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Abstract 

This paper serves to contribute to Model-Based Systems Engineering (MBSE) by following the NASA 

Systems Engineering Handbook framework for a Systems Engineering (SE) design approach to an Electric Vertical 

Takeoff and Landing (e-VTOL) aircraft and the incorporating airspace infrastructure. The focus of this study is, by 

using the MBSE model created, to capture the technical requirements definition and design intent of the vehicle and 

airspace inclusive of community specific knowledge derived from the Federal Aviation Administration (FAA) 

NextGen Urban Air Mobility (UAM) Concept of Operations (ConOps) version 1.0. The stakeholder requirements 

derived from the FAA UAM NextGen ConOps will form the bedrock for the aircraft infrastructure requirements 

from which the flight mission requirements are derived. From these requirements, the profile of a notional flight 

mission is provided. Additionally, from the flight mission requirements, a design solution can be proposed and 

examined to ensure it meets the original stakeholder needs. The vehicle and associated airspace environment are 

modeled using an MBSE dedicated platform, Cameo Systems Modeler, in a language called SysML. The resulting 

MBSE model created can demonstrate the traceability between top-level system requirements down to the 

subcomponent-level design. In the conclusive study of the sub-system behavioral relationships, the analysis and 

validation of the proposed design solution can support model reliability.  
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CHAPTER 1 – INTRODUCTION 

 

With the growing rate of technological expansion in the field of Urban Air Mobility (UAM), 

it becomes important to focus on methodologies to help develop these concept aircraft designs 

that will one day be introduced into the National Airspace System (NAS). Since many of these 

aircraft are still in the testing/demonstration stage as prototypes, this is a good opportunity to 

look at engineering approaches that would assist in these efforts. Systems engineering is shifting 

towards a more model-centric approach to design where the model configuration is managed in 

the virtual environment entirely through Model-Based Systems Engineering (MBSE). An MBSE 

approach could pose quite useful in the preliminary stages of electric Vertical Takeoff and 

Landing (e-VTOL) aircraft and airspace development when stakeholder requirements and design 

intent are still developing. Design configuration changes may stem from top-level requirement 

changes resulting from changes in the flight mission or from off-nominal scenarios that require a 

design update. 

 

1.1 BACKGROUND ON URBAN AIR MOBILITY  

The notion to perform UAM operations in the form of air taxis to transport passengers has 

been prevalent since the 1940s and is gaining popularity again due to congestion in urban areas. 

[3] As the tempo for usage of VTOL/e-VTOL grows due to inherent desire to mitigate ground 

transportation density, a set of technological and operational challenges must be overcome to see 

a true concept of operations fully realized. In São Paulo, Brazil and Mexico City, Mexico, urban 

air transport via helicopters is already an integrated reality but is associated with a steep financial 

cost. [3] Studies have also indicated a push away from helicopter transport due to community 
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noise complaints and limited passenger capacity. In Dubai and the United Arab Emirates, 

prototypes for air taxi infrastructure are in development. [3] Major stakeholders in the UAM 

community are the Federal Aviation Administration (FAA), the National Aeronautics and Space 

Administration (NASA), the U.S. Department of Transportation, General Aviation 

Manufacturers Association, transportation researchers, academic institutions, municipal 

governments, and civil aviation authorities. [4] From these key players, conceptual development 

of a UAS (Unmanned Aerial System) Traffic Management system (UTM) is in the preliminary 

stages that is currently used as medical transports, package delivery, and weather observational 

data and would need to be developed for passenger transport. Figure 1.0 depicts a conceptual 

illustration of UAM operations. 

 

Figure 1.0: Urban Air Mobility Concept of Operations [3] 

In the United States alone, corporate players such as aircraft manufacturers like Bell 

Helicopters, Airbus, and Boeing, ridesharing company Uber, and startups such as Kitty Hawk’s 

Cora have taken serious interest in this commercial potential. [4] Along that wavelength, Uber 

Elevate is already conducting on-demand helicopter operations in New York City, NY. As the 
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commercial market landscape keeps opening, so arises the need to adopt a procedural directive to 

integrate and carefully monitor these aircraft during flight operations. Safely integrating these 

UAM aircraft into the NAS is of the highest priority. NASA’s original research in UAM came 

from the over-arching framework of On-Demand Mobility (ODM), which focuses on the flight 

operations between a takeoff-site to any location without the schedule delays seen in current 

commercial transport. As a subgroup of ODM, UAM strictly examines the metropolitan airspace 

ecosystem for passenger transport of distances up to 100 nautical miles (nmi) or less. [3] As an 

effort to help promote public confidence in UAM and help accelerate UAM operations in the 

NAS, NASA’s Aeronautics Research Mission Directorate (ARMD) is hosting an Advanced Air 

Mobility “National Campaign” which includes industry partners demonstrating aspects of actual 

flight missions. [5] These mission demonstrations include simulated aircraft contingency 

management, advanced two-way network communications, and visual obstruction avoidance 

handling. It is also a desire for these industry partners to assist in developing maturity levels, 

what are termed as UAM Maturity Levels (UML). [5] The higher the UML, the denser and more 

complex the airspace and operations become. In conjunction to hosting the National Campaign, 

NASA is working jointly with the FAA to develop the FAA NextGen ConOps to help provide 

direction to this emerging technology.  

 

1.2 HISTORY OF URBAN AIR MOBILITY OPERATIONS 

As previously mentioned, urban air transport has been a part of the airspace infrastructure 

since World War II and became more popular in the 1950s with helicopter operations. The 

operational intent is similar to that of helicopter operations but the design intent behind a UAM 

vehicle differs in that there is a market need for a “greener” design philosophy and the need for 



4 
 

noise reduction. [6] After World War II, the commercial use of helicopters integrated into many 

roles, including firefighting, police work, agricultural crop spraying, mosquito control, medical 

evacuation, and carrying mail and passengers. [6] Figure 2.0 depicts an early aerial military 

UAM vehicle. Certain configurations of the multirotor design, which is discussed in this paper, 

resembles this early depiction of an “aerial jeep” shown in Figure 2.0. 

 

Figure 2.0: Curtiss-Wright Aerial Jeep (VZ-7) – Circa 1958 [7] 

By the 1960s, urban public living reached a space age of new ideas ranging from monorails 

to modular housing. By the 1980s, most urban VTOL services, including in the San Francisco 

Bay Area, were out of business, due to the following reasons: noise pollution, danger inherent in 

operations, and expensive costs. [8] From the 1940s – 1970s, both Los Angeles Airways and 

New York Airways conducted helicopter flights to transport passengers from major airport 

terminal areas to different locations within those metropolitan areas. [3] In that timeframe, both 

airways experienced a series of tragic accidents, which led to crippling financial consequences 

and complete termination of operations. Currently, companies such as Airbus’ Voom and 

BLADE Bounce have taken over a majority of these intercity on-demand helicopter operations. 

[3] Figure 3.0 depicts Airbus’ VOOM Aircraft transporting a passenger in current state 

operations and uniquely identifies how urban air travel is currently a reality via VTOL/helicopter 
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aircraft, but this is not a mainstream mode of travel due to the high expense associated with it, 

which can be construed from the figure.  

 

Figure 3.0: On-Demand Helicopter Transport Using Airbus’ Voom Aircraft [9] 

The shift between use of helicopter to UAM vehicles for ODM is due to community-based 

regulations requiring a stricter requirement for noise reduction and engine output pollution. The 

aerospace industry’s attitude is shifting towards a “greener” approach as fossil fuel consumption 

is a quarter already of a typical flight profile. For this reason, many aerospace manufacturing 

companies are investigating the usage of hybrid aircraft to satisfy the current need but steering 

towards all electric designs for the future. [10] Safety is also another factor for considering 

VTOL aircraft, as 45 percent of the total number of airplane accidents and fatalities occur during 

take-off and landing from 1959 through 2016. [11] In terms of current e-VTOL aircraft 

technology, a flight mission could be potentially limited on certain design characteristics such as 

battery capacity and weight loading. The need for a lightweight vehicle that can accommodate 

for the weight of passenger transport is inclusive of this industry research in these “novel” 

operations. Currently, technology forecasts that it will be another 5-10 years before e-VTOL 

aircraft can successfully perform these mission profiles [12]; however, that technology gap is 

rapidly closing. 
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1.3 CURRENT UAM AIRCRAFT DESIGNS IN DEVELOPMENT 

To engage this emerging market for VTOL/e-VTOL aircraft to satisfy a need for rapid urban 

air travel, several companies have intensified the development of prototype aircraft. Future 

maturity models depict that these aircraft will eventually become autonomous, but early stages 

will have a pilot onboard being directed by conventional air traffic management personnel. [12] 

Currently on the market, three configurations of UAM aircraft are leading the stage. These 

configurations are the multi-rotor design (wingless), the lift and cruise design, and the vectored 

thrust design. [13] 

The multi-rotor design, as depicted in Figure 4.0, offers a unique advantage in that it has a 

faster certification time but has the disadvantage of having a shorter flight range and a reduced 

speed; hence making this aircraft suitable for short range city operations. Wingless e-VTOL are 

multirotor aircraft. The E-Hang 184 and the Volocopter 2X are already in the certification phase. 

Hoverbikes are considered a subset of multirotors and are usually characterized by a single seat 

where the rider sits on a saddle or stands up while in flight. [13] 

 

Figure 4.0: Wingless Multirotor E-VTOL: Volocopter 2X [13] 
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The lift and cruise e-VTOL design is popular since it can demonstrate a wider flight range 

and speed than the multirotor design. Some configurations have a wing incorporated in the 

design for efficient cruise. Similar to the vectored thrust e-VTOL design, they have two different 

propulsion systems for hover and cruise flight. The Aurora Flight Sciences Passenger Air 

Vehicle (PAV) e-VTOL design, as depicted in Figure 5.0, and the Kitty Hawk Cora design are 

examples of lift and cruise designs. [13] 

 

Figure 5.0: Aurora-Boeing Passenger Air Vehicle (PAV) Design [14] 

The vectored thrust design, shown in Figure 6.0, offers the greatest average in-flight 

speed over the other two designs, as the same propulsion system is used for both hover and 

cruise. [13] However, these designs have a longer certification process. The operative difference 

in this type of design is whether the design has fans or propellers. 

 

Figure 6.0: Joby S2 Tilt-Propeller Design [13] 
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Table 1.0 depicts some of the most current projects for e-VTOL in development. No concept 

vehicle of an e-VTOL design in the U.S. has been commercialized yet. [12] 

Table 1.0: UAM Aircraft Currently Under Development [15] 

 

 

1.4 CURRENT E-VTOL DESIGN LIMITATIONS 

Currently, there are several issues, which present a challenge for e-VTOL aircraft from 

integrating into the modern airspace. Lithium–ion batteries hold the strongest candidacy for this 

emerging e-VTOL market due to specific energy output. [16] However, battery capacity 

limitations comprise a large percentage of the problem at hand. Battery capacity output is 

determined by the battery mass, type, and volume the given battery. The current state of Lithium-

ion battery pack-level specific energy is around 150 Wh/kg, although by predicting an increase 

by 300 Wh/kg would extend the range of the aircraft (Note: Lithium-ion batteries are the focused 



9 
 

technology in this discussion as they hold the strongest capability of fulfilling future needs). An 

additional requirement that battery capacity relies on is maximum takeoff weight. [16] If the 

flight needed to carry more than one person under the current state of pack-level specific energy 

output, the flight range requirements could not be met. [16] Figure 7.0 depicts a graph of the 

chemical energy content of certain fuels. Shown in Figure 7.0, the energy content of lithium-ion 

batteries is orders of magnitude smaller than kerosene or hydrogen in MJ/kg. This emphasizes 

the challenges ahead for eVTOL development. [17] Ergo, most if not all prototypes may need to 

rely on hybrid hydrocarbon fuel designs for sustained flight.  

