
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1985

High Performance Switching Circuits for VLSI High Performance Switching Circuits for VLSI

Ali Reza Feizi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Theory and Algorithms Commons, and the VLSI and Circuits, Embedded and Hardware

Systems Commons

Recommended Citation Recommended Citation
Feizi, Ali R.. "High Performance Switching Circuits for VLSI" (1985). Thesis, Old Dominion University, DOI:
10.25777/3sg0-sr95
https://digitalcommons.odu.edu/ece_etds/340

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.odu.edu%2Fece_etds%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.odu.edu%2Fece_etds%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/340?utm_source=digitalcommons.odu.edu%2Fece_etds%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

HIGH PERFORMANCE SWITCHING CIRCUITS FOR VLSI

by

Ali Reza Feizi
BSEE May 1983, Old Dominion University, Norfolk, VA

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
December 1985

Approved by:

John W. Stoughton

S. Zahorian

ACRNGNLEDGENENTS

The author would like to express gratitude to Dr. Damu

Radhakrishnan for his invaluable contributions and

insightful guidance in the preparation of this thesis.
Thanks also go to the committee members: Dr. S. V.

Ranetkar, Dr. John W. Stoughton and Dr. S. Zahorian for
their time and constructive criticism.

Finally, the author wishes to thank many of his
colleagues in the Electrical Engineering Department for
their friendship and assistance.

TABLE OF CONTENTS

PAG E

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER

iv

1 INTRODUCTION
1.1 Thesis outline
PASS LOGIC REALIZATION
2.1 Definitions
2.2 Generalized pass networks
2.3 Pass network implementation using K-map ..
2.4 Binary Tree Structured (BTS) pass networks

3 BTS PASS NETWORK DESIGN
3.1 Data structure
3.2 Pass implicant generation
3.3 BTS pass network algorithm
3.4 Complexity of the algorithm

4 MULTIPLE-OUTPUT PASS NETWORKS
4.1 Sharing in pass networks
4.2 Multiple-output BTS pass networks

5 PROGRAMMABLE LOGIC ARRAYS (PLA)
5.1 Stick diagram representation
5.2 Gate logic PLA
5.3 Pass logic PLA

6 FAULT DETECTION IN MULTIPLE-OUTPUT PASS NETWORKS
6.1 Fault detection
6.2 Test invalidation

7 CONCLUSION

5
5
6
8

10

15
15
18
19
28

30
30
39

43
43
44
44

52
53
66

70

REFERENCES

APPENDIX

73

74

111

LIST OF FIGURES

Figure

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

An NMOS pass transistor
A pass network representation
K-map minimization of a pass function
Pass network for the K-map of Fig. 2.3
Network for X2 partition
Submaps for X2 partition
Network for X2 and X4 partitions
Submaps for X4=0, and X4=1 with X2=0

A BTS pass network for the K-map of Fig. 2.3

page

7
7
9
9

12
12
12
13

13

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

Pass implicant record
The BTS pass network of example 3.1
Binary tree for a 3 variable function
Binary tree for an n variable function

Improper sharing between two functions
A shared multiple-output pass network
Multiple-output pass network of example 4.1
Sharing V. between two functions Fl & F21
Multiple-output pass network of Fl & F2

Multiple-output BTS pass network

16
25
26
27

31
33
35
37
38
41

5.1
5.2
5.3
5.4
5.5

6.1
6.2

6.3

6.4
6.5

Stick diagrams
Overall structure of PLA
Circuit diagram of a gate logic PLA
Stick diagram of a gate logic PLA
Stick diagram of a pass logic PLA

A two output network sharing V.
1

S-at pass variable faults in a multiple-
output BTS pass network
Transistor faults in multiple-output
BTS pass network
Undetectable s-on faults in a BTS pass network
Test invalidation for transistor s-op fault

45
46
47
48
51

54

57

60
63
68

LIST OF TABLES

Table page

3.1 Pass prime implicant generation for
example 3.1

6.1 Pass variable s-at fault test vectors
for S. of Fig. 6.2

1

6.2 Pass variable s-at fault test vectors
in Fig. 6.2 excluding S.

1

6. 3 S-op fault test vectors f or the network
of Fig. 6.3

6.4 S-on fault test vectors for the network
of Fig. 6. 3

23

58

58

61

65

CHAPTER 1

INTRODUCTION

Recent advances in LSI and VLSI technologies has

brought forward many device configurations for IC design

that are not equivalent to a simple interconnection of

logic gates. The major emphasis on IC design is aimed at
high performance, minimum size, and reduced power. Pass

networks and CNOS logic have evolved as two candidates best

suited in this regard.

A pass network is defined as an interconnection of a

set of pass transistors which realize a particular
switching function. A unified switching theory is given in

[1] to represent pass networks and procedures are developed

for the design of any combinational circuit using pass

transistors. A special class of pass networks called
Binary Tree Structured (BTS) pass networks appear to

require the fewest number of transistors to realize pass

network functions [2] . BTS pass networks have certain
other advantages related to IC design, including fault
detection and the design of multiple-output networks.

This thesis considers four different problems

presently encountered in the design of pass networks.

Present design of BTS pass networks is based on the
use of a Karnaugh map. Algorithmic procedures available
for the design of pass networks are not suitable for the

generation of a function in BTS form. In addition, the

algorithmic procedure currently available is very slow and

uses a considerable amount of memory. Therefore, a new

algorithm for the design of BTS pass networks is developed

in this thesis. This algorithm is more efficient in time

as well as the space complexity than all the known

algorithms.

Next the design of multiple-output pass networks is
considered. It is proved that BTS pass networks are most

suitable for the design of multiple-output networks.

Programmable Logi,c Arrays (PLA) receive wide

acceptance by the VLSI design community because of its
structural regularity and the ease of design. Any finite
state machine can very easi.ly be designed around a PLA.

These PLAs can in general be considered as multiple-output
networks. Conventional design of a PLA is based on the
AND-OR plane concept. A new kind of PLA called pass

network PLA is proposed here. It is based on multiple-
output pass networks and uses almost zero static power.

Finally, fault diagnostics play a major role in present
designs. As the circuits are made smaller and more complex,

it becomes very difficult to probe the internal nodes using

the limited number of pins available on the chip. Though

there are some techniques available for the fault detection

in pass networks [2,4]. The fault detection in

multiple-output networks are considered in this thesis and

it is found that fault detection in these networks can be

carried out using the methods available for the

single-output networks. It is also shown that some

assumptions made to detect some faults in pass networks may

not be satisfied in some cases.

Chapter 2 begins with an introduction to pass

networks. Many of the important definitions used in the

literature are repeated here. The design procedures given

in this chapter are divided into two: one for general pass

networks and the other for BTS pass networks.

Chapter 3 develops an algorithmic procedure for the

design of BTS pass networks. A data structure for the

storage of pass implicants is first introduced followed by

specifying the necessary conditions for combining the pass

implicants for minimization. The BTS pass network

algorithm is divided into two parts: the first part
generates the pass prime implicants using the above

mentioned data structure and the second part shows the

actual generation of the BTS pass function from these prime

implicants. This chapter concludes by providing a

comparitive study of the new algorithm with the earlier one

available for the design of general pass networks.

Chapter 4 is devoted to the synthesis of multiple-

output pass networks including both general and BTS pass

networks. Necessary and sufficient conditions are derived

for sharing parts of the network among different pass

functions.
Chapter 5 begins with an introduction to PLAs as used

in conventional designs. A stick diagram representation
for the conventional PLA structure is given followed by a

proposed structure of a pass network PLA. This chapter

concludes with the discussion of the different trade-offs
involved in selecting a PLA for a particular application.

Fault detection techniques oriented to multiple-output

pass networks is the subject of chapter 6. Pass variable
faults and control variable faults are treated separately.
The necessary and sufficient conditions to be satisfied for

detecting stuck-at, stuck-open, and stuck-on faults are

derived in this chapter. In addition, conditions under

which a test becomes invalid and possible solutions to some

of these problems are given in this chapter. Conclusion

and additional research is presented in chapter 7'.

CHAPTER 2

PASS LOGIC REALIZATION

A pass network is defined as an interconnection of a

set of pass transistors to realize a particular switching

function. These networks are of three kinds: NMOS, PMOS,

and CMOS networks. An NMOS pass network passes a good 0

but a poor 1, and a PMOS pass network passes a good 1 and a

poor 0. A CMOS pass network, on the other hand, passes

both a good 0 and a good 1. In an NMOS transistor when the

Gate voltage is a logic 1 (greater than the threshold

voltage), the value at the input is presented to the

output. When the gate voltage is a logic 0 (below the

threshold voltage), the output is in the high impedance

state (open circuit). The same is true for PMOS

transistors except for the reversal of the logic inputs

applied to the gate.

