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ABSTRACT Unmanned Aerial Vehicles (UAVs) are becoming crucial tools in modern homeland security
applications, primarily because of their cost-effectiveness, risk reduction, and ability to perform a wider
range of activities. This study focuses on the use of autonomous UAVs to conduct, as part of homeland
security applications, strike missions against high-value terrorist targets. Owing to developments in ledger
technology, smart contracts, and machine learning, activities formerly carried out by professionals or
remotely flown UAVs are now feasible. Our study provides the first in-depth analysis of the challenges
and preliminary solutions for the successful implementation of an autonomous UAV mission. Specifically,
we identify the challenges that must be overcome and propose possible technical solutions for them. We also
derive analytical expressions for the success probability of an autonomous UAV mission and describe a
machine-learning model to train the UAV.

INDEX TERMS Homeland security, blockchain, machine learning technology, on-board black box, smart
contracts, UAV.

I. INTRODUCTION
For several decades, the United States has employed remotely
piloted Unmanned Aircraft Vehicles (UAV) for both military
and Homeland Security (HS) services [1], [2]. Several HS
analysts have pointed out that UAVs are attractive from both
strategic and tactical standpoints because they are cheaper to
deploy than crewed (i.e., manned) aircraft and can carry out
dangerous missions without risking human lives [3].
In addition, with the gradual introduction of increasingly

sophisticated UAVs, supported by advances in machine
learning (ML), several new types of missions are now within
reach. These include cargo and resupply, air-to-air combat,
close air support, communication relays, aerial refueling,
search-and-rescue, and counter-terrorism missions [4]. It is
becoming evident that, due to their increased technological
sophistication and reduced size, UAVs arewell-suited to carry
out many types of HS missions that, until very recently,
could only be performed successfully by crewed aircraft.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouloud Denai .

Such considerations could enable friendly forces to station
UAVs closer to the front lines than crewed aircraft, potentially
reducing the time required to carry out time-sensitive HS
missions.

As the US is withdrawing from conflicts around the world,
our HS applications will have to increasingly rely on UAVs
for various missions, including intelligence, surveillance,
and the acquisition of ground targets in counter-terrorism
missions [2], [5], [6].

It is widely known that the U.S. Department of Defense
(DoD), in conjunction with the US Department of Homeland
Security (DHS), is developing several experimental concepts
such as aircraft system-of-systems, swarming, and lethal
autonomous weapons that explore new ways of employing
future generation UAVs [4], [7], [8], [9]. Aligned with this
effort, the main objective of this study is to bring UAVs
to the next level of sophistication by enabling autonomous
UAVs to conduct strike missions against entrenched high-
value terrorists.

In the past, such missions were carried out by Special
Operations personnel and/or remotely piloted UAVs, and
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recent advances in blockchain technologies, smart contracts
(SC), and ML have made it possible for these missions to be
carried out successfully by autonomous UAVs. Our first main
contribution is to identify the main challenges that must be
overcome to implement our vision; our second main contri-
bution is to propose preliminary solutions to these challenges.
To the best of our knowledge, this is the first paper in the open
literature available to us that discusses the challenges inherent
in making such high-priority HS missions feasible and how
these challenges can be successfully overcome.

The remainder of this paper is structured as follows:
Section II reviews related work. Section III provides the
necessary background information. Section IV introduces our
working scenario and basic assumptions. Section V identifies
the main challenges involved in enabling autonomous strike
UAVs. Next, Section VI provides preliminary solutions
to the challenges identified in Section V. Section VII
introduces the concept of blockchain-based SCs. Section VIII
identifies some of the on-board sensors to support HS
missions. Section IX presents the UAV simulation model.
Section X offers details of our ML framework in support
of autonomous strike UAVs as well as a host of empirical
evaluations. Section XI delves into a discussion of advanced
ML techniques and their relevance to our research. Finally,
Section XII offers concluding remarks andmap out directions
for future work.

II. RELATED WORK
The rapid growth of UAV technology, particularly in HS and
military operations, has attracted considerable attention and
development in recent years. This section examines the latest
literature and research that has contributed to the increasing
use of UAVs in modern military and HS operations.

The authors of [10] conducted a comprehensive survey on
the use of ML in the context of UAVs. It begins by addressing
the growth of UAVs and how ML can help them perform
better. The survey then organized the use of ML into four
categories: perception and feature extraction, feature interpre-
tation and regeneration, trajectory and mission planning, and
aerodynamic control and operations. The survey describes
several ML algorithms and strategies for each category,
demonstrating how they are used to improve UAV operations
such as image processing, object detection, autonomous
navigation, and data transmission. It emphasizes the role of
ML in improving UAV intelligence for activities such as
environmental monitoring, surveillance, and communication.
The paper also discusses the challenges involved in inte-
grating ML with UAVs, such as processing restrictions, data
management, and energy efficiency. The paper concludes
with suggestions for future research initiatives, including the
creation of more advanced MLmodels for UAVs operating in
diverse and complicated situations.

The authors of [11] comprehensively reviewed the rela-
tionship between mobile edge computing (MEC), ML, and
UAVs in the context of the Internet of Things (IoT). The
paper presents a thorough assessment of the most recent

advances in the use of MEC and ML in UAV networks.
It addresses the advantages and disadvantages of combining
various technologies and focuses on their potential to improve
performance, efficiency, and capacity of UAV systems.
The survey also examines several scenarios and use cases,
emphasizing MEC and ML’s impact on UAV operations in a
variety of settings and applications. The paper concludes by
discussing future research issues and expected advances in
this growing field.

The authors of [12] present a detailed review of the use
of Reinforcement Learning (RL) in Multi-UAV Wireless
Networks (MUWN). It investigates numerous elements of
RL to improve UAV operations, including data access,
sensing, collection, resource allocation, edge computing,
localization, trajectory planning, and network security. This
study examines the particular issues of implementing RL
in UAV networks, including the computing limits and
changeable environmental variables. The paper concludes
with suggestions for future research and the creation of
sophisticated RL models to increase the efficiency and
effectiveness of MUWNs.

The authors of [13] provide a detailed examination of
the construction of a UAV system designed for anti-terrorist
activities. It offers a thorough examination of numerous
components, such as electrical systems, sensor systems,
vision systems, ground control stations, propulsion systems,
and structural systems. This study examined various UAV
models and evaluated their capabilities using variables,
such as payload endurance, cost, and system components.
It also recommends changes to the chosen UAV platform
to improve its performance in anti-terrorist missions. The
report concludes with a thorough evaluation of the effects of
these adjustments on the UAV’s performance, emphasizing
the need for an adapted architecture in UAV development for
specialized missions.

The authors of [14] investigate the application of
AI-powered UAVs for security and surveillance, particularly
in challenging environments, such as dense forested areas.
It concentrates on the development of UAV systems that
use cutting-edge technology, such as laser-range detectors
for exact location evaluation and path finding, as well as
3-D mapping capabilities for comprehensive environmental
awareness. This study highlights the potential of using
AI-powered UAVs to improve security measures. The use
of convolutional neural networks and IoT frameworks is
also discussed, demonstrating how these technologies can
transform environmental sensing, security monitoring, and
search-and-rescue operations.

In their discussion on the employment of AI-powered
UAVs for military purposes, the authors [15] categorize
various UAV types according to various factors, including
weight and flying characteristics. This suggests identifying
vital military assets such as trucks and artillery from
UAV surveillance imagery in real-time using the YOLOv5
deep learning algorithm. The model was trained using a
dataset of more than 10,000 tagged photos from military
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hardware and demonstrated good accuracy. AI-powered
UAVs offer improved battlefield awareness and intelligence
when connected to military command-and-control networks.
Important benefits, including force multiplication and less
risk to human life, are highlighted in this research, but
problems such as false positives require further development.
Overall, it shows how automated detection and autonomous
capabilities can be added to UAVs through deep learning
and computer vision, thereby eliminating the need for
human operators in numerous dangerous military operations.
This study highlights the system interoperability and offers
a technique for YOLOv5-based real-time important item
recognition from UAV footage.