In general, multiple motors and propellers (or ducted fans) are incorporated into the 

design of these vehicles to overcome shortcomings, a design strategy known as Distributed 

Electric Propulsion, or DEP. [18] Distributed electric propulsion systems utilize electrically 

driven propulsors, which are only connected electrically to energy sources or power-generating 

devices. [18] There are additional technology limitations; rendering an entirely electric vehicle 

not feasible at the moment, which pose other issues as well. For one, there are technology gaps 

which prohibit the new standards of noise reduction. The noise of an e-VTOL is postulated to be 

below 67 dB at 250 feet above ground level according to UBER Elevate, 2016. [19] This is not 

possible with today's helicopter technology unless the engine is converted to fully electric and 

the rotor blades diameters are designed smaller. [19] Outside of limitations in battery technology 

and noise requirements, certification, urban infrastructure development, emissions signature 

reduction, vehicle performance optimization, pilot training, public confidence, and safety pose as 

other notable hurdles in the race for urban on-demand mobility. [19] To secure public trust that 

this venture will be a success, safety must be at the forefront. At today’s airspace standards, at 

10-9 reliability [20], which would mean that in a model that had a fleet size of a 1000 aircraft and 
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1000 flight hours in one year [20], statistically one failure would occur every year. At the 

projection of the UAM stakeholder business forecast, imagine now there are 50,000 aircraft at 

3000 flight hours [20] each annually to assess probability of an accident. This would 

exponentially increase the probability for an accident. Additionally, as stakeholder business 

models not only increase the volume of flights but traditionally cater to low operating costs. Part 

of the stride to reduce operating costs, is to run autonomous e-VTOL operations with pilots 

flying these aircraft from the ground remotely. To secure the public trust that these operations 

will be operated with reduced risk, several safety demonstrations and flight tests will be needed. 

 

 

Figure 7.0: Chemical Energy Content of Select Fuels (in MJ/kg) [17] 
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1.5 NEED FOR SYSTEMS ENGINEERING CONCEPTS FOR MBSE  

Any aircraft in production will create the need for regulatory and operational certification 

requirements. In the United States, the institution of traditional aircraft certification/requirements 

falls under the regulatory authority of the Federal Aviation Administration (FAA). While the 

manufacturing of UAM vehicles is still in the prototype development phase, the FAA is working 

on airworthiness certification requirements for these newly emerging aircraft. Per reference [21], 

it is presumed that an e-VTOL vehicle will fall under the following for airworthiness 

certification:  

1. FAR Part 21.17 (b) [21] 

1a. Part 23 for a normal category aircraft with special conditions [21] 

1b. Part 27 for a normal category rotorcraft with special conditions [21] 

2. Any number of less popular certification paths [21] 

If the flight operation has the intent to carry passengers, this is termed as a “novel” 

operation. [21] The FAA is still developing guidance for paths to certification for “novel” 

operations. If a UAM vehicle in such a “novel” operation were to use Part 23 as a starting point 

(which is encompassed in FAR 21.17 (b)), it would fall under a prime example of the limitations 

of a document-traced aviation set of regulations. On March 9, 2016, the FAA released a notice to 

update the airworthiness certification requirements for aircraft that fell under the 14 CFR Part 23 

certification process with a revision now known as the Part 23 rewrite. This discussion regarding 

the Part 23 rewrite is emphasized over the other Parts that fall under FAR 21.17(b) due to the 

scope of the amendments needed.  

In reference [22], this life-cycle study addresses several key issues, which lead to 

recommendations to update this set of requirements included in Part 23. For example, Part 23 

differentiates requirements based on engine type and on airplane weight. [22] Additionally, this 



12 
 

did not include operational intent of the aircraft as a factor in the certification requirements. In 

the Part 23 life-cycle study, an amendment was also needed to account for a hierarchy of 

maintenance data. [22] Another factor contributing to the Part 23 rewrite concerned the design 

certification, where there were challenges in meeting procedural requirements for type 

certifications of aircraft. This posed an undue burden for those manufacturing the aircraft. In 

many aircraft manufacturing companies, there is an in-house compliance engineering team to 

translate these types of requirements for the engineering management team to ensure 

compliance. Select companies have an option delegation authority (ODA) in which this 

compliance team is certified by the FAA to act as their representative. The translation of 

requirements is traditionally document-based. Accompanying each aircraft build is a certification 

“package”, typically managed by compliance engineers.  

Utilization of MBSE (where MBSE infers use of MBSE dedicated software) in managing 

those requirements is a direct functionality of management’s interest in that expenditure for that 

additional software resource. Currently, SE conceptual modeling is done more often without the 

use of actual MBSE. This is unfortunate, as MBSE can help in tracing requirements and 

additionally assist in modeling the operational intent of the vehicle (behavior modeling). MBSE 

implementation can also prove useful when Tier 3 requirements become Tier 1 requirements, 

when the work shifts over from the main contractor to the subcontractor level.   

Another area where MBSE could be of use is in the topic of continued airworthiness. 

During the aircraft’s life cycle, there are FAA-mandated forms that must be filled out to be 

process compliant when certain situations occur. An example of this, FAA Form 337 for Major 

Repair and Alteration [23] is filled out by an engineer or technician. MBSE modeling would 

allow this input to become a data requirement as part of a larger MBSE model, thus allowing the 
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process to drive the forms in aircraft manufacturing, and not the other way around. Equipping 

companies with MBSE capability could streamline requirement situational awareness. An 

example would be where subcontractor technical leads could invoke a needed change in a 

continued application of an original designed structural requirement that was potentially 

problematic. This can then lead to cost analysis efforts, which can reduce manufacturing over-

expenditure. It can easily be demonstrated that MBSE can be proven useful in isolating possible 

design defects early in the design phase. In a real-world context, if not identified early, these 

design flaws could cost considerably more in the development and sustainment phase of these 

aircraft. This is evident in Figure 8.0, taken from the Defense Acquisition University. [1] 

Depending on how the system is designed, this will set the cost matriculation throughout the 

lifecycle. Also, of note in this figure is the design change cost as you move further towards the 

sustainment phase. Therefore, it is important to perform periodic testing and analysis earlier than 

the verification and validation stages. [1]  

 

Figure 8.0: Life Cycle Cost Impacts from Early Phase Decision Making [1] 
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Additionally, MBSE creates an environment perfect for stakeholders and team members 

across industry to collaborate on the prospective design and have a greater grasp on the design 

domain. Another important advantage is that the MBSE approach helps facilitate reuse of 

designs. In the emerging market of e-VTOL design, this could prove very useful since many of 

the UAM flight mission requirements are similar. Proven concept configuration designs could be 

re-used to meet industry requirements versus the extra expense incurred in creating new designs 

and accompanying analyses. Additionally, at the beginning of any project, MBSE could benefit 

the entire project by capturing stakeholder artifacts early on and aid in scoping the project 

deliverables.  

As it is apparent there is a direct need for MBSE to be integrated in the process of 

requirement mapping, it is also clearly evident there are specific research gaps that exist in other 

areas concerning design origination. There are several research papers and articles that address the 

topics in the areas of MBSE, aircraft detail design, and urban air mobility aircraft. However, there are 

very few research efforts transcribed on open-source media that exist currently that encompass all three of 

these aspects. Additionally, many research efforts do not even employ the basic fundamentals of systems 

engineering in their design process, let alone use software modeling techniques. This could be due to the 

fact that the procedural definition for urban air mobility environment is still being currently defined by the 

FAA/NASA (as the first revision for Urban Air Mobility Concept of Operations first appeared in June of 

2020), so the operational intent of these vehicles is still under development.  

To meet the current stringent design requirements needed to make these VTOL/e-VTOL 

designs a reality, high-fidelity software is being employed to create these configurations in a 

virtual environment first. In most cases, several different platforms are used simultaneously to 

understand not only the geometry of the design, but also the multibody dynamics, nonlinear 

finite elements, structural dynamics, and rotorcraft aerodynamics. However, it can be noted for 
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the research herein discussed in this section, that no systems engineering conceptual work or 

modeling was mentioned in the fundamental design origination process. Systems analysis is a 

component of NDARC; however, it is not the focus in the following papers listed. [24] In the 

study presented in “VTOL Urban Air Mobility Concept Vehicles for Technology Development” 

[25] and “Concept Vehicles for VTOL Air Taxi Operations” [26], a multitude of different 

software is utilized to complete the research. In that study, NASA Design and Analysis of 

Rotorcraft (NDARC) is used as the primary sizing and performance analysis tool, while 

OpenVSP is used in parallel to create the geometry and CAMRAD II for the surrogate model 

generation and rotor design. [25] [26] NDARC is a conceptual design environment capable of 

representing e-VTOL aircraft through semi-parametric and parametric modeling. The sizing is 

prepared by consecutive substitutions in the software. New design performance is calculated 

based on calibrations against similar aircraft models.  

In a similar study presented in “Current Capabilities and Challenges of NDARC and SUAVE 

for e-VTOL Aircraft Design and Analysis” [27], the Kitty Hawk Cora e-VTOL design is the 

focal point for a comparative analysis. The author outlines how two design environments, 

NDARC and SAUVE, are both employed to investigate aircraft properties such as vehicle weight 

and aircraft performance based on the same mission profile. Again, there is no mention of 

systems engineering concepts in the design process for this research. Based on the report, the 

results concluded that the SAUVE analysis model leaned favorably towards a more structurally 

efficient design versus an aerodynamic one, whereas as the NDARC model catered more towards 

an aerodynamic design. [27]  

Systems Modeling Language, SysML, a language used for MBSE modeling, can do more 

than just capture design intent. In an MBSE platform, such as Cameo Systems Modeler, the 
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technical requirements definition, the design intent, and the verification of the proposed design 

through analysis can streamline the whole project. [28] If an MBSE framework were to be fully 

utilized in conjunction with aircraft design development efforts, using a SysML based modeling, 

better design coordination could result. This does not mean to say that MBSE software can 

eradicate the need for using specific design software; in fact, it cannot, but more so compliment 

the design process. Table 2.0 depicts relevant software used for current UAM Aircraft design 

that could be used to compliment any MBSE related project. 

Table 2.0: Popular Software Used for UAM Aircraft Design 

 

In reference “Conceptual Design and Mission Analysis for eVTOL Urban Air Mobility Flight 

Vehicle Configurations”, five different configurations of UAM aircraft are discussed for 

suitability for a pre-specified flight mission using VSPAERO to perform the aerodynamic 

calculations. [29] This optimization study examines the aircraft from a weights-based 

optimization approach and lists several other criteria for selecting the most suitable aircraft to 

perform the mission. The suitability selection also notionally operates in a domain of both 

mission range and speed in the analysis. [29] As aforementioned, there is no systems engineering 

conceptual modeling in determining the initial design proposals. There is also no hierarchy of 

requirements needed for the aircraft selected in this basic mission outlined. The only stated 

parameters were mission ranges (between 10-100 miles), operational ceiling, payload 
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requirement of 800 lbs., and a cruise speed range. By using requirements modeling typically 

used in SE research for these types of comparative studies, these constraints presented could be 

given a hierarchy level of importance; and certain designs would be the eliminated from the 

study earlier.   

In another comparative design study summarized in “A Performance Benchmark of Recent 

Personal Air Vehicle Concepts for Urban Air Mobility”, two UAM aircraft configurations, an 

18-rotor multicopter and a fixed wing lift and cruise, are scrutinized for sizing effects for three 

variations each of these two aircraft. [30] There is no explanation why these aircraft were 

selected, other than mention they were common aircraft used for UAM flights and some 

performance benefits. This study uses much published data in its research and could benefit 

much from a systems engineering logical ordering and mission requirement definition early in 

the process. The mission performance analysis is based on a five-segmented mission profile, 

with select design mission parameters weighted on a value scale. [30] Presented here is another 

opportunity where an MBSE modeling approach could be helpful in not only structuring a 

hierarchy for flight parameters but provide the traceability directly from the desired project 

artifacts to the performance metrics/ validation results at the end of the research. This would help 

organize the project as a whole product instead of segmented deliverable.  

Another aspect that is missing from several literature sources is the implementation of 

systems engineering methods in modeling the airspace this type of aircraft will be conducting 

UAM operations. In reference, “Proposed Approach to Studying Urban Air Mobility Missions 

Including an Initial Exploration of Mission Requirements”; this illustrates the point 

aforementioned. In this paper, the researchers examine the operational conditions for UAM 

airspace using a “three-pronged approach” [31], with the first approach being operational 
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requirements definition which is to be used to elaborate on vehicle design (although vehicle 

design is not expounded upon in this paper). The paper goes on to examine initially a general 

UAM mission profile and then further details on three unique mission profiles, alternating 

parameters for payload and range. It is here, where MBSE modeling could be used to highlight 

the operational sequence of events through activity diagrams and other behavioral modeling for 

the three mission profiles specified. These instances serve as motivating examples as to why 

systems engineering stylized approach and MBSE modeling are important to include in any 

vehicle design efforts as well as airspace modeling.  