The signal inputs to the gates of the NMOS transistors
are called control signals and the associated variables are

called control variables (C). The signals which feed the

inputs (source/drain) of NMOS/PMOS transistors are called
pass signals and the associated variables are called pass

variables (V) . A pass implicant is defined as a product

term P. (product of one or more control variables)i
passing the variable V. to the output and is denoted by1

P.{V.). An NMOS pass transistor, its truth table, and its1 1
*

logic representation are shown in Fig. 2 .1. Due to the

bidirectional nature of MOS transistors, the Source and the
Drain leads can be interchanged.

2.2

The design procedures for both NMOS and CMOS pass

networks are given in fl]. This is repeated here to give
the basic understanding of these networks. Only NMOS pass

networks are considered further in this thesis.
A generalized pass network is shown in Fig. 2.2. The

output pass function F can be expressed as the sum of pass

implicants:
F = Pl(V1)+P2(V2)+...+P. (V,)+...+P (V) .i i ''' n

Each pass implicant P.(V.) passes the pass variable
1 i

V. to the output when the corresponding product term P.
1 1

1. The product term P. is the product of a number of1

variables called control variables, representing the pass

transistors which are connected in series. The pass

implicant is similar to the traditional implicant; but,
instead of representing only the 1's of the function, it
represents either the 1's, 0's or a combination of both 1'8
and 0's.

Dr

IN

(a) Electronic Representation.

. (b) Truth Table.

F = P.(V.)

(c) Logic Representation.

Fig. 2.1 An NNOS Pass Transistor.

Vl

Vn

Fig. 2.2. A Pass Network Representation.

2.3

The K-map minimization of a pass function is given in

[1] . Since pass transistors are basically tri-state
devices, the output of a pass network will be defined only

if a path is activated from input to output. The design of

a pass network using a K-map involves finding minimal set
of pass prime implicants to cover the whole map. These

pass implicants and their associated pass variables are

identified by the following procedure:

1) A pass implicant consists of 2 cells in the K-map,1

each cell in the implicant has i adjacent cells in the

implicant. The product term defining the implicant is
identical to the traditional implicant.

Each and every entry in the map is covered at least
once in the formation of a pass function thus preventing any

high impedance condition occurring at the output of the

network. Pass implicants, formed in this manner using a

K-map, which subsumes no other pass implicants with fewer

number of literals are called pass prime implicants. The

generation of a pass function using a K-map is shown in Fig.

2.3. The cells forming each pass prime implicant are

encircled in Fig. 2.3. The simplified pass function is
given by: F = X (X ') +X '(X) +X X '(X), and is shown in

Fig. 2.4.
A conflict condition occurs whenever two pass

implicants are enabled simultaneously to the output of a

X2X

Fig. 2.3. K-Map Minimization of a Pass Function.

X~
'

X2

X2'3'. x,J

Fig. 2.4. Pass Metxerk for the K-Map of Fig. 2.3.

pass network with opposite pass variable logic values. This

causes a short circuit in the pass network which is not

desirable. The above design procedure guarantees that such

a conflict will not occur if the function is completely

specified [1]. Care must be taken in the design of

incompletely specified pass functions to prevent such a

conflict.

2.4

A pass network designed using the K-map minimization

procedure described above may not be optimal in the number

of transistors in its realization. This is because the

same literal may occur in a number of pass prime

implicants. One way to minimize the number of transistors
used in the realization is by implementing the function as

a BTS pass function.
A BTS pass network is characterized by having exactly

two branches at every node, with their control variables
complementing each other. Two different approaches for the

design of a BTS pass network are given in [2] . A brief
review of these two approaches is given below.

2.4.1

There are two goals in partitioning a K-map. The

first is to create a BTS pass network. The second is to
minimize the number of transistors in the network. The

K-map partitioning approach may be described as follows:

10

1) Choose a control variable, X., and form a BTS pass
1

network with two branches and one node. One branch is
controlled by X., and the other branch is controlled by1

X.'. The original map is now partitioned into two segments
1

def ined by X. =0 and X. =1.
1 1

2) Apply the same procedure to each segment of the map,

supplying the output as a pass term to the earlier branch

controlled by X. or X.'.
1 1

3) Repeat step 2 until the pass variable of each branch is
in the set (0, 1,X., X ') ~i

The following example illustrates the above procedure:

Example 2.1: Consider the K-map shown in Fig. 2.3.

Choose X2 as the first partition. The first two branches

and the root node may be drawn immediately. This is shown

in Fig. 2.5. The submaps corresponding to partitions X2= 0

and X2=1 are shown in Fig. 2.6.
Now each submap is dealt with separately. In Fig.

2.6, the output corresponding to X2=0 partition is neither a

constant nor an input variable. Choose X4 as the

partitioning variable in this submap and add a node to the

previous circuit as shown in Fig. 2.7. The two resulting
submaps are shown in Fig. 2.8.

The output of the function (or pass variable)

partitioned by X =0 and X4=0 is 0. Therefore, the input to
2

the branch controlled by X4's 0. Similarly, the output

of the function partitioned by X2 = 0 and X4 = 1 is X3 ~ So

input to the branch controlled by X4 is X3. The output of

11

X2

Fig. 2.5. Network for X2 Partition .

1 1 1 0
X1

0

X4X

0 0 1 1 1 1 0

0

X = 0
2 '2

Pits 2.6. Snavaps fo- X2 Part-tion.

"2
j

! ig. 2.7. Netii~ork for XP and X& Partitions.

12

X1
X1

X =O,X =-0
2

' X=O,X='1
2 '

Fig. 2.S. Subn~ps for X =- O,and X4 = 1 with X2= 0.

X4'

Fig. 2.9. A BTS Pass Network for the K-Nap of Fig. 2.3.

,13

the function partitioned by X2=1 is X4'nd therefore X4's

the input to the branch controlled by X2. The complete

circuit is shown in Fig.2.9.
For a function of n variable, at most n — 1 partitions

are required to generate all the pass implicants. Each

pass implicant will at least be a two cell group. Thus, it
requires at most 2 — 2 transistors to implement a functionn

of n variables as a BTS pass function [2] .

2.4.2 F

Consider an arbitrary pass function which contains two

terms of the form X. P.(V.) +X. P,'V.) . This expression isi i i i i j
equivalent to X.[P.(V.+P.'(V.)], where X. is factored out

1 1 1 1 j i
of both the terms. Therefore, if Xi appears in more than

one pass implicant, it can be factored out. Consider the
following pass function:
F =

X2XI (X4)+X2 'Xl '(X3)
+X2

'Xl (0)
+X2X1

'(1), note that there
are two choices for factoring this function. Taking X2 as

the factor, we get:
F X2 [Xl (X4) +Xl (1)] +X2 [Xl (0) +Xi (X3)] which is in BTS

form. Thus, any pass function is a candidate for factoring
as long as the pass implicants do not overlap. In

addition, factoring would result in some minimization.

A pass network with disjoint pass implicants is called
a disjoint pass network. In a disjoint pass network, when

any one product term P. is equal to 1, all the other terms
1

are 0 's. A BTS pass network is a disjoint pass network but

the converse need not always be true.

14

CHAPTER 3

BTS PASS NETWORK DESIGN

The design of a BTS pass network using the K-map

minimization procedure given earlier becomes difficult as

the number of variables exceed more than five. An

algorithmic procedure is given in Ill for the design of the

general pass network. However, this algorithm is very slow

and uses considerable amount of memory. In addition, the

pass prime implicants generated in this manner may have

cells in common thus eliminating the generation of BTS pass

networks.

In developing an algorithm for BTS pass networks

optimality is given only a secondary consideration. The

major emphasis given here is memory requirement and speed.

Also, the algorihtm can only be used to implement

completely specified functions.

3.1

The data structure used in this algorithm is very

similar to the one used in [I] with the inclusion of an

extra field, called the Repeat field (R-field) which is
added to each pass implicant record. Thus a record has

four fields: a Base field, a Difference field, a Pass

field, and a Repeat field. The basic structure of a record

is shown in Fig. 3.1, The different fields are defined as:

{a) Base field (B) — This is an integer field that
represents the cells in the truth table. The base field
functions identically to the base field of the traditional
tabular method and can be described in any desired base.

