
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 1992

An Application of Neural Networks in Data Communication Real-An Application of Neural Networks in Data Communication Real-

Time Resource Reallocation Time Resource Reallocation

Qing Fan
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Digital Communications and Networking Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
Fan, Qing. "An Application of Neural Networks in Data Communication Real-Time Resource Reallocation"
(1992). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI:
10.25777/tavk-km62
https://digitalcommons.odu.edu/ece_etds/329

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fece_etds%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.odu.edu%2Fece_etds%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.odu.edu%2Fece_etds%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/329?utm_source=digitalcommons.odu.edu%2Fece_etds%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN APPLICATION OF NEURAL NETWORKS
IN DATA COMMUNICATION REAL-TIME RESOURCE REALLOCATION

Qing Fan
B.S.E.E. August 1990, Old Dominion University

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
August, 1992

David L. Livingston

John W. Stoughton

Derya Alasya

ABSTRACT

AN APPLICATION OF NEURAL NETWORKS
IN DATA COMMUNICATION REAL-TIME RESOURCE REALLOCATION

Qing Fan
Old Dominion University, 1992
Director: Dr. Mark D. Pardue

This thesis presents an application of artificial neural

networks in real-time resource reallocation, a methodology

used in the implementation of an intelligent interface node in
the Computer Integrated Manufacturing (CIM) environment. In

particular, the problem is formulated using a Hopfield neural

network model. The real-time reallocation problem is mapped

into a two-dimensional matrix of neurons similiar to Hopfield

and Tank's approach to the traveling salesman problem (TSP) .

An energy function is formulated in terms of the hard

constraints and the solution cost. The interconnection
weights and the input biases are determined by the energy

function. It is shown through computer simulations that a

deterministic Hopfield network does not always provide good

solutions for the present problem. However, better solutions
are obtained by using the Boltzmann machine with simulated

annealing, although the long annealing schedules required for
optimal solutions preclude its use for this problem

application.

ACKNOWLEDGEMENTS

I would like to egress my deepest gratitude to Dr. Mark

D. Pardue for his excellent guidance throughout this research.

I would like to thank Dr. David L. Livingston, Dr. John W.

Stoughton, and Dr. Derya Alasya for their time and effort in

revising my thesis. Special thanks are due to my colleagues

Jagadesh Gullapalli, Jeffrey Sung, and Srikumar Lakshmipathi

for their special assistance. Finally, I would like to thank

my parents, my brothers, and my relatives for their continuous

support for this endeavor.

TABLE OF CONTENTS

Page

LIST OF TABLES. 1v

LIST OF FIGURES

Chapter

INTRODUCTION.

1.1 Objective.

1. 2 Thesis Organization.

2 . REAL-TIME RESOURCE REALLOCATION.

2.1 Introduction.

2. 2 Intelligent Interface Node.

2 . 3 Demonstration of Methodology

CONSTRAINT SATISFACTION NEURAL NETWORKS ..
3.1 General Concepts. ..17

3 . 2 Hopfield Network.

3.3 Boltzmann Machine with Simulated Annealing...20

3 . 4 Proposed Model

PROBLEM FORMULATION.

4.1 Representation.

4.2 Constraints and Energy Function..
4.2.1 Hard Constraints..

.22

23

23

..25

4 .2 .2 Soft Constraints... ..26

4.3 Weights and Biases.

4. 4 Summary

5. SIMULATIONS AND RESULTS.

5. 1 Hopfield Model

5.1.1 Convergence Characteristics.

29

30

31

31

.32

5.1.2 Simulations for Token Bus Networks....51

5. 2 Bolt zmann Machine with Simulated Annealing... 57

6. CONCLUSIONS AND RECOMMENDATIONS. 61

6.1 Conclusions. 61

6.2 Recommendations for Future Research. ..63

REFERENCES.

APPENDICES.

..64

66

A. Simulation Program for the Hopfield Network..66

B. Simulation Program for the Boltzmann machine.70

111

LIST OF TABLES

TABLE

2.1 Application of reallocation technique to case 1..
2.2 Application of reallocation technique to case 2..
2.3 Application of reallocation technique to case 3..
4.1 Neural network representation of real-time

reallocation problem for six-station case........
4.2 Cost assignment for illustrations.
4.3 Illustration of energy corresponding to the

Page

...10

...13

...15

...24
28

different configurations for case 2. 28

5.1 Initial information for case 1. 33

5.2 Summary for the experiments on case 1

5.3 Initial information for case 2.

5.4 Summary for the experiments on case 2. ...48
5.5 Selected distribution of data transfer priorities

for use in simulations

5.6 The annealing schedule for the experiments.. ...57

LIST OF FIGURES

FIGURE Page

2.1 Logical ring on physical bus.

2.2 Architecture for an intelligent interface node.....8
5.1(a)

5.1(b)

Histogram of the number of different
solutions between cost 0 and 35 (D=0.01).

Histogram of the number of different
.35

solutions between cost 0 and 35 (D=0.1) ..36

5. 1(c) Histogram of the number of different
solutions between cost 0 and 35 (D=0.2)..

5.1(d) . Histogram of the number of different
..37

solutions between cost 0 and 35 (D=0.3) ..38

5. 1(e)

5. 1 (f)

Histogram of the number of different
solutions between cost 0 and 35 (D=0.8)..

Histogram of the number of different
..39

solutions between cost 0 and 35 (D=1.2) ..40

5. 2 (a)

5. 2 (b)

Histogram of the number of different
solutions between cost 0 and 35 (D=0.01).

Histogram of the number of different
.42

solutions between cost 0 and 35 (D=0.1) ..43

5.2(c) Histogram of the number of different
solutions between cost 0 and 35 (D=0.2) .,44

V

5.2(d) Histogram of the number of different
solutions between cost 0 and 35 (D=0.3) ...45

5.2(e) Histogram of the number of different
solutions between cost 0 and 35 (D=0.8) ...46

5.2(f) Histogram of the number of different
solutions between cost 0 and 35 (D=1.2) ...47

5.3

5.4

Summary statistics for the simulations on

the 4-station token bus.

Summary statistics for the simulations on

53

the 6-station token bus. 54

5.5 Summary statistics for the simulations on

the 8-station token bus. 55

5.6

5.7

Summary statistics for the simulations on

the 10-station token bus..

Histograms of the number of different
solutions between cost 0 and 35 for case 1

56

(D=O. 01) 59

5.8 Histograms of the number of different
solutions between cost 0 and 35 for case 2

(D=0.01) .60

CHAPTER ONE

INTRODUCTION

Since its inception in 1985, IEEE 802.4 [13] (Token-

Passing Access Method) has been the primary standard for local

area networks in manufacturing environments. IEEE 802.4 has

the following characteristics:
(1) Physically, it is a bus; logically, it is a ring.
(2) A special control frame called a "token" is passed

around the logical ring, with the token holder

being permitted to transmit data frames.