The authors of [16] present a distributed blockchain-based
platform for UAVs. Its main goal is to improve security and
operating autonomy in an IoT setting. The proposed solution
includes a special, secure, and light blockchain structure
for UAV communication. This reduces the need to compute
power and storage space, while still providing privacy and
security benefits. A reputation-based consensus system is
created to ensure the reliability of the autonomous network.
Different types of transactions are set up for different types of
data accesses. The platform protects UAV-based apps from
possible vulnerabilities by using simple cryptography, new
transaction and block structures, and a consensus method
similar to Delegated Proof of Stake (DPoS) along with a
reputation rating system. Performance reviews of the system
show that it is effective at lowering latency, speeding up data
flow, and strengthening security against various threats.

III. BACKGROUND
UAVs represent a significant step forward in technology that
can be used in a growing number of different areas [13],
[14]. SCs and blockchain technology can be used to manage
UAVs. This is a new concept, especially for HS and military
missions where safety, autonomy, and reliability are essential.
Using a private blockchain for this purpose hasmany benefits,
such as better protection, more limited access, and faster
transaction times compared to public blockchains. The main
characteristics of private blockchains are their high transac-
tion processing rate and limited access, which permits only a
small number of approved users to interact with the network.
Public blockchains have slower transaction rates because they
require network-wide consensus, frequently via proof-of-
work processes, which results in faster consensus times and
more transactions completed per second. Compared to public
blockchains, where data is immutable andmodifications need
agreement across all subsequent blocks, private blockchains
offer increased data privacy because changes may be made
quickly after consensus is reached across all nodes [17].

A. SMART CONTRACTS
SC technology is directly related to blockchain, which
is the underlying platform that allows these contracts to
function with the highest level of security and transparency.
SCs or self-executing programs embedded in blockchain,

are transforming digital interactions. The blockchain acts
as a decentralized ledger, recording all transactions across
a computer network. This architecture not only ensures
SCs’ immutability and traceability but also eliminates the
need for a central authority or middleman, resulting in
a more direct and transparent form of engagement and
transaction execution [18]. The combination of SCs and
blockchain technology enables a new era of automated, safe,
and effective digital transactions, offering a wide range of
opportunities across different sectors [19], [20].

IV. WORKING SCENARIO – A HIGH-LEVEL DESCRIPTION
Recently, it was suggested that UAVs have tremendous
potential for air-to-ground strike missions [13]. A strike UAV
can launchweapons such as precision-guided missiles against
a ground target. While the state-of-the-art in air-to-ground
strike missions is that there is always a man in the loop,
in the sense that the UAV is piloted remotely, the vision of
our work is to leverage the latest technology to enable fully
autonomous strike UAVs.

With this in mind, throughout this paper, we assume that a
UAV is deployed in support of a HS strike mission involving a
high-value terrorist target in a foreign country. Such missions
may well operate in ‘‘contested territory’’ in which terrorist
forces are active. By their nature, these missions are top
secrets and do not rely on the intelligence collected from
foreign state actors. In fact, the mission may well be deployed
without the approval of foreign state actors.

Given the context of the mission we are contemplating,
we assume that the targeted terrorist organization does not
have the wherewithal to take out or jam US communication
satellites and, consequently, we rely on satellite-to-UAV
communications for the duration of the mission.

We assume that the UAV carries, as part of its payload,
standard on-board sensory equipment, including a gyroscope
(or inertial navigation system), electro-optical cameras,
infrared (IR) cameras for use at night, and synthetic aperture
radar (SAR). SAR is a form of radar that is used to create
two- or three-dimensional reconstructions of objects, such as
landscapes. SAR uses the motion of the radar antenna over
a target region to provide a spatial resolution finer than that
of conventional radars. Such missions must avoid civilian
casualties. We assume that the mission will be aborted if
civilians are close to the intended target. In this regard, night
missions are safer to execute because civilians (especially
children) are unlikely to be present; however, they require
much more sophistication in terms of localization and image
processing.

Figure 1 provides a comprehensive overview of the
working scenarios. Here, we see a network of systems
working together to achieve a targeted mission. The system
consists of a base station, referred to as a Mission Control
Center (MC2), equipped with blockchain systems and SCs,
alongside a satellite communication system. Additionally,
each UAV is equipped with an onboard Black-box (BBX)
an integrated blockchain system, and a SC within the UAV
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FIGURE 1. A comprehensive overview of our working scenario.

network to improve data integrity, operational autonomy, and
security [16], [21]. Although this paper assumes a single
UAV, the proposed system is equally applicable to multiple
coordinated UAVs.

Preparing a mission of the type we have in mind
involves conducting several experimental missions, referred
to as training runs, that involve more hands-on real-
world conditions, by the human experts both daytime and
nighttime, each intended to evaluate the sequence of tasks
that collectively make up the mission. The data collected in
each training run is carefully analyzed by human experts back
at MC2 to establish the conditional success probability of
a future task given the status of the current task. The data
from successive runs is aggregated by human experts at the
MC2 and used to train the ML model. Specifically, human
experts analyze the flight information stored in the tamper-
proof on-board BBX, for example, collected UAV imagery,
along with maneuvers performed by the UAV in response
to sensory information. Consequently, human experts can
assign conditional probabilities to individual tasks based on
the successful or partly failed status of the previous task in
the sequence. Strict conditions for avoiding civilian casualties
are stipulated and encoded as part of the SC to oversee the
mission. In our vision, once the ML model is effectively
trained through these experimental mission data, it is ready
to carry out the mission autonomously, without the need
for continuous communication with MC2. This absence of
communication is crucial for security purposes because it
prevents unauthorized access and tampering with the data
or UAV operations. We note that the on-board BBX serves
as a reliable and secure storage system for the gathered
information, protecting it from potential breach or corruption.

A. ENHANCEMENTS WITH RESPECT TO EXISTING UAV
SYSTEMS
Due to the unique combination of blockchain and ML in
a UAV scenario, it is difficult to make direct comparisons.
However, we can identify possible enhancements by con-
sidering acknowledged constraints in current systems in the
following manner:

• Enhanced efficiency:
– Autonomous Decision Making: Our system differs

from traditional UAV systems by minimizing
supervision by humans and increasing operational
efficiency through the use of ML.

– Optimized Mission Execution: By using SCs,
UAVs can function automatically, adjusting to
mission-specific needs without requiring manual
reconfiguration.

• Enhanced security:
– Data Integrity and Confidentiality: Utilization of a

private, single-node blockchain architecture in the
UAV guarantees that all recorded data is immutable
and protected against unauthorized access. This
represents a notable improvement compared to
systems that rely on less secure, centralized data
storage methods.

– Robust Against External Attacks: The decentralized
structure of blockchain and the autonomous capa-
bilities of SCs offer inherent security advantages
that decrease the system’s vulnerability to hacking
and identity attacks frequently seen by traditional
systems.

• Enhanced autonomy:
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– Adaptive Mission Planning: The system can be
adapted to different operating conditions on the fly,
thanks to SCs and ML. This makes UAV operations
much more autonomous than they could be with
previous models.

V. CHALLENGES
To make the vision of autonomous striking UAVs a real-
ity, several technical challenges must be overcome. The
aforementioned challenges are discussed in this section.
Preliminary solutions to these challenges are presented in
Section VI.