In the presentation here, base 10 is used. When the pass

implicant covers more than one cell, the lowest value will
be listed. For example, when two adjacent cells Xl X2X3'nd

Xl'X2X3, represented by their decimal equivalents 2 and

3, combine together to form a pass implicant, 2 becomes the
base field entry.

{b) Difference field (D) — This is also an integer field,
consisting of one or more integer entries separated by

commas. The difference field has an identical counterpart
in the traditional tabular method. The entries in this
field represent the difference between the cell
representations of the terms which are combined together to

form the pass implicant. The difference field for the

implicant formed by the combination of two terms whose

decimal equivalents are 2 and 3 is (1), whereas it is (1,4)

for an implicant formed of 2(1) and 6(1) . The ordering of

the entries in the difference field bears no significance;
thus (1,4) and (4,1) are equivalent.

(c) Pass field (p) — This is an alphanumeric field which

represents the pass variable that is to be passed by the

pass implicant. The pass field can contain 0, 1, X. or X.'.
1 1

16

BASE DIFFERENCE PASS REPEAT

Fig. 3.1. Pass Implicant Record.

F17

(d) Repeat field (R) — This is an integer field, 0 or 1,

which determines if the record should be used for further
comparisons and possible minimization. A 1 entry means the

record should be used for further comparisons and a 0 entry
means that the record should be disregarded. Whenever two

records are combined together to form a new record, the

R-field in the new record is set to 1 .

3.2

The necessary and sufficient conditions for combining

two pass implicant records are:

(a) The B-fields differ in only one binary bit.
(b) The D-fields agree,

(c) The R-fields have logic value 1, and

(d) The P-fields must be a constant or an identical pass

variable.
Once all the above conditions are satisfied the pass

implicant records are combined using Theorem 1 in [1].
This is illustrated below.

Consider the cells C. and C.
1 3

f(X ,...,Xl, X0) with outputs assigned
n'''espectively. Let C. and C. be adjacenti

0 in C. and X = 1 in C.. The passi k j'xcludingthe R-fields are:

of the function

to be f. and f.
1 j

with variable X
k

implicant records

(a)

(b)

(c)

If f.=f.=0 then the record is C.i j 1

If fi=f.=l then the record is C.i j 1

If f.=0 and f.=l then the record
1 j

(2) 0

(2) 1

is Ci (2) Xk
k

18

(d) If f .=1 and f .=0 then record is C. (2) Xk'i j 1

The above conditions suggest that when two records A &

B with identical pass fields are combined to form a new

record C, the pass field in C will be the same as that of A.

3.3

The algorithm uses three linear lists, K, M, and F of

pass implicant records. The K-list is used to store the

given function. The M-list is used to store the pass

implicants generated during the course of the algorithm and

the F-list is used to store the final result. The K and M-

lists are interchanged during each iteration.
The K-list has 2 records and M and F have 2

records each for an n-variable function. A pointer is
attached to each one of these lists (k, m, and f for K, M,

and F lists respectively) and it is assumed that whenever a

record is written in a list it is written in the location
indicated by this pointer. Similarly, whenever a reference

is made to a record in a list, it implies the record

pointed by the corresponding pointer. The records pointed

by the pointers in the K, M, and F lists are denoted by

Kk, M , and Ff respectively. Before the start of the
m'lgorithm, the K-list is initialized with the given

function as follows:

The B and p-fields are initialized with the decimal

number from 0 to 2 — 1 and their corresponding output

functions respectively. The D and R-fields in all the

19

records are initialized to 0 and 1 respectively. Also the

pointer f is initialized to 0, and N is initialized to n.

The flag X = 1 denotes the formation of a new record in the

last iteration. The algorithm is divided into two parts:
(i) The generation of pass prime implicants in the BDPR

format, and

(ii) The conversion from BDPR format to BTS form.

3.3.1

1. If N = 0 then go to 8.

2 . If X = 0 then g ~ to 9, else set k=0, m=0, and X=0 .

3. If k=2 then go t 7.N

4. Compare the recorc "
Kk and Kk 1 for possible

combination. If t iey combine, the new record formed is
stored in M , set X 1, and then go to 6, else set the

m'-fieldin M to 0.
m

5. If the R-fields in both Kk and Kk 1
are 1, then

transfer K and K to F and F
1 respectively and

increment f by 2, else if the R-fields of both Kk and

Kk 1
are different, then transfer one of Kk or Kk 1

to

Ff depending on whichever has a logic value of 1 in

its R-field. Increment f by 1.

6. Increment m by 1, k by 2 and then go to 3.

7. Decrement N by 1, interchange the K and M lists, and

then go to 1.

8. If X=1, transfer MO to FO.

20

9. Halt.

The F-list now contains the result.

3.3.2 DP t BTS Form

The BTS pass prime implicants generated by the

algorithm given above are in BDPR form. For describing the

conversion from BDPR form to BTS form we need only to

interpret the Base and Difference fields properly. Hence

in the following only these two fields are used and the

pair taken together will be called a BD record.

A given D-field for an n-variable

general be written as: (2 ,2 ,...,2).0 1 n-1
function can in

Let b represent

the B-field entry and d represent the sum of the D-field

entries. For a given BD record, first determine the number

of entries in the D-field and denote it by Z. The number

of variables appearing in the product term is now given by

Y = n — Z. A Y-digit binary number, C, can be derived by

dividing b by d + 1. This binary number C represents the

product term P..
1

The NSB of C represents the highest

significant. variable in the function. (A 1 represents a

non- complemented variable and a 0 represents a

complemented variable).
Once all the BD records are converted using the above

procedure, the function can be expressed as the sum of

disjoint pass implicants. In order to arrive at a BTS pass

function, the factoring approach described earlier can be

used. This factoring must be done in complementary pai rs.

21

First the variable X* must be factored out from all the

terms in which it is present and then the variable X*'.

The factoring procedure must start with the highest
significant variable first and then continue with the

lowest significant variables.
Example 3.1: Consider the three variable function:

F(X3 X2 Xl) = m(0,3,6,7)

Table 3.1 illustrates the minimization procedure for
the function F. The procedure begins by listing all the 8

pass implicant recor s in the K-list of Table 3.1(a). The

pass field is set t& 1 for all the records with B-fields 0,

3, 6, and 7. The two .ecords K0 and Kl (0 0 1 1 and 1 0 0

1) are compared lor ,~ossible combination.(In the first
iteration, they always combine). This produces the result
0 1 Xl ' which is stored in Mp (Table 3 .1(b)) . The

procedure is now continued with K2 and K3 as the new

records. The M-list at the end of this iteration is shown

in Table 3 .1 (b) . The contents of the present M-list and

the K-list are now interchanged. For illustrative purposes

this is done by treating the present M-list as the new

K-listt and a new M- list is formed as shown in Table

3 .1(c) . Comparing K0 and Kl (Table 3 .1(b)), it is seen

that their pass variables do not match and hence cannot be

combined. Hence both K0 and Kl are sent to the output

lists F0 and Fl (shown in Table 3.1(d)). This is
continued for the remaining records in the K-list (Table

22

(b) 11-List at 1 irst
Iteration.

(a) ((-Last

(c) P1-List at Eeconci
Iteration. (d) F —List

Table 3.1. Pass Prirre Implicant Generation for Example 3.1.

3.1(d)) in a similar manner. The final result is stored in

the F-list (Table 3.1(d)) .

As seen the F-list contains 3 records. To illustrate
the conversion to BTS form, consider the BD record 4(1,2) .

The given 3 variable function can be written in BD form

as: F = (0, 1, 4) . Thus Z = 2, y = 1, b = 4, d = 3, and C

= 1. Therefore, the binary number corresponding to the

product term is 1 which represents X3. The pass variable
is X2 . This produces the pass implicant X3(X2) . Similarly
the other records are converted. The function can now be

exPressed as: F = X3(X2) + X3'X2(xl) + X3'X2'(Xl') . In

order to convert the function to BTS form, start the

factoring process with X3 and X3'. The next factoring

variable will be X2 (both X2 and X2') . Thus the function F

can be written as:

F = X (X)+X 'X2(X)+X (X ')]

The circuit diagram and the binary tree representing

the formation of the pass implicants are shown in Figs. 3.2

and 3.3 respectively. As seen in Fig. 3.3, four

comparisons are needed in the first iteration. The

remaining iterations require two and one comparisons,

respectively. Thus, a total of only seven comparisons are

required to implement the above function. It is obvious

that the number of iterations will not exceed three.
The procedure developed above to generate the pass

prime implicants can be understood by noting that the

minimization procedure follows a straight path on a binary

24

X2

Xl

Xl'ig.