 

1.6 PROBLEM STATEMENT  

As the demand for faster intra-urban travel increases, so does the need for development 

of aircraft to address these demands. This market demand is driving the “need” to build UAM 

vehicles and begin design work to build these aircraft. As the push for “on-demand mobility” has 

intensified, designs are already underway from several different companies. However, our 

current industry practices do not leverage systems engineering methodologies or MBSE to the 

extent possible and as a consequence, mostly resort to a more document-centric engineering 

approach. In facing this current “state of operations” dilemma, the following questions are 

examined in this thesis research – (i.) can an MBSE approach to the design of an e-VTOL 

architecture and airspace demonstrate traceability of stakeholder requirements and track 

requirement changes to mature the modeled design intent, and (ii.) in implementing the MBSE 

framework for the vehicle architecture, can it be determined that a fully electric vehicle design is 

not feasible for current market needs based on technology limitations and a hybrid design could 

make a formidable design consideration. 
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1.7 THESIS FRAMEWORK 

Chapter Two begins with the fundamentals and overview of MBSE and an introduction 

to SysML and the nine diagrams (used in this methodology) is discussed as well to compliment 

this understanding. This chapter also introduces the process adapted for the MBSE approach and 

examines the technical groundwork needed before setting up a model in referring back to the 

established NASA SE Handbook framework. The first outlined objective of this thesis is to build 

and analyze a MBSE reference model based on the SE process guidance of the NASA Systems 

Engineering Handbook (which cites information from NPR 7123.1, Systems Engineering 

Processes and Requirements [32]). This model will also “loosely” adapt to a lifecycle technical 

process similar to that of NPR 7120.5, NASA Space Flight Program and Project Management 

Requirements [33]. The research methodology, adapted from the NASA SE Handbook, serves as 

the “roadmap” for this paper and is discussed in Section 2.4. The actual need for an MBSE 

modeling approach is punctuated in Section 2.5. 

Chapter Three begins the operation of constructing the actual reference model based on 

the knowledge provided in Chapter Two. This chapter begins the step-by-step modeling process 

by first capturing the stakeholder expectations and mission and system requirements needed for 

vehicle and airspace architecture and design. A discussion is presented in this chapter on the 

three levels of requirements used for model establishment. The notional flight mission 

requirements are presented in the following Section 3.2. These notional flight parameters 

(adapted from current published data) will facilitate in setting the stage for developing a set of 

vehicle system requirements. It will be supported that an MBSE approach provides early 

definition of system functional requirements, complete capture of the system activities, enhanced 

design integrity, better requirements traceability, improved detection of impact from requirement 
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changes, and a more versatile validation of these requirements. The research flight mission 

concept of operations is presented in Section 3.3. The preliminary vehicle architecture based on 

initial notional mission constraints will be used to build a technical decision analysis design 

study to later propose an initial design solution to be captured in the MBSE model. A 

demonstration of the capabilities of the nine diagrams in Cameo Systems Modeler is showcased 

using models from the actual MBSE model created for the UAM vehicle and the airspace 

environment.  

Chapter Four analyzes the model connectivity and explores further topics in airspace 

infrastructure modeling. In this chapter, project artifact/requirement traceability and validation 

results are presented as well as some discussion on the relevance to this research. It is in this 

chapter where the full value of behavioral modeling of UAM operations in the corridor airspace 

can be examined; applicable not only in nominal operations but in off-nominal in-flight events as 

well. 

Concluding remarks about the model and anticipated future work relevant to continuing 

this research is reviewed in Chapter Five.  
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CHAPTER 2 – BACKGROUND: MODEL-BASED SYSTEMS ENGINEERING 

METHODOLOGY 

 

2.1 OVERVIEW OF MODEL-BASED SYSTEMS ENGINEERING  

 Model based systems engineering approaches systems development from the stance of an 

abstraction from reality to display the physical representation of the system through a series of 

models. These models help to establish a technical baseline to help contribute to the 

understanding of the system requirements, design, behavior analysis, and verification. Model- 

based engineering contrasts with the traditional document-centric approach and application in 

that it builds and manages the product in a virtual environment versus a paper-based one. [34] 

With the computer age emerging in the 1950s and 1960s, model-centric approaches were 

becoming more common, especially in control system and electrical engineering. However, 

Systems Engineering (SE) was still developing. The current SE standards are only ten years old 

[35], and still under development by the Standards Technical Committee of the International 

Council on Systems Engineering (INCOSE), subcommittee of the International Organization for 

Standardization (ISO), the International Electromechanical Commission (IEC), the Institute of 

Electrical and Electronics Engineers (IEEE), and the Object Management Group (OMG). [35] It 

is expected that there will be a massive paradigm shift in model-based designs over the course of 

the next decade. The system model is the main artifact of MBSE [28], containing a series of 

interconnected models following the similarity of a part tree in an assembly drawing. Model 

based system engineering practices demonstrate mastery of complex systems. A coherent model-

based system will capture initial stakeholder requirements as the foundation of the model. From 

there detailed systems models deriving from these requirements must not only provide design 
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precision, but also allow collaboration amongst industry team members. Figure 9.0 shows an 

illustration of the document-centric approach converting to the model-based approach. Some 

advantages of using the MBSE approach are displayed in the list below: [28] [36]  

1. Increased design and specification precision which yields less errors at later design phases 

2. Optimal design integrity as evident in accurate traceability in system requirements, design, 

analysis, and verification information 

3. Improved lifecycle maintenance of design baselines and system specifications 

4. Provision of a virtual network that can be used as a collaboration tool amongst stakeholders 

and design/development team. 

 

Figure 9.0: Document-Based Versus Model Based Systems Engineering [34] 

The development process of the MBSE approach can be evaluated by the number of use 

cases that it produces, the number of requirements fulfilled, the successful connection of logical 

components to physical components, the interface specification comprehensiveness, the number 

of test cases, and the count of verification procedures that have been developed. The systems 

model is an “entity”. The “internal” system is defined by “states” and the outside of this system 

has valued inputs from where the system itself then derives its outputs. To summarize, MBSE 
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elevates the core engineering models to a central role where the models become the leading 

authority for design, integration, and specification of the entire system. [37]  

 

2.2 BACKGROUND ON SYSML AND THE FOUR PILLARS  

Back in the 1950s, systems engineering was starting to be represented by what is called 

Functional Flow Block Diagrams (FFBDs). Later in the 1970s, the Structured Analysis and 

Design Technique (SADT) evolved as the graphical language to communicate SE technology. 

[35] For data system flow, a Data Flow Diagram (DFD) is used. Although Enhanced FFBDs 

(EFFBDs) and the Integration Definition for Function Modeling (IDEF0) have been pervasive in 

the last couple of years, INCOSE and OMG (Object Management Group) jointly developed 

SysML which is a derivative off from the Unified Modeling Language (UML-not to be confused 

with UAM Maturity Level). [35] SysML is a graphical programming language used for 

representing systems models. Cameo Systems Modeler and MagicDraw are platforms (created 

by NoMagic (Dassault)) that use SysML to create these logical block diagrams to reveal the 

system as a whole and their interconnectivities. [28] These “blocks” can represent software, 

hardware, data, processes, personnel, and facilities. Unlike UML, which can use thirteen 

diagrams to decompose a system, SysML uses nine diagrams to represent different aspects of a 

system. [35] [28] Figure 10.0 shows the breakdown of all nine diagrams used in SysML. These 

nine diagrams assist in breaking down the four pillars of SysML, which are the requirements, the 

system structure, the system behavior, and parametric system relationships.  
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Figure 10.0: Breakdown of the SysML Diagrams [38] 

    At the beginning of any systems engineering model creation is the definition of requirements. 

The systems engineering “engine” uses these requirements to relay the needs of the stakeholders, 

as shown in Figure 11.0 (later in Section 2.3). These requirements can further be broken down as 

functional or technical requirements. The MBSE approach, using [1] as the framework, then 

creates dependency relationships with the stakeholder requirements and model elements such as 

the blocks, use cases, and test cases to establish model traceability. These relationships help 

define the system as a black box and can be represented as components of the requirement and in 

the requirement tables. Another important feature which manages the model organization is the 

package diagram. [28] The package diagrams help contain the model elements into logical 

folders. A good start for a systems model design would be to use the four pillars (requirements, 

structure, behavior, and parametrics) as the initial Package Diagrams. [28] Then, inside each of 

these package diagrams there would be nested packages to help decompose the multiple levels of 
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the design. Similar to a CAD assembly Part tree, the systems model is organized into a tree of 

packages. This “tree” is termed a containment tree.  

 

2.3 ADOPTING THE NASA FRAMEWORK FOR A SYSTEMS ENGINEERING PROCESS 

It is important for any systems engineering project work to be grounded in already 

existing guidelines that are well developed. For this effort, guidance on SE best practices were 

derived from the NASA Systems Engineering Handbook (NASA/SP-2016-6105 Revision 2) 

which frequently cites material from reference NPR 7123.1, Systems Engineering Processes and 

Requirements.  

“Systems engineering” is defined as a methodical, multi-disciplinary approach for the 

design, realization, technical management, operations, and retirement of a system. [1] This 

methodology allows a bird’s eye view of the project artifacts to be managed and meet the 

stakeholder requirements in the intended use environment.  

The three types of technical processes defined in Figure 11.0, “The Systems Engineering 

Engine”, are system design, product realization, and technical management. The process 

breakdown for each process is further decomposed. [1] It is anticipated that the designed solution 

will fulfill the original stakeholder expectations in the system design process. In the study 

presented in this paper, the stakeholder expectations definition becomes the Level 1 requirements 

from where the Level 2 system requirements come from. This is discussed later in the paper. The 

role of the technical management process is to culminate coordination amongst team authorities, 

develop technical plans spanning the project, to assess progress regarding requirements and 

plans, technical execution, and provide decision making. [1] Technical processes can be 

employed recursively and iteratively to break down established concepts of the system to a level 
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of discrete detail. The product realization process is applied to each project mission product 

starting with the lowest level product and working up to the higher-level products. It is through 

these processes that the design solution is achieved for each product.  

 

Figure 11.0: The System Engineering Engine (NPR 7123.1) [1] 

Critical in managing core elements of any SE project is to govern those systems within 

the project through a program life cycle. A program lifecycle groups stages of the project into 

“phases” that are divided by “Key Decision Points” (KDPs). “KDPs are the events at which the 

decision authority determines the readiness of a program/project to progress to the next phase of 

the life cycle (or to the next KDP).” [1] Establishing project boundaries and greenlight decision 

points helps to frame the project into a more manageable entity.  
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For the SE project discussed in this paper, the project lifecycle as referenced in NASA 

procedure NPR 7120.5, NASA Space Flight Program and Project Management Requirements 

[33], would be the most suitable to selectively adapt to, with some additional considerations that 

this paper discusses a project involving UAM vehicle and airspace procedural development 

versus a project dealing with spacecraft launch operations.  

The NASA SE Handbook describes its Program/Project Life Cycles by referring to the 

lifecycle phases as defined in NPR 7120.5. These phases are the Formulation Phase and the 

Implementation Phase. [1][33] A list of the full lifecycle with all the phases is displayed in 

reference [1], however for the purpose of this research; a tailored life cycle will be followed, 

which will only focus on the Formulation Phase. For this research effort, the system design is the 

focus. Only “select” sub-processes categorized under Concept and Technology Development 

would be applicable for the design focus, which are referenced in [1]. 

