with
different λ. KNN and GBRT have the highest prediction ac-
curacy when the λ = 0.05, but it is not obvious. The different
hyperparameters of OSFS‐Vague have no significant difference
in time consumed by feature selection, but the larger the
hyperparameters, the more time consumed.

If the parameter λ = 0.1 is selected, the algorithm will
retain the most features. Which may retain more redundant
features. This result leads to low accuracy, and the time con-
sumption will increase. If the parameter λ = 0, the selection
feature is too strict, which also influences accuracy. When

TABLE 7 The number of selected features.

Dataset OSFS‐Vague OFS‐Density OSFS Fast‐OSFS SAOLA α‐investing NRS‐SFSF

Lung cancer 6 7 5 5 23 54 3

TOX_171 8 6 8 8 10 26 25

Lymphoma 6 5 5 5 45 60 2

Gas sensor array under flow modulation 5 6 2 2 3 5 3

Prostate 11 5 4 4 6 10 7

Lung 6 11 6 6 6 36 9

DLBCL 6 7 5 5 14 19 8

Leukemia 6 2 4 7 13 15 6

Parkinson disease classification 4 2 9 9 7 32 20

Colon 6 8 3 3 2 4 6

Arcene 5 11 8 8 27 33 16

Average 6.3 6.4 5.4 5.6 14.3 26.7 9.5
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Algorithm 3 is removed, the prediction accuracy under the
KNN classifier is unchanged, but the prediction accuracy un-
der the SVM and GBRT classifier decreases. Because of the
removal of the replacement feature method, the training speed
has increased, but not significantly.

Therefore, a suitable parameter is to achieve a balance
between prediction accuracy and time consumption. From
Table 11, when parameter λ = 0.05, prediction accuracy ach-
ieves the highest, and time consumption is not significantly
improved.

TABLE 8 Prediction accuracy of OSFS‐Vague vs online streaming feature selection algorithms.

Dataset Type OSFS‐Vague OFS‐Density OSFS Fast‐OSFS SAOLA α‐investing NRS‐SFSF

Lung cancer KNN 0.839 0.827• 0.827• 0.827• 0.827• 0.827• 0.827•

SVM 0.172 0.827◦ 0.172 0.172 0.318◦ 0.827◦ 0.827◦

GBRT 0.986 0.827• 0.973• 0.976• 0.979• 0.965• 0.816•

TOX_171 KNN 1 1 1 1 1 1 1

SVM 0.641 0.729◦ 0.617• 0.617• 0.488• 0.635• 0.610•

GBRT 0.555 0.510• 0.426• 0.433• 0.404• 0.423• 0.339•

Lymphoma KNN 0.672 0.672 0.672 0.672 0.147• 0.212• 0.672

SVM 0.672 0.672 0.672 0.672 0.147• 0.356• 0.672

GBRT 0.984 0.934• 0.889• 0.897• 0.865• 0.918• 0.783•

Gas sensor array under flow modulation KNN 0.991 0.995◦ 0.8• 0.8• 0.747• 0.921• 0.952•

SVM 0.776 0.978◦ 0.344• 0.344• 0.344• 0.874◦ 0.719•

GBRT 0.845 0.715• 0.561• 0.549• 0.607• 0.715• 0.650•

Prostate KNN 0.901 0.485• 0.485• 0.485• 0.514• 0.681• 0.475•

SVM 0.514 0.485• 0.485• 0.485• 0.514 0.970◦ 0.514

GBRT 0.901 0.811• 0.908◦ 0.908◦ 0.880• 0.888• 0.579•

Lung KNN 0.683 0.103• 0.099• 0.099• 0.099• 0.095• 0.683

SVM 0.683 0.703◦ 0.103• 0.103• 0.099• 0.683 0.683

GBRT 0.506 0.824◦ 0.439• 0.464• 0.535◦ 0.311• 0.723◦

DLBCL KNN 0.749 0.749 0.749 0.250• 0.250• 0.749 0.250•

SVM 0.750 0.250• 0.750 0.750 0.750 0.750 0.750

GBRT 0.888 0.862• 0.897◦ 0.901◦ 0.888 0.631• 0.730•

Leukemia KNN 0.951 0.912• 0.867• 0.968◦ 0.867• 0.863• 0.889•

SVM 0.901 0.775• 0.828• 0.929◦ 0.842• 0.831• 0.700•

GBRT 0.943 0.897• 0.926• 0.933• 0.922• 0.901• 0.796•

Parkinson disease classification KNN 0.924 0.791• 0.850• 0.850• 0.850• 0.723• 0.922•