3.2. BTS pass NetworX for Ex~nple 3.1.

1)P

0(0 7(Q)F

Fig. 3.3. Binary Tree for a 3 Variable Function.

tree as shown in Fig. 3.4. The comparison starts from the

bottom leaves of the tree and progresses upward to its root

node to arrive at the pass prime implicants. Note that
only the B and the D fields of each record are shown in

Fig. 3.4.

3.4

There are some advantages to this algorithm which make

the algorithm efficient and fast. The number of

comparisons used to arrive at the pass prime implicants is
almost minimal as the following lemma shows:

Lemma M 1: The BTS pass network algorithm for an n

pairs for possibleleaves are compared in

thus am

all the 2

combination

similar
ounting to 2 comparisons. In an 1

n-2in the next iteration at most 2manner

variable function uses at most 2 — 1 comparisons and n
n

iterations.
Proof: Consider again the binary tree shown in Fig.

3.4. The minimization procedure starts from the bottom of

the tree. The tree has 2 leaves. In the first iteration,n

comparisons may be required. The algorithm always

terminates after the last iteration where the number of

nodes is two. Hence the total number of comparisons needed

T = 2 +2 +...+2 = 2 — 1.

The number of iterations is also equal to the number

of variables because each variable corresponds to one level
of the tree or one iteration. QED.

27

2N-2)

0(0) 1(0) 2(0)

Fig. 3.4. Binary Tree for an n Uariah1e Pmi ction.

The memory requirements f or the above algorithm is
worth mentioning. Implementation of the above algorithm on

a computer requires only three arrays, each of size
(3/2)2

The comparisons of this algorithm with the one given

in [1] shows a number of advantages. In [1], the number of
n**2comparisons is almost equal to 2 and the number of

iterations is increasing quadratically with n.

lt is however important to note that the above

algorithm is not optimal. But this can be justified by the
fact that the interconnection topology in today's LSI/VLSI

systems is far more important than the number of

transistors used to implement a function. The minimum

transistor implementation of a function often requires much

more surface area for its layout than does an alternative
design using more transistors but having simpler

interconnection topology [5] . The BTS pass networks have

simple interconnection topology as well as minimal

transistor count for their implementation.

29

CHAPTER 4

NULTIPLE-OUTPUT PASS NETWORKS

The design of multiple-output networks in pass logic is
more involved in comparison to gate logic networks because

of the bilateral nature of pass transistors. All

transistors involved in the common pass terms cannot be

shared since this will involve shorting the outputs of

different functions which share this pass term. This is
illustrated by considering two functions Fl and F where

Fl = X4 '(X3)+X3 (1)
+X4X3

'(X2 '), and F2 = X4 '(X3) + X3(1)

+X4X2
(1) + X4X3 X2 (Xl) shown in Fig. 4 .1 . If the common

portion (X4'(X3) + X3(l)] is shared to form a multiple-

output pass network as shown in Fig. 4.1(b), the two

functions get shorted at all times. Hence additional
conditions must be satisfied in sharing among different
pass networks.

4.1

When portions of a pass network is shared among

different functions it is necessary to ensure that the
functions are isolated during times when the shared part is
not passed to their outputs. The following theorem gives

X3 X3

X1

X2'a)

X2'3

X1

(b)

Fig. 4.1. Improper Sharing Between Two Functions.

,31

the necessary and sufficient conditions for sharing a pass
network among different pass functions.

Thaurm ~: A pass function,
= Pl(V)+P2(V2 +. ~ .+Pi(V.)+...+P (V), can

with other functions iff for some variable X.*
j

share V.
1

(
X.* isj

either X. or X.') in P.g
3 3

l. X.*(V.) appears in all the shared functions, andi
2. (X *) 'ccurs in P. for all j = 1.j

Proof: Consider part of a pass function as shown in
Fig. 4.2. The pass networks shown in Fig. 4.2 are the only

two cases where X. is common to all the terms satisfying thej
complementary property. In Fig. 4.2(a) X.'(V.) is common

1

to both F and F2, When X.'=1, V. is passed to both the1 2' i
functions Fl and F2. All the other paths to the output in
both the functions are open due to the pass transistors
controlled by X.=O; When X.=l, V. is disconnected fromi
both Fl and F2 and the two functions are separated from

each other. This will ensure that there will be no

conflict in either network. The network shown in Fig.

4 .2(b) functions in an analogous manner. Thus both

functions can share V..
1

If V. is shared between two functions, this implies
1

that V. must be passed to both the functions when thei
corresponding p-term is 1 and the two functions must be

separated from each other when the p-term is 0 . The former

condition requires that V. be connected through a pass1

transistor, controlled by a variable Xi*, to both the

32

Fl

(a) For X. = 0, F = F = V.
j ' 2 i

(b) For X. = 1, F. =F =V.j ' 2 i
Fig. 4.2. A Shared Nultiple-Output Pass Network.

33

functions, or, in other words, X.*(V.) be common to both the
1 1

functions. The latter condition requires that when V. is
1

passed to the output, none of the other pass variables be

passed to the output simultaneously, thus requiring that
pass term V. and all the other pass terms V . for j = i be

1

switched by disjoint product terms P. and P..i j'ED.
The following example can be used to illustrate the

above algorithm.

Example 4.1: Consider the two functions Fl and F2

given by:

Fl(X4X3X2X1) = m(1,5,6,7,8,12,13,14,15), and

F2(X4X3X2X1) = m(1,2,3,5,6,7,8,10,11,12,13,14,15) .

The corresponding pass functions are:

X2 (X3) +X2 ' X4X1 (X3) +X4
'Xl) +Xl 'X4)], and

F = X2 (1) +X '
X4X1 (X3) +X4

'Xl) +Xl 'X4)] .

Their circuit diagrams and K-maps are shown in Fig.

4.3. The shared part in the two functions corresponds to
the upper eight cells as marked in the K-maps. The shared

part Xl '(X4)
+X4

'(Xl) +X4X1(X3) is connected through X2 'o
both the functions. All the other paths in both Fl and F2

go through X2 thus satisfying the conditions of Theorem 1 .

As seen from Fig. 4.3(c) the outputs Fl and F2 satisfy the
K-maps under all input conditions.

A special case of the above theorem involves sharing

part of a pass network between two functions. In this
case, some of the conditions given above can be relaxed.

34

X2X

(a) K-Map for F
1

(b) K-Nap for F
2

—— F
1

X4
X3 ~ X2'ig.

4.3. Nultiple-Output Pass ¹twork of Example 4.1.

35

Xhmoram&M: A pass function,

Fl 1(Vl + 2(V2 +''+ i(V.) +...+P (V), caIl share Ui withi n n

function F2 if for some variable X. in P., X. (V.) appears in
1 j 1

function Fl(F2) and X. 'V.) appears in F2(F1) .
1

Proof: Consider two pass functions Fl and F2 as shown

in Fig. 4.4. X.(V.) appears in Fl and X.'(V.) appears inj 1 1 j i
F2. Even though V. is shared by both Fl and F2, it is not

1

passed to both of them simultaneously. The connections

between Fl and F is only through the series connection

of the transistors controlled by X. and X.'. Therefore noj j
activated part of one function can access the nodes of the
other function. When V. is not passedi
function, Fl is still isolated from F2.

shared between the two functions.
Example 4.2: Consider two functions Fl and F2 given

to either output

Thus V. can bei
QED.

Fl(X4X3X2X1)

F (X4X3X2X1)

are:

m(0,1,3,8,9,12,13), and

m(8,9,11) . The resulting pass functions

Fl = X4(X2 ')
+X4

'[X3 (0)
+X2

'(X3 ')
+X3

'X2(X1)], and

F — X (0) +X (X X (X) +X (X) +X (0)) ~

The circuit implementation and K-maps for the above

functions are shown in Fig. 4.5. The shared part of the two

functions encircled in the K-maps correspond to two

different locations on the maps, namely X4 and X4'. Here

again X4 is used to prevent a conflict as the result of a

short circuit.

36

Fi

F2

Fig. 4.4. Sharing U. Between Two Functions F& E F2.i

37

X2 X2Xl

(a) K-Map for F
1

(b) X-Map for F
2

X2'

X4'l

(c)

+-
F2

Fig. 4.5. Multiple-Output Pass Networic of Fl 6 F2.

