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ABSTRACT

A DIGITAL ONE DEGREE OF FREEDOM MODEL
OF AN ELECTROMAGNETIC POSITION SENSOR

Michelle Elizabeth Weinmann
Old Dominion University, 2021
Director: Dr. Colin P. Britcher

The purpose of this project was to improve an existing system currently in use by NASA

Langley Research Center (LaRC). The 6-inch Magnetic Suspension and Balance System

(MSBS) built at MIT is operational with control in three degrees of freedom, with two

additional degrees of freedom exhibiting passive stability. The means for measuring model

displacement within the magnetic environment is an Electromagnetic Position Sensor (EPS),

consisting of excitation coils at 20 kHz and multiple sets of pickup coils. The pickup coil

voltages are proportional to model displacement in each degree of freedom. However, the

EPS electronic signal processing system is analog and outdated; setup and adjustment are

time consuming. The task was to construct a one degree of freedom model of the EPS

including its electronics system in order to explore digital signal processing. The model core

is allowed only axial displacement for simplicity; this model coil set is essentially a Linear

Variable Differential Transformer (LVDT). The source signal was chosen to be 2.36 kHz for

convenience, with scaling up to the full size system at 20 kHz possible. An amplification

and filtering circuit board was constructed to modify the signal for the proper functionality

of the model EPS. By comparing the reference or excitation coil signal and the measured or

pickup coil signal by means of a digital phase measurement method using cross-correlation

analysis, the digital algorithm resolves the phase shift between the two signals and their

amplitude ratio. The key proof of concept is the digital signal processing algorithm; since

the defining characteristics of any signal are the amplitude and phase this algorithm can be

adapted to suit various control and setup needs of the MSBS and EPS. By proving that a

digital interface with the EPS is possible, the analog interface can be replaced with a digital

system.
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CHAPTER 1

INTRODUCTION

While the technology has existed for many years, Magnetic Suspension and Balance

Systems (MSBS) have yet to reach a significant level of popularity among wind tunnel

experimentalists. Most prefer a traditional wind tunnel configuration with a mechanically

supported model using struts or stings. However, to produce interference-free data in a

wind tunnel, it is necessary to levitate the model. There are two sources of error caused

by mechanical supports which the MSBS seeks to rectify: the flow distortions over the

model and the distortion of the flow pattern throughout the test section.[1] This interference

increases with increasing pressure in the tunnel and with aircraft innovation; the range of

movement of the model is also limited.[2] The MSBS was theorized as a system which would

employ magnetic suspension to allow for uninhibited aerodynamic analysis. The first MSBS

was built in 1957 but feedback controllers were inadequate until around 1980 when high

speed computing became a reality. The 6-inch five degree of freedom MSBS was built from

1966 to 1969 by MIT for NASA Langley Research Center (LaRC) to operate in conjuction

with the Electromagnetic Position Sensor (EPS) for a low-speed wind tunnel operating at

a maximum Mach number of around 0.5.[3][4] The EPS was needed to act as a sensor for

feedback control of the model within the MSBS. The levitated model is inherently unstable,

therefore the EPS was constructed as a sensor providing the model’s position and attitude

for a closed-loop stabilization system.[5] The EPS is unique to the 6 inch MSBS, all other

suspension wind tunnel systems currently use optical methods.[4] It acts as a multicoil linear

variable differential transformer which provides position and attitude information for the

feedback control system.[2][6] The EPS also provides a greater range of measurement of

model displacement.[4] While the control system of the 6-inch MSBS has been fully digitized,

the conditioning of the EPS is analog.

The existing EPS consists of a transducer coil assembly including Helmholtz excitation

coils and seven pairs of oppositely wound pickup coils which sense one axial, three vertical
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plane, and three horizontal plane position components due to the coil geometry.[4][7] The

geometry of the coils also results in the voltages induced in each pickup coil to mostly

cancel when no model is within the EPS or when the model core is centered.[4][8] The

excitation coils are driven by 20 Volt power amplifiers which results in terminal voltage of

200 Volts peak to peak at 20 kHz. Multiple channels correspond to each degree of freedom,

each of which requires its own amplifiers and demodulators. This forms a complex system

of amplifiers, demodulators, and filters which ensure each signal can be compared with

minimal noise interference.[7] In order to begin to operate the MSBS the EPS must first

be properly aligned. Each pickup signal must be nulled, or made to have zero amplitude.