SVM 0.746 0.746 0.746 0.746 0.746 0.746 0.746

GBRT 0.748 0.746• 0.746• 0.746• 0.746• 0.746• 0.748

Colon KNN 1 0.992• 0.996• 0.980• 0.947• 0.992• 0.942•

SVM 0.914 0.902• 0.885• 0.885• 0.639• 0.918◦ 0.688•

GBRT 0.803 0.775• 0.802• 0.786• 0.672• 0.720• 0.548•

Arcene KNN 0.562 0.473• 0.562 0.562 0.562 0.562 0.562

SVM 0.562 0.473• 0.473• 0.437• 0.562 0.437• 0.562

GBRT 0.789 0.790◦ 0.714• 0.715• 0.789 0.799◦ 0.694•

Statistic Average 0.774 0.732 0.674 0.664 0.628 0.717 0.698

Win/Loss/Tie 131/22/45* 21/7/5 23/2/8 22/4/7 23/2/8 22/5/6 20/2/11

F‐rank 2.35 3.86 4.32 4.14 4.82 3.98 4.53

* The total Win/Loss/Tie cases of OSFS‐Vague. • The cases than OSFS‐Vague wins the other models in comparison. ◦ The cases that OSFS‐Vague loses the comparison.
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4.4 | Summary of experiments

In this section, the advantages and disadvantages of some al-
gorithms are comprehensively explained through the test of
accuracy, number of feature selections, and time consumption.

OFS‐Density exhibits the second highest overall prediction
accuracy, while it is relatively time‐consuming when dealing
with the Lung Cancer, TOX_171, and Parkinson disease
Classification datasets. As the data volume increases, the pro-
cessing time of OFS‐Density also increases accordingly. In the
number of feature selections, there is no discernible difference
between OSFS‐Vague and OFS‐Density.

OSFS is a classical algorithm. The prediction accuracy of
OSFS is better than OSFS‐Vagure in three results, OSFS is
slow in processing large scale data and has no advantage in

precision. Moreover, its number of feature selections is more
than OSFS‐Vague.

Compared with the OSFS, Fast‐OSFS optimises the
screening process, thus it has faster training time and better
prediction accuracy. Fast‐OSFS has a higher result accuracy
than OSFS. However, it still falls short of OSFS‐Vague.

The difference between α‐investing and other online
streaming feature selections is that hyperparameters are required
to be set in advance. Appropriate hyperparameters is able to
increase the training speed and the prediction accuracy. How-
ever, it is not practical to search the appropriate hyper-
parameters for each dataset. Compared with OSFS‐Vague, α‐
investing only has advantages in training speed, and its predic-
tion accuracy is not significantly different from OSF‐Density.

OSFS‐Vague has a good performance in processing both
small and large scale data. The number of feature selections is
moderate, and there are not too many redundant features to
affect the prediction accuracy. We may infer the following
conclusions from the outcomes shown above.

� OSFS‐Vague has the greatest prediction accuracy on three
classifiers. Data results are more reliable by the F‐rank and
Wilcoxon Signed‐Ranks test. At the same time, not all the
results of the OSFS‐Vague are better than other algorithms.
In some datasets, the results of this paper are worse than
other algorithms.

� The test of training speed mainly investigates the training
speeds for different algorithms in different datasets.
Where, the training speed of OFS‐Density, OSFS, and
Fast‐OSFS is relatively slow on large scale data, while
OSFS‐Vague, SAOLA, and α‐investinghold fast process-
ing speed on.

� Too few or too many features will affect the prediction
accuracy. In the experiment, α‐investing requires to pre‐
set hyperparameters in advance for training. Thus, the

TABLE 9 Wilcoxon signed‐rank test results.