,38

Condition 2 of Theorem 1 is always satisfied for BTS

pass networks. Thus BTS pass networks are well suited for

realizing multiple-output pass functions.

4.2

The property of BTS pass networks allows us to relax

many of the conditions needed for sharing part of a network

among several pass networks.

D A complementary sum (CS) S. is definedi
as S. = X. (V.)+X. 'Vk) where X. is any control variable and

1

V . and Vk are either pass variables or complementary sums byj
themselves.

By the definition of CS, a BTS pass function can always

be expressed as a CS. To illustrate this, consider a BTS

pass function F = X4[X3(X1) +X3(0)]+X4 [X2(1) +X2
'(X)] .

1

The CSs in this function are : Vl = X3 (Xl ')
+X3

'(0) and V2 =

X2(1) +X2'(Xl) . Therefore, the BTS pass function F can be

written as: F = X4(V1)+X4'(V2) which is in CS form.

If a complementary sum S. in a BTS
1

pass network is common to several BTS pass networks, Then S.i
is called a shared complementary sum (SCS).

The following theorem gives the necessary and

sufficient conditions for sharing a CS among several BTS

pass functions.

~T OrmaL~: A BTS pass function Fl can share part of

its network S. with other functions iff S. is common to all1 1

the functions.

39

Proof: The complementary requirements of the BTS pass

function imply that all the conditions of Theorem 1 and 2

are satisfied and therefore the proof of this theorem

follows directly from Theorem 1 and 2.

Example 4.3: Consider implementation of the following

functions as multiple-output BTS pass function.

Fl (X4X3X2XI) m(0 1 2 3 4 5 6 7 9 10 11 14 15)

F2 (X4X3X2X1) = m(1,2,3,5,6,7,11,15)
The minimization of these two functions in BTS form results
in Fl X4 (1)

+X4 [X3 (X2) +X3 [X2 (1)
+X2 (Xl)]] and F2

X4'X2 (1) +X2'Xl)
1+X4 [X2 (Xl)+X2 ~ (0)]. The K-maps and the

multiple-output pass network for the functions Fl and F2 are

shown in Fig. 4.6. The complementary sum S. = X2(1)+X2'(Xl)1

is shared between the two functions. When X = 0, F = S..
4 ' i'imilarly,when &X4X & = &10&, F = S.. The structure of4 3 ' i

the network prevents any interaction between the two

functions Fl and F2.

4.2.1

The BTS algorithm given in Chapter 3 is based on a

single- output function. The modification to include

multiple-output BTS pass networks is illustrated as follows.
Consider the functions Fl = Xl(V.) + Xl'[X2(vd) +X2'

[X3(V)+X3'V)]] and F2 = X2(Vk) + X2' X3 (V)+X3 (V)] .n 3 m 2 2 k 2 3 n 3 m

First the two functions are simplified separately using the
earlier algorithm. The CS S. = X3(V)+X3'(V) is toi 3 n 3 m

both functions and can be shared. In order to find the SCS

40

X2

(a) K-Map for F
1 (b) X-Map for F2

Xl

Xl
F2

Pig. 4.6. A Multiple-Output BTS Pass Network.

41

of several given functions, the comparisons must start with

largest CS in one of the functions. Then determine if this
CS is common to any one or more of the other functions. If
it is common to any other function, then this CS is an SCS,

otherwise choose a smaller CS, if it exists, in the same

function and do the comparison again. Repeat the above

procedure until all the CSs in the function are compared.

Continue the same procedure to the rest of the given

functions until all the SCSs of multiple-output BTS pass

networks are found.

CHAPTER 5

PROGRAMMABLE LOGIC ARRAYS (PLA)

A programmable logic array can, in general, be defined

as a multiple-output network. A PLA is used to map

irregular combinational functions onto regular structures
which allows significant changes in the functions without

reguiring major changes of either the design or its
layout. Conventional design of a PLA uses the AND-OR plane

approach. For LSI/VLSI designs NOR forms are preferred. A

new approach for the design of a PLA usi.ng pass logic is
presented here.

5.l
In this section some notations and the design rules

used in current VLSI technology [5] are presented. A stick
diagram representation is used here to show the structure
of an NMOS PIA. In stick notation each silicon layer in an

IC chip is represented by a colored line, thus each layer
will be referred to as a line. The diffusion, polysilicon,
and metal layers are assigned green, red, and blue colors

respectively. The lines of different colors crossing each

other has no effect wheras lines of the same color imply a

connection. A special case is when polysilicon crosses

over diffusion which produces an enhancement mode MOS

transistor. A connection between two different layers is
indicated by a black dot at the point of intersection.
Stick notations for some commonly used devices are shown in

Fig. 5.l.

5.2

Figure 5.2 illustrates the overall structure of a PLA

f5] . The two registers added to the structure makes it
easy to modify the PLA to a finite state machine.

The inputs go to the AND plane. The different
implicants generated by the AND gates in the AND plane are

passed to the OR plane and the outputs are taken out of

this OR plane. In LSI/VLSI designs a NOR-NOR PLA is
preferred over the AND-OR PLA [5] . The circuit diagram of

an example PLA and its stick diagram are given in Fig. 5.3

and 5.4. The different outputs from the PLA are:

Fl — X4 X2 + X4X3 I 4 3 XI

F2 = X4'X2' X4X3X2

F3 = X4K3X2 + X4X3'X2'

5.3

The design of a pass logic PLA is different from the

above AND-OR PLA because of the nature of pass networks

which consist of tri-state devices, MOS pass transistors.
First, both the 0's and 1's of a function must be used in

implementing a pass network which in turn will enlarge the

44

(a) An NYDS Enhance~~t
Mode Transistor

(b) An NN3S Depletion
Mode Transistor

(c) A Connection in
Diffusion

(d) A Connection Bet~"een

Diffusion and Metal

DD

Z =A.B
Z =A+B

(e) A 2-Input NAND Gate (f) A 2-Input NOR Gate

Fig. 5. 1. Stick Diagrams.

Input Output

Fig. 5.2. Overall Structure of PLA.

Xi,'X2'L'l

X2 X- Fg Fp Fz

Fig. 5.3, Ciicuii Diagram of a Gate Logic FLA.

~& + %%le
'RIRIIRIRlfa~
~IRI ill ilti~E5i

I ~ v

size of the PLA layout. Second„as mentioned in previous

sections, the sharing of a pass implicant by several

functions will short outputs of the functions. The first
problem may, in some cases, be solved if the functions are

minimized before PLA implementation. The second problem

can be solved by devising a circuit to detect a high

impedance state at the outputs of the transistors. Such a

circuit can be used to separate the outputs of the

functions which share common pass implicants.

A pass network PLA layout is similar to the

conventional PLA. It consists of an AND plane where the

different pass implicants are formed. To generate the

final output, the control and the data lines in the AND

plane are routed perpendicular to each other as in the

conventional PLA. The implementation of an n-variable
multiple-output function in this manner requires 2

vertical lines if the functions are not minimized. Note

that each horizontal line (pass implicant) may have three
states 0, 1, or high impedance. Therefore, in the design

of a pass logic PLA care must be taken not to short the

outputs of different functions which share a pass

implicant. The outputs of the functions which share a pass

implicant must be isolated from one another at all times

except when the shared pass implicant is enabled to the

outputs. A CMOS (combination of NMOS and PMOS) transistor
can be used to isolate the outputs at proper times. The

CMOS transistor determines whether the outputs must be

49

shorted or not depending on the state of the shared pass

implicant line. If the shared pass implicant is in a high

impedance state, then the corresponding outputs are

isolated; otherwise, outputs are shorted. The CMOS

transistors must have very high threshold voltage so that
as soon as the voltage input is decreased (high impedance),

the transistors are cut-off. The following example

illustrates the proposed pass logic PLA.

Example 5.2: Consider the implementation of the

following minimized functions as a pass logic PLA.

Fl — X4 (X2) + X4X3(l) + X4X3 {XI) g

F = X4X3(X2) + X4X3'(0), and
2

F = X '(0) + X X (X) + X X '(X ')

The stick diagram corresponding to the above functions are

shown in Fig. 5.5.
Hote that if the functions are not minimized before

implementation as a pass logic PLA, the size of the layout

will increase drastically compared to a gate logic pLA,

The speed of the proposed PLA also depends on the number of

transistors in each horizontal line. If the number of

transistors increases by four, a buffer must be put between

each succeeding four transistors to avoid long delay.

Therefore, this PLA is good for implementation of small

functions. Thus a gate logic PLA for implementation of

large functions is faster and more economical than a pass

logic PLA.