When a model is present in the EPS the magnetic coupling between the excitation and pickup

coils is distorted, resulting in a voltage difference on the pickup coils. The amplitudes of

these differential voltages on the pickup coil pairs depend on the model’s position in each

direction.[4]

In order to glean motion data from the EPS, the amplitude gain and phase shift must

be obtained from the differential voltages on the pickup coils. Gain signifies the signal’s

amplitude and corresponds to displacement of the model in the EPS. Phase signifies the

delay in time (or angle) at which the peaks of the signal occur and corresponds to the

direction of motion of the model in the EPS. The adjustment of the gain and phase shift is

required to equalize each input from pairs of directional pickup coils to the EPS conditioning

circuitry. There are then routine adjustments that must be made once the levitation magnets

are turned on since the magnetic environment interferes with the EPS. Further nulling and

interference cancellation is required to ensure accuracy of the gain and phase shift which

correspond to core displacement.[7] This process is time consuming and is difficult to execute

unless one has done it before. Since the technological trend has been towards digitization of

the MSBS, corresponding digitization of the functionality of the EPS is logical. One person

can then control the composite systems with software on one computer, streamlining the

conditioning and processing of the EPS.
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There are many applications for using an EPS/MSBS system for wind tunnel testing. The

geometry of the model will not require modification in order to be supported, instead newer

and more innovative aircraft, entry vehicles, and ballistics with more intricate or unusual

geometries will be able to be experimentally tested. Dynamic stability testing for re-entry

vehicles is one such application that is receiving attention at NASA LaRC, especially since

the levitated model can freely oscillate.[9]
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1.1 THEORETICAL FORMULATIONS

The theory of operation of the MIT EPS is based upon the geometry of the Helmholtz

excitation coils and pickup coils. A schematic of the coil construction is included in Figure

1 [7].

Figure 1: MIT EPS Construction

The excitation coil windings carry a 20 kHz current producing an oscillating axial magnetic

field which remains uniform throughout the region surrounding the geometric center. The

core, consisting of a ferromagnetic and/or electrically conducting material, becomes period-

ically magnetized at the excitation frequency when placed into the magnetic field; therefore

the far field of the core fluctuates as well. The fluctuating far field component can be de-

tected with electrical coils, previously referenced as the pickup coils.
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Figure 2: MIT EPS Coil Winding Schematic

Figure 2 shows a depiction of the transducer coil windings of the original MIT EPS [7];

the geometry of the pickup coils was designed to enable a null received signal when no model

is present or when the model is at the geometric centroid of the EPS windings.

The coupling of the magnetic field of the model core with the pickup coils is due to two

transmission mechanisms depending on the material of the model core. If the core is soft

iron then fluctuating magnetization of the model is responsible for the coupling; if the core

is conductive then induced eddy currents within the surface are responsible for the coupling.

The two phenomena are detailed in the equations below. The definitions of each term are

as follows: B is the magnetic flux density which is measured in Teslas (T), M is the magne-

tization field measured in amperes per meter (A
m

), I is electric current measured in amperes

(A), and V is voltage measured in volts (V). The subcripts are as follows: PA for power

amplifier, E for excitation, M for the magnetized iron core transmission mechanism, and C

for the conductive core transmission mechanism. For example, IE signifies the current in

the excitation coils and BM signifies the magnetic flux density produced by the magnetized

soft iron core. Constants of proportionality are omitted. The first equation describes the
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magnetization coupling case; it indicates that the magnetic flux density produced by the

magnetized iron core, magnetized core transmission mechanism, magnetic flux density pro-

duced by the excitation coils, current in the excitation coils, and voltage supplied by the

power amplifier are all proportional. The second describes the eddy current coupling case;

the magnetic flux density produced by the conductive core transmission mechanism, the cur-

rent in the excitation coils, the rate of change of the magnetic flux density of the excitation

coils, the rate of change of the current in the excitation coils, and the rate of change of the

voltage supplied by the power amplifier are all proportional. The third relates the rates of

change of the magnetic flux density in either transmission case to the output voltage.