The challenges include, but are not limited to the following:

• Accurate UAV localization in space and time. As dis-
cussed in Section VI, accurate 3-D UAV localization
under all weather conditions is an ongoing effort of great
interest to both the research and the user community.
The challenge of locating UAVs in time contains, as a
sub-challenge, the time synchronization of the UAV and
the MC2. Initially, the UAV and MC2 are assumed
to be synchronized, synchronization may be lost,
owing to clock drift, and periodic re-synchronization
becomes necessary [22], [23]. This re-synchronization
may not be performed directly with the MC2 in case
of Non-Line-of-Sight (NLoS) operations and must be
performed using the UAV-satellite link. Because we
assume unimpeded UAV-satellite Communication and
time synchronization are possible as long as the UAV
is linked to one of the satellites. It is worth noting that
time synchronization involves passive listening and does
not require active UAV communication with satellites;

• Enabling secure communication between MC2 and the
UAV. In our philosophy, such communication occurs
sporadically to minimize the likelihood of the UAVs are
being detected. However, these types of communications
are vital when, for example, MC2 wants to inform
the UAV about the mission being aborted. Similarly,
under specific conditions, when it becomes clear that
the mission cannot be successful (e.g. children play
near the target), the UAV seeks permission to abort
the mission. In a Line-of-Sight (LoS) scenario, these
communications occur directly between the UAV and
MC2.Otherwise, communicationwill occur between the
UAV and one of the satellites in the supporting satellite
constellation. In either case, such communications may
involve time-dependent frequency hopping and, as such,
require tight time synchronization between the two
parties [24];

• Tamper-proof collection and storage of accurate in-flight
sensory data and various maneuvers performed by the
UAV in response to received sensory input. Reliable,
untampered sensor data and the corresponding UAV
responses collected during training missions are neces-
sary to train the ML model. Such data is also essential
for auditability, particularly if the mission is aborted.

Finally, the provenance of each piece of sensory data and
the UAV response must be recorded and ascertained;

• Identifying the target and confirming that the target
is clear of civilians. A fundamental requirement for a
successful mission is to prevent civilian casualties;

• Allowing dynamic changes in the mission parameters.
This suggests that some form of reliable communication,
either direct or indirect via a satellite, has been
established between MC2 and the UAV;

• BBX tamper-resistance: The UAV must blank/destroy
its BBX if it is captured.

VI. TECHNICAL DETAILS: ADDRESSING THE CHALLENGES
The main goal of this section is to outline our preliminary
solutions to the challenges identified in Section V. Our
solutions are, necessarily, sketchy but should give the reader
a sense of what the technical solutions involve.

A. ACCURATE UAV LOCALIZATION AND NAVIGATION
UAV localization is a fundamental challenge in autonomous
navigation and has received extensive attention in scholarly
literature [25], [26], [27], [28], [29]. As already mentioned,
satellite (e.g. GPS) communications are available to the
mission, and we contemplate using GPS for both synchro-
nization (to within 100 nano-seconds) with theMC2 andUAV
localization [3], [30].

As it turns out, UAVs can navigate without GPS. GPS-
denied UAVs rely on a mix of high-tech sensors to operate.
They can use:

• On-board optical sensors that act as UAV’s eyes and
stabilize it throughout the flight. Each of these on-board
sensors provides the UAVwith reference points and data
points regarding its altitude, attitude, and location;

• Similarly, UAVs can use a wide range of technologies
to navigate in a GPS-denied environment. They can
use GNSS receivers, inertial navigation systems (INS),
LiDAR scanners, ultrasonic sensors, and visual cameras
to navigate autonomously [31];

• One of the stated goals of the training runs is to
acquire situational awareness, recognizing landmarks in
the terrain, rivers, lakes, etc. Night navigation may use
well-known elements of celestial navigation [32];

• Finally, GP-denied UAVs may also use a navigation
technique known as SLAM (Simultaneous Location
and Mapping) to create, during training, a map of
their surroundings and understand their position within
it [33].

B. ENABLING SECURE COMMUNICATION BETWEEN THE
MC2 AND THE UAV
One of the fundamental tasks that must be performed as
part of a successful mission is communication with MC2.
Depending on the mission, two types of communication
are required. For missions deployed within approximately
50 miles of MC2, LoS communication may be used. For
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missions beyond 50 miles from the home base, NLoS
communication is required. In this paper, we assume that
NLoS controls communications between MC2 and the
UAV, forwarded through one of several satellite support
constellations [4]. Recall that we assume that the targeted
terrorist organization can not take out or jam US commu-
nication satellites, and consequently, we rely on satellite-
to-UAV communications for the duration of the mission.
However, the communication link to MC2 is lost, the UAV
is programmed to return to its base, and the mission is
aborted.

C. TAMPER-PROOF COLLECTION AND STORAGE OF
FLIGHT DATA
In our vision, the workhorse of the mission is an on-board
tamper-proof BBX.

• The BBX implements the functionality of an append-
only ledger for the duration of the current flight.

• The BBX records and stores every piece of sensory data
collected by the UAV sensors, along with a time stamp
and provenance information.

• For ML training and auditing purposes, BBX also
records action(s) taken by the UAV in response
to each sensory input. This will allow human
experts at MC2to evaluate the successful completion
of various intermediate tasks that constitute the
mission.

In light of the above, it is clear that the BBX serves as
an on-board command and control center. Before a flight,
the BBX is loaded with the individual tasks that constitute
the mission, confirmed by human experts at MC2. The
integration of an advanced BBX and append-only ledger
(i.e., blockchain) technology creates a powerful and secure
system for data collection and mission management. In our
system, the BBX functions as an essential safeguard for
the information collected by the UAV, while simultaneously
ensuring integrity, traceability, transparency, security, and
auditability. Each data entry or transaction can be traced back
to its origin, making it easier to verify its authenticity and
identify potential issues.

D. IDENTIFYING AND CONFIRMING THE TARGET
As previously mentioned, the missions we contemplate
involve several training runs whose stated goal, among
others, is to locate and identify the target (which, to fix
ideas, we assume the target to be an isolated building).
The location of the building was acquired through day-time
training missions and confirmed by a human expert at the
MC2. The same procedure was repeated during subsequent
night-time training runs, where the target was confirmed
using IR and SAR imagery. As previously mentioned, the
mission is aborted if civilians are identified as being close to
the target. However, since we envision a night-time execution
of the strike, the presence of civilians close to the target is a
very unlikely event.

E. ALLOWING DYNAMIC MISSION CHANGES
It is essential for MC2 to order a mission in progress. This is
accomplished by sending a specific encoded message to the
UAV using the satellite communication channel, as discussed
above. Such an order must be confirmed by the UAV using a
different communication channel, such as a different satellite
in the constellation.

F. ERASING BBX CONTENT UPON CAPTURE
The main idea is to prevent the adversary from identifying
mission parameters and flight data. Several techniques can be
used to address this challenge [23]. The standard procedure
is to eliminate the BBX contents. Another more sophisticated
approach is to automatically generate fake data. Fake data can
be generated beforehand and would replace the actual content
of the BBX, with the intention of misleading the adversary.