50

EESIASRRERSFIIIEi&$&RWEF8ESISSSI&&55IIRaSEE)iShSRSSEREhNRIERliE1155LRER%5$1$$&E5$5$15RRSSRS

CHAPTER 6

FAULT DETECTION IN MULTIPLE-OUTPUT PASS NETWORKS

Fault modeling in pasS networks considered in

[2,3,4,6,7] shows that conventional stuck-at (s-at) fault
models alone are not sufficient for the modeling of pass

network faults because pass transistors are tri-state
devices. Pass networks exhibit a new kind of fault called

stuck-open (s-op) [3,4,6,7]. In addition, a node may be

connected to both VDD and GND at the same time called
stuck-on (s-on), under a faulty situation. The test sets
derived in [2,4] are based only on single-output pass

networks. But the results derived in this are true for

both single and multiple-output pass networks. All faults
in a BTS pass network are shown to be equivalent to

stuck-at faults on pass variables, and s-on and s-op faults
occurring in the pass transistors [2,4] .

The detection of faults in multiple-output pass

networks is similar to that in single-output circuits.
Thus, the techniques used to test single-output pass

networks can also be used to detect faults in

multiple-output pass networks.

The fault detection procedures developed in this
section are based on disjoint pass networks [4]. Pass

implicants in these networks are disjoint and they also
possess good fault detection properties.

For test purposes those portions of a multiple-output
pass network excluding the shared part V. can be treated

1

as single-output pass networks. This is illustrated by

considering the pass network shown in Fig. 6.1. The test
vectors can be applied to any path in the upper two branches

of the function Fl and its output can be observed at Fl.
Similarly, test vectors can be applied to any path in the

lower two branches of the function F& and the output can be

observed at F2.

~maMM: A shared network V. of a multiple-output
1

pass function can be tested by applying proper test vectors
which enable V. to the output of one of the functions and

1

by observing the changes occurring at the output of that
function.

Proof: Xt is obvious, as shown in Fig. 6.1, that a

fault in V., can be detected by either setting X. equal to 1
1 j

and by observing changes at the output of the function F2 or

by setting X. equal to 0 and by observing the changes at the

output of the function Fl. These tests can always be done

because only one path is enabled at a time for a fault-free
pass network with disjoint pass implicants. QED.

53

F1

F2

Fig. 6.1. A Two Output Network sharing V..i

,54

Note that enabling VS to the output of one function may
1

also result in enabling V. to the output of other functions.

Whenever this occurs, a fault in several functions may be

tested simultaneously by applying a single set of test
vectors.

6.1.1
The faults occurring in a pass variable are classified

into either s-at or s-op. A s-at fault at a node behaves

as if the node is connected at a fixed logic state
determined by the fault. A s-op fault in a network branch

behaves like a discontinuity in the branch, thus making the

output float (high impedance state). The behavior of a

s-op fault is equivalent to a s-op in the connecting

transistor.
Lemma M2: A s-at fault in the pass variable V. in S.

1 1

of a multiple-output BTS pass network is detectable by

sensitizing V. to any one of the outputs.
1

Proof: If V. is sensitized to one of the outputs Fi,1

then F. = V..
1 1

If V. is constant, then the output F.
1 1

determines the existance of a s-at fault on V.. If V. is a
1 1

variable then s-at 1/0 can be detected by feeding V with a

0/1 value.

Theory RJ.: All pass variable s-at faults in a BTS

pass network are detectable.
Proof: In a multiple-output BTS pass network one and

only one path is enabled to a single output at any time.

Hence by Lemma 6.2 all s-at faults are detectable.
55

QED

The following example illustrates the above theorem.

Example 6.1: Consider the multiple-output BTs pass

network shown in Fig. 6.2. Two sets of test vectors for
testing the s-at faults in the pass variables of the shared

complementary sum S. = X2(1) + X2'(Xl) are shown in Table1

6.1- one by observing the output Fl, and the other by

observing the output F2. Any one of these two sets of test
vectors is sufficient to test all the pass variable faults
in S.. The test vectors for testing all other pass

1'ariables are shown in Table 6.2.

6.1.2

The faults which affect the pass transistors are
modeled as s-op and s-on [2,4]. A s-on fault between two

nodes in a network behaves like a short circuit between

them. This may cause logical inconsistency if both a '0'nd
a '1're passed simultaneously through these two

nodes. If a s-op fault exists along an enabled path, the

output will float and enter into a high impedance state.
Due to the capacitive loading in the circuit, the output

will remain in the previous state at least for a short
period of time depending on the time constants involved in

the circuit. To detect this fault, the output must be

forced to make a transition between 0 and 1.

X11CQzam MM: All s-op faults in a BTS pass network

are detectable.

56

X4'2

Fl

I

Il

S(

1

I

X.
F

2

Fig. 6.2. S-AT Pass Variable Faults in a Multiple-
Output BTS Pass Network.

57

Table 6.1. Pass Variable S-at Fault Test Vectors for
S ~ of Fig. 6.2.

1

Table 6.2. Pass Variable S-at Fault Test Vectors in
Fig. 6.2 Excluding S..i

58

Proof: A s-op fault is tested by feeding two sets of

inputs, the first one initializes the output to 1/0 through
a fault-free path and the second one passes a 0/1 through
the faulty path. The basic property, that all the pass
variables in a pass network are not identical, allows us to
find two inputs satisfying the above condition and hence

the theorem. QED

Note that the above theorem is also valid for s-op
faults in pass variables and internal nodes.

The following example illustrates the above theorem.

Example 6.2: Consider once again the multiple-output
BTS pass network shown in Fig. 6.2. For identifying the
different transistors for test purposes, additional
subscripts are added to all the control variables. The

modified diagram is shown in Fig. 6.3.
The s-op fault in

X41
'an be detected in the following

manner: Apply the input vector &X4 X X X & = &1 1 0

The output Fl is now set to logic '0 ' If X41 is now

changed to '0', with no fault, the output Fl must change to
'1 '. Otherwise the output will stay at the previous logic
value of '0 '. The initialization can also be done by

applying the input vector &1 0 0 1&.

The test vectors for all the s-op faults in Fig. 6.3

are given in Table 6.3.
The number of transistors in a long chain is usually

limited to four, unless it is separated by buffer stages to
avoid excessive delay. In such networks, if a logic '1 's

59

X2

Xl

— F'2

Fig. 6.3. Transistor Faults in Multiple-Output
BTS Pass Network.

60

Table 6.3. S-op Fault Test Vectors for the Network in
Fig. 6.3.

61

fed through a large depletion mode transistor, it can more

or less guarantee the dominance of a '0 'ver a '1 '. The

following theorem assumes this dominance property.

Lemma 5&: If one or more pass variables in a BTS

pass network are constants, then at least one of the s-on

faults is not detectable.
Proof: Consider a general BTS pass network shown in

Fig. 6.4. To detect a s-on fault on X., we must pass both
1

a '0 'nd a '1 'imultaneously through two different
paths such that the '0 's passed through X..

1
If X. is made

'0 ', then the output must be logic 1 if there is no fault,
and logic 0 if there is a s-on fault. This will be true

only if a '0 'ominates a '1 '. On the other hand, if a '1's
passed through X. and a '0's passed through a second

1

path to the output, then the output will always be '0 'ndependentof the fault in X. and hence this fault cannot
1

be detected. Similarly, a s-on fault in X. 'annot be

detected since a '0 'a passed to the output through the

second path controlled by X. under test conditions. QED.j
XheDXBX~M: All s-on faults in a BTS pass network

are detectable if none of the pass variables are constants.
Proof: Since none of the pass variables are

constants, their logic values can be chosen arbitrarily.
This will allow the logic assignment of pass variables such

that a '0 's passed through the faulty path and a '1'hrougha fault free path to the output simultaneously,

thus detecting the fault, All s-on faults can be detected

in a similar manner.
62

X,

-F

Fig. 6.4. Undetectable S-ON Faults in a BTS

Pass Network.

The detection of a s-on fault in a BTS pass network is
illustrated by the following example.

Example 6 .3: Consider Fig. 6 .3 again. A s-on fault on

X31 can be detected by applying the test vector &X4X3X2X1&

&1 0 0 1&. The output Fl = 1 if there is no conflict and

Fl= 0 if there is a s-on fault on X31. Similarly, s-on

fault test vectors for X41, X42, X&i', and X22'an be

derived. But s-on fault on X41', X31', X42', and X22 cannot

be detected since some of the pass variables are constants.
The complete set of test vectors for detecting the s-on

faults in the different transistors are shown in Table 6.4.
As mentioned earlier for s-op faults, s-on fault test

vectors are not unique. Table 6.4 lists only one set of

test vectors. Others can be derived in a similar manner.