Comparison Rþ R‐ p‐Value

OSFS‐Vague VS ReliefF 226 74 0.0154

OSFS‐Vague VS Fisher 320.5 57.5 0.0008

OSFS‐Vague VS MI 255 45 0.0014

OSFS‐Vague VS PCC 314 64 0.0013

OSFS‐Vague VS laplacian 274 51 0.0014

OSFS‐Vague VS OFS‐density 305 101 0.0104

OSFS‐Vague VS OSFS 316 9 0.0001

OSFS‐Vague VS Fast‐OSFS 324.5 26.5 0.0001

OSFS‐Vague VS SAOLA 306 19 0.0001

OSFS‐Vague VS α‐investing 305 73 0.0027

OSFS‐Vague VS NRS‐SFSF 215 38 0.0021

TABLE 10 Time consumption comparison.

Dataset OSFS‐Vague OFS‐Density OSFS Fast‐OSFS SAOLA α‐investing NRS‐SFSF

Lung cancer 25.32 215.91• 3871.15• 5685.01• 9.54◦ 37.02• 16.68◦

TOX_171 16.10 102.86• 1191.78• 1350.21• 2.53◦ 26.57• 7.63◦

Lymphoma 3.73 10.46• 531.76• 523.35• 5.97• 11.31• 1.25◦

Gas sensor array under flow modulation 0.727 1.60• 1.14• 1.11• 0.30◦ 0.41◦ 0.89•

Prostate 6.63 34.93• 85.97• 83.42• 2.93◦ 5.68◦ 2.96◦

Lung 8.48 82.26• 907.01• 916.87• 1.59◦ 29.30• 5.49◦

DLBCL 9.73 19.03• 217.02• 216.38• 2.07◦ 6.37◦ 2.81◦

Leukemia 3.18 13.81• 590.36• 615.15• 6.15• 11.29• 3.16◦

Parkinson disease classification 5.01 400.49• 1440.43• 864.51• 0.38◦ 5.12• 7.76•

Colon 1.14 6.55• 6.21• 6.18• 0.66◦ 2.14• 1.02◦

Arcene 17.99 332.62• 3410.04• 3399.09• 4.29◦ 14.27◦ 14.77◦

Win/loss 44/22 11/0 11/0 11/0 2/9 7/4 2/9

F‐rank 3 5.27 6.45 6.18 1.36 3.45 2.27

• The cases than OSFS‐Vague wins the other models in comparison. ◦ The cases that OSFS‐Vague loses the comparison.
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number of features is not controllable, and the quantity of
feature selection acquired by different methods does not
differ much.

To sum up, OSFS‐Vague is superior to other algorithms
under the comprehensive results. Firstly, most prediction ac-
curacy results are better than other algorithms. Secondly, re-
sults can be obtained quickly regardless of data size. Finally, the
quantity of feature selection is moderate, and the accuracy will
not be reduced due to too many or too few features.

However, the OSFS‐Vague method has certain limitations.
Firstly, OSFS‐Vague is unable to make an effective filter when
samples are missing in some features of the dataset. Secondly,
the OSFS‐Vague method only considers the relationship be-
tween a single feature and labels when screening features, but
does not consider the relationship between multiple features
and labels. Because all the features are calculated in this way,
the training time will be unacceptable. Thirdly, when the
number of features in the dataset is large, the number of
weakly redundant features obtained by OSFS‐Vague will also
increase, resulting in a longer training time for subsequent
filters. In summary, OSFS‐Vague still has many places that
require improvement, which is our future research direction.

5 | CONCLUSION

OSFS‐Vague is able to capture the relationship between fea-
tures and labels by analyzing their distribution. OSFS‐Vague
eliminates the need to pre‐set any hyperparameters and of-
fers a better understanding of the importance of features in the
datasets. Additionally, a screening process is introduced for
weakly redundant features that follow the principle of three‐
way decision, which is consistent with human cognitive

processes. In the experiment, the quantity of features obtained
by the OSFS‐Vague is moderate, then the training time is better
than most algorithms, and the prediction accuracy is higher
than all other methods.
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APPENDIX
The OSFS‐Vague in this paper is available from the following
website: https://github.com/pnkx/Online‐feature‐streaming‐
selection‐method.git.
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