G. SCALABILITY AND OPERATIONAL INDEPENDENCE
It is, indeed, very tempting to scale up the number of
participating UAVs. However, these missions are top secret,
and proceeding undetected is of paramount importance. The
fact remains that the more UAVs participating, the better the
success chances but the larger the detection probability by
the adversary. Along this line of thought, our philosophy,
expressed several times in the paper, is that during the
mission, communications need to be kept to a minimum.
In effect, this implies that each UAV must act independently.
While, at this point, the ideal number of UAVs in the
mission is unknown, striking a balance between mission
success and detection probability remains a nagging open
problem.We expect that the answer is technology-dependent.
The more sophisticated the UAVs and the smaller their
footprints, the lesser the likelihood of detection by the enemy.
As far as blockchain is concerned, scaling does not pose a
problem since, as discussed above, each UAV is independent.
Similarly, ML does not have a scaling problem. On the
contrary, the more data available from BBXs, the easier it is
for the ML engine to learn.

VII. PROPOSED BLOCKCHAIN-BASED SCS
A novel approach to improve data integrity and security
in autonomous attack missions is to include blockchain
technology in the BBX of UAVs. These HS operations have
sensitive and high-security requirements, so a single-node,
private blockchain architecture is used. This section describes
our blockchain architecture.

A. BLOCKCHAIN ARCHITECTURE CHOICE
The requirement for complete control over the data access
and validation procedures as well as security motivates
the choice of a private, single-node blockchain architecture
during active mission stages. A private blockchain limits
access to predefined entities, in this case, the UAV’s BBX
itself, as compared to public blockchains, where the ledger is
maintained by several nodes and is available to everyone. This
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design ensures that classified mission data stays inaccessible
to other entities, thus minimizing the risk of data breaches or
unauthorized access. The blockchain architecture is intended
to expand and sync with more MC2 nodes after the mission
is completed. This adaptability makes it a scalable and safe
platform for post-mission analysis and data preservation by
enabling improved data validation and incorporation into
larger military databases.

Let B denote the blockchain employed on the BBX
UAV. A series of blocks will define the status of B at
any time t during the mission as follows: blocks B(t) =

[b1, b2, . . . , bn], where a set of transactions Ti containing
data records from the tasks of the UAV, like sensor data,
navigation routes, and mission-critical decisions, are stored
in each block bi.

B. SCS DESIGN FOR UAV MISSION TASKS
We provide a conceptual framework for SCs in our UAV
system, which is an automated and responsive approach
designed to handle important mission tasks. Each contract,
denoted as C and deployed on the blockchainB is createdwith
a certain function to be fulfilled to ensure a seamless transfer
from take-off to mission execution to post-mission analysis.

For example, the TakeoffManager SC oversees pre-flight
checks and clearances, to ensure all systems are operational
before takeoff. Once the UAV takes off, the Navigation-
Manager SC guides the UAV, dynamically adjusting its path
based on real-time environmental and geographical data.
The SurveillanceManager SC takes over when the UAV
approaches its target, examining data to verify the target’s
identity and status. The EngagementDecisionManager SC
makes strategic decisions about whether to strike during
engagements by weighing several criteria. The StrikeMan-
ager SC makes sure that the payload is deployed precisely
if a strike is approved. The DamageAssessmentManager SC
evaluates the result and reports the data to the MC2. The
following description illustrates how these SCs manage the
tasks of the UAV. So, each of these SCs performs actions Ak
automatically based on conditions8k obtained from the UAV
operational data.

action Ak mission abort is triggered by the SC.

1) TAKEOFF SC (TAKEOFFMANAGER)
Trigger: It begins when the UAV is ready to take off.

Function: Checks weather, system checks, and permis-
sions from MC2 before a flight. Based on sensor data and
pre-set safety checks, it makes sure that all systems are ready
for take-off.

2) NAVIGATION SC (NAVIGATIONMANAGER)
Trigger: Activated after takeoff.
Function: Tracks GPS and inertial navigation data to help

guide theUAVwithin the path that was planned ahead of time.
It changes the flight path in real-time based on data about the
surroundings, threats, and geography to make sure the best
route is taken.

3) SURVEILLANCE SC (SURVEILLANCEMANAGER)
Trigger: Starts the attack as soon as the UAV gets close to
the target.

Function: In order to receive information, it controls the
sensors. Analyze the data to confirm target presence and
status to provide real-time updates to MC2.

4) ENGAGEMENT DECISION SC
(ENGAGEMENTDECISIONMANAGER)
Trigger: Once target validation is complete.
Function: Choose an engagement method based on the

engagement rules, the state of the target, and factors in the
local environment. This SC evaluates the risk and possible
security and decides whether to strike or not.

5) STRIKE EXECUTION SC (STRIKEMANAGER)
Trigger: After the engagement decision.
Function: Manages the use of weapons directed with

accuracy. Controls weapon systems and flight dynamics to
guarantee accurate target striking with real-time modifica-
tions based on environmental changes and sensor data.

6) DAMAGE ASSESSMENT SC
(DAMAGEASSESSMENTMANAGER)
Trigger: After strike execution.
Function: Determines the damage using SAR data and

high-resolution imagery. gathers a complete damage report
and forwards it to MC2.

C. PARTICIPANTS AND THEIR ROLES IN THE UAV
BLOCKCHAIN SYSTEM
The blockchain system deployed within a UAV, particularly
in the context of autonomous military operations, involves
various participants. Each plays a crucial role in the
ecosystem to ensure the integrity, security, and functionality
of the system.

1) UAV
Primary participant and actor in the blockchain system. The
responsibility is as follows:

• Gathers operational data, including mission specifics,
sensor outputs such as images, radar data, and environ-
mental conditions, and stores them in BBX.

• Carries out actions defined by SCs based on the
conditions met during the mission.

• Acts as a single-node blockchain during missions,
ensuring data immutability and security by recording all
mission-related data to its local blockchain.

2) MC2
Command and supervision center. It has the following
responsibilities:

• Deploys and updates SCs onto the UAV’s blockchain-
based on mission requirements and objectives.
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• Post-mission, it synchronizeswith theUAV’s blockchain
to retrieve and analyze mission data, integrating insights
into broader military strategies.

• Monitors mission progress and makes high-level deci-
sions, includingmission abort or rerouting based on real-
time data.

D. INTEGRATION OF THE BBX WITH SCS
The BBX, which utilizes blockchain technology, is crucial to
ensure data security and manage operations with the help of
SCs. In the following sections, we describe how the BBX is
incorporated into UAV system operations.

1) SYSTEM INITIALIZATION
Before the mission begins, the BBX is configured to act as a
single node of the blockchain, ensuring that all data related to
the mission is securely recorded. SCs are then implemented
on the BBX to allow for mission control based on real-time
data.

2) ROLE OF THE BBX
• The BBX has two roles. Firstly, it records all of the
data as a set of immutable blocks while serving as a
single node of a private blockchain for the duration of
the mission. Secondly, it uses real-time data inputs from
the UAV’s sensors to carry out SCs.

• The SCs embedded within the BBX can be configured
to decide independently whether to change the UAV’s
trajectory or terminate the operation in response to
particular circumstances, such as detecting individuals
in the target area.

3) MISSION EXECUTION SCENARIO
• Pre-Mission: The MC2 deploys the latest version of
SCs to the BBX based on the mission objectives and
rules. These SCs are designed to work with the data
collected by the UAV sensors.

• During-Mission: During the UAV operation, it gathers
information such as sensor data, pictures, and navigation
paths that are saved in the BBX. This data is then
compared to the conditions set by the SCs in the BBX.
If any of these conditions are met, the specific actions
outlined in the SCs are activated, ensuring adherence to
mission guidelines and facilitating reactions.

• Post-Mission After the mission is completed, the BBX
synchronizes the blockchain data with MC2, enabling
secure data storage, therefore establishing the system for
future missions and historical data integrity audits.

E. SECURITY CONSIDERATIONS AND RISK MITIGATION
Many possible weaknesses surface when blockchain technol-
ogy and SCs are used in UAV systems. Risks are discussed
in this part, along with the measures taken to guarantee data
integrity and reliable system operation.

