






However, many scenarios exist in which the subjects cannot be controlled or 
acquisition of data is impossible. Under such circumstances, biometrics that 
can be extracted from gait have shown promising results in several studies 
(Preis et al. 2012; Sinha, Chakravarty, and Bhowmick 2013). Features extracted 
from gait are resilient to changes in clothing or lighting conditions compared 
to color or texture, which are among the prevalent features for person identi
fication. While patterns of walking may not be necessarily unique to indivi
duals in practice, a combination of biometric-based static attributes, along 
with motion analysis of certain body joints, can create an effective set of 
features to recognize an individual.

Video-based gait recognition approaches are generally divided into two 
main categories, model-based, and model-free methods. Model-free methods 
rely on features that can be obtained from clean silhouettes. Fitting a model, 
such as a skeleton to human silhouettes, and using the extracted features from 
such a model for gait recognition is categorized as a model-based approach. 
The model provides benefits in terms of data compaction, computation, 
storage, scalability, and recognition accuracy. Furthermore, the skeleton- 
related attributes mimic actual physical traits in the human body and can be 
utilized as a soft biometric.

In recent years, depth cameras have become popular for gait analysis mainly 
due to their ability to provide a three-dimensional depiction of the scene 
(Batabyal, Vaccari, and Acton 2015; Clark et al. 2013; Sadeghzadehyazdi, 
Batabyal, and Acton 2021). Unlike their optical counterparts, depth cameras, 
such as lidar and Kinect, can provide depth information that is not sensitive to 
lighting conditions. In this work, we utilize flash lidar to collect data. A flash 
lidar camera uses a pulsed laser to illuminate the whole scene and 

Figure 1. Sample frames of lidar data. The top and bottom rows show depth (range) and intensity 
data, respectively.
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Figure 3 describes the workflow of the gait recognition methodology for the 
flash lidar data. We start with the 2D skeleton detection and 3D joint location 
estimation steps. For a lidar sequence V with f frames, there exists intensity 
I ¼ ½I1; I2; . . . ; If �, and depth R ¼ ½R1; R2; . . . ; Rf �, where Ii and Ri represent 
intensity and depth data at frame i. Intensity data are fed into a 2D skeleton 
detector. We leverage OpenPose, a state-of-the-art real-time pose detector, to 
fit a skeleton model and extract the location of body joints. In Figure 5, the top 
row shows examples of correctly detected skeleton joints. As we can see in this 
figure, OpenPose provides a skeleton model of 18 joints, where 5 of the joints 
represent the nose, eyes, and ears. It is important to note that some of the 
points in a skeleton model might not represent an actual joint. In general, 
these points are a set of anatomical landmarks. However, for convenience and 
consistency with literature, we call all of these points joints. The skeleton 
model that we adopt in this paper includes 13 joints. The reason for such 
choice is the fact that face joints are missing from a large majority of our 
samples. Figure 6 illustrates the skeleton model that we use in this work. Given 
Ii as the input to the skeleton detector, the output is the joint location 
coordinates that can be represented with the following vectorized form 

Ji ¼ ½xk; yk�
M
k¼1 2 <

2N (1) 

where ðxk; ykÞ are the coordinates of the kth joint in the image frame of 
reference, and M represents the number of joints. Considering the structural 
analogy between the 2D digital camera and 3D flash lidar, the pinhole camera 
model can be applied to the flash lidar camera as well (Jang et al. 2017). 

Figure 5. Top row: sample frames with correctly detected skeletons, bottom row: frames with 
faulty skeletons.
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Therefore, the relation between a point in the real-world 3-dimensional 
coordinate system and its 2-dimensional location in the image reference 
frame can be described by the following equation 

Li
j ¼

Lpi
j

f
� Di

camera (2) 

where f is the focal length of the camera and Di
camera is the depth value of joint 

i. Lpi
j represents the location of joint i in direction j in the image coordinate 

system. Here j is in the x or y direction, and Li in the z direction equals the 
depth value at the location of joint i. Furthermore, the viewpoint angle can be 
described by 

θaov ¼ 2 arctanð
Npixels

2f
Þ (3) 

where Npixels is the number of pixels in the j direction and θaov represents the 
angle of view. By combining (2) and (3), we can project the 2-dimensional 
coordinates of joints into the real-world coordinates (McCollough 1893). Li

j, 
the real-world location of joint i in direction j, can be calculated according to 
the following equation 

Li
j ¼

2
Npixels

� tanð
θaov

2
Þ � Lpi

j � Di
camera (4) 

Index Joint

1 Mid Shoulder
2 Right Shoulder
3 Right Elbow
4 Right Wrist
5 Left Shoulder
6 Left Elbow
7 Left Wrist
8 Right Hip
9 Right Knee
10 Right Ankle
11 Left Hip
12 Left Knee 
13 Left Ankle

Figure 6. The skeleton model that we use in this work. Left: index of each joint in the skeleton 
model. Right: skeleton model in a sample frame.
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