BM ∝ME ∝ BE ∝ IE ∝ VPA = V0Sin(ωt) (1)

BC ∝ IE ∝
dBE

dt
∝ dIE

dt
∝ dVPA

dt
= V0Cos(ωt) (2)

Vout ∝
dBM

dt
or
dBC

dt
(3)

In general, both mechanisms occur simultaneously in some combination. Yet the main

difference between the physics of transmission for soft iron versus a conductive material is

that the conductive material is proportional to the rates of change of the excitation magnetic

flux density, the excitation current, and the voltage on the power amplifier; similarly the

signal of the conductive core is a cosine wave, the derivative of a sine wave. The two

transmission mechanisms are also 90 degrees apart from each other. However, in both cases

the transmitted signal to the pickup coils is caused by the rate of change of radiated fields

whether they be magnetized or conducted. [10] A visual representation of the changing

magnetic field coupling is included in Figure 3.
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Figure 3: EPS Coupling Variation with Axial Position of Core

For the purposes of this thesis, examining transmission in all six degrees of freedom is too

complex. Therefore, since the axial coupling has the simplest transmission mechanism, the

axial direction was chosen to be the only degree of freedom for the model EPS operation in

this study. Restraining the model to one direction of movement allows the EPS to be treated

as a Linear Variable Differential Transformer (LVDT) with a null center. When the model

displaces from the center more flux couples with the nearer pickup coil and less flux couples

with the farther pickup coil resulting in a net output voltage which varies proportionally to

the axial displacement. The phase of the received signal indicates the displacement direction

with zero degrees or positive 90 degrees corresponding to forward motion and 180 degrees

or negative 90 degrees corresponding to backwards motion.[7]

The one degree of freedom test apparatus of the EPS using only axial displacement was

3D printed previously. Coil construction was necessary, therefore winding two sets of copper

coils on the existing form was carried out. The excitation coils consist of 30 turns of 18

gage copper magnet wire wound in the same direction. The pickup coils consist of 30 gage

enameled copper wire wound in opposition; there are two layers of windings with 30 turns

each in order to have access to both the 30 turn and 60 turn signal, the latter being nominally

twice as large. A photo of the coil form with windings is included in Figure 4.
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Figure 4: Photo of the 1 Degree of Freedom EPS

The system built for this thesis includes the test apparatus, an EPS conditioning circuit,

and a stepper motor for precise model motion in millimeters through the axis of the EPS.

Since the one degree of freedom EPS essentially operates as a transformer, the conditioning

circuit is necessary to supply enough voltage and current to the excitation coils to transmit

a strong enough signal to the pickup coils. Below is a high level diagram including all system

components.

Figure 5: Schematic of Entire Signal Conditioning System

However, the signal output of this system is analog and is required to be digitized in

order to perform real-time digital analysis. In order to digitize the calculations of the gain
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and the phase of the signal an algorithm using cross-correlation analysis is necessary. Cross-

correlation compares the measured signal (the pickup signal) to the reference signal (the

excitation signal) at a specified time lag which in this case is zero since the signals are

produced simultaneously.[11] As the model core moves through the coils, the measured signal

will change in phase and amplitude. This changing measured signal is compared to the

stationary reference signal at multiple points along the core’s displacement. The maximum

correlation will be when the signals are in phase and match amplitudes; the more the signals

resemble each other the higher the correlation will be. This method is useful due to the noise

rejection inherent in correlation; since noise typically does not resemble the reference signal

there would be no correlation. [11]

The mathematical definition of cross-correlation at zero time lag is

Rxy(0) =
1

T

∫ T

0

x(t)y(t)dt (4)

where x(t) is the reference signal, y(t) is the measured signal, and T is the length of signal

record.

The auto-correlation is the same operation but instead of comparing two different signals

the autocorrelation compares a signal to itself. Hence, the mathematical definition of auto-

correlation at zero time lag is

Rx(0) =
1

T

∫ T

0

x(t)2dt (5)

Ry(0) =
1

T

∫ T

0

y(t)2dt (6)

The auto-correlation is useful because once the autocorrelation is determined, the peak

amplitude is related to it as

Rx(0) =
A2

x

2
(7)

Ry(0) =
A2

y

2
(8)
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Using the above equations to extract the amplitude ratio between the two signals allows for

the displacement of the model to be calculated.