As mentioned earlier, this research effort is “loosely” adapted to this life cycle process 

outlined in NPR 7120.5, as this structural architecture design in for an aircraft; so certain sub 

processes such as “develop initial orbital debris assessment” [1] would not be applicable for this 

effort. For an aircraft lifecycle development, process steps for market analysis and vehicle 

certification processes specific to the aviation industry would have to be included in a project of 

this magnitude to frame the work as congruent with real world practices. Market analysis can be 

used to generate economic requirements as well as customer requirements. [39] 

 

2.4 MBSE of E-VTOL METHODOLOGY  

When referring to the NASA Systems Engineering Handbook [1], Figure 12.0 below 

depicts Figure 4.0-1 on page 44 of [1], begins the process with the program authority defining 
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the stakeholder expectations. For the purposes of this research effort, the FAA UAM ConOps 

will serve in defining the stakeholder expectations and the notional flight mission parameters 

(built on published data) will establish the initial flight constraints. For the Requirements 

Definition block, the top-level requirements definition will be further defined in Section 3.1, 

which will be complemented by the information provided in Section 3.2. As Stakeholder 

Expectations and Requirements definition traditionally fall under Concept Studies as listed in 

reference [1], the next process step not shown in the picture (but inferred), is Concept and 

Technology Development. As Logical Decomposition was accomplished in this effort by MBSE 

software modeling, this will be further discussed in Chapter Three. In Section 3.8, a technical 

decision analysis is performed for several different configurations of UAM aircraft to assess 

what the performance metrics would be in response to the flight parameters proposed in Section 

3.2. From this decision analysis (or trade study), an optimal configuration was chosen to then 

serve as an initial design solution. Figure 13.0 depicts a diagram, which shows the actual work 

performed in this paper in relation to the original “roadmap” in Figure 12.0. 
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Figure 12.0: Inter-Relationships amongst System Design Processes. [1] 

 

Figure 13.0: Research Methodology “Roadmap”  
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CHAPTER 3 – CONSTRUCTION OF THE E-VTOL MBSE MODEL 

 

3.1 STAKEHOLDER EXPECTATIONS AND REQUIREMENTS MODELING  

Capturing stakeholder needs and later mission requirements is a critical step in preparing 

the model. The relationship, which the top-level requirements hold with the stakeholder 

expectations, is fundamental in establishing the logical decomposition of the system, which then 

translates into the design solution/physical architecture. 

Identifying the stakeholder expectations and “needs” early is beneficial in defining 

mission context. Likewise, the mission requirements, measures of effectiveness of the system, 

and the mission objectives are also derived from the stakeholder needs. Another important key 

element of capturing stakeholder needs is to identify stakeholder viewpoints. [28] This is 

traditionally modeled in diagram mode articulating what each stakeholder is primarily concerned 

about and how the model information addresses these concerns. Stakeholder needs can be further 

broken down, such as functional requirements and non-functional requirements. [28] Functional 

requirements can be refined by use cases diagrams whereas non-functional requirements can be 

demonstrated by measurements of effectiveness. Traditionally, requirements are depicted in the 

SysML model as requirement tables to start with before examining further with diagrams.  

For the purposes of this study, requirements are broken down into three levels: Level 1, 

Level 2, and Level 3. Level 1 requirements are specified by the overarching authority deriving a 

need coming from the government or industry. Typically, the FAA, NASA, the UAM Operator, 

and industry would serve in providing Level 1 requirements or the stakeholder needs. Much of 

the guidance for the Level 1 requirements in this paper has been derived from the FAA NextGen 

UAM ConOps version 1.0. Level 2 requirements, or system requirements, would be derived 

from organizations attempting to fulfill the engineering needs classified by the Level 1 authority; 
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in this case, the system requirements would have to satisfy not only the Federal Aviation 

Regulations (FARs) but also the flight mission requirements deriving from the UAM Operator 

Operational Requirements. Figure 14.0 shows the relationship hierarchy for the various level 

requirements in a SysML requirement diagram as part of the model. Capturing the requirement 

relationship hierarchy early is important to build and make known the path for possible 

iterations, if they are needed, as lower-level design activities occur. MBSE clearly defines the 

requirements that bind the design engineering activities. For this effort, the flight mission 

requirements, the FAA NextGen ConOps, the FARs and the UAM operator operational 

requirements will serve as the Top Level/Level 1 requirements, but the Level 2 System 

Requirements only “trace” back to the flight mission requirements but still must “satisfy” the 

other Level 1 authorities. The flight mission requirements serve as your customer request 

requirements (i.e. – customer places a request to travel 50 nautical miles southwest of original 

takeoff vertiport site). The Level 2 requirements, the system requirements, must trace only back 

to the flight mission requirements (customer requirements) because regulatory authorities only 

define what you are allowed to do in order to meet your customer requirements. They do not 

define the customer requirements. As you distill the customer requirements into system 

requirements, the applicable regulatory requirements that must be satisfied become clear. An 

example of this is classification of an aircraft by weight. There is a difference in how an ultra-

light aircraft versus a light aircraft must be certified. In building this MBSE e-VTOL model, the 

engineering model of the physical architecture would be satisfying Level 2 requirements. It 

should be noted here, for this research, that select Section Part 29 FARs for helicopter design 

were referenced as “notional” requirements for system requirements. They do not represent 

actual FARs that would be needed for real UAM aircraft certification/development. No actual 
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FARs exist yet for UAM aircraft. Level 3 requirements would be a more specialized set of 

requirements addressing the needs coming down from Level 2 requirements. Level 3 

requirements are the subsystem requirements.  

 

Figure 14.0: Requirement Traceability from Stakeholder Needs  

As mentioned previously, the Level 1 requirements (the stakeholder needs) are derived 

from the FAA NextGen UAM Concept of Operations v. 1.0. Below in Figure 15.0, a SysML 

requirements table is displaying one set of the Level 1 requirements. 
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Figure 15.0: Stakeholder Needs for the UAM SysML model 

For the Level 1 stakeholder needs, the operational requirements must satisfy any top-

level needs. Figure 16.0 shows a requirement table of the UAM Operator Operational 

Requirements. This is further broken down in Figure 17.0, which shows how the flight mission 

requirements must satisfy not only the operational requirements of the operator, but also the 

FAA UAM NextGen ConOps and the FARs. The operational requirements were researched from 

publicly available data from generic UAM flight mission profiles, inclusive of a needed 

information concerning flight range, payload specification, vehicle movement, energy 

quantification, and reserve capacity. Level 2 requirements are concentrated on aircraft system 

detail design and development, which are derived from the UAM operator “operational” 

requirements and the FARs. At Level 3, the requirements are focused on the subsystem 

requirements which trace back to the system requirements. Below, in Figure 16.0, is a SysML 

requirements table for the UAM Operator Operational Requirements. 
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Figure 16.0: UAM Operator Operational Requirements  

 

Figure 17.0: Traceability of Flight Mission Requirements  

For future MBSE model updates, the model could adapt to a real-world hierarchy by 

separating aircraft requirements into categories such as economic requirements, regulatory 

requirements, system constraints, and specialty requirements. Economic requirements are 

derived from market analysis and trends. Regulatory requirements trace to the FARS and Joint 

Aviation Agencies (JAAs) which set the cadence for aircraft certification. A system constraint 

would be weight requirements, of which Manufacturer Empty Weight (MEW) and Maximum 



35 
 

Takeoff Weight (MTOW) are the most important. Any specialty requirements would be in 

aircraft reliability and human factors. [39] 

 

3.2 PROPOSED LEVEL 1 FLIGHT MISSION REQUIREMENTS FOR ANALYSIS  

For the study proposed in this thesis, the following is the mission profile that will be used 

as the flight mission parameters from which a design solution is modeled in a model-based 

systems engineering platform. This set of requirement parameters is based on current industry 

and academic research models. It is also roughly based on the mission requirements of Uber 

Elevate’s program [40], the scenario requirements from NASA’s National Campaign [5], and 

other scholarly publications [29][30][43] involving research in e-VTOL aircraft/flight mission 

development. To establish a frame of reference, the location of the e-VTOL mission is set in the 

Atlantic City regional area originating from a vertiport located near Atlantic City International 

Airport and flying to a vertiport near Cape May Airport. The flight path for this prescribed 

mission is depicted in Figure 18.0. This location is an ideal selection as the FAA, NASA, and 

local community have expressed interest in adopting this area along the Jitney Route in Atlantic 

City as an early adopter location for UAM operations. The general Level 1 flight mission 

requirements are set forth as such [5] [29] [30] [40] [43]: 

1. Must be able to transport 3 passengers + 1 Pilot in Command (PIC) 

2. Be able to support a payload weight of 1200 lbs.  

3. Must be able to transport three passengers to a vertiport terminal landing area in Cape May, 

which is ~ 44.6 miles southwest of Atlantic City International Airport (vertiport). 

4. Must have a minimum travel range of 50 miles => 44.6 (miles)/38.75 (nmi) + additional 

takeoff and landing travel distances 
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5. Must be able to take off and land vertically 

6. Must be able to hover 

7. Maximum climb speed at 150 mph 

8. Onboard weather monitoring system 

9. Must have a maximum cruise speed of 150 mph at 2500 feet AGL 

10. Minimum cruising altitude set at 2500 feet AGL  

11. Maximum cruising altitude set at 3000 feet AGL 

12. Average climb rate not to exceed 500 feet/min 

13. Descent rate not to exceed 1,000 feet/min 

14. Must have onboard communication equipment to communicate with ATC/PSU 

15. Must be able to divert to an alternate landing spot located at a distance of 5 statute miles from 

the original location 

16. Must be capable of VFR and IFR flight 

17. Must have an autopilot feature 

18. Must have contingencies in case of a water landing  

19. Acceptable structural weight of a UAM vehicle needs to account for not only flight loads but 

also crash events. 

20. Must have in-built contingencies for a balked landing/go-around. 

21. Aircraft must have operational contingencies for complex and dense airspace. For this flight 

mission, there are 20 other aircraft flying in this airspace.  
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Figure 18.0: Flight Path for e-VTOL Aircraft 

 

3.3 FLIGHT MISSION ENVIRONMENT AND CONCEPT OF OPERATIONS  

As mentioned previously, the Concept of Operations framework laid out in the FAA 

NextGen UAM ConOps version 1.0 is adapted for this study. The UAM Operations Environment 

(UOE) consists of several different actors who operate in this environment to successfully 

execute flight missions in specific volumes of airspace called “UAM Corridors”. Figure 19.0 

depicts an illustration of a UAM Corridor as defined in the FAA UAM ConOps. 
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Figure 19.0: Urban Air Mobility Corridor [2] 

 The location from where the flight operation departs or arrives is called the UAM 

“aerodrome”. Inside the aerodrome is the vertiport, where the actual takeoff and landings occur. 

The actor conducting operations in these 3-dimensional airspace volumes is the UAM Operator. 

The UAM Operator is responsible for addressing service requests from customers, executing this 

on-demand service using UAM aircraft. To derive “Operational Intent” for the flight (such as 

location of flight, route, desired flight time), the UAM operator must go through a series of data 

exchanges with the Provider of Services (PSU) and the Supplemental Data Service Provider 

(SDSP) to obtain current state conditions (vertiport availability, strategic operational demand, 

environmental data, and situational awareness). Once the operational intent has been established, 

the UAM Operator must submit operational data to the PSU Network to then conduct a UAM 

mission within a UAM corridor. From here, operations are intended to be managed by vertiport 

operators, several PSUs, and aircraft/fleet operators aided by automation. [2] Figure 20.0 

illustrates the proposed flight mission ConOps adopted to for this study. Aircraft depictions from 

[25]. 
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Figure 20.0: Flight Mission ConOps  

 

3.4 DEFINING LOGICAL ARCHITECTURE  

 In following the research methodology roadmap from Figure 13.0, defining logical 

architecture is the next stage. At this point, it is imperative to provide some additional detail on 

planning the model activity to serve in providing that definition to logical architecture. It is an 

action taken with a fresh perspective to define the mission objectives and scope as well. In this 

virtual environment, the mission objectives must support the mission context. The objectives 

should concisely ensure the aircraft architecture fulfills that requirements needed by the 

stakeholders involved. As such, the objectives are needed to update any model artifacts and 

address any information needs. [18] Additionally, at this stage a schedule for the resultant model 

artifacts should be established to ensure deliverable schedule is retained. From the objectives, the 

logical architecture must be derived. From the logical architecture, the physical architecture can 

then be defined. The “Planning the Model Effort” can be characterized in Figure 21.0. The 
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definition of logical architecture would occur between “Analyze Mission and Stakeholder 

Needs” and “Specify System Requirements” in Figure 21.0. 