One major advantage of the token-passing scheme is that
stations transmit in a predetermined order and collisions are

avoided. However, one limitation of the token-passing scheme

is that it is not flexible enough to deal with the case when

a station suddenly has urgent data to send but does not hold

the token [16].

Pardue [16] has made a few modifications to the 802.4

token bus standard by adding "an intelligent interface node

capability" to suit the special needs of the Computer

Integrated Manufacturing (CIM) environment, where there are
occasionally critical real-time data transfer requirements

that have to be met in order to avoid high maintenance costs

or catastrophies.
The intelligent interface node has two characteristics:
(1) the ability to deal with the uncertain conditions

at each station and reprioritize its real-time data

transfer requirements and

(2) the ability to reorder the token-passing sequence

to guarantee the real-time data transfer using the

real-time reallocation technique.

The real-time reallocation is an n/1 problem according to

scheduling theory [3] and is an optimization problem in

constraint satisfaction. This problem was addressed by Pardue

using an expert system based on an algorithmic appoach. The

underlying mechanics of the Pardue reallocation method is
optimization by heuristically swapping the positions of a pair
of stations if the swapping does not adversely affect the

outcome. This reallocation algorithm is implemented on a

serial computer. An analysis of the algorithm has shown that
its execution time has a worst-case growth rate of orderN'or

an N-station token bus.

An artificial neural network is a computing device

consisting of a number of processing elements loosely based on

neurons in living things. In general, each neural network has

a massive number of communication links between all processing

elements to perform collective computation.

Neural networks are attractive due to the following:

(1) They have been shown to be successful in providing

real-time response to combinatorial optimization

problems and complex pattern recognition problems.

The problem solving process of the artificial
neural networks is non-algorithmic and parallel in

nature, which is different from the process used in

conventional programmed computers and rule-based

expert systems [5] .

(2) They are physically realizable since their
architecture can take different physical forms:

electronic, electro-optical, and entirely optical.
Neural networks have been successfully applied to solve

a variety of problems. In particular, Hopfield neural

networks have provided acceptable solutions to many

optimization problems, such as A/D conversion and linear
programming [18], the traveling salesman problem [12], and

job-shop scheduling [4] .

1.1 Objective

The goal of this thesis is to develop a neural network

model for solving the real-time resource reallocation problem

and evaluate its validity and performance.

1.2 Thesis Organization

The problem addressed in this research is introduced in

chapter one. The thesis objective and its organization are

then outlined. The background on the real-time resource
reallocation technique is presented in chapter two. The

background on constraint satisfaction networks is presented in
chapter three. Theorectical development of the current work

is presented in chapter four. Simulations of using the

proposed neural network model in solving real-time
reallocation problems are presented in chapter five. The

conclusions of this thesis and the possible future research
efforts are presented in chapter six.

CHAPTER TWO

REAL-TIME RESOURCE REALLOCATION

The real-time resource reallocation problem was briefly
introduced in chapter one. In this chapter, the background

for the real-time resource reallocation technique is
presented.

2.1 Introduction
Physically, a token bus network is a linear or tree-

shaped cable onto which stations are attached. Logically, the

stations are organized into a ring (see figure 2.1), with each

station knowing the address of the station to its "left" and

"right." When the logical ring is initialized, the highest
numbered station may send the first frame. After it is
finished, it passes permission to its immediate neighbor by

sending the neighbor a special control frame called a "token."

The token propagates around the logical ring, with only the

token holder being permitted to transmit frames. Since only

one station at a time holds the token and thus may transmit,
collisions do not occur [13].

One major disadvantage of the token-passing scheme, as

mentioned in chapter one, is its inability to respond to the

case when a station has urgent data to send but does not hold

the token, which can occur in a Computer Integrated
Manufacturing environment [16].

I

I

/

Note: Stations G and H are non — transmitting stations.

Figure 2.1. Logical ring on physical bus.

2.2 Intelligent Interface Node

Pardue [16) has introduced a new architecture called
"Intelligent 1nterface Node" to deal with the problem

introduced above. The architecture is shown in figure 2.2.
In its implementation, a "secondary channel" is used to pass
control information between intelligent interface nodes. Upon

the completion of the current data transfer and before the

passing of the token, an intelligent interface node will look

at the information gathered from all the nodes on the network,

and perform reordering (when necessary) of the token-passing
sequence based on priority and timing information. In order
to perform reallocation, the following information is required
by the interface node:

(1) interface node ID,

(2) time-to-live (TTD) of the real-time data to be

transferred, in number of the data transfer
opportunities,

(3) next data transfer opportunity (NT), and

(4) priority.
The TTD and NT are expressed in terms of time periods

defined as the "maximum time between one node starting data
transfer and the next node starting data transfer."
Specifically, a time period equals the sum of Token Holding

Time, Node Delay, and Transmission Delay, all of which are
defined by IEEE 802.4 standard.

In the real-time resource reallocation scheme [16), the

INTELLIG
INTERFAC
NODE ~

COMMUNICATIONS
BACKBONE

Figure 2.2. Architecture for an intelligent interface node.

utilization of communication resources is identified by

calculating TTL — NT for each station. For a particular
station, a positive result indicates a surplus of the
communication resource, and a negative result indicates a

shortfall which means the real-time data transfer requirement

is not satisfied. When a shortfall occurs, the communication

resources are reallocated by swapping the station positions
subject to the following optimization criteria:

(1) reduce the number of shortfalls for higher priority
data to a minimum before reducing the number of

shortfalls for the lower priority data.
(2) reduce the total number of shortfalls with the

first criterion satisfied.

2 .3 Demonstration of Methodology

In this section, the following three cases will be used

to demonstrate the real-time resource reallocation
methodology:

(1) case 1 — no shortfall in the final solution (with

no priority assignment),

(2) case 2 — shortfall in the final solution (with the
first priority assignment), and

(3) case 3 — shortfall in the final solution (with the
second priority assignment)

These cases are discussed in detail below.

10

Case 1: No shortfall in final solution (with no priority
assignment)

Table 2.1(a) presents the initial token-passing sequence

and timing information for a six-station network. Table

2.1(b) identifies the surplus or shortfall corresponding to

the initial configuration. It can be seen that station F

suffers a shortfall of 3 time periods. To eliminate the

station F shortfall, F must be given the data transfer
opportunity in one of the first 3 time periods. If F and C

swap positions, there is no improvement overall because C now

suffers a shortfall. However, if F and B swap positions, as

indicated in table 2.1(c), both F and B will be guaranteed

their required data transfer opportunity. Thus, the sequence

in table 2.1(d), is the best solution.