Blockchain is, by its very nature, a very secure technology.
It is immutable in the sense that once recorded in the

blockchain, the information cannot be changed. We also
assume that the on-board BBX, a standard feature of all
commercial and military aircraft, acts as a tamper-free device
that contains all information collected or generated during the
flight. This information has great value, especially the data
collected during training runs. Once back at the base (i.e., in a
presumably safe environment), the contents of the BBX will
be added, as a new block, to the on-the-ground blockchain
and will be used as input to the ML engine.

In a more mundane setting, the content of the BBX can
be used, in a Bayesian fashion, to update our beliefs about
the various conditional task success probabilities. Similarly,
should an SC fail, the alternative would be a more traditional
control module cognizant of the tasks to be performed as part
of the mission.

1) ENSURING DATA INTEGRITY IN BLOCKCHAIN
The integrity of the data kept on the blockchain is very
important for the successful operation of UAV missions.
To overcome the risk of data loss and tampering, the
following are possible solutions:

• Immutable Record-storage Using blockchain will
inherit immutability to ensure that data cannot be
changed once recorded. Therefore, it protects the
integrity of mission data, especially when all informa-
tion syncs with MC2.

• Cryptographic Hash Functions: Every block on the
blockchain includes a secure link made possible by a
cryptographic hash of the one before it. Any attempt
to change transaction data inside a block would show
tampering by violating the hash links.

• Regular Audits and Consensus: During missions, the
blockchain works primarily as a single-node system,
but upon returning to the MC2, consensus algorithms
verify the data to ensure that it is accurate and free of
corruption.

• Secure Communication Channels: Transmit data
between UAVs and control stations using end-to-end
encrypted channels to prevent interception.

2) FALLBACK MECHANISMS FOR SC FAILURES
The purpose of SCs is to automate crucial mission tasks
according to predefined rules. However, unexpected opera-
tional circumstances or coding errors may be the cause of
failures. The following are possible solutions to overcome
these issues:

• Code Auditing and Testing: To find weaknesses, SCs
are carefully audited and tested before implementation.

• Upgradable Contracts via Proxy Patterns: While
SCs are immutable, the proxy architecture enables the
underlying logic to be updated in response to problems
found or changing requirements without compromising
the status or part of the original SC [34].
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• RedundancyMeasures: Implement backups for impor-
tant SCs, like duplicate contracts, that can be used if the
main SC operation fails.

VIII. SENSORS UTILIZED IN AUTONOMOUS UAV
MISSIONS
This section discusses several types of sensors used in
UAVs and their role in ensuring mission success. UAVs are
equipped with various sensors that enable a wide range of
tasks under various circumstances. These sensors not only
improve navigation and targeting accuracy but also allow
the UAV to adapt to different environmental and operational
conditions. An appropriate sensor configuration enhances
mission success through precise navigation, target identifi-
cation, engagement accuracy, and damage assessment [35].
Additionally, UAVs offer the advantage of enhancing border
surveillance, especially in covering remote border regions
that are currently under-monitored. Equipped with Electro-
Optical (EO) sensors, or cameras, they can detect objects as
small as a milk carton from an altitude of 60,000 feet [36].
The authors of [37] provided a comprehensive evaluation
of relevant sensors, whereas [38] discussed more advanced
sensors used specifically in UAVs in military applications.

A. NAVIGATION AND STABILITY SENSORS
• GPS Sensor: Provides precise location data crucial
for navigation and spatial orientation throughout the
mission.

• Accelerometer: Measures the UAV’s acceleration, aid-
ing in flight dynamics analysis and stability during
various phases of the mission.

• Gyroscope: Ensures stability in flight by maintaining
angular velocity and orientation, which are critical for
accurate targeting.

• Anemometer: Assesses wind speed and direction and
feeds data to navigation systems for flight adjustments.

B. ENERGY MONITORING SENSORS
• Battery sensor: Monitors battery health and charge
level, ensuring sufficient power for mission completion.

C. ADVANCED SURVEILLANCE SENSORS
• Electro Optical sensors: High-resolution cameras and
infrared sensors. During daylight, high-resolution cam-
eras provide detailed visual data, whereas infrared sen-
sors provide thermal imaging for nighttime operations.

• Synthetic Aperture Radar (SAR): Enables terrain
analysis and change detection, is effective in various
weather conditions, and has light availability.

• Multispectral and Hyperspectral Sensors: Capture
data across multiple light wavelengths, providing com-
prehensive environmental information.

• Laser Range Finders and Laser Illuminators:
Enhance the accuracy of distance measurements and
target illumination.

• Gyro-Stabilized Systems: Ensure stable imaging,
which is crucial for surveillance and reconnaissance.

D. SPECIALIZED SENSOR SYSTEMS
• Specialized imaging systems: such as the AN/DVS-
1 COBRA system, are designed for specific mil-
itary tasks such as mine detection in beach surf
zones.

E. SENSOR NETWORKING AND DATA INTEGRATION
• The integration of these sensors into a networked
system, such as the Mini-Micro Data Link System
(M2DLS), allows for the aggregation and efficient pro-
cessing of data from various sources, thereby enhancing
the operational capabilities of UAVs.

The integration of these sensors into the UAV platform
not only assists in target neutralization but also ensures
the safety and efficiency of the UAV throughout the
mission. An advanced sensor suite significantly enhances the
operational capabilities of UAVs, enabling them to perform
crucial tasks with high precision and minimal collateral
damage [22], [35], [37].

IX. UAV SIMULATION MODEL
This section describes the simulation model that we used
to generate the synthetic dataset of this study. We built
the simulation model to effectively mimic the sensor
outputs and operational dynamics of a UAV during mil-
itary missions. The model provides reliability, variabil-
ity, and alignment with the real-world conditions of the
dataset.

A. NUMBER OF SIMULATED MISSIONS AND TASKS
To reflect the complete lifecycle of a typical HS operation,
we generate data for 20,000 missions, each mission includes
six key operational tasks: takeoff, navigation to the target,
surveillance, engagement decision, strike execution, and
damage assessment.

B. TIME OF THE MISSION
The model randomly sets a time of day for each mission to
simulate different environmental lighting conditions, which
is critical for sensors like infrared visibility. Overall success
of each mission: A mission is initially considered successful
if the total number of successful missions is less than half of
the total missions. This threshold ensures that approximately
50% of all missions in the simulation are marked as
successful, aiming to maintain a balanced dataset. Success
ratio of each task: Within each mission, the success of each
task is determined by two different criteria. First, a task is
considered successful if the mission is already assumed to be
successful. Alternatively, success for each task can happen
independently in a randomway if a generated random number
is greater than 0.2, which means that the task has an 80%
chance of being successful.
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C. GPS AND SENSOR DATA
GPS coordinates for each task simulate progressive move-
ment, reflecting realistic navigation patterns. The coordinates
change smoothly from start to end positions based on the
task’s sequential order and success status. To cover global
geographical extents, the GPS readings are distributed as:
(latitude between -90 and 90 degrees, longitude between -180
and 180 degrees, altitude 0 for takeoff start and 3000 meters
for the last task).

Figure 2 shows instances of a UAV trajectory generated
by our simulation: Each figure shows the trajectory of the
UAV in an individual mission (from mission 1 to mission
3). The figure shows the GPS coordinates (Latitude in
the x-axis, Longitude in the y-axis, and Altitude in the
z-axis). The values of each coordinate for each mission
are annotated in red text near the data point. Each data
point in the plot represents the starting point of each
task.