The phase difference between the measured and reference signals is expressed by

φy = arccos
Rxy(0)√
Rx(0)Ry(0)

(9)

The phase information describes the direction of motion of the model. While the phase is

roughly constant for each model core material, there is a 180 degree phase shift, or sign

reversal, when the model crosses through the null point. For the analog system a phase

value between 0 and 90 degrees corresponded to the core moving towards the center of the

EPS; a phase value between 90 and 180 degrees corresponded to the core moving away from

the center of the EPS. These equations are the basis of the digital algorithm serving as the

phase and amplitude measuring system.[11][12]

Theoretically, the analysis of the amplitude ratio as the model displaces should show a

linear relationship. The figure below is the representation of simulated signal data using

a Fast Fourier Transform (FFT) algorithm for processing.[9] The FFT is a popular digital

signal processing scheme utilizing the discrete Fourier transform to convert a signal from

the time domain into a frequency domain representation. The signal is decomposed into

component frequencies; analysis consists of the amplitudes of each component frequency.

These amplitudes are extracted from the FFT analysis; the simulated signals for each data

point begin at a negative maximum and decrease in amplitude until the signal has zero

amplitude, then switch sign to increase in amplitude until the positive maximum is reached.

The amplitude of the signal at each data point is proportional to the displacement of the

model core. The expected linear relationship is shown below in Figure 6.
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Figure 6: Amplitude ratio of source vs. amplitude ratio of measured signal

The performance of the algorithm can be measured by the degree of linearity of the

relationship: the straighter the line, the better the performance. A goal of this research is to

have as linear a representation as possible. However, a slight non-linearity in the center of

the line around the origin is likely to occur due to the signal approaching zero amplitude; this

is the expected behavior for the amplitude ratio around the origin. This non-linearity can

be exacerbated by error sources in the demodulation including quantization, discretization,

and noise sensitivity. A schematic of the demodulation procedure is included in Figure

7. First, the continuous signals are discretized with a data acquisition unit. Then the

digital signals are imported into a Matlab script for processing. The cross-correlation and

autocorrelation techniques described above extract the amplitude and phase information for

both the reference and pickup signals. The ratio of the amplitude of the pickup signal to

the amplitude of the reference signal is then computed for each displacement position of the

model core within the EPS. This results in a graph as in Figure 6. The relative phase is

computed between the two signals for each displacement position as well. This information

is graphed as well to demonstrate the phase shift at the null center.
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Figure 7: Demodulation Procedure Schematic
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1.2 PURPOSE

The purpose of this study is to prove possible the concept of a digital EPS conditioning

system. Since the EPS is a unique device, the conditioning system that provides the displace-

ment measurements must allow for the electromagnetic environment within which the EPS

exists. A characteristic problem with the MSBS and EPS system is an abundance of elec-

trical noise, therefore it is necessary that the digital algorithm employing cross-correlation

reduces noise contamination. The other benefits of digitization of the EPS conditioning

system include: decreased set up time, simpler displacement measuring, and access to the

digital data output from the EPS. Ultimately, it is the hope of the team at NASA Langley

to adapt this model’s conditioning algorithm to the five degree of freedom MSBS and its

EPS. The processing algorithm will be carried out in real time in order to provide position

feedback and enhance the controls of the MSBS. There are four performance metrics of the

processing algorithm that must be evaluated in order for digitization to occur; this thesis

will test these qualities to ascertain the requirements of the digitization algorithm. First,

the minimum number of bits necessary to represent the waveform output of the pickup and

excitation signals must be found. Second, the minimum sample rate required; third, the

minimum record length required; and fourth, the effect of noise.

1.3 PROBLEM

To construct a model to illustrate the digitization of the EPS some simplifications were

made: model motion was restricted to axial in millimeters, frequency was scaled down to

2.36 kHz from 20 kHz, and a steel 1 inch diameter ball was used as the model core. The

frequency was scaled down to 2.36 kHz for convenience to match a commercial LVDT driving

signal circuit. Since the model EPS allows only axial motion it operates as an LVDT, for

which there are existing signal conditioning systems available commercially off the shelf.

The breakdown of the EPS is as follows: excitation, preamplification, signal combination,

phase-sensitive demodulation, final amplification, position indication, and reference amplifi-

cation.[7] Due to the simplifying assumptions made, only excitation, preamplification, and
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phase-sensitive demodulation are necessary for the model EPS. The excitation and pream-

plification of the model EPS are analog; the driving signal must be amplified in order to

provide enough voltage to the excitation coils. The induced signal in the pickup coils is very

small and must also be amplified and filtered in order to extract the signal with accuracy. It

is then necessary to record the processed output as digital data to be post-processed. The

phase-sensitive demodulation was developed by means of a MATLAB algorithm employing

cross-correlation analysis. Since the digital phase measurement algorithm must be used in

real time in the future, this algorithm must be robust enough to handle different sample

rates, noise levels, and record lengths to be efficient enough for high speed and real time

execution.