Table 2.1. Application of reallocation technique to
case 1.

(a) Beginning states.

11

Table 2.1. Application of reallocation technique to
case 1 (continued).

(b) 1st attempt to alleviate station F shortfall

(c) Operation to alleviate station F shortfall

12

Table 2.1. Application of reallocation technique to
case 1 (continued).

(d) Final token-passing sequence

Case 2: Shortfall in final solution (with the first
priority assignment)

Table 2 .2(a) presents the initial token-passing sequence,

timing information, and priority assignment for a six-station
network for case 2 . Table 2 .2(b) identifies the surplus and

shortfall corresponding to the initial configuration. It can

be seen that both stations D and F suffer from shortfalls.
Since station F has priority 4, which is higher than station
D, the positions between F and D are swapped. Table 2.2(c)

shows the result after the swapping. It can be seen that no

further improvement is possible.

13

Table 2.2. Application of reallocation technique to
case 2.

(a) Beginning states

(b) Operation to alleviate station F shortfall

14

Table 2.2. Application of reallocation technique to
case 2 (continued) .

(c) Final token-passing sequence

Case 3: Shortfall in final solution (with the second

priority assignment)

Table 2.3(a) presents the initial token passing sequence,

timing information and priority assignment for a six-station
network for case 3. Table 2.3(b) identifies the surplus and

shortfall corresponding to the initial configuration. It can

be seen that both stations F and D suffer from shortfalls.
Since station F has higher priority, a swap between F and D

will reduce the number of shortfalls down to 1, indicated in

table 2 .3 (c) . By inspection, it can be seen that not all
shortfalls can be eliminated. However, this is not the

optimal solution because it still violates the optimization
criterion 1: station D with priority 1 must be satisfied
before station B with priority 0. Therefore, a swap between

D and B will result in the optimal solution in table 2 .3(d) .

15

Table 2.3. Application of reallocation technique to
Case 3.

(a) Beginning states

(b) Operation to alleviate station F shortfall

16

Table 2.3. Application of reallocation technique to
case 3 (continued).

(c) Operation to alleviate station D shortfall

(d) Final token-passing sequence

CHAPTER THREE

CONSTRAINT SATISFACTION NEURAL NETWORKS

The background of constraint satisfaction neural networks

is presented in this chapter. General concepts of artificial
neural networks are introduced first in section 3.1. Then,

the Hopfield neural network model and the Boltzmann machine

with simulated annealing is introduced in section 3.2 and

section 3.3, respectively. Finally, the neural network model

suitable for this research is proposed in section 3.4.

3.1 General Concepts

An artificial neural network is a computing device

consisting of a number of processing elements loosely based on

neurons in human and other biological systems. In biological
systems, each neuron is connected to a number of other neurons

by dendrites and axons [19]. A neuron receives signals from

other neurons at junction points called synapses. The signals
received at each synapse are either excitatory or inhibitory.
If the sum of these signals is above a threshold, then the

cell fires. On the other hand, if the sum of these signals is
below the threshold, then the cell is inhibited from firing.

17

18

Each neuron passes its state to a number of other neurons

through output structures called axons. Similarly, in an

artificial neural network, nonlinear threshold elements are

used to mimic the biological neurons. Each threshold element

receives a weighted sum of inputs from other elements. If the

result is above the built-in threshold, the element fires.
According to directions of signal flow, artificial neural

networks fall into two categories: feed-forward networks and

recurrent networks [19]. In feed-forward networks, the

signals flow from input layer to the output layer. In

recurrent networks, signals not only flow from the input layer
to the output layer, but also flow from output layer back into
the input layer. Unlike feed-forward networks, which are

always stable, recurrent networks have a dynamic reponse and

may be unstable.
Recurrent networks have been studied and found to be

useful in optimization. Cohen and Grossberg [2] devised a

theorem that defines a subset of recurrent networks whose

output can eventually reach a stable state. Hopfield and Tank

[12] were one of the firsts to apply a recurrent network to

solving combinatorial optimization problems. Their network

configuration is often called the Hopfield network.

3.2 Hopfield Network

In Hopfield's original model [9][10], the artificial
neurons are modeled using the McCulloch-Pitts input/output

19

function V,=f {U;), where U, and V, are the net input and output

of the ith neuron respectively, and

V,=O, ifU,sO

Vi = 1, if U(& 0. (3.1)

The net input to the ith neuron can be computed using

Us Z TeVj + I (3.2)

The element T,, represents the connection strength between the

ith neuron and the jth neuron. The element V, represents the

output of the jth neuron. The element I, is the external
input bias applied to the ith neuron. The neuron states can

be updated according to the rules above.

Hopfield has shown that a network with symmetric

connections {T,, = T„ and T,, = 0) always leads to convergence

to a stable state, which represents one of the local minima of

the energy function

(3.3)

In general, the steps involved in solving an optimization

problem using a Hopfild network are

20

(1) incorporate all the constraints in the form of an

energy function,

(2) determine the weights and biases, and

(3) let the network relax to a stable state which is
interpreted as a solution.

Since the Hopfield network provides a gradient descent

method to minimize the energy function, the final state into
which the network converges is one of the local minimum in the

energy terrain, which may or may not be the global minima.

Also, where the network converges is determined by the network

initial condition. Inability to consistently provide global

solutions is a serious drawback of the Hopfield network.

A class of networks known as Boltzmann machines aim at
solving the local minima problem. The concepts of the

Boltzmann machine are detailed in the next section.

3.3 Boltzmann Machine with Simulated Annealing

The Boltzmann machine, introduced by Hinton and Sejnowski

[81, can be viewed as a generalization of the discrete
Hopfield network. Like the discrete Hopfield model, the

Boltzmann machine uses binary units; unlike the discrete
Hopfield model, the Boltzmann machine uses a probabilistic
state transition instead of a deterministic one. In the

discrete Hopfield network discussed in section 3.2, each

neuron i can compute the energy difference 5E, by

21

where 8, « is the energy of the system when ith neuron is
"off" or 0, and E, is the energy of the system when ith
neuron is "on" or 1. In order to minimize the global energy,

the ith neuron assumes 1 if 5E, is positive, and assumes 0 if
5Z; is negative. In a Boltzmann machine, however, the ith
neuron assumes 1 with probability p,, where

pI (utut = 1) =
6BI

1+B
(3 5)

T is a parameter analogous to temperature and measures the

noise introduced into the decision. It can be observed that
a discrete Hopfield network is a special case of the Boltzmann

machine when T is zero.