The accelerometer measures the UAV’s motion dynam-
ics, directly linked to the GPS data that tracks the
UAV’s trajectory. As the UAV progresses through its
mission, changes in GPS coordinates are complemented
by corresponding accelerometer readings that reflect the
intensity of movement. This relationship is more obvious
during takeoff and navigation tasks, where acceleration
and altitude changes are significant. Simulated anemome-
ter to measure wind speeds are higher in unsuccess-
ful tasks (8-30 m/s) compared to successful tasks (0-
10 m/s), indicating adverse conditions can affect UAV
operations.

D. GYROSCOPE STABILITY
shows lower values in unsuccessful tasks, generally ranging
from 0.7 to 1.0 in successful tasks and 0 to 0.69 in
unsuccessful tasks.

E. ELECTRO-OPTICAL VISIBILITY
For this sensor, we generate values between 0.5 and 1 to
indicate clear visibility, which leads to a successful task.
Similarly, we generate values from 0 to 0.6 to simulate
compromised visibility due to environmental obstacles
or sensor faults. We assume that UAVs are equipped
with infrared cameras for nighttime visibility. Its val-
ues are between 0.5 and 1 for successful night tasks.
Similarly, values between 0 and 0.6 are generated to
simulate low visibility in some cases such as daylight
tasks.

F. HIGH-RESOLUTION CAMERA
we here simulate an assessment of the camera quality.
If the camera captures high-quality images that are part
of successful tasks, the data ranges from 0.5 to 1. For
unsuccessful tasks, the quality deteriorates, with values
between 0 and 0.7, affected by adverse weather, poor lighting,
or technical glitches.

FIGURE 2. Simulated trajectory of a UAV during three missions.

G. SAR TERRAIN ANALYSIS
We simulate the case where a UAV utilizes SAR for precise
terrain mapping. The output of this analysis ranges between
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0.5 and 1 for successful terrain analysis during the task,
whereas a range of 0 to 0.7 in unsuccessful tasks when the
mapping is not accurate.

H. BATTERY LEVELS
The battery level simulation varies significantly based on
the task number and success. For successful tasks, battery
levels start high (90-100% for the takeoff task) and decrease
progressively in each subsequent task. Battery levels decrease
more rapidly in unsuccessful tasks, starting between 60-70%
in the takeoff task and reaching as low as 0-20% by the
final task. AI Decision: the values of AI decision show lower
values in unsuccessful tasks, generally ranging from 0.4 to
1.0 in successful tasks and 0 to 0.60 in unsuccessful tasks.

X. ML METHODOLOGY
Autonomous UAVs for HS tasks exhibit increased potential
when ML algorithms are used. Although AI has not been
widely used in HS settings, the consensus among analysts is
that AI technologies (including ML) can have a significant
impact [4], [39]. Indeed, advanced ML algorithms can learn
from past experiences, adapt to novel conditions, and make
autonomously correct decisions. This enhances the ability
of UAVs to execute complex tasks and navigate challenging
environments. Furthermore, the capacity of ML to process
and interpret vast amounts of data in real-time can enhance
the situational awareness of autonomous UAVs, thereby
improving their precision and efficiency [40].
In the previous section, we used analytical expressions

to determine the likelihood it is that a UAV mission will
succeed. In this section, we use a ML model [4], [39] that
can be trained on data from previous training runs, and used
to make decisions in real-time regarding the final mission.
The situational awareness, accuracy, and efficiency of UAVs
are improved because of ML’s ability to manage and analyze
enormous volumes of data in real-time [40]. In this study,
we use a Random Forest (RF) model to identify successful
UAV missions based on the features provided by the mission
tasks.

A. THE RF MODEL
For the analysis of our UAV mission dataset, we chose the
RF model, a powerful ML classifier introduced by [41].
This model uses a majority-vote approach to assign a class
based on the predictions of several decision trees.We selected
the RF model because of its better capability to handle
high-dimensional data and resistance to overfitting, which is
critical given the multidimensional nature of our synthetic
dataset. As indicated, the dataset includes a wide range of
features from multiple sensors, each of which contributes
complex data regarding the UAV performance across various
mission tasks.

Our RF model implementation relies on the Scikit-learn
package [42], which is well known for its efficiency and
applicability in ML tasks. The number of decision trees in the
model was set to n 5̄00. This value provides an appropriate

balance between computing efficiency and model accuracy.
To prevent over-fitting, the maximum depth for each tree was
limited to five levels.

The dataset was randomly divided into two parts for
training and validation, 80% for training and 20% for testing.
The strength of RF lies in its ability to utilize the data
discrimination capabilities of individual trees to create an
effective classification model. This feature is very useful
for our dataset, which consists of P data points and Q
characteristics and covers a wide range of mission-specific
parameters and sensor readings [43]. By combining the
decisions from several trees, the RF model can handle
complicated and possibly non-linear relationships in our
dataset. This dataset includes mission-specific parameters
(such as the probability of success of each task) and multiple
sensor readings (such as GPS coordinates, battery levels, and
data collected by environmental sensors).

B. DATA DESCRIPTION
UAV training is critical for preparing UAVs for real-
world applications. During these training sessions, UAVs are
deployed to carry out simulated missions that closely match
actual conditions in the field. A critical component of this
process is the thorough collection and analysis of the data
by experts. From takeoff to return to the base, these experts
carefully monitor and assess a wide range of parameters
linked to each mission task. They meticulously calculate the
success ratio for each mission, capturing the effectiveness
and precision of UAV performance in various environments.
The cumulative assessment of these task-specific success
rates, together with a thorough review of the mission’s
overall execution, help human experts assess whether the
operation may be classified as successful or unsuccessful.
This detailed expert-driven analysis is critical for improving
UAV capabilities and ensuring their ability to prepare for real
deployment.

Because we did not have access to actual HS or military
UAV sensor data (which are, understandably, not in the public
domain), a synthetic dataset was created to simulate these
sensor readings closely. Figure 3 shows a detailed overview
of the simulated dataset of the UAV training missions. This
study addresses the lack of real-world operational data in
UAV missions, particularly in sensitive operations such as
high-value target neutralization.

The synthetic dataset aims to capture realistic mission
situations using feature patterns and relationships based
on the actual UAV mission characteristics. It includes a
variety of characteristics of UAV functioning, including task-
related variables, environmental conditions, and performance
metrics. For example, ‘‘GPS_Latitude, GPS_Longitude, and
GPS_Altitude’’ offer geographical positioning, while ‘‘Bat-
tery_Level and AI_Decision’’ indicate the UAV’s operating
state and autonomous decision-making ability, respectively.
It also shows the task success ratio, offering insights into the
performance and operational efficacy of the UAV throughout
the simulated flight.
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FIGURE 3. Comprehensive overview of UAV training mission data.

Each mission phase, from ‘‘takeoff’’ to ‘‘return_to_base,’’
is characterized by relevant features. These include envi-
ronmental sensors like ‘‘Electro_Optical_Visibility’’ and
‘‘Infrared_Visibility,’’ essential for understanding the con-
ditions under which the UAV operates. The dataset also
includes decision points, such as target identification and
engagement, based on fused sensor data and predefined rules.

Synthetic data is used as a training dataset for ML
algorithms, which are designed to predict mission success
and uncover important variables that influence the results.

The UAV system can learn to forecast mission outcomes and
optimize its decision-making process in various settings by
training the ML model on this synthetic dataset.

Dataset,1 which is created to reflect the complexity of
real-world UAV operations, serves as an excellent base
for specifically seeking mission outcomes and measuring
success indicators. This provides information on the dataset
and model availability. This approach allows for risk-free,

1The dataset and the model are provided in the following: [44].
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complete training and evaluation of UAV systems, ensuring
capability for a wide range of operational scenarios and
improving overall mission efficacy.