 

Figure 21.0: Plan the Modeling Effort Activity Diagram [18] 

 

3.5 MODEL ORGANIZATION AND CONTAINMENT TREE  

The next step in the process is establishing model organization. In SysML, this can be 

aptly shown by use of packages. A SysML model structure is organized in its “containment tree” 

by a series of packages (depicted in Figure 22.0); some packages having nested packages 

inherent inside those packages. In referencing the four pillars of SysML, one can establish the 

framework for the model organizational containment tree and build the structure from those four 

pillars. [28] 
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Figure 22.0: Model Organization in the Containment Tree  

It is important to note that in establishing model organization, there is no one distinct 

standard. There are several different ways to organize a model in Cameo Systems Modeler or 

other platforms. This paper referenced “Architecting Spacecraft with SysML” alongside 

NoMagic online documentation to provide guidance. Additional guidance on model construction 

and fundamentals was derived from “Developing a CubeSat Model-Based Systems Engineering 

(MBSE) Reference Model – Interim Status” [41]. In ref [41], it is also emphasized how 

important it is to capture the operational domain of the system and show the flow down of the 

requirements from the mission objectives. 
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The mission context displays all the elements with which the aircraft interacts and the 

environment in which it operates. [28] These elements can either be direct or indirect interaction 

with the aircraft but can include external actors to the system and subsystems. In Figure 23.0, the 

mission enterprise is specified as a BDD block connecting to the mission context. The 

measurements of effectiveness (MoEs) are typically captured under mission enterprise. The 

MoEs capture how well a system carries out a task within a specific context; however, they do 

not gauge the task performance. [28] The MoEs can be also used to quantify the stakeholder 

value of an intended solution. 

 

Figure 23.0: Block Definition Diagram of the Mission Context [2] 

In this study, a mission context package diagram called “UAM Vehicle Mission Context” 

is created as depicted in Figure 24.0. This package diagram organizes the model hierarchy into 

packages. This could be considered an early step in model creation by establishing the model 

organization package diagram. The containment tree will further populate as the model 
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organization package diagram is populated. The actual UAM/E-VTOL physical architecture is 

further broken down in part “6 – UAM Vehicle” in the package diagram as seen in Figure 24.0. 

The black box specifications are mentioned here. To understand the “black box” system concept, 

it is important to understand that this is a display of the system components that do not actually 

belong to the system itself, but more so interact with the system. This also includes human 

actors, which interact with the system as seen from the outside. External performance 

requirements are also part of the black box specification, for example, “provide power to the 

system”. Black box specification differs from white box specification in that white box 

specification examines the system from an internal perspective. [28]  
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Figure 24.0: Package Diagram of the Model Organization  
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3.6 USE CASE MODELING 

Encased in the original package diagram for the mission context is a package containing 

“Use Cases”. As stated earlier, the mission objectives are derived from the stakeholder needs. 

These objectives are often signified as use case diagrams emphasizing how these objectives are 

met within the scope of the mission context and invoking the roles of the actors involved. The 

actors are shown in the use case diagram interfacing with the system externally to complete the 

pre-defined mission objectives. A Use Case Diagram (UC) that can also be used to define a set 

of use cases performed within a particular system context, representing a black box view of the 

system of interest. It also can create associations between different use cases and the actors of the 

system context, to specify who/what is responsible for invoking or participating in what use case. 

Once use cases are defined, state machine diagrams, sequence diagrams, and activity diagrams 

are constructed to show stakeholders how the mission objectives can be achieved at the 

subcomponent level. Typically use case diagrams fall under Behavior modeling, but a separated 

in the model organization in this study in their own package. Below in Figure 25.0, is a use case 

diagram addressing a basic flight mission use case and the actors involved. [28] As illustrated in 

this figure, the major stakeholders are addressing a market /demand need to have the objective of 

conducting UAM flight missions met. The UAM Operator objective is to maintain and 

physically conduct flight missions, as it is the entity responsible for this operational velocity. 

Although the Provider of Services (PSU) acts to support the original stakeholder need to conduct 

these operations, their objective differs in that this service supports the UAM Operator through a 

series of data exchanges to provide operational information. The Supplemental Data Service 

Provider (SDSPs) and the UAS Service Suppliers (USSs) receive supplemental information to 

provide to the PSU, who then can inform the UAM Operator concerning UAM corridor 
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environment information. In the FAA NextGen ConOps, the UAM Operator can interact with the 

SDSPs independently as well outside the PSUs. All information provided helps the UAM 

Operator meet operational and regulatory requirements within the UOE.  

 

Figure 25.0: Basic Flight Mission Use Case Diagram  

 

3.7 BEHAVIOR MODELING 

 The primary diagrams associated with modeling behavior are Activity Diagrams (ACT), 

Sequence Diagram (SD), State Diagrams (STM), and Use Cases Diagrams (UC). [28] A SysML 

Activity Diagram is composed of a series internal blocks and symbolic representations of inputs 

and outputs displaying logic control flow in the activity being performed. [28] The activity in 

question represents a flow of operational behaviors. Activities and action can be represented by 

control blocks, often depicting a series of system actions or those inherent of a subsystem. In the 

SysML environment, an activity diagram can be nested inside another activity, such as in Figure 

26.0. In this activity depiction, a basic flight mission profile is drawn out as logical sequential 
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activity connecting each internal action. Much of the logic flow in this diagram is dependent on 

“clearance” actions being provided so the activity can move onto the next action, such as the 

whole activity awaiting clearance for takeoff to begin the mission. If this clearance is not given, 

the flow is routed to wait for this action to occur. If this activity is still not satisfied, the activity 

terminates with ending the flight mission. In the same sense, if clearance to land is not provided, 

the operator must wait for further instruction to either perform a go-around/reroute. This is 

typically referred to as a balked landing and can occur for several reasons. A common reason is 

vertiport availability. In the “Perform Vertical Takeoff” Action, later depicted in Figure 27.0, a 

rake (₼) icon is present in Figure 26.0 for this activity. This indicates there is an internal activity 

diagram associated with “Perform Vertical Takeoff”. This demonstrates the SysML model’s 

capability of system decomposition. Figure 27.0 provides additional detail as to possible steps 

that could occur during a takeoff procedure, such as pre-flight and equipment checks performed 

prior to departure. 

 

Figure 26.0: Activity Diagram of “Performing Flight Mission” 
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Figure 27.0: Activity Diagram of “Perform Vertical Takeoff” 

An activity diagram is an extension of the UML Activity Diagram, for which the purpose 

is to specify dynamic system behaviors that satisfy system Functional Requirements using both 

Control and Object (data) flows. Control flow represents the flow of functional behaviors 

whereas the object flow is a phrase used to depict how the output of one action interconnects to 

the input of a second action.  Control and Object Flows can be sequential (default) or working in 

parallel. This flow construction includes fork and join nodes depending upon conditions. The 

behavior of the system or subsystem also shows the sequential logic flow. Activity information 

can also be represented into logical “swim lanes” to build a logical architecture of the activity in 

question in terms of the system control flow functioning in parallel or in series, as depicted in 

Figure 28.0. [28] Swim lanes provide visual assistance in viewing from the swim lane owner’s 

perspective and what actions are in their own que. In Figure 28.0, the swim lane for the Provider 

of Services shows that it is interacting with the e-VTOL aircraft by use of a 2-way network 

communication application program interface (API) for all actions listed under this swim lane. 

The e-VTOL aircraft in turn takes this data exchange to support its own actions in its own swim 
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lane, such as receiving mission instructions from the PSU. The e-VTOL can then receive these 

instructions, which support maneuvering activities within its flight corridor. 

 

Figure 28.0: UAM Activity Diagram with Component Swim Lanes 

SysML control block modeling is especially useful when modeling specific flight mission 

models. It not only captures the activities involved in the operation performed but also reveals 

needed requirements to perform the mission. This is best illustrated in Figure 29.0. The activity 

diagram detailed in Figure 29.0 is the MBSE version of the Flight Mission ConOps diagram 

(Figure 20.0) outlined in Section 3.3 of this paper. In Figure 29.0, the activity flow showcases 

the same information with the diagram in Figure 20.0, by starting with the onboarding of the 3 

passengers at the takeoff vertiport site all the way through landing at the vertiport site in Cape 

May. Activity diagrams can also play a key role when addressing non-routine (off-nominal) 

events that occur in flight operation stages to show what the course of action logic flow would 

potentially be based on current state airspace operational knowledge; this will be discussed later 

in the paper.  
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Figure 29.0: Activity Diagram for Atlantic City Flight Mission  

An activity diagram of the various “swim lanes” in the operational environment in 

depicted in Figure 30.0. For this diagram, the acronym “PAX” means to passengers. In this 

activity diagram though, there is a distinct order of operations when swim lane owner actions 

appear in relation to the process of conducting a simple UAM operation. There is also an 

indication of responsibility for certain actions along this process, such as the UAM vertiport 

taking the responsibility of screening the passengers before takeoff during the onboarding stage. 

Of note in this diagram, is that from the perspective of the UAM Aircraft swim lane, there is a 

nested activity in performing the actual flight mission, which has a series of actions embedded in 

this activity to taxi, takeoff, perform the flight, and terminate this activity by landing if the flight 

status is a routine event. This diagram is a coherent example of how activity diagrams can 

capture multiple pieces of information about an activity simultaneously. 
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Figure 30.0: Activity Diagram for a UAM Flight Operation  

It is important that the granularity of system structure and behavior be consistent in each 

level of detail in the model’s behavioral description. Supporting this concept is the creation of 

Sequence Diagrams (SD) in the SysML model. A sequence diagram provides a sequential map 

of certain elements in a system inclusive of the interactions between actors and operational 

actions contained within. This diagram variety illustrates the “timeline” of these interactions. In 

Figure 31.0, a sequential timeline is established for placing a flight mission request from the 

beginning of the sequence starting from when the customer orders a flight from the UAM 

Operator. As you can see in Figure 31.0, instances are created in this type of diagram, as the 

creation of the Service Appointment did not exist prior to the instantiation of the PSU collecting 

data pertaining to the aerodrome operational conditions. The PSU does not begin the operational 

environment query (such queries include operational intent ensuring strategic deconfliction, 
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UAM corridor capacity, airspace restrictions, aerodrome resource availability and inclement 

weather conditions) [2] until the UAM Operator provides operational intent to the PSU. A 

sequence diagram is an excellent way to demonstrate causal relationships between operators 

within the system environment. [28] 

 

Figure 31.0: Sequence Diagram for a Flight Mission Request 

The next type of diagram, which is conducive at highlighting a system’s behavior, analyzes 

the states at which a system undergoes. This is referred to as a State Machine Diagram (STM). 

This type of diagram depicts the transitions from different operative states, for example, turning 

an autopilot feature onboard an aircraft from a state of “on” to “off”. States can have several 

internal behaviors that are specified in the form of SysML activity diagrams created somewhere 

in the model. Hence, state machine diagrams can be constructed with activity diagrams nested 

internally to capture a specifc model behavior. This is especially helpful when it comes to flight 

operation modeling where each “state” the aircraft is transistioning from is a complex activity in 

itself, such as a layered operational segment when the aircraft is flying.  Another aspect of a state 
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machine diagram is the exhibition of exit, entry, and do type behaviors becoming defined by the 

“use” to help quantify the purpose of a block while in a specified state. Figure 32.0 depicts a 

generic state machine diagram for different aircraft operational “states”. During the state of 

“Flying”, there are four embedded states exclusive to “Flying”; they are “Autopilot”, “Descent”, 

“Cruise”, “Straight and Level Flight”, and “Climb”. Of added note in this figure, is the use of 

composite states. An eyeglass figure is located next to each composite state. As the state of 

“Turns” is not specific to just the “Cruise” state in this figure but also is applicable to “Climb”, 

this can be depicted as a composite state. Composite states are states which have substates 

(nested states) Substates can be nested to any level as shown in this figure. To add further detail 

to a state, notes can be added to describe what is occuring at that state, such as in the “Approach” 

state notes which indicates to decrease airspeed, elevation and altitude. [18] [42] 

 

Figure 32.0: State Machine Diagram of Aircraft Flight Behavior [42] 

 As it is imperative to identify key activities that demonstrate system behavior, so is it 

equally important to identify top-level failure modes that would produce mission failure. The 
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level of failure modes is a functionality of how complex the system activity is. A failure mode 

can be quantified as abstract constraint violation. An activity violation could occur at a failure 

point for a nested activity. For example, “Perform Flight Mission” would fall into a failure mode 

constraint if the activity “Perform Vertical Takeoff” prompted a failure constraint violation in 

Figure 33.0. Likewise, if there were an interruption in traveling inside the UAM corridor, this 

would fall under an off-nominal constraint violation. An example of an off-nominal violation 

would be an in-flight mechanical total failure. Similarly, if the e-VTOL aircraft were unable to 

provide flight data to the PSU, this would have serious consequences in flight domain situational 

awareness within the corridor. The top failure modes that have the highest probability of causing 

a mission failure are essential to measure initially to reduce their probability of occurrence. This 

type of systems analysis could be beneficial in later research involving a detailed Failure Mode 

and Effects Analysis (FMEA). [28] 

Figure 33.0: Block Definition Diagram for Perform Mission Failure Modes 
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3.8 STRUCTURE MODELING 

The proposed design solution was highly inspired by the Mistral Air Taxi conceptual 

design in ref [43] and the Lilium Jet design in ref [13]. These concept vehicles illustrated the 

level of variety in design choices relevant to a study focused on building a functioning aircraft 

that met certain mission use cases. As the performance metrics of the Mistral Air Taxi were 

similar to the Lilium Jet design, this helped in verification of needed subcomponents to support 

this type of design. Both aircraft are depicted in Figure 34.0 and 35.0. 