6.1.3
The faults occurring in the internal nodes of a pass

network are classified into s-op, s-at, and bridging

faults. Bridging faults occur in integrated circuit chips

due to capacitive coupling between neighboring conductors.

The effect of these faults depends on the actual patterns
laid on silicon. Hence these faults are not considered

further in this thesis.
Thmu~~h: All internal node faults in a BTS pass

network are detectable.
Proof: The behavior of s-op faults in the internal

nodes of a BTS pass network is similar to s-op faults in

64

Table 6.4. S-on Faults Test Vectors for the Network
of Fig. 6. 3.

65

the pass transistor. Hence by Theorem 6.2, all s-op faults
in the internal nodes are detectable.

For each internal node there exists at least one path

from some pass variable V. to the output F of thei
function. Therefore, a s-at fault test for the variable
V. will also test for the same fault in all the internal

1

nodes along that path to the output. Hence a complete set
of tests for all the s-at faults in the pass variables will
completely test for all the internal node s-at faults. QED.

The test vectors listed in Table 6.1, 6.2, and 6.3

will also detect all s-at and s-op faults in the internal
nodes in the network of Fig. 6.3.

The above discussion of fault detection in the BTS

pass network has resulted in the following important

theorem.

~T nrem ~: All faults in a BTS pass network are
detectable if none of the pass variables are constants.

Proof: The set of faults in a pass network includes
s-at faults on pass variables and the internal nodes and

s-op and s-on faults in the transistors. Since all these

faults are detectable by Theorems 6.1 through 6.4 so long

as the pass variables are not constants, all faults are

detectable. QED.

6.2

The s-on and s-op faults in the transistors merit

extra consideration due to the behavior of the pass

transistors.
66

To detect a s-op fault in a transistor a test vector

is applied for initialization and then the real test is
applied to detect this fault. This scheme does not always

gurantee fault detection. Due to unequal delays in the

transition of signals between two test vectors, it is
possible for charge-sharing to occur between the output

node and other circuit nodes via conducting transistors.
Once the circuit is initialized, before the application of

the real test vector two conditions may occur: (1) All

paths to the output get disconnected, and (2) A third path

switches the output to the opposite logic state.
If the former condition occurs, then it may happen

that the output node no longer holds the right amount of

charge necessary for fault detection, thus invalidating the
test.

Charge-sharing between the nodes depends on the

relative capacitances of the nodes involved. Nodes with

capacitances much less than the output node capacitances

will probably have significant impact.

An example to illustrate the delay problem occurring

in a pass network is given below.

Example 6.4: Consider the detection of s-op fault on

transistor X4'f Fig. 6.5. Assume that the transition
from one logic value to another in X4 is slower than the

transition in X2. To detect this fault use the test vector

&X] X2 X4& = &0 1 1 & as the initial ization vector which

initializes the output to logic value '1'nd then use test
67

Fig. 6,5, Test Invalidation for Transistor S-OP Fault.

vector &Xl X2 X4& = &0 0 0& to force the output to logic
value '0'f there is no fault. Note that since X4 is slow

in making the transition, a '0'ill be passed to the output

before the actual test vector is applied thus modifying the

initialization to logic '0'nd invalidating the test.
The detection of s-on faults in the transistors used

the dominance property whereby a '0'ominates a '1'. This

may not be valid under all circuit configurations. This

happens when a '0 ' s passed through a longer chain of pass

transistors compar d to a '1'. Under these conditions the

output logic valu~ may be undefined or even switch to logic
value '1'hus inv. li kating the test.

69

CHAPTER 7

CONCLUSION

The BTS pass network algorithm presented in this
thesis has

ones. It
n**2

2 for

several advantages compared to the earlier
n-1uses at most 2 comparisons compared to

the optimal algorithm. A tremendous saving in

memory requirements is achieved because of the drastic
reduction in the number of pass implicants generated.

The BTS pass networks are found to be very suitable
for the design of multiple-output pass networks. The

necessary and sufficient conditions are derived for sharing

part of a network among different pass functions. It is
found that this sharing in pass networks is more involved

compared to sharing in gate logic networks.

The design of multiple-output pass networks is used to
illustrate a new kind of PLA called pass logic PLA.

Contrary to our intuition this pass logic PLA is inferior
to a normal PLA in terms of the silicon area. But it is
superior to gate logic PLA in its speed and also uses less
static power. Hence the use of this PIA is dependent on

the particular application to which it is used.

Fault detection procedures for multiple-output pass

networks are presented with special emphasis given to

multiple-output BTS pass networks. All the faults
occurring in these networks are classified into three

types: stuck-at faults on pass variables, and stuck-on and

stuck-open faults occurring in the pass transistors. The

testing of portions of a network which is not shared among

different functions is treated similar to single-output
functions. Shared network can be tested by observing any

one of the outputs which share that portion of the

network. It is shown that all stuck-at and stuck-open

faults in multiple-output BTS pass networks are

detectable. The only problem was with the testing of

stuck-on faults. Test vectors are found to be nonexistant

for some cases where the pass variables are constants.
Hence the test set is found to be incomplete.

Finally, it is shown that some of the test vectors
derived earlier for stuck-open and stuck-on faults may

become invalid under certain conditions. A stuck-open

fault test vector may become invalid due to different
delays involved in switching the variables. The assumption

of dominance of a '0'ver a '1'ay invalidate a stuck-on

fault if the length of the path feeding a '0 'o the output

is much longer than that of a '1'path. Hence stuck-on

fault test set depends on the actual geometry of the

network.

Further work is to be done to find an optimal algorithm

for BTS pass networks. A second area for further study must

focus on determination of testability criteria for any

7l

network based on its pass function and the topology. This

will enable automatic generation of test vectors for any

network whenever possible. In addition, it will help to

provide design techniques for testable pass networks.

72

REFERENCE

[1] D. Radhakrishnan, G. K. Naki and S. R. Whitaker,
"Formal Design Procedures for Pass Transistor
Switching Circuits," IEEE Journal of Solid State
Circuits, Vol. sc-20, pp. 531-536, April 1985.

[2] G. E. Peterson and G. K. Naki, "Binary Tree Structured
Logic Circuits: Design and Fault Detection," proc.
ICCD '84, pp. 671-676, Oct. 1984.

[3] R. L. Wadsack, "Fault Nodeling and Logic Simulation of
CNOS and NOS Integrated Circuits," The Bell System
Technical Journal, Vol. 57, pp. 1449-1474, Nay-June
1978.

[4] D. Radhakrishnan and G. K. Maki, "Test Derivation for
NOS Switch Logic Networks," Proc. 21st Annual Allerton
Conf. on Communication, Control, and Computing, pp.
786-795, Oct. 1983.

[5] C. A. Mead and L. A. Conway, Introduction to VLSI
systems. Reading„ MA: Addison-Wesley, 1980.

[6] H. H. Chen, R. G. Nathews and J. A. Newkirk, "Test
Generation for MOS Circuits," proc. IEEE International
Test Conference, pp. 70-79, Oct. 1984.

[7] A. R. Feizi and D. Radhakrishnan, "High Performance
Switching Circuits for VLSI," Proc. ICCD '85, Port
Chester, NY, Oct. 1985,

APPENDIX

PASS PRIME IMPLICANT GENERATION

This is a computer program written in BASIC language

to implement the algorithm given in Chapter 3. This

program was implemented on a Texas Instruments PC MS-DOS.

n n-IThe program uses two arrays of 2 and 2 sizes (K and

M lists). After the first iteration, half of the K-list is
used to store the final result (F-list). The pass

implicant records are stored in these two arrays during the
course of the algorithm. The comparison starts with one

array and the resulting pass implicant records are stored

in the other array for further comparisons or are stored in

the output file as pass prime implicants (subroutine).
These two arrays are interchanged during the course of the

algorithm till all the pass prime implicants are found

which will be stored in the P-list. (pointer S is assigned

to the F-list). The given function to be minimized must be

in the ascending order and represent 1's of the function

(minterm) and must be entered as DATA at the end of the

program. When the program is run, the number of mintermsg

W, and the number of variables, N, must be specified as

inputs.