Although the creation of synthetic data has several
advantages, it also has some drawbacks. The lack of reality
and accuracy of synthetic datasets is a major cause of
concern. Synthetic data can identify patterns and connections,
but they often cannot represent complicated changes that
exist in real-world data. Working with complex data types,
such as natural language text or photos, in which syntactic
accuracy, grammar, and visual elements are crucial, worsens
this issue. Evaluating the veracity of the AI data poses an
additional challenge. Synthetic datasets may not accurately or
consistently represent the complexity and anomalies present
in real data, rendering them unreliable as a basis for training
models. Complicatingmatters further is the fact that synthetic
data synthesis relies on real-world data. Synthetic data
may become less helpful over time if the underlying data
is incorrect or changes, leading to constant updates and
monitoring [45].

Some strategies mitigate the drawbacks of synthetic data,
regardless of these challenges. It is important to diversify the
generated data to make the synthetic dataset more realistic
for real-world events by ensuring that the data covers a wide
range of characteristics. The use of solid data metrics is
important. Metrics, such as recall, accuracy, and precision,
are useful for assessing and improving the quality of synthetic
datasets. It is necessary to conduct routine testing of the
generated data against the features and biases of the real-
world data. Therefore, it is possible to detect and address
biases or inaccuracies in a synthetic dataset using statistical
tests and metrics. Furthermore, to keep synthetic datasets
current and reflective of real-world events, it is important
to monitor the changes in real-world data and update them
accordingly. By implementing these strategies, one can
increase the reliability and accuracy of synthetic data and
convert them into stronger tools for data-driven tasks [45].

1) UAV OPERATIONAL DATA ANALYSIS
In addition to the previously defined parameters and success
ratios, the operation of a UAV is closely linked to its response
to sensory input. When the UAV performs its mission, each
task executed in response to the sensor data is fully reported.
This methodology can be likened to a BBX approach,
in which each maneuver is recorded, including course
corrections, altitude changes, and responses to environmental
factors, such as wind.

Following the completion of the mission, this detailed
record allows human experts to assess the behavior of
the UAV in the context of the input parameters at each
instant. For example, if the UAV effectively adjusts its
altitude under difficult wind conditions, the expert would
consider the task successful based on the UAV’s adept
flexibility with environmental input. However, a failure
to adapt or an inaccurate reaction would be recorded as

unsuccessful, providing valuable insight into potential areas
for the development of UAV programming and decision-
making algorithms.

Furthermore, our approach considers the future employ-
ment of smart missiles to provide rapid and clear evidence
of mission success, particularly in activities such as strike
execution. Smart missiles with onboard computers can
transmit real-time data and pictures as they approach and
strike their targets. This advanced equipment provides a more
direct and reliable technique for confirming target impact
than traditional methods such as post-mission reports or
external sources such as spy satellites, or ground operations.

However, it is important to note that the use of smart mis-
siles for mission success confirmation is only a component
of a larger scheme. Alternative verification methods, such as
from-the-ground reports and satellite imaging, are considered
valid in scenarios in which smart missiles are not employed
or are unavailable.

This enhanced approach to data analysis and mission
evaluation corresponds to the growing nature of UAV
technology and military methods. We aim to provide an
integrated view of UAV mission success and its drivers by
combining traditional data analysis methods and new smart
weapons capabilities.

C. MODEL EVALUATION AND RESULTS
The evaluation of the classification models includes a wide
range of metrics [46], each providing distinct perspectives
on the performance of the model. These metrics are of
utmost significance in determining the efficacy of the model,
especially in situations involving particular demands, such as
class imbalance or varying costs linked to various types of
classification errors.

1) EVALUATION METRICS
In the following section, we explain the metrics used to
evaluate classification models [47].
Accuracy is the most straightforward metric. The metric

shows the ratio of accurate projections (including true
positives and true negatives) to the overall number of cases
analyzed.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Precision is crucial when the cost of false positives is
high. In such cases, it is critical to reduce the rate of
false positives to avoid potentially negative implications of
incorrect positive classifications. As a result, in situations
where the implications of mistaking a negative instance for
a positive instance are severe, precision becomes a more
essential measure than simply improving total accuracy.

Precision =
True Positives

True Positives + False Positives
(2)

Recall (sensitivity) is particularly important when missing
a positive instance (false negative) incurs a high cost. In such
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cases, identifying asmany true positives as possible is critical,
even if it results in a higher number of false positives.
A strong recall is critical in situations where the consequences
of missing a positive case are severe, and exceed the
disadvantages of false-positive errors.

Recall =
True Positives

True Positives + False Negatives
(3)

F1-score is especially useful when precision and recall
must be balanced. For example, in a classification task where
both false positives and false negatives are costly, the F1-
score provides a single statistic that balances these two
characteristics. This is the harmonic mean of precision and
recall, which ensures that both metrics equally contribute to
the overall score.

F1 Score = 2 ×
Precision × Recall
Precision + Recall

(4)

The area under the ROC Curve (AUC) is a common
ML statistic for binary classification. A higher AUC value
generally implies a better model because it demonstrates
that the model can distinguish between positive and negative
classes across all feasible thresholds. This is particularly
useful for analyzing models in cases where the ideal
classification threshold is unknown andmust be altered based
on the specific costs or benefits associated with true positives,
false positives, true negatives, and false negatives.

2) EVALUATION AND RESULTS
We assessed the performance of our RF model using the
previously described measures. Its overall efficacy can be
observed in a large number of correctly predicted outcomes,
with an accuracy of 0.87. Its precision of 0.79 and perfect
recall of 1.00, in particular, show that it can effectively detect
positive outcomes while reducing false positives. An F1 score
of 0.88 further illustrates this performance balance.

We also compared our RF model to other classifiers;
SVM (LibSVM), AdaBoost, Naive Bayes, and Bagging all
showed a similar pattern of accuracy, with each model
obtaining an accuracy of 0.87. Table 1 presents the models
results. RF, SVM (LibSVM), Naive Bayes, and Bagging with
Decision Trees had similar precision values of 0.79; however,
AdaBoost had a slightly higher precision of 0.80. RF, SVM
(LibSVM), Naive Bayes, and Bagging with Decision Trees
maintained a perfect recall score of 1.0, whereas AdaBoost
had a slightly lower recall of 0.96. All the models had similar
F1 scores, indicating a fair trade-off between recall and
precision. AdaBoost trails slightly behind with an F1 score
of 0.87, while the RF model, SVM (LibSVM), Naive Bayes,
andBaggingwithDecision Trees also had an F1 score of 0.88.
These results show that all classifiers function well, with only
a slight difference in metrics; however, the RF model shows
a slight edge, especially in terms of precision and recall.

We evaluated the effectiveness of the models for predicting
the outcome of UAV missions and observed significant
differences in their confusion matrices. RF, SVM (LibSVM),

TABLE 1. Performance metrics of classification models.

Naive Bayes, and Bagging with Decision Trees models
show exceptional accuracy in correctly identifying successful
missions, as indicated by the absence of any false negatives
in their confusion matrices. The RF algorithm produces
a confusion matrix of [[1452, 529], [0, 2019]], the SVM
(LibSVM) algorithm shows a confusion matrix of [[1457,
524], [0, 2019]], the Naive Bayes algorithm provides a
confusion matrix of [[1445, 536], [0, 2019]], and the Bagging
with Decision Trees algorithm produces a confusion matrix
of [[1451, 530], [0, 2019]]. This indicated an increased
ability to identify successful missions. Nevertheless, these
models demonstrated a significant number of false positives,
suggesting their ability to frequently predict success.