 

Figure 34.0: Concept Vehicle Graphic of the Mistral Air Taxi [43] 

 

Figure 35.0: Lilium Jet 5-Seater Aircraft [13] 

The designed vehicle includes a distributed electric propulsion (DEP) system, a wing (2 

partitions) and canard configuration, a vectored thrust propulsion system where the engines are 

directly affixed to the fuselage via the canard roots, and a differential thrust system for yaw 
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movement. The DEP system leads into increased range, while boundary layer ingestion also 

helps to a decrease in total pressure losses in the system and improve overall efficiency. [43] The 

wing section includes 16 electric motors, each motor powering a ducted fan each, with 8 motors 

per each partition of wing. The canard section has a total of 8 electric motors with 8 ducted fans; 

1 connected to each motor. The fuselage is equipped for 4 passengers inclusive of a pilot and 

luggage stowage. These attributes are some of the key differentiating features compared to 

common small fixed-wing aircraft or urban helicopters. The ducted fan design not only increases 

the engine efficiency but also delivers opportunities to reduce the noise footprint of the aircraft, 

via low blade-tip velocities at Mach numbers below Ma=0.5 and the inclusion of acoustic liners 

which dissipate the blade passing frequency. [43] Also, this design has the capability to be 

complimented to go into full autonomous mode. This is attributed to a researched market 

demand for full autonomy in these types of vehicles in the future. This is also a stakeholder 

requirement. The system supports a total of 3 batteries, 1 for the front canard section and 2 for 

each wing partition.  

 It should be noted at this stage, the current propulsion configuration for both the Mistral 

Air Taxi and the Lilium Jet do not meet the intended design solution definition, which targets 

satisfying the original stakeholder requirement over the range requirement of 50 miles. Since the 

proposed design as is does not met the target requirement, a design change is needed. This is the 

beginning of the flow of the systems engineering engine, an iterative process to navigate back 

and forth between the designer and the stakeholder in a goal in fulfilling the original stakeholder 

needs. The systems engineer is that flow line between those two parties. The Mistral Air Taxi 

study uses forecasted battery properties, calculating 398 Wh/kg for the wing batteries and 138 
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Wh/kg for the canard battery pack. [43] The hover power alone required on the Lilium Jet is 

calculated using the Equation 1.0 [13]: 

𝑃 =  √(
𝑇

𝑇𝑖
)

3 

2𝜌𝐴
                                                Equation 1.0 [13] 

Where Ti = 1.26 is the thrust increase for ducted fans, T is the thrust required or the weight of 

the vehicle and A is the disk actuator area of the vertical thrust system. Using known weight of 

the 2-seater configuration at 490 kg and the power requirement of 187 kW just to hover, it was 

computed that the power requirement for the 5-seater configuration was P = 1460.386 kW. This 

means that this requirement cannot be met alone on the Tesla motors being considered for this 

design. On a subsystem level, the power can also be broken down per each fan motor. This can 

be computed using the Equation 2.0 [13]: 

           𝑃 =  
1

𝜂
 

𝑇3/2

√4𝜎𝜌𝐴
                                             Equation 2.0 [13] 

Where A is the disk actuator area of the ducted fan, T = Tf an + Tduct is the thrust generated by the 

fan and the duct, h the engine efficiency, r = 1.225 kg/m3 the sea level air density and σ = 1 is 

the duct expansion ratio (i.e. ratio of exit area to disk area). [13] 

Engines currently are the central performance enabler of an aircraft and are critical to the 

architectural e-VTOL. The proposed custom hybrid propulsion system design was inspired by 

Safran’s hybrid electric propulsion system [44], however not converting to the use of stacked 

batteries. In this conceptual distributed hybrid electric propulsion system for aircraft, a 

turbogenerator (a gas turbine driving an electrical generator) is coupling the power generated by 

the wing battery component. This combined system powers multiple electric motors turning the 

ducted fans to provide propulsion. Additionally, each motor controller and motor are connected 

in series and all 24 sets (motor controllers and motors) are in parallel to each other. This is so 
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they can all operate on the same voltage levels. The turbogenerator and main wing batteries are 

powering all of the propulsion while the front battery is powering the avionics package. This was 

designed this way to ensure that if power loss was experienced from the wing batteries, the front 

battery will supply as an alternate power source to couple with the turbogenerator in case the 

pilot needs to glide the aircraft down in the event of an emergency. Additionally, a power 

distribution unit (PDU) or distribution core was integrated into the design as well to regulate the 

power drawn from the main wing batteries and the turbogenerator as a redundancy measure in 

case one of the main wing batteries failed as well. 

Another factor in updating a system design is accounting for weights added to the system. 

In most SE modeling of aircraft, weight is a main system requirement and constraint. [45] In 

commercial aviation, this is a critical factor as this can affect your performance metrics. If we 

assume the turbogenerator pack is a substantial weight, this will ultimately add to the design 

gross weight (DGW) affecting the mission range it can perform. Meaning, if the powerplant 

selection at this point has been made, now the process of confirming this still satisfies with the 

Level 1 requirement of flying 50 miles must occur. This often is an iterative process, which 

MBSE can assist in streamlining. Weight calculations are a mandatory step in aircraft design as 

there are inherent safety factors to consider and are mandated by the FARs. Below in Figure 

36.0, is a depiction of how to classify the different weight categories. This is important as this 

clarifies the difference between the maximum payload weight and the maximum design takeoff 

weight, the maximum payload weight (1200 lbs.) being a flight mission requirement annotated 

earlier in Section 3.2. In Figure 37.0, is a depiction of the relationship between the payload 

weight and the range. Figure 37.0 provides a visual correlation to how adding weight to the 
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design gross weight impacts the ability to satisfy another flight mission requirement, which is the 

mission range. 

 

Figure 36.0: Composition of Weight Categories [45] 

 

Figure 37.0: Typical Payload and Range Diagram [45] 

Below in Figure 38.0, is a depiction of how a system/subsystem (in this case 

manufacturer’s empty weight) requirements relate to original mission objectives. As illustrated in 

this sysML diagram, the requirement for MEW is not an established flight mission requirement. 

Rather its traceability comes from a “notional” Part 29 helicopter requirement tracing back to the 
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FARs to just illustrate an example of the traceability if actual FARs existed for UAM vehicles. If 

FARs did actually exist, then my system requirements would not just satisfy but would trace 

back to them. Additionally, the flight mission requirements must directly satisfy the primary 

objective to perform a flight mission with a UAM vehicle for passenger transport. However, the 

flight mission requirements must still satisfy the FARs, from which this “notional” Part 29.29 

requirement traces to.  

 

Figure 38.0: MEW Systems Requirements in Relation to a Mission Objective 

For the design in question, the next stage would be to break down the entire aircraft down 

into logical subsystems. These subsystems are: (1) main structural body, (2) propulsion, (3) 

electronics, and (4) avionics. Modeling structure subsystems requires the usage of BDDs and 

IBDs. [28] At the top of the BDD is “UAM Vehicle” in Figure 39.0, further breaking down into 

its logical subsystems. In this BDD, the subsystems are represented as blocks that trace back to 

the high-level system, the “UAM Vehicle”. [28] The goal of creating BDDs is to capture the 
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static structural framework recursively containing and decomposing its elements, the contents 

inside those elements (nested elements), and the types of interfaces associated. An example of 

nested elements is depicted in both Figure 39.0 and Figure 40.0. 

 

Figure 39.0: Block Definition Diagram of UAM Vehicle System  

As shown in Figure 40.0, the main structural body block is further decomposed into (1) 

fuselage, (2) canard, (3) wings, and (4) landing gear. If you select the “Main Structural Body” 

block in Figure 39.0, it forwards the end user in the SysML environment to Figure 40.0, where 

there is another BDD displaying all of the contents (inclusive of properties, behaviors, and 

constraints) for that particular subsystem. This enables the reconstruction and later, re-design of 

the subsystems under scrutiny and assists in collaborative efforts. Elements in Figure 40.0 are 

quantified as “parts”, defined by blocks, if they contain internal block diagram information. An 

element’s specific definition is a block, while the use case of an element within certain context 

should be classified as a part. It is at the discretion of the end user to quantify the decomposition 

of a subsystem either by a series of block definition diagrams or by internal block definition 
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diagrams, or a combination of both. Reusable descriptions, provided by blocks, can also be 

applied to conceptual aspects of the system design.  [28] 

 

Figure 40.0: Block Definition Diagram of the Main Structural Body 

In this MBSE model, if “Fuselage” is selected in Figure 40.0, it would forward to Figure 

41.0, which is a breakdown of the elements contained inside this block. Figure 41.0 depicts the 

components needed to provide structural integrity for the fuselage needed for this proposed 

design. For this design, the aircraft breaks down into several logical sub-components such as the 

frame, the skins, the interior separation panels, the doors, the seats, the interior flooring, the 

windshield, and the side windows. As shown in this figure, certain sub-components break down 

even further as the case for the cockpit dashboard. The cockpit dashboard decomposes into the 

heads-up display (HUD), the joystick and all the gauges. Similarly, the “Seats” block breaks 

down between the pilot’s seat and the passenger’s seats. 
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Figure 41.0: Block Definition Diagram of the Fuselage System 

The BDD depicted in Figure 42.0 is a further decomposition of the propulsion system, a 

critical subsystem of the UAM vehicle (Figure 39.0). It is shown through this BDD that the 

propulsion system consists of the tilt wing ducted fan system, adjoining motors, and controllers 

needed for maneuvering the UAM vehicle. The propulsion system is decomposed into a main 

propulsion system associated with the wings, and the canard propulsion system in the front of the 

UAM vehicle. The main propulsion system in the wings draws battery power from a battery 

source other than the canard propulsive element. Additionally, the battery source powering the 

motor controllers is not a direct connection but is connected through the power supply unit. This 

sends a signal to the UAM vehicle flight computer, which sends a signal to the motor controllers 

to regulate the voltage to the electric motors to drive the ducted fans. The ducted fans in turn 

provide the thrust needed to lift the aircraft off the ground. The canard inter-connectivity follows 

a similar scheme but is not connected to the tilt mechanism. 
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             Figure 42.0: Block Definition Diagram of the Propulsion System   

The next type of structural diagram is the internal block diagram and provides a more 

“white box” internal examination into the component in question. [28] An IBD can be used to 

display an entire system architecture and how each subsystem is connected to the system (as a 

whole) as shown in Figure 43.0. In Figure 43.0, the connectivity between the four main 

subsystems (electrical, avionics, propulsion and structural) is showcased. In this design, it is 

shown that the left-wing and right-wing batteries are connected through the power distribution 

unit (PDU) to service the propulsion subsystem. The front battery does not connect with the PDU 

but connects directly with the flight computer/central processing unit (CPU) to power the 

avionics package. Because of this functionality, the front battery is stationed in the front of the 

fuselage next to the avionics package. This is an example of how an internal block diagram is 

used to focus on the connectivity of a subsystem to provide further analytical detail to help 

streamline structural design. Additional details include properties so that its values, parts, and 

references to other blocks can be specified. An internal block diagram created for a block 
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includes parts, connectors, and ports. [28] As demonstrated in Figure 43.0, two ports connect the 

tilt actuator assembly to the control surfaces, which fall under a completely different subsystem, 

the structural subsystem. However, two ports within the same subsystem can be connected, as 

evident by the CPU connecting to the avionics package, which all falls under the avionics 

subsystem. An IBD created for a package diagram includes additional elements (shapes, notes, 

and comments). The block in the diagram heading broadcasts the context of that diagram. 

Connecters can connect either to ports on various parts, or from part to part directly. All ports on 

a block serves as interaction points, inclusive if the block represents a part. Parts can also include 

part properties. This is a property that specifies a part with strong ownership and describes a 

local usage or a role of the typing block in the context of the containing block. From the high-

level conceptual design in the MBSE approach, more comprehensive schematics can be 

produced as illustrated in Figure 44.0, which is a detailed technical schematic derived from the 

MBSE version in Figure 43.0. This technical schematic color-codes the flow lines from each of 

the subsystems to provide clearer design intent.  