15

CHAPTER 2

SOFTWARE EMPLOYED IN RESEARCH

In order to formulate accurate simulations, three different software were used each with

a unique purpose. COMSOL, a multiphysics finite-element analysis software, was used to

compare voltage data acquired with theoretical computed voltages. MATLAB was used as

the environment for the amplitude and phase measurement algorithm. LabView was used as

the driving software behind the stepper motor which allowed for precise core displacement

increments. Each package will now be briefly described.

2.1 COMSOL

COMSOL Multiphysics is an all-in-one modeling and simulation platform with additive

physics capabilities. It allows the user to define geometries, material properties, and the

physics equations associated with the model. This platform was used to predict and verify

the voltage levels obtained from the pickup coils as the model core is displaced one millime-

ter at a time. Once the geometry of the one degree of freedom model EPS was input into

the system, material properties and other parameters are specified according to the physical

characteristics of the model. A cross-sectional view of the COMSOL representation of mag-

netic flux on each coil and on the spherical core in the center position is shown in Figure

8.

Figure 8: Magnetic Flux of EPS Windings
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In COMSOL’s AC/DC module, the magnetic field and electric circuit physics were uti-

lized in order to replicate electromagnetic phenomena. Maxwell’s equations and Ampere’s

Law are used to model the magnetic field, utilizing the following values: Je is electric current

density, A is magnetic vector potential, B is the magnetic flux density or magnetic field,

Dis the displacement field, E is the electric field, and H is the magnetic field strength, all of

which are vector fields or pseudovector fields. Magnetic vector potential A can be visualized

using the magnetic field B: for example if the B-field is oriented in the z-direction, the vector

potential A rotates around the z-axis. Another way to understand it is that A differentiated

is B, or the rate of change of A is B.

Je = (jωσ − ω2ε0εr)A +∇x(µ−1
0 µ−1

r B)− σv×B (10)

B = ∇×A (11)

B = µ0µrH (12)

and the equation used to model the electric field is

D = ε0εrE (13)

The constant ε0 is the electric permittivity of free space; its value is 8.85×10−12 F/m, Farads

per meter. Similarly, the constant µ0 is the permeability of free space; its value is 4π× 10−7

H/m, Henrys per meter. The scalars εr, µr and σ correspond to relative permittivity of air,

relative permeability of air and iron, and electrical conductivity of the windings. The values

used in COMSOL are εr = 1, for air µr = 1, for iron µr = 1000, and for copper σ = 6× 107

S/m, siemens per meter, respectively. If the model core is changed to a different material,

the relative permeability must be changed accordingly.

To model the excitation coils, the above equations are used with the addition of an

equation describing Je, the current density, in terms of coil windings, where N is the number
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of turns, Icoil is the current in the coil in amps, A is the cross-sectional area of the coil in

square meters, and ecoil is the electric field of the coil.

Je =
NIcoil
A

ecoil (14)

The values used for these variables are N = 30 turns, Icoil = 1.06 amps, and A = 8.23 ×

10−7m2.

The equation used to model the pickup coils is the same, except Icoil is replaced with Icir

to represent the induced current in the pickup coils which is calculated by the software; the

other values used are A = 5.09× 10−8m2, and N = 60 turns.

In order to corroborate theory with reality, the voltage from the pickup coils is extracted

from the COMSOL model to be compared with the voltage read directly off the actual pickup

coils.

2.2 MATLAB

As one the most popular modeling and simulation softwares available, MATLAB was

used as the programming environment for the amplitude and phase measurement algorithm.

The equations described in Section 1.1 were programmed into a script which carried out the

process on each increment of displacement as the model moved through the coils. MAT-

LAB has a spreadsheet reading capability which extracts data from an Excel file into the

MATLAB script. This data corresponds to the multiple measured waveforms which change

in amplitude and phase and one reference waveform which remains the same. The cross-

correlation as defined above is employed in the MATLAB script in order to compare each

measured waveform to the reference waveform. The simplest possible calculation is used

in the script to decrease computation time. Results are tabulated in graphs and figures to

express the relationship between amplitude and displacement, phase and direction, and for

visual representation of any signal.