Annealing is a thermal process used in obtaining the

ground state characteristics in solid. In an annealing

process, a solid is first raised to a melting temperature and

then gradually cooled down until it reaches the ground state.
The solid in the ground state is considered to have the

minimal system energy. In the annealing process, the cooling

must be done carefully in order for the system to reach the
minimum energy state. The concept of the annealing was

applied to the combinatorial optimization by Kirkpatrick, et

22

al. [14]. The method is called simulated annealing. In

simulated annealing, a fabricated energy is minimized through

a "cooling" schedule similar to that of the annealing process.

In the Boltzmann machine with simulated annealing, the

parameter T in equation 3.5 is used as the artificial
temperature. T is initially a high value. At each

temperature T, neurons are visited randomly, and each neuron

i assumes 1 with the probability p, according to equation 3.5.

The temperature is reduced by a factor r (0 & r & 1) only when

a constant statistical average has been reached. The process

is stopped when a "freezing" temperature (which is near zero)

has been reached.

The main limitation of the Boltzmann machine with

simulated annealing is that global solutions are found at the

expense of time. As the problem size gets larger, the

annealing schedule required for convergence to the global

solutions may be too long to be practical.

3.4 Proposed Model

In this chapter, the background of the constraint
satisfaction networks has been presented. The discrete
Hopfield model is shown to be appropriate in formulating the
real-time resource reallocation problem addressed in chapter
two. The problem will be formally treated in chapter four.

CHAPTER FOUR

PROBLEM FORMULATION

In this chapter, the application of neural networks to
the real-time resource reallocation problem is formally

presented. In section 4.1, a representation for the problem

is presented. In section 4.2, an energy function is
formulated according to the problem constraints. In section
4.3, the weights and biases of the neural network are
determined from the energy function. A summary of this
chapter is presented in section 4.4.

4.1 Representation

It is very important to find an appropriate
respresentation when applying an artificial neural network to
an optimization problem. The matrix representation used in
solving the traveling salesman problem [12] is also used here
because the present problem is very similar to the TSP

problem. For a reallocation problem with N communication

stations, an N-by-N matrix is used. Each row index represents
the station's ID in the network, and each column index

represents the next data transfer opportunities (NT's) . The

23

24

N-by-N matrix which represents a valid token-passing sequence

is called a permutation matrix. In a permutation matrix, each

row should have one and only one neuron in the "on" state, and

each column should have one and only one neuron in the "on"

state. A permutation matrix is shown in table 4.1 for a

problem with six communication stations. A six-station
problem requires the use of 36 neurons. Table 4.1 illustrates
the token-passing sequence C — A — D — F — E — B, one of the
6! = 720 possible stable states, which represent the valid
token-passing sequences.

Table 4.1. Neural network representation of real-
time reallocation problem for six-station
case.

4.2 Constraints and Energy Function

To use neural networks to solve the optimization problem,

all of the constraints must be represented by an energy

25

function in which the lowest energy corresponds to the best

solution. Similar to the traveling salesman problem, there

are two types of constraints to the real-time reallocation
problem: hard constraints and soft constraints.

4.2.1 Hard Constraints

The hard constraints are those constraints which must be

satisfied by the neural network in order to produce valid
solutions. The hard constraints of the real-time reallocation
problem are exactly the same as those for the traveling
salesman problem [7]:

(1) each row in a permutation matrix should have one

and only one neuron with "on" state, and

(2) each column in a permutation matrix should have one

and only one neuron with "on" state.
The constraints guarantees that each station is visited once

and only once. Therefore, the energy function E,

corresponding to the two hard constraints is:

(Z (1 E Vxj) +Z (1-P V~)),
x j. z x

(4.1)

where A is a positive constant. V„, represents the neuron

state in the Xth row and ith column. Similarly, Vpj represents
the neuron state in the Yth row and jth column. The energy E,

is zero if the token-passing sequence is a valid sequence.

26

4.2.2 Soft Constraints
In chapter two, the real-time reallocation technique was

described and demonstrated using three cases. The following

aspects can be observed:

(1) any shortfall associated with any priority is
undesirable, and

(2) a shortfall associated with the higher priority is
much more undesirable than that associated with the

lower priority.
The optimization process can be considered in terms of "cost."

First, each shortfall is associated with a cost, which

increases as the priority increases. When a token-passing

sequence does not result in any shortfall, the cost associated

with the sequence is zero. When a token-passing sequence does

result in one or more shortfalls, the cost associated with the

sequence is nonzero and is computed by summing the costs of

all the shortfalls. Therefore, the real-time resource

reallocation problem can be restated as:
Given time-to-live TTL, and priority P, for station i (i

1, 2, ... , N), find a configuration C that minimizes

the cost
Z(Pg) Sg, (4.2)

where f is an injective mapping from priority domain to cost

domain such that f(P,) represents the cost for a station i
shortfall corresponding to its priority. S, is the shortfall

27

for station i, where S,=O if TTL, — NT, & 0 and S,=l otherwise.

NT, is the next data transfer opportunity for station i in

configuration C.

The energy function corresponding to the soft constraint
1s

E =a+ P C V~8 (i - T)
» i

(4.3)

where 8(x) = 1 if x & 0, and 0(x) = 0 if x & 0. If neuron V»,.

is on, that means the next transfer opportunity for node X is
i. T» is the time-to-live for node X's data frames. C» is the

"cost" for the shortfall. The value of C» depends on the

priority of station X. The total cost E, is zero if there is
no shortfall.

An example is used to illustrate the correctness of the

energy function formulation of the soft constraint. The

example is the case 2 from section 2.3. In the example, the

constant coefficient D in the equation 4.3 is assumed to be 1.

An exponential function is used to assign the cost: y = 2",

where variable x represents the priority and y represents the

cost. The cost assignment is illustrated in table 4.2. This

assignment is used because it can give enough penalty for any

token-passing sequence that might satisfy the real-time data

transfer requirement of lower priority before that of higher

priority. Table 4.3 shows the energy corresponding to

different configurations. Since the sequence A-B-C-F-E-D is

28

associated with the lowest energy, it is the best solution.
The result is the same as that of table 2.2.

Table 4.2. Cost assignment for illustrations.

Table 4.3. Illustration of energy corresponding to
the different configurations for case 2.

29

4.3 Weights and biases
In general, the quadratic terms in the energy function

(see equation 3.3) define a connection matrix and the linear
terms define input biases. By expanding the total energy

function of the real-time reallocation problem,

+Dg g C V 8 (i - T) (4.4)

the connection matrix and the biases can be found.

connection can be described using a general form

T~ ~ = -A5~ (1 — ()q~] -Adq~ [I — ()~)

where T„; » denotes the connection strength between the neuron

on the Xth row and the ith column and the neuron on the Yth

row and the jth column. The function 5,~ is 0 if a4b, and the
function 5,~ is 1 if a=b. It is shown by equation 4.5 that
each neuron has an inhibitory connection of "-A" with every

other neuron which is in the same row or the same column. A

bias can be described as

1~ = A — DC+(i - T„) (4. 6)

where I~, is the bias to the neuron on Xth row and jth column.