 

Figure 43.0: Internal Block Diagram of the UAM Vehicle System Interfaces 
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Figure 44.0: Detailed Comprehensive Subsystems Schematic 

The proposed design for the propulsion system is shown as an IBD in Figure 45.0. As 

indicated earlier, this design is a hybrid configuration e-VTOL aircraft, not a fully electric 

configuration. In Figure 45.0, the turbogenerator component is added to the propulsion 

subsystem design inclusive of its model connectivity to the other subsystems. The turbogenerator 

component connects with the electrical subsystem through the PDU to supplement the left-/right-

wing batteries for the power requirement needed in this design. The subsequent detailed 

schematic derived from the MBSE version is shown if Figure 46.0. In this technical schematic, 

further detail is provided about the turbogenerator component. This shows the need for a fuel 

supply component to service the turbine engine, which is part of the turbogenerator assembly.  
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Figure 45.0: Internal Block Diagram of the Propulsion System 

 

 

Figure 46.0: Detailed Schematic of Propulsion System Proposed  

 

3.9 PARAMETRIC MODELING 

Traditionally in support of the analysis context of the SysML model, is the creation of 

what is called a parametric diagram. As a specialized type of an IBD, a parametric diagram 

depicts the mathematical relationships inherent in that part of the system. In fact, mathematical 
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rules and parameters are contained inside constraint blocks, of which the parameters are tied into 

the block value properties. [28] The actual purpose of these diagrams is to enforce these 

mathematical rules across block value properties. Constraint block parameters are interwoven by 

binding connectors (each having at least one end connected to a constraint parameter) and the 

internal part value properties effect the constraint satisfaction. As shown in Figure 47.0, the 

primary focus is the demonstrate the connective relationship from the electrical system to the 

propulsion system and the associated parametrics within each subsystem. The hydrocarbon 

fuel/hybrid propulsive element was incorporated into this parametric diagram to show how that 

subsystem would be integrated into the design. Certain elements such as the flight computer and 

the PSU were intentionally omitted from this diagram as the main intent was to focus on the 

mathematical rules governing the battery system and the engine power output. The parametric 

equations used were defined in [43]. 

 

Figure 47.0: Parametric Diagram of Electrical to Propulsion Connection  

With the Addition of the Turbogenerator System 
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Requirement traceability is one of the fundamental features of the MBSE approach. This 

is demonstrated in Figure 48.0, where an air speed indicator traces to a FAR requirement. Of 

note, FAR 29.1303 was used as a “notional” requirement to demonstrate a concept. The FAR 

specifies the flight and navigation instruments that must be on this category of aircraft. The 

airspeed indicator is listed as a needed instrument for the system requirement. An additional 

subsystem requirement for the performance of the airspeed indicator is subsequently shown as 

well. (Note: The requirement for the instrument range was added as 0-120 knots to provide a 

measurable requirement). In this parametric diagram, a functional schematic of an air speed 

indicator with its associated parametric equations are included in the airspeed indicator, inside 

the avionics package. As shown, the avionics package is connected to the CPU and the front 

battery (acting power source). This figure distinctly shows how a subsystem parametric model 

traces back to level 2 system requirement. 
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Figure 48.0: Traceability of a Subsystems Requirement to the Requirement Authority 
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CHAPTER 4 – ANALYSIS: ANALYZING THE SYSML MODEL  

 

4.1 SYSML MODEL ANALYSIS 

4.1.1 MBSE APPROCH TO COMPLETELY ELECTRIC E-VTOL FEASIBILITY 

To discern whether a fully electric e-VTOL configuration is feasible, an MBSE approach 

will be used to prove this cannot be accomplished with current technology. Per the flight mission 

requirements specified in Section 3.2, there is a customer request to travel 50 miles to reach the 

destination vertiport landing site. Per reference [29], for this flight mission parameter (flight 

range) specified, it would take a minimum power requirement of ~300 Wh/kg, which is a 

forecasted technology achievement by 2026. With the current technology level at 150 Wh/kg, the 

battery component listed under the electrical subsystem in Figure 49.0 would not be able to 

satisfy the customer requirement of 50 miles. If additional battery packages were added to the 

supplement the design, this would ultimately add further weight to the vehicle, which will then 

affect the ability to satisfy the flight mission range requirement once again.  

To demonstrate through calculation why the current battery specific energy capacity 

would not satisfy the flight mission requirement of 50 miles, the 5-seater Lilium Jet (which is a 

close approximation to this paper’s design) listed in reference [13] will be used as a case 

example. Per the equations listed in reference [46], and the aircraft computed known parameters 

in reference [13] for the Lilium Jet, the aircraft maximum energy and the flight range can be 

computed. From reference [46], the two equations needed are: 

𝐸 = 𝐸∗ ∗ 𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∗ 𝜂𝑡𝑜𝑡𝑎𝑙                                Equation 3.0 [46] 

𝑅 =  𝐸∗ ∗ (
𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑚
) ∗ (

1

𝑔
) ∗ (

𝐿

𝐷
) ∗ (𝜂𝑡𝑜𝑡𝑎𝑙)                 Equation 4.0 [46] 
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Where E = the amount of electrical energy an aircraft can store and use as a function of 

battery specific energy (𝐸∗), battery mass (𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ) and total propulsion efficiency (𝜂𝑡𝑜𝑡𝑎𝑙 ). 

[46] In Equation 4.0, R = range, 𝑚 = total mass of aircraft, g = gravity constant of 9.8 m/s2, and 

𝐿

𝐷
 is the lift to drag ratio. From reference, taking known values for the 5-seater Lilium Jet, 𝐸∗ = 

157 Wh/kg, 𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 900 kg, 𝑚 = 1700 kg, 𝜂𝑡𝑜𝑡𝑎𝑙 = 70 %. Per reference [13], it is assumed the 

lift to drag ratio is ~ 41 which is too high for this this type of aircraft, so a lift to drag ratio of 5 – 

9 was used per reference [47]. This will also help to provide a general range this aircraft can 

perform. An additional weight for the turbogenerator is also considered in this calculation to 

show how adding additional weight affects flight range. Since it is not listed what this weight 

would be per reference [13], the weight of a PT6B-36B helicopter turboshaft engine per 

reference [48] is used to approximate this additional weight. The turboshaft engine weight is 

171.458 kg (378 lbs.). [48] From equation 1.0, it can now be computed that: 

𝐸 = 𝐸∗ ∗ 𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∗ 𝜂𝑡𝑜𝑡𝑎𝑙  

𝐸 = (157 
𝑊ℎ

𝑘𝑔
) ∗ (900 𝑘𝑔) ∗ (0.70) 

𝐸 = 98,910 𝐽𝑜𝑢𝑙𝑒𝑠 = 98.910 𝑘𝐽 

And computing range without the additional turboshaft engine weight included:  

𝑅 =  (157 
𝑊ℎ

𝑘𝑔
) ∗ (

900 𝑘𝑔

1700 𝑘𝑔
) ∗ (

1

9.8 
𝑚
𝑠2

) ∗ (5) ∗ (0.70) 

𝑅 = 29.684 𝑘𝑚 =  18.445 𝑚𝑖𝑙𝑒𝑠 for 
𝐿

𝐷
 = 5 

and 

𝑅 = 54.432 𝑘𝑚 =  33.822 𝑚𝑖𝑙𝑒𝑠 for 
𝐿

𝐷
 = 9 
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To show how adding the additional turboshaft engine weight would affect the flight range, the 

following is computed: 

𝑅 =  (157 
𝑊ℎ

𝑘𝑔
) ∗ (

900 𝑘𝑔

171.458 𝑘𝑔 + 1700 𝑘𝑔
) ∗ (

1

9.8 
𝑚
𝑠2

) ∗ (5) ∗ (0.70) 

𝑅 = 26.965 𝑘𝑚 =  16.755 𝑚𝑖𝑙𝑒𝑠 for 
𝐿

𝐷
 = 5 

and 

𝑅 = 48.537 𝑘𝑚 = 30.15949356 𝑚𝑖𝑙𝑒𝑠 for 
𝐿

𝐷
 = 9 

As computed, the above calculations prove that with the current battery specific energy 

listed at 157 Wh/kg, the flight range would fall somewhere between approximately 17- 34 miles 

and not be able to support 50 miles. Of additional note, the total propulsion efficiency of 70% 

computed in reference [13], takes into account, a propulsion system that does not operate on 

exclusively battery technology. If this design were a fully electric design, the flight range would 

significantly decrease because the total propulsion efficiency for a fully electric design would 

also decrease. To be able to achieve a 50-mile (80.467 km) mission, by use of equation 4.0 again, 

the following calculations indicate what range the battery specific energy would need to be. Not 

including the turboshaft engine weight, 𝐸∗ is computed at: 

80.467 𝑘𝑚 =  (𝐸∗) ∗ (
900 𝑘𝑔

1700 𝑘𝑔
) ∗ (

1

9.8 
𝑚
𝑠2

) ∗ (5) ∗ (0.70) 

𝐸∗ = 425.593 
𝑊ℎ

𝑘𝑔
 for 

𝐿

𝐷
 = 5 

and 

𝐸∗ = 236.433 
𝑊ℎ

𝑘𝑔
 for 

𝐿

𝐷
 = 9 

And including the turboshaft engine weight, 𝐸∗ is computed at: 
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80.467 𝑘𝑚 =  (𝐸∗) ∗ (
900 𝑘𝑔

171.458 𝑘𝑔 + 1700 𝑘𝑔
) ∗ (

1

9.8 
𝑚
𝑠2

) ∗ (5) ∗ (0.70) 

𝐸∗ = 486.504 
𝑊ℎ

𝑘𝑔
 for 

𝐿

𝐷
 = 5 

and  

𝐸∗ = 260.284 
𝑊ℎ

𝑘𝑔
 for 

𝐿

𝐷
 = 9 

These calculated values support the information provided from the Section 1.4 stating 

that battery technology would need to be in the range between 250 – 300 Wh/kg to support these 

types of flight missions.  

 

Figure 49.0: Feasibility of an All-Electric Design through MBSE 

 

4.1.2 TECHNICAL DECISION ANALYSIS FOR A PROPOSED DESIGN SOLUTION  
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 To evaluate the benefit of MBSE as a tool to analyze and improve a UAM aircraft design, 

a simple baseline model was needed to provide logical decomposition for the MBSE model. To 

derive this baseline model, a technical decision analysis was conducted by comparing publicly 

available information about UAM aircraft currently in production or development. In following 

the technical process as outlined in ref [1], [32], and [33], it is important to address early concept 

and technology development that will translate into preliminary design efforts. [1] As there are 

several different configurations of VTOL/e-VTOL aircraft to examine, whichever configuration 

is preferred, this configuration will then follow more closely Federal Aviation Regulations 

(FARs) for either fixed wing aircraft or for helicopters. In some stages of flight, both fixed wing 

and helicopter FARs would be applicable. Currently, there are no finalized FARs for UAM 

Aircraft. This study shows that the preferred reference design would follow helicopter FARs 

more than fixed wing.  

Several concept UAM vehicles have been studied in the last ten years. To draw a 

comparative basis, different configurations were examined and how each configuration performs 

in similar flight missions. In determining what would be the most optimal design for the flight 

mission requirements specified in Section 3.2, a simple trade study is performed to analyze 

configuration suitability. To perform a basic design solution study, the NASA Decision Analysis 

Process [1] is used as a guideline, which is partially based on the Pugh Method for decision-

making. [49][50] Further refining of a traditional trade study can include defining evaluation 

criteria, defining weight factors, defining a normalization scale, and then the ranking of the 

solutions.  