10

20

30

40

50

60

DIM B(2) g D(2) JP(2)

INPUT "ENTER THE NUMBER OF MINTERMS, W, AND THE NUMBER

OF VARIABLES'"&W, N

IF W&(2N + 1) THEN 60

PRINT "INVALID INPUT DATA FOR W &N, TRY AGAIN"

GOTO 10

PRINT
'ET THE TIME TO START THE ALGORITHM.

70

80

90

100
110

120
130
140
150
160

TIMES = "00:00:00"
PRINT "W = "W TAB(0) "N = "N

A8 = "B(K) D(K) P(K)
PRINT A8

PRINT

List the given function in the BDP form.
FOR J = 0 TO (W — 1)
READ B(J)
D(J) = 0

P(J) = 1

NEXT J
'With the given function, combine two adjacent records

in the list. At this iteration, all records will combine
because each record represent a minterm. Store the result
in the specified array.
170 I = -2
180
190
200
210
220
230
240
250
260
270
280
290

J = 0

K = (2N) — 1

B = -2
I = I+2
B = B + 2

K = K + 1

IF B(J) = I AND B(J+1) = I+1 THEN 300
IF B(J) = I AND B(J+1) && I + 1 THEN 330
IF B(J) && I AND B(J+1) && I + 1 THEN 360
P(K) = 11

J = J + 1

GOTO 380

75

300
310
320

330
340
350
360
370
380
390
400

410
420
430
440

450

460
470
480

490

500

510
520
530

540
550
560
570

580
590
600

J=J+2
P(K) = 1

GOTO 3 80

J=J+1
P(K) = -11
GOTO 380

J = J
P(K) = 0

B(K) = B

D(K) = 1

IF B(J) && 0 THEN 210

IF B = (2N) — 2 THEN 540
B=B+2
K = K + 1

B(K) = B

D(K) = 1

P(K) = 0

GOTO 410

FOR K =(2N) TO ((2N) + (2N-1) — 1)

PRINT B(K), D(K), P(K)
NEXT K

FOR K = 0 TO (W-I)
PRINT B(K) f D(K) ~ P(K)
NEXT K

'tart the comparison with 2n-1 records in the
array. Each records represents two minterms.

Z = I
X = 2

D = 0

M = 0

'KK determines which array is being compared, K or
M-1 ist.

KK = 0

K = 2N

S = ((2N-1) — 1)
'Set the D and B-fields for current iteration.

76

610
620

630
640
650
660
670

680
690
700
710
720
730
740
750
760
770
780
790
800

810

820

830
840

850

860

870

880

890

900

910

920

930

940

950

D=D+ (2)
P = -(2K+1)
IF K = 2N THEN 650
GOTO 670
J=0
GOTO 680
J= 2N

'Compare the records K and K+1.
IF D(K) && D THEN 810

P = P + (2Z+1)
IF D(K) && D(K+1) THEN 950
Q=P+2Z
IF B(K) = P THEN 790
IF B(K) = Q THEN 760
K=K
GOTO 680
GOSUB 1390
K=K+1
GOTO 680
IF B(K+1) && Q THEN 760
GOTO 1070
IF KK = 0 THEN 830
GOTO 850

KK = KK + 1

GOTO 920

KK = KK - 1

IF K = 0 THEN 1320
K = 2N

Z= Z+1
X=X+1

GOTO 610
IF K = 2N THEN 1320
K=0
GOTO 880

IF KK = 0 THEN 1010
77

960 KK = KK — 1

970 IF K = 0 THEN 1030
980 GOSUB 1400
990 K=2N
1000
1010
1020
1030

1040
1050
1060
1070

10 80

10 90

1100
1110
1120

1130
1140
1150
1160
1170
11 80

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

GOTO 880
KK=KK+1
IF K && 2N THEN 1060
GOSUB 1400
'End of comparison, print the result.
GOTO 1320
GOSUB 1400
K = 0

GOTO 880

'Determine if two P-fields can combine.
IF P(K) = P(K+1) = 0 THEN 1180
IF P(K) = 0 AND P(K+1) = 1 THEN 1240
IF P(K) = 1 AND P(K+1) = 0 THEN 1260
IF P(K) = P(K+1) = 1 THEN 1280
IF P(R) =P(K+1) && 1 AND P(K) =P(K+1) && 0 THEN 1300
'The records do not combine, send to the output file.
GOSUB 1400
K = K + 1

GOSUB 1400
K=K+1
GOTO 680

P(J) = 0

D(J) = B(K+1) — B(K) + D(K)

B(J) = B(K)
K = K+ 2

J= J+1
GOTO 680

P(J) = X

GOTO 1190

P(J) = -X

GOTO 1190

P(J) = 1

78

1290 GOTO 1190
1300 P(J) = P(K)
1310 GOTO 1190

1320 FOR K = (2N 1) TO S

1330 PRINT B(K) g D(K) g P(K)

1340 NEXT K

1350 PRINT

'Total time to generate the pass prime implicants.
1360 PRINT "COMPUTATION TIME TC = "TIME$

1370 DATA 0~1~4~5~11~12g14
13 80 END

SUBROUTINE TO STORE THE FINAL RESULT

1400 S= S+1
1410 B(S) = B(K)

1420 D(S) = D(K)

1430 P(S) = P(K)
1440 RETURN

The final result is in BDP form and must be converted

to BTS form using the procedure given in section 3.3. The

P-field a 1, 0, or numbers 11, 2, 3, 4,..., corresponding

to variables Xl, X2, X3, X4,... respectively. A minus sign

is used to represent complementry variables. For example,

if P-field contains 1, -lip lip 3g 8 7g then the

coresponding pass variables are: 1, Xl', Xl, X3 X8 X7

respectively.
The D-field in the final result obtained from the above

program is equal to the sum of the terms appearing in the
(20,21,22 ...2n-1)D-field, d, and must be converted

0 1 2 n 1form because d = 2 +2 +2 +...+2 The following examples

are used to illustrate the implementation of the above

program.

79

Example 1: f(X3 X2 Xl) = m(0,2)

DATA 0,2

RUN

ENTER THE NUMBER OF MINTERMS W AND THE NUMBER OF VARIABLES

N? 2,3

N = 3

B(K) D(K) P(K)

0 3 -11

0 3 0

EXAMPLE 2: f (X4 X3 X X)

DATA 0,1,4,5,9,11,14
RUN

CQH)()RSLQH

B(K) D(K) P(K)

0 (1 '2) Xl

0 (1,2) 0

(Oil i4i5i9illil4)

ENTER THE NUMBER OF MINTERMS W AND THE NUMBER OF VARIABLES

NF 8 i 4

W = 8

N = 4

B(K) D(K) P(K)

8 3

MN)(EIIQ~

B(K) D(K) P(K)

(1 '2) Xl

12 3 -ll
0 7 -2

12 (li2) Xl'1

'2 '4) X2

Example 3: f (X4 X3 X2 Xl)

DATA 3i7i12il3il4i15
RUN

(3 i 7 i 12 i 13 i 1 4 '5)

80

ENTER THE NUMBER OP MINTERMS W AND THE NUMBER OP VARIABLES

N2 6i4

W = 6

N = 4

B(K) D(K) P(K)

11

QPELEXGJQ5

B(K) D(K) P(K)

0 1 0

X1

0

6 1

8 (1 2,4) X3

81

HIGH PERFORMANCE SWITCHING CIRCUITS FOR VLSI

by

Ali Reza Feizi

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
December 1985

ABSTRACT

HIGH PERFORMANCE SWITCHING CIRCUITS FOR VLSI

Ali Reza Feizi
Old Dominion University, l985
Director: Dr. S.V. Kanetkar

Interconnection topology and device performance are of

major concern in the design of LSI/VLSI systems, Pass

networks are very suitable in this regard because of low

power consumption, high density, and simple interconnection

topology. A special type of pass networks called Binary

Tree Structured (BTS) pass networks uses almost minimum

number of transistors for the design of switching

circuits. An algorithmic procedure is developed here for
BTS pass networks which is very efficient in terms of both

excution time and memory space. Based on these networks,

the necessary and sufficient conditions are derived for the

design of multiple-output pass networks. A new kind of

Programmable Logic Arrays (PLA) called pass logic PLA is
also proposed in this thesis. Fault detection techniques

for multiple-output pass networks with special attention
given to multiple-output BTS pass networks are presented

here. Finally, it is found that under certain conditions
some of the faults which occur in pass networks cannot be

detected.

	High Performance Switching Circuits for VLSI
	Recommended Citation

	tmp.1721918296.pdf.rnmzm