The function 8(x) is 1 if x & 0, and the function 8(x) is 0 if

30

x & 0. The second part of the equation is an extra inhibition
applied to those neurons which satisfy the condition i & T„,

which is essentially the same as the expression TTL — NT & 0,

a shortfall condition. This means that the neural network

uses extra inhibition to those neurons which would result in
shortfalls if turned on. The amount of inhibition applied is
determined by the priority.

4.4 Summary

In this chapter, the real-time reallocation problem has

been formulated for neural network implementation. This

neural network model is evaluated through computer simulations
which are detailed in the chapter five.

CHAPTER FIVE

SIMULATIONS AND RESULTS

The neural network model for solving the real-time

resource reallocation was developed in chapter four. In this
chapter, the effectiveness of the neural network model is
evaluated through computer simulations. The simulations were

developed on an IBM-compatible personal computer. All

simulation programs were written in Pascal, and are listed in

the appendix. First, extensive simulations were performed

using a discrete Hopfield model. The simulation results are

presented in Section 5.1. Later, simulations using a

Boltzmann machine were performed and the comparisons between

the two methods are made in Section 5.2.

5.1 Hopfield Model

There are two objectives in the simulations of the

Hopfield network. The first objective is to investigate the

convergence characteristics of the Hopfield model. The second

objective is to evaluate the performance of real-time
reallocation using the present model through combined

simulations on token bus networks.

31

32

5.1.1 Convergence Characteristics
In these simulations, a McCulloch-Pitts input/output

function was used to simulate the artificial neurons. Since

the constant coefficient A is the only parameter in the weight

matrix (see equation 4.5), it was assumed to be 1 for

convenience. With A=1, the relative importance of the hard

constraint and the soft constraint in the energy function (see

equation 4.4) can be determined solely by D, the coefficient
of the cost term. The cost assignment for shortfalls was

determined by an exponential function y = 2" (see table 4.2),
where y represents the cost and x represent the priority.

Simulations were performed on two cases:

(1) case 1 — no shortfall in the optimal solution and

(2) case 2 — shortfall in the optimal solution.
For each case, 100 independent trials using different initial
conditions and random update orders were performed when D

assumed one of the six different values: 0.01, 0.1, 0.2, 0.3,

0.8, and 1.2. The results are presented in detail below.

Case 1: No shortfall in the o timal solution
Table 5.1 illustrates the initial information that must

be present on the control channel of a token bus network with

10 stations. In this case, all the real-time data transfer
requirements can be satisfied and the cost of the optimal

solution is zero. The results produced by the neural network

are converted to corresponding costs so that they can be

33

compared. A negative value "-5" is used to represent the cost

of an invalid solution for convenience. The distributions of

solution costs are plotted in histograms shown in figure
5.1(a) through (f). The results are summarized in table 5.2.

First, it is shown in figure 5.1(a) through (f) that the

Hopfield network failed to escape the local minima most of the

time. Second, there are trade-offs in choosing the parameter

D. When D was 0.01 (a small value), the neural network could

always produce the valid solutions. However, the qualities
of the valid solutions were not good since the range of the

costs were from 0 to 30. As the parameter D was increased,

more invalid solutions were produced, but the quality of the

valid solutions was getting better because of the lower

solution costs.
Table 5.1. Initial information for case 1.

34

Table 5.2. Summary for the experiments on case 1.

35

100

90

80

70

600
50

E)

40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.1(a) . Histogram of the number of different
solutions between cost 0 and 35 (D=0.01).

36

100

90

80

70

600
50

I 40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.1(b) . Histogram of the number of different
solutions between cost 0 and 35 (D=0.1).

37

100

90

80

70

600
50

40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.1(c). Histogram of the number of different
solutions between cost 0 and 35 (D=0.2).

38

100

90

80

70

600
50

40

30

20

10

-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.1(d) . Histogram of the number of different
solutions between cost 0 and 35 (D=0.3) .

39

100

90

80

70

60
O

50

g 40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.1(e). Histogram of the number of different
solutions between cost 0 and 35 {D=0.8).

40

100

90

80

70

60
O

50
8
g 40

a 30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5 .1(f) . Histogram of the number of different
solutions between cost 0 and 35 (D=1.2).

41

Case 2: Shortfall in the o timal solutions
Table 5.3 illustrates the initial information that must

be present on the control channel of a token bus network with

10 stations. In this case, not all real-time data transfer
requirement can be satisfied, and the cost of the optimal

solution is 1. Similar to case 1, the distributions of

solution costs are plotted in histograms shown in figure
5 .2 (a) through (f) . The results are summarized in table 5 .4 .

The trend shown in case 1 is also shown here. One difference
is that no valid solution could be found when D was 1.2.

Table 5.3. Initial information for case 2.

42

90

80

70

60
O

50

40

a 30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.2(a) . Histogram of the number of different
solutions between cost 0 and 35 (D=0.01).

43

90

80

70

600
50

g 40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.2(b) . Histogram of the number of different
solutions between cost 0 and 35 (D=0.1) .

44

100

90

80

600
50

40

30

20

10

-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.2(c). Histogram of the number of different
solutions between cost 0 and 35 (D=0.2).

45

100

90

80

70

60
O

50
8

40

30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.2(d). Histogram of the number of different
solutions between cost 0 and 35 (D=0.3) .

46

100

90

80

70

600
50

8
40

a 30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of fittal solutiotts

Figure 5.2(e). Histogram of the number of different
solutions between cost 0 and 35 (D=O.S).

47

110

100

90

80

70

60

508
40

a
30

20

10

0
-5 0 5 10 15 20 25 30 35

the costs of final solutions

Figure 5.2(f) . Histogram of the number of different
solutions between cost 0 and 35 (D=1.2).

48

Table 5.4. Summary for the experiments on case 2.

* Not available.

Discussion

A bound for D can be determined so that all valid
solutions are local minima [15] . In particular, a bound for
D for the present problem can be determined by

A) Dc4 (5.1)

where A and D are the coefficients for the hard constraint and

the soft constraint, respectively (see equation 4.4). The

constant c is the base value for the general exponential
function

y=c", (5.2)

49

where y represents the cost and x represents the priority.
Particularly, with A=1 and c=2 in our experiments, the

condition becomes D & 0.0625, which explains why all 100

trials converged to valid solutions in both cases when D=0.01.