Sometimes, derived initial solutions may seem misleading at first. For example, in study 

performed in “Electric VTOL Configurations Comparison” paper [13], a multirotor E-Hang 
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design performed better at executing hover maneuvers but cannot satisfy the range requirements 

of a 100 km mission. The vectored thrust design has a higher cruise efficiency, but in the 2-seat 

configuration cannot support the range requirements. When a problem has multiple solutions, a 

study could rank the solutions by giving each solution a numerical value. Next, the study shall 

determine a numerical value for each option. This is often done based on weight factors and a 

normalization scale for the evaluation criteria. Evaluation criteria are key factors that should be 

included. Weight factors can be used to dictate how important the evaluation criteria are relative 

to each other. The normalization scale creates a constant interval scale that allows us to set a 

numerical value for each of the evaluation criteria. [49] From the configurations examined, the 

closest design that met the mission criteria (that is not a simulated design) would be the 5-seat 

configuration Lilium Jet design that has a maximum range of 186 miles, a maximum payload 

weight of 3248 lbs., and a cruise speed of 156 m/hr. [13] The NDARC simulated designs were 

next considered. [25] Next, each parameter was weighted on the level of importance relating to 

the flight mission, which was then examined if that parameter was even met. The last step was 

examining the best elements of each design and deriving the optimal hybrid design. It was 

concluded a ducted fan design solution met the stakeholder needs. Figure 50.0 below depicts the 

design solution study that was performed. 

 

Figure 50.0: Design Solution Study Conducted for UAM Configuration  
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Taking from the results concluded from the design solution study, the ducted fan design 

was deemed the most preferable. The quadrotor design did not suffice for the mission 

requirements as typically this type of aircraft require a lot more power compared to fixed wing 

aircraft, as it needs more power to overcome both the weight and drag components. [13] Due to 

the stakeholder requirements for the UAM vehicle, there is going to be a hover phase of the 

flight plan. This phase of flight that generally uses more power than the cruise phase for a fixed 

wing aircraft. Regardless of design, there will be a hover phase, in which the power is drawn 

most from the propulsion system. Looking at the whole flight mission, regarding the cruise 

phase, one can design something that is more efficient. The thrust vectoring concept design 

enjoys some of the aerodynamical efficiencies of fixed wing aircraft. With a ducted fan 

configuration, the higher disc load of the architecture, more power is required during the take-off 

phase. The proposed design does not require a change in the location of the electronics/battery 

subsystems. In keeping with the original design, the elevons were kept on both the canard section 

and on the main wings. 

 

4.1.3 SATISFYING UAM OPERATOR OPERATIONAL REQUIREMENTS 

 One of the key model artifacts produced is the ability to exhibit how subsystems from the 

physical architecture satisfy UAM operator/operational mission requirements. A requirement 

diagram is the best way to make the derived requirement traceability transparent to all end users. 

[28] Relationships are defined as either satisfaction, derivation, verification, refinement, or trace 

in the SysML environment. In Figure 51.0 and Figure 52.0, a demonstration of this capability is 

depicted displaying the traceability of a requirement to the actual system structural hardware. For 

instance, the requirement for a bi-directional API onboard the aircraft to support network 
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communication is fulfilled via the accuracy and range of the avionics hardware by annotating the 

<<satisfy>> relationship. Additionally, the operational requirement (which the customer 

requirement must fall in line with), of the mission range is satisfied not only by the onboard 

electrical system inclusive of the battery technology, but by the propulsion system as well. As 

shown in Figure 51.0 and 52.0, the propulsion system must now satisfy the mission range, the 

mission payload, the noise reduction requirement, the energy storage requirement, the reserve 

capacity requirement, and the vehicle movement requirement. The avionics system must provide 

support to satisfy the network communications, the security technology , the vertiport 

infrastructure data exchange requirements, and the detect and avoid (of other aircraft) 

requirements. The main structural body must be able to satisfy the requirements needed for the 

mission payload and the operational intent needed for flying within the vertiport infrastructure. 

Of additional note regarding these two figures, is the direct correlation of how many of the flight 

mission parameters listed in Section 3.2 are in congruence with the operational requirements 

needed at the operator level. This implies that a customer cannot request a flight to travel 50 

miles if the UAM operator is not originally capable of doing so. 
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Figure 51.0: Requirements Diagram for Refined Mission Requirements (Part 1) 

 

 

Figure 52.0: Requirements Diagram for Refined Mission Requirements (Part 2) 
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Another important tool utilized for this effort, is the ability to assert what system (or 

mission) requirements are derived from the stakeholder needs. [28] This is demonstrated in 

Figure 53.0 by use of a “derive requirement” matrix. The rows represent the named elements 

which can be the client element of derive dependency. The columns represent requirement 

element which can be the supplier element of derive dependency. For this requirement diagram, 

the UAM Operator Operational requirements are listed as the row data and the requirements 

from the FAA NextGen ConOps are listed as the column data. This type of matrix can aptly 

show how operational requirements are derived from the Level 1 FAA NextGen UAM ConOps 

requirements through a selected traceability relationship type. This is a good way to ensure your 

requirements are in congruence with the stakeholder needs. 

 

 

Figure 53.0: UAM Operator Requirements to Stakeholder Needs “Derive Requirement” Matrix  
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Model artifacts must be supported by the project milestones. A requirements matrix is 

sufficient in specifying this level of support. [28] Figure 54.0 depicts this type of matrix.  

 

Figure 54.0: Artifacts versus Milestones Requirement Matrix  

When it comes to modeling in SysML and working within the systems engineering 

engine, verification testing is imperative. Test cases are used to achieve the verification 

objectives and to ensure you are verifying requirements. [28] Test cases are administered for 

each subcomponent on a pass/fail criterion. Figure 55.0 depicts a BDD for the Verification 

Domain tracing down to the battery subcomponent to help demonstrate this concept. As shown 

in Figure 55.0, verification testing occurs at the lowest sub-component level for the batteries (and 

individually the front, left and right-wing batteries) which fall under the electrical subsystem. 

Likewise, there is verification testing performed at the electrical system level and finally at the 

full aircraft assembly level. After verification testing has been completed, this will lead into final 

validation of the aircraft assembly design. 
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Figure 55.0: SysML Diagram of the Verification Domain 

 

4.2 MODELING OFF-NOMINAL FLIGHT SCENARIOS USING BEHAVIOR 

MODELING 

In the effort of informing developing procedures for this airspace infrastructure UAM 

vehicles are intended to fly in; another element of the SysML model was created. For this model, 

a new package titled “Off-Nominal Scenarios” was created under the behavior model hierarchy. 

In an ideal mission design, the flight will be executed without incident. However, in respect to 

contriving realistic designs, contingency management of off-nominal events must be addressed.  
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A good example of this would be a mission that has the vehicle route towards a destination that 

may experience heavy incoming traffic and require the vehicle to reroute to another landing site. 

The need of a reroute, as shown in Figure 56.0, to an alternate landing site would instantiate a 

requirement for the reserve capacity to meet the distance requirements set forth by the actual 

distances of the alternate landing site. If the delivered methodology of communication changed, 

adding specialized requirements, this would also prompt a design change to the network 

communication if needed. Aircraft depictions in Figure 55.0 are from [25]. 

 

Figure 56.0: Vertiport Re-Route Off-Nominal Scenario Diagram  

Activity diagrams and sequence diagrams are adequate to demonstrate off-nominal flight 

activities. The performed actions shown as logical sequencing is not only beneficial to 

explanation of the system environment but can also serve to aid in defining the roles and 

responsibilities of the participants in this operational environment such as the PSU, the USS, and 

the Pilot in Command. Mapping “actor” requirements is a crucial need in early operational 

concept definition when the roles of specified actors are still being determined. These 

informative aids provide talking points from the stakeholder level all the way through the 
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operator level. Figure 57.0 illustrates an activity diagram generated for a re-route off-nominal 

scenario. In Figure 57.0, additional detail is added to show the activities that would occur if the 

original mission proposed in Section 3.2 were to be re-routed to an alternate landing site. This 

action to perform the re-route is dependent on the instruction provided by the PSU either to 

perform this action or to perform a go-around.  

 

Figure 57.0: Activity Diagram for Vertiport Re-Route (Off-Nominal Scenario) 
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CHAPTER 5 – CONCLUSION 

 

5.1 THESIS DELIVERABLE SUMMARY AND CONCLUSION 

It has been the aim of this research to provide an intellectual discussion about the 

advantages of a model-based approach to UAM vehicle design and airspace architecture. There 

is a constructive effort to quantify the logical steps that can provide explanation of best practices 

by establishing a SysML model that can be used for aircraft/airspace conceptual development. 

Chapter 1 defined the two research questions, which this paper intended to address. The first 

research question was to discern if an MBSE approach to the design of an e-VTOL architecture 

and airspace could demonstrate the traceability of stakeholder requirements and track 

requirement changes to mature the modeled design intent. While this is more of an abstract 

concept to address, chapter three utilizes the framework of systems engineering fundamentals 

that has already been established going into preparing the model as mentioned in chapter two, to 

demonstrate this traceability. It was also crucial in chapter 3 to model the traceability of not just 

the vehicle itself to the stakeholder needs, but additionally the airspace infrastructure to gain an 

understanding of the environment which the system actors perform in. This study modeled 

characteristics of a selected airspace environment (Atlantic City regional area), but with a 

specialized focus on why this area was chosen in relation to current stakeholder needs. 

Additional topics concerning satisfying operational requirements and the process for establishing 

derived requirements are discussed in chapter four. To address the second research question, 

whether a fully e-VTOL design was feasible through an MBSE approach, chapter four delves 

into an MBSE approach to the feasibility of a fully electric design, by utilizing a series of 

calculations for an electric design and MBSE modeling. It was computed in this chapter that 
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current capacity budgets for battery specific energy could not support any long-range e-VTOL 

mission. A trade study of different aircraft configurations was included as part of chapter four to 

illustrate an approach to a design selection, given that a fully e-VTOL design was proven not 

feasible in the previous section.  

Additional studies in the context of future work would be beneficial as more technical 

information becomes available with the subcomponents needed to make UAM aircraft. 

Additionally, to modeling off-nominal flight behavior as mentioned in chapter four, modeling 

airspace strategic deconfliction and tactical separation standards within the UAM corridors 

would also be relevant inclusion to a study such as this. In a proposed urban airspace 

environment predicting an urban maturity levels in the range from 10-50 to hundreds of other 

VTOL aircraft in that airspace volume [2], this becomes increasingly important. Additionally, an 

incorporation of an aviation safety management modeling system would be a potential update to 

the current model.  

With respect to contingency management, it was alluded to earlier that mission failure 

events could ultimately drive a change in your Level 1 requirements. The strongest example of 

this is a total engine failure in a multirotor design. In this design, there is no option to “glide” the 

aircraft down in case of an emergency. Instead, the vehicle must be brought down by a process 

called “autorotation”. In this process for helicopter operations, the pilot needs to cut power to the 

engine to alternate to a state of flight in which the main rotor system of a helicopter or other 

rotary-wing aircraft turns by the action of air moving up through the rotor, rather than engine 

power driving the rotor. [51] Time becomes a critical factor as this also drastically shortens the 

projected landing/impact time.  
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In a case of total mission failure due to this type of scenario, the Level 1 requirements at 

this point would have to be updated to include safety requirements, which would necessitate a 

mandated redundancy in the lift and propulsion systems similar to those required for Extended 

Operations (ETOPS) Certification. The International Civil Aviation Organization (ICAO) issues 

Standards and Recommended Practices (SARPS) for ETOPS. [52] An additional update to the 

SysML model for future work would be to include the FAA Federal Aviation Regulations [53] 

when they become available for UAM aircraft and adopt any events for the FAA certification 

processes as part of the level 1/2 requirements in the model.  As mentioned in chapter four, 

requirement traceability down to the subcomponent level makes it easier for the designer to 

knowledge capture. This feature becomes especially important when the aircraft operator is not 

the same as the aircraft manufacturer. The level of importance for level 1 requirements can 

become lost if the communicated design intent is being transmitted between several authorities. 

An MBSE stylized approach can provide the means of preventing this happening as it is evident 

that this analysis style is already being used for UAM modeling, and hopefully this document 

can provide a basis of how to start this process. 
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APPENDIX A: THE “V” SYSTEMS ENGINEERING MODEL 

The “V” systems engineering model, depicted in Figure A1.0, is often used to detail the steps taken 

in an SE approach. The “V” model has been in use since the 1980s and been expanded in recent 

years for various areas of industry. [54] As seen in the model, the conceptual exploration is 

followed by requirements definition for the systems. Typically, the logical architecture for the 

system is a precursor to physical architecture development and will be defined at a high level early. 

MBSE modeling can be implemented as early as conceptual development. High-level conceptual 

design leads to even more detailed schematics for each system. The right side of the “V” model 

details the verification of the subsystems and the whole system to lead into overall system 

validation.  

 

Figure A1.0: Traditional SE “V” Diagram in Relation to a MBSE UAM Vehicle Project 

[52]  
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