However, the AdaBoost model exhibits equal performance
in detecting both successful and unsuccessful missions,
as evidenced by its confusion matrix [[1487, 494], [74,
1945]]. Although there were many cases of false negatives,
this model had a reduced rate of false positives compared
with the other models. This balance indicates the more
precise ability of the mission parameters. Figure 4 shows the
confusion matrices of the five classification models.

We also evaluated ourmodels using the Receiver Operating
Characteristic (ROC) curve, which is an essential element in
the evaluation of classification models as it shows how well
the model can differentiate between classes. Figure 5 shows
the ROC curves for RF, SVM (LibSVM), AdaBoost, and
Bagging with Decision Trees models. RF, SVM (LibSVM),
AdaBoost, and Bagging with Decision Trees all showed ROC
Area Under the Curve (AUC) values of 0.87, which is a clear
indication of their high degree of classification effectiveness
and ability to distinguish between positive and negative
classifications. The Naive Bayes model was excluded from
the ROC AUC analysis because our implementation did not
provide the probability estimates required for ROC curve
creation.

We performed a thorough cross-validation evaluation to
assess the efficacy of five distinct classification models: RF,
SVM (LibSVM), AdaBoost, Naive Bayes, and Bagging with
Decision Trees. To provide accurate and reliable assessments,
a cross-validation procedure was performed for five different
runs. We created a box plot 6 by combining the data from
each of the five runs to compare the performances of these
models. This box plot clearly illustrates the distribution of
accuracy ratings for each model while also illuminating the
robustness and variability of the various models.

The box plot illustrates the cross-validation results,
which are as follows: The RF model demonstrated con-
sistently high performance across the runs, as shown by

90992 VOLUME 12, 2024

IEEE Access· 

Model Accuracy Precision Recall Fl Score 
Random Forest 0.87 0.79 1.00 0.88 
SVM (LibSVM) 0.87 0.79 1.00 0.89 
AdaBoost 0.86 0.80 0.96 0.87 
Naive Bayes 0.87 0.79 1.00 0.88 
Bagging 0.87 0.79 1.00 0.88 
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FIGURE 4. Confusion matrices for five different classification models. (a) RF model. (b) SVM (LibSVM) model. (c) AdaBoost model. (d) Naive
Bayes model. (e) Bagging with Decision Trees model.

its mean accuracy scores, which varied from 0.8555 to
0.8695. The accuracy ratings of the SVM (LibSVM) model
ranged from 0.8538 to 0.8635, suggesting a consistent
and similar level of performance. The scores for the
AdaBoost model ranged from 0.8538 to 0.8708, demon-
strating its efficacy in multiple iterations. The Naive Bayes
model demonstrates a competitive prediction skill, with
scores ranging from 0.8588 to 0.8712. Finally, the Bag-
ging with Decision Trees model produced scores ranging
from 0.8658 to 0.8510, indicating that it was a reliable
classifier.

XI. DISCUSSION
This section discusses several related aspects of the proposed
system.

The MC2 can update the terms and conditions defined in
SCs, deploy new versions due to new changes in the mission,
or update the rules of engagement.

In the field, ML models can be easily updated or re-trained
with little loss of time, especially for applications at the net-
work edge. Since the program is containerized, several local
copies of the model are kept, and the model can be replaced
in response to changes in configuration or the introduction of
a new context, ensuring a seamless transition without losing
any data [48]. To preserve forecast accuracy over time despite
concept drifts or modifications to data patterns, cloud man-

agement systems must retrain their ML models. Determining
if and how to successfully retrain models is crucial, as studies
show that retraining existing models may achieve accuracy
similar to that of newly trained models at a lower cost [48],
[49]. To ensure effective dynamic resource management in
cloud systems, the problem is figuring out when retraining
is necessary and when and how much data to retrain
using [49], [50].
Despite the existing use of RF models for mission success

prediction, integrating advanced ML techniques, particularly
Deep Q-Networks, and specialized ML algorithms for UAV
communications has the potential to further transform HS
UAV applications. Deep Q-Networks, as described in [51],
provides a comprehensive approach to real-time on-board
decision-making. This technology has the potential to signifi-
cantly improve the efficiency of UAVs in power management
and data collection, which are critical for long-term complex
HS operations. Furthermore, the authors of [52] emphasized
the potential of ML to optimize UAV communication
systems. The improved communication protocols allowed by
ML would not only provide better data transfer and process-
ing but would also improve situational awareness and coor-
dination of the UAV fleet. These advanced ML applications
meet these adaptability and efficiency requirements in HS
scenarios, implying that AI will play an important role in the
future.
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FIGURE 5. Receiver operating characteristic (ROC) curves for four different classification models.

Furthermore, the integration of multiple and advanced ML
models, such as Convolutional Neural Networks (CNNs)
for image analysis, Recurrent Neural Networks (RNNs),
and transformers for sequential data interpretation for
structured mission data, provides a variety of techniques for
further improving UAV capabilities. In particular, CNNs can
revolutionize target identification and surveillance through
advanced image processing [53]. RNNs and transformers
offer unparalleled advantages in analyzing temporal data,
which is essential for real-time decision-making and strategy
formulation [10]. An integrated application that utilizes
multiple ML models not only enhances the particular
capabilities of each technique but also addresses the various
issues encountered in modern HS and military applications.
The incorporation of advanced ML algorithms represents a
significant advancement in UAV operation [54], resulting
in increased operational effectiveness, adaptability, and
strategic superiority in both complex and dynamic scenarios.

XII. CONCLUDING REMARKS AND DIRECTION FOR
FUTURE INVESTIGATIONS
In this paper, we identified the challenges related to
enabling autonomous UAVs, deployed in support of HS
applications, to carry out strike missions against high-
value terrorists. We suggest that recent developments in

FIGURE 6. Box plot of classification model cross-validation results. The
distribution of accuracy scores from five-fold cross-validation for five
different classification models is shown in this figure: AdaBoost, Random
Forest, SVM (LibSVM), Naive Bayes, and Decision Tree-Based Bagging.

ledger technology, SCs, and ML will enable autonomous
UAVs to successfully complete these missions. We derived
analytical expressions for the success of a mission depend-
ing on the interdependence of the tasks within the mis-
sion. Finally, we demonstrated an ML framework for
autonomous UAVs.
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A. DIRECTIONS FOR FUTURE INVESTIGATIONS
In spite of many technological advances, several issues
remain unresolved and are receiving attention. Graph
Machine Learning (GML) is a recently proposed ML
technology in which the power of graph representation is
harnessed [55], [56] and used to advantage [57]. In this
context, graph decomposition techniques [58] are useful tools
to enhance the scalability of GML techniques.

Under current technology, there are several limitations to
deploying UAVs. For example, it is infeasible to deploy a
UAV in inclement weather or under conditions where the
on-board sensors are unable to provide reasonable input data
to guide the mission. It is equally infeasible to strike targets
that are out of reach for the UAV itself. Indeed, the most
common NATO type UAVs can fly at 10,000 ft (3,000 m)
altitude and up to 50 km in range [36]. Tactical UAVs can
fly up to 18,000 ft (5,500 m) altitude and about 160 km in
range [37]. Yet another limitation is the payload that UAVs
can carry. It is well known that the heavier the load the
UAV carries, the noisier it is and hence easier detectable.
These physical limitations must be taken into account when
planning any UAV mission, including the type of strike
mission we have in mind [37].

Many other avenues are open for future investigation. One
of these is mission security. Although we have developed our
mission with minimal communication requirements, in the
future communications may play an important role [30], [59],
and ensuring a high level of security will become essential.
Another open problem is the type of communication and local
processing that the UAV must perform [4] while in flight.
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