Therefore, not all the valid solutions are local minima when

D & 0.0625. According to chapter three, the net input to the

neuron in X-th row and i-th column can be expressed as

net input = g T~ &V& + I~ (5.3)

Since

T~ ~V~ S 0 (5.4)

we have

net input s Z~ (5.5)

Therefore, a sufficient condition to turn a neuron off is

I~SO (5.6)

It has been shown by equation 4.6 that an extra inhibition is
applied to the neuron in the X-th row and the i-th column if
a shortfall condition i & T„ exists. It can be seen that the

sufficient condition for this neuron to be turned off is

Z~ =A — DMSO, (5 .7)

where c is the cost of shortfall with priority p according to

equation 5.2.

With D=0.1, I„, = 1 — (0.1) 2 & 0 when p = 4. Therefore,

the network produced either invalid solutions or the valid
solutions which eliminated the shortfalls of priority 4.

50

With D 0 2, I„„= 1 — (0 2) 2~ & 0 when p & 3. The

network produced either invalid solutions or the valid
solutions which eliminated the shortfalls of priorities 4 and

With D=0.3, I„, = 1 — (0.3) 2~ & 0 when p & 2. The

network produced either invalid solutions or the valid
solutions which eliminated the shortfalls of priorities 4, 3,

and 2.

With D=0.8, I„, = 1 — (0.8) 2~ & 0 when p & 1. The

network produced either invalid solutions or the valid
solutions which eliminated the shortfalls of priorities 4, 3,

2, and 1.

With D=1.2, I„, = 1 — (1.2) 2~ & 0 when p & 0. The

network produced either invalid solutions or the valid
solutions which eliminated the shortfalls of all priorities.
Especially, no valid solution was found in case 2 because such

a solution did not exist.

51

5.1.2 Simulations for token bus networks

The combined simulations of real-time reallocation using

the Hopfield neural network model were performed for a 4-

station token bus, a 6-station token bus, an 8-station token

bus, and a 10-station token bus. 25 instances were generated

for each token bus. Five priority levels of data transfer
were assumed. The distribution of the data with different
priority is presented in table 5,5.

Table 5.5. Selected distribution of data transfer
priorities fo- use in simulations.

Note: Priority 4 is the highest priority and
priority 0 is the lowest priority

Again, the cost assignment was the same as that of the
previous experiments. The parameter A was assumed to be 1.

Since any invalid solution was unacceptable, the parameter D

was set to 0.01 (according to section 5.1.1), which was small

enough to produce valid solutions at all times. 100

52

independent trials were performed for each of the 25

instances. The best, the worst and the average solutions were

recorded. Then, the shortfalls for each priority were summed

over the 25 best solutions. Similarly, the shortfalls for

each priority were summed over the 25 worst solutions, and the

shortfalls for each priority were summed over the 25 average

solutions. The statistics were compared with that before any

reallocation and that after using Pardue's reallocation
method. The statistics for the 4-station token bus, the 6-

station token bus, the 8-station token bus, and the 10-station
token bus were plotted in figure 5.3, figure 5.4, figure 5.5,

and figure 5.6, respectively. It is shown in all cases that
the best solutions produced by neural network were close to

those obtained using Pardue's method. However, the worst

solutions were worse than those before using any reallocation.
In general, the Hopfield network did not perform well.

53

Simulations on 4-Station Token Bus

12

P 10
0~ s

44
0

Ij 4

3 2
0

0
0 1 2 3 4

Priority

Figure 5.3. Summary statistics for the simulations on
the 4-station token bus.

Simulations on 6-Station Token Bus

~~ 20

~15

~j 10

5

0
0 1 2 3 4

Priority

Figure 5.4. Summary statistics for the simulations on
the 6-station token bus.

55

Simulations on 8 —Station Token Bus

~~ 25

r 20
IH
0

g 15
a
)10

0
0 1 2 3 4

Priority

Figure 5.5. Summary statistics for the simulations on
the 8-station token bus.

56

Simulations on 10 —Station Token Bus

45

3 4D

& 35

o 25

P 2D

~15
1D

D

D 1 2 3 4
Priority

Figure 5.6. Summary statistics for the simulations on
the 10-station token bus.

57

5.2 Boltzmann machine with Simulated Annealing

Simulations of the Boltzmann machine with simulated

annealing were performed using the annealing schedule shown in

table 5.6. It was assumed that the number of repetitions were

sufficient for reaching equilibrium at each temperature. The

parameter A was assumed to be 1. The parameter D was assumed

to be 0.01, which is small enough for all the solutions to be

valid. The two cases used in section 5.1.1 were used again

here. 100 independent trials were performed for each case.

The results are compared with those produced by the Hopfield

network using histograms.

Table 5.6. The annealing schedule for the experiments.

Boltzmann machine with simulated annealin

Step 1.

Step 2.

Set T f- T„,„.

Select a neural element i randomly and
evaluate the energy difference 5E,.
according to equation 3.4. Set the neural
element to 1 with probability p, according
to equation 3.5. Repeat this step k times.

Step 3 . Set Twr T. If T & T,„, go to step 2,
otherwise stop.

Parameters

Symbol Value Description

Tmaw

Tinin

10
0.002
0.8
2000

Starting temperature
Minimum temperature
Temperature decay rate
Time per temperature

58

The results were shown to be improved by the Boltzmann

machine with simulated annealing in both cases. The

comparison for case 1 is presented in figure 5.7. It is shown

that 26% of the solutions produced by the Hopfield network had

costs below 15. However, 71% of the solutions produced by the

Boltzmann machine were in the same range. The comparison for

case 2 is presented in figure 5.8. It is shown that 27% of

the solutions produced by the Hopfield network had costs below

15. However, 66% of the solutions produced by the Boltzmann

machine were in that range.

In the simulations of the Boltzmann machine with

simulated annealing, not all solutions were global solutions.
The problem may lie in the assumption that the repetitions in

the experiments were sufficient for reaching the equilibrium

at each temperature. It is expected that more repetitions at
each temperature are needed for reaching a true equilibrium.

59

'fs

o
10

0
0 5 10 15 20 25 30 35

tbc costs of final solndons
(Hopficld model)

10

0
0 5 10 15 20 25 30 35

Ibc cosa of final soladons
(Boltsmann macbinc)

Figure 5.7. Histograms of the number of different
solutions between cost 0 and 35 for
case 1 (Dm0.01) .

60

'(t

0
10

4

0
0 5 10 15 20 25 30 35

the costs of final solutions
(Hop(ietd madel)

s
o

10

P

0
0 5 10

the costs of final solutioas
(Boltnnsnn machine)

30 35

Figure 5.8. Histograms of the number of different
solutions between cost 0 and 35 for
case 2 (Dm0.01).

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

Real-time resource reallocation is a data communication

scheduling technique. Past implementation of this technique

was based on a sequential and exhaustive search algorithm,

which could be executed in polynomial time. In this thesis,
an implementation of the real-time reallocation technique has

been developed using artificial neural networks which employ

massive parallelism. This chapter concludes the thesis and

recommends future research.

6.1 Conclusions

The real-time reallocation problem was first mapped into
a two-dimensional matrix of neurons similar to Hopfield and

Tank's approach to the traveling salesman problem. An energy

function was then formulated in terms of the problem

constraints. Specifically, a cost assignment scheme was

introduced in order to incorporate the optimization criteria
into the energy function. In this thesis, an exponential

function y=c" (c&1) was used for the cost assignment because

this assignment could give enough penalty for any token-

61

62

passing sequence that might satisfy the real-time data

transfer requirement of lower priority before that of higher

priority.
Using the artificial neural network in real-time resource

reallocation was first simulated using a discrete Hopfield

network. It was shown that the discrete Hopfield network did

not perform well. The primary cause was that the Hopfield

network model does not provide for a technique for escaping

any local minima of its associated energy function. The

problem representation and the cost assignment might also have

some effect on the bad performance of the neural network.

Experiments were later performed using the Boltzmann

machine with simulated annealing, and it was shown that better
solutions were obtained statistically. Since the repetitions
k in the experimental assumption were not sufficient for

reaching a true equilibrium at each temperature, many of the

results were still local minima. However, any further
increase in k will substantially increase the time for

convergence and slow down the simulations. Since the resource

reallocation problem must be solved in real-time, the

Boltzmann machine is not an appropriate solution.
It can be seen that the disadvantages outweighed the

advantages in both the discrete Hopfield model and the

Boltzmann machine. Therefore, the neural network approach to

the real-time reallocation problem as developed in this thesis
is not a good approach. This may be due to the specific

63

problem representation and cost assignment function used in

this research.

6.2 Recommendations for Future Research

The future research effort can be made in several areas.
First, it was mentioned in chapter four that representation is
important in mapping the real-time reallocation problem into
the neural network. Therefore, effort can be made in

searching for better representations for the present problem.

Second, an exponential function was used as a cost assignment

function throughout this thesis. Effect of the different cost
assignment on the solution quality can also be studied.
Third, it was claimed by Hopfield [12] that the neural network

using the analog implementation could produce much better
solutions than those of the discrete implementation.

Therefore, the analog implementation of the Hopfield neural
network model can be investigated. Fourth, the possibility of

speeding up the simulated annealing process using parallel
Boltzmann machines [1] or Cauchy machines [17] can be

investigated. Finally, genetic algorithms based on the

mechanics of natural selection and natural genetics [6] can

also be investigated for solving the real-time reallocation
problem.

REFERENCES

Aarts, Emile and Jan Korst. Simulated Annealing and
Bol tzmann Machines, John Wiley & Sons: New York, 1989.

Cohen, M.A., and S.G. Grossberg. "Absolute stability of
global pattern formation and parallel memory storage by
competitive neural networks." IEEE Tzansacti on on
Systems, Man and Cybernetics," 13:815-26, 1983.

Conway, R.W., W.L. Maxwell and L.W. Miller, Theory of
Scheduling, Addison-Wesley Publishing Company: Reading,
Massachusetts, 1967.

Foo, Y.P.S. and Y. Takefuji. "Stochastic Neural Networks
for Solving Job-Shop Scheduling," IEEE International
Conference on Neural Networks, San Diego, California,
July 1988.

Giarratano, J., and G. Riley. Expert Systems, PWS-KENT
Publishing Company: Boston, Massachusetts, 1989.

Goldberg, D. E. Geneti c Al gori thms in Sear ch,
Opti mi zati on, and Machine Learning, Addison-Wesley
Publishing Company, Inc.: Reading, Massachusetts, 1989.

Hertz, John, A. Krogh, and R.G. Palmer. Introduction to
the Theory of Neural Computation, Addison-Wesley
Publishing Company: Redwood City, California, 1991.

Hinton and Sejnowski. "Optimal perceptual inference,"
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, Washington, D.C., 448-453, 1983.

Hopfield, J.J. "Neural networks and physical systems with
emergent collective computational abilities." Proceedings
of the National Academy of'cience. 79: 2554-58, 1982.

Hopfield, J.J. "Neurons with graded response have
collective computational properties like those of two-
state neurons, " Proceedings of the National Academy of
Sci ences USA, Vol.81,1984, pp. 3088-3092.

64

[11]

[12]

[13]

[14]

[151

[16]

[17]

[18]

[19]

Hopfield, J.J. and D.W. Tank. 'Computing with Neural
Circuits: A Model," Science, Vol. 233, Aug. 1986.

Hopfield, J.J. and D.W. Tank. "Neural Computation of
Decisions in Optimization Problems," Biological
Cyberneti cs, Vol. 52, pp. 141-152, 1985.

IEEE Computer Society. 802.4 Token-Passing Bus, The
Institute of Electrical and Electronics Engineers, Inc:
New York, 1985.

Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vecchi,
"Optimization by Simulated Annealing," Sci ence, Vol. 220,
No. 4598, May 1983.

Livingston, D.L. Private communication.

Pardue, M.D. An Intelligent Interface Node for Use in
CIM, Ph.D. Dissertation, George Mason University:
Fairfax, VA, August, 1988.

Szu, Harold and Ralph Hartley. "Fast Simulated
Annealing," Physics Letters A, Vol. 122, No. 3,4, pp.
157-162, 1987.

Tank, D.W. and J.J. Hopfield. "Simple Neural Optimization
Networks: An A/D Converter, Signal Decision Circuit and
Linear Programming Circuit, " IEEE Transaction on Circui ts
and Systems, Vol. CAS-33, No. 5, pp. 533-541, 1986.

Wasserman, Philip D. Neural Computing, Van Nostrand
Reinhold: New York, 1989.

APPENDIX A

SIMULATION PROGRAM FOR THE HOPFIELD NETWORK

program reallocation with hopfield net(input, output);
4'********
* This program simulates the real-time reallocation using
* the deterministic Hopfield network

const

a
d
ao=
bo=

10;
II
0.01;
10;
0;

(* the number of nodes on token bus network *)
(* gain constant for hard constraint *)
(* constant coefficient for the cost term *)
(* base for the exponential function *)

type
nodes
weight
matrixi
matrixr
vector

l..n;
array
array
array
array

[nodes, nodes, nodes, nodes] of real;
[nodes, nodes] of integer;
[nodes, nodes] of real;
[nodes] of real;

var
u
v
t
biasttl
prz
cost
delta e
x,i,y,j
cycles

matrixr;
matrixi;
weight;
matrixr;
vector;
vector;
vector;
real;
integer;
ineger;

(* analog voltage of a single node *)
(* neuron states "1" or "0" *)
(* weight between two nodes *)
(* input bias to a single node *)
(* time-to-live *)
(* current priority of each node *)
(* cost per shortfall *)
(* energy difference *)
(* row and column indexes *)

function cost function(x : real): real;
begin

cost function := exp(x * ln(a0)) + b0;
end;

procedure init timing info;
var

66

67

xl, il : integer;
p : real;

begin
for xl := 1 to n do

begin
writeln('input ttl[', xl, ']:');
readln(ttl[xl]);

end;
for xl := 1 to n do

begin
writeln('input pri[', xl, ']:');
readln(pri[xl]);

end;
for xl := 1 to n do

cost[xi] := cost function(pri[xl]);
end;

procedure init neuronet;
var

p : real;
begin

for x := 1 to n do
for i ;= 1 to n do

begin
p := random(100);
if (p&=50)

then
v[x,i] := 1

else
v[x, i] := 0

end;
end;

function delta(a : integer; b : integer) : integer;
begin

if (a = b)
then

delta := 1
else

delta := 0
end;

function theta(x : real) : integer;
begin

if (x & 0)
then

theta := 1
else

theta := 0
end;

procedure weights biases;

68

begin
for x := 1 to n do

for i := 1 to n do
for y := 1 to n do

for j := 1 to n do
begin

if ((x && y) or (i && j))
then t[x,i,y,j]-a*delta(x,y)*(l-delta(i,j))-a*delta(i,j)*(1- delta(x,y))
else

t[x,i,y,j] := 0
end;

for x := 1 to n do
for i := 1 to n do

begin
bias[x,i] := a — d * cost[x] * theta(i — ttl[x])

end;
end;

procedure energy difference;
var

net input : real;
begin

net input := 0;
for y := 1 to n do

for j := 1 to n do
begin

net input := net input + t[x,i,y,j] * v[y,j]
end;

net input := net input + bias[x,i];
delta e := net input

end;

procedure deterministic update;
var

period integer;
begin

for period := 1 to 1000 do
begin

x := random(n) + 1;
i := random(n) + 1;
energy difference;
if delta e & 0

then
v[x, i] := 1

else
v[x, i] := 0;

end
end;

69

begin I'main)
init timing info;
init neuronet;
deterministic update;

end.

APPENDIX B

SIMULATION PROGRAM FOR THE BOLTZMANN MACHINE

program reallocation with Boltzmann(input, output);

* This program simulates the real-time reallocation using *
* the Boltzmann machine with simulated annealing
**

const
n = 10; (* number of node on token bus network *)
a = 1; (* constant coefficient for row inhibition *)
d = 0.01;(* constant coefficient for the soft constraint *)

(* The following are
annealing *)

T max 10;
T min 0.002;
r 0.8;
k 2000;

the parameters for the simulated
(* starting temperature *)
(* minimum temperature *)
(* temperature decay rate *)

(* time per temperature *)

type
matrix
vector

var
v
(* Thettl
pl 1
cost

array [1..n, l..n] of integer;
array [I..n] of integer;

matrix; (* neuron states *)
following are some inputs to the neural network *)

vector; (* time-to-live *)
vector; (* priority of each node *)
vector; (* cost per shortfall *)

energy
e hardl
e hard2
e soft
e~revious:

real;
real;
real;
real;
real;

(* total energy *)
(* energy for row inhibition *)
(* energy for column inhibition *)
(* energy for soft constraint *)
(* previous lowest energy *)

temp real; (* temperature *)

procedure init timing;
var

x : integer;
70

71

begin
for x := 1 to n do

begin
wrrteln('Input
readln(ttl[x]) i

end;

for x := 1 to n do
begin

writeln('Input
readln(pri[x]);

end;
for x := 1 to n do

beginif (pri[x] = 4)
then

cost[x]if (pri[x] = 3)
then

cost[x]if (pri[x] = 2)
then

cost[x]
if (pri [x] = 1)

then
cost[x]if (pri [x] = 0)

then
cost[x]

end
end;

pri [',x, ']: ');

16;

8;

4;

procedure init neural network;
var

x, i : integer;
p : real;

begin
for x := 1 to n do

for i := 1 to n do
begin

p := random(100);
if (p & 50)

then
v[x, i] := 1

else
v[x, i] := 0;

end;
energy := 0;
previous := 0;

end;

function theta(x : integer): integer;

72

(* this is a threshold function *)
begin

if (x&0)
then

theta := 1
else

theta := 0
end;

procedure evaluate;
var

x, i : integer;
total row : integer;
total col : integer;
al, a2 : integer;
bl, b2 : integer;

begin
e hardl
e hard2
e soft
al := 0;
a2 := 0;

0;
0;
0;

(* evaluate e hardl *)
for x := 1 to n do

begin
total row := 0;
for i := 1 to n do

total row := total row + v[x, i];
al := 1 — total row;
al := al * al;
e hardl := e hardl + al;

end;

(* evaluate e hard2 *)
for i := 1 to n do

begin
total col := 0;
for x := 1 to n do

total col := total col + v[x, i];
a2 := 1 — total col;
a2 := a2 * a2;
e hard2 := e hard2 + a2;

end;

(* evaluate e soft *)
for x := 1 to n do

for i := 1 to n do
e soft := e soft + cost[x] * v[x,i]ttl[x]);

e soft := e soft * d;

* theta (i

73

(* evaluate total energy *)
energy := (e hardl + e hard2) * a / 4 + e soft;

end;

procedure Boltzmann machine;
var

x, i : integer;
repetition : integer;
rand real;
p real;
delta e : real;
times : integer;
ratio real;

begin
temp := T max;
repeat

for repetition := 1 to k do
begin

:= random(n) + 1;i := random(n) + 1;
v[x, i] : = 1 — v[x, i];
evaluate;
delta e := energy — previous;ratio := delta e/temp;if (ratio & 10)

then
p := 1/(1 + exp(ratio))

else
p := 0;

rand := random(100)/100;if (rand « p)
then

begin
v[x, i] := v[x, i];
previous := energy

end
else

v[x, i] := 1 — v[x, i]
end;

temp := temp * r;until (temp & T min)
end;

(main lines)
begin

init timing;init neural network;
evaluate;
previous := energy;
Boltzmann machine;

end.

	An Application of Neural Networks in Data Communication Real-Time Resource Reallocation
	Recommended Citation

	tmp.1721916722.pdf.vsltE