Since the MATLAB code utilizes data taken in discrete time, the equations described in
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Section 1.1 must be reformulated appropriately. The discrete form of Equation 4 becomes

Rxy(0) =
1

N0

N0∑
k=1

x(t)y(t) (15)

where N0 is the total number of data samples and t = k∆t or a multiple of sample inter-

vals.[12] The auto-correlations represented in Equations 5 and 6 can now be represented

as

Rx(0) =
1

N0

N0∑
k=1

x(t)2 (16)

Ry(0) =
1

N0

N0∑
k=1

y(t)2 (17)

Equations 7 through 9 are still valid utilizing the discrete forms of cross-correlation and

autocorrelation.

2.3 LABVIEW

LabVIEW is another ubiquitous software used by engineers for its wide range of applica-

tions. Two LabVIEW files were constructed for two different purposes: the purpose of the

first was for programming a stepper motor to displace the spherical core axially through the

model EPS, the second records data taken by an NI 9205 data aquisition module in an Excel

spreadsheet for post-processing in MATLAB. In order to have a precise and accurate means

for displacing the model core, a stepper motor was programmed using LabVIEW to translate

1 mm at a time. Once the core reaches each 1 mm increment, the corresponding signal is

recorded and sent to a text file; each data increment was stored as a 250,000-point discrete

periodic signa sampled at 50,000 samples per second (50 kS/s). In this way, a discrete signal

for each 1 mm increment over a 10 mm total range can be recorded as digital data to be

post-processed with the MATLAB algorithm.
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CHAPTER 3

METHODOLOGY

As stated in the previous two chapters, the purpose of this research was to build a

one degree of freedom model of the EPS which has digital processing abilities to calculate

phase and amplitude change of the measured signal from the pickup coils with respect to

the reference signal from the excitation coils. This was accomplished by construction of

the physical and electrical model, using COMSOL to model the electromagnetic effects,

construction of a core displacement system programmed with LabVIEW, and formulation

of a digital processing algorithm in MATLAB. In this chapter, the design of the 1 degree of

freedom model system will be described in detail, beginning with the coil form, followed by

the conditioning circuit, and the COMSOL model. Then the data collection procedure will

be detailed followed by the algorithm design.

3.1 MODEL DESIGN

The first task to be accomplished was to build the physical model including the condi-

tioning circuit and the coils. The dimensions are detailed in the schematic in Figure 9.
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Figure 9: Schematic of 1 Degree of Freedom EPS Coil Form (in)

Since the coil form had been 3D printed previously, 18 gage enameled copper magnet

wire was wound 30 times in the inner pair of grooves of the coil form to make the excitation

coils and 30 gage enameled copper magnet wire was wound in two sets of 30 turns in the

outer grooves of the coil form to make the pickup coils. Both 30 turn outputs are accessible

enabling measurement with either 30 or 60 turns of pickup coil; one 30 turn winding is

layered on top of the other. Each 30-turn pickup coil was wound in series, so the coil form

has a cross-over bridge from one side to the other with a channel for the wire to lay in. There

are four wire ends accessible for measurement consisting of two sets of ingoing and outgoing

wires. Measurements can be taken for individual coil voltages by referencing one wire end

with the corresponding cross-over wire; for LVDT operation measurements must be taken
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using the wire ends.

It is important to note that since these coils were hand-wound, they are not exactly

symmetrical nor do they have an ideal rectangular cross section. In order to ensure a proper

nulling of the pick up coils prior to operation of the model EPS, the wires that make up the

pick up coils could be adjusted while the final output signal is wired to an oscilloscope.

Next, the electronics package must be considered. A signal must be produced and condi-

tioned to have the proper parameters for the model EPS. This requires utilizing a commercial

off the shelf universal LVDT signal conditioning circuit to power the excitation coils; a sys-

tem of operational amplifiers and filters adjusts the signal going into the excitation coils and

coming out of the pickup coils of the EPS.

3.1.1 CONDITIONING CIRCUIT

The conditioning circuit consists of multiple parts in order to provide a signal to the

EPS excitation windings with enough power and also to boost the signal measured from

the pickup coils. In order to provide a signal for the coils a source signal, or driving signal,

was provided by an Analog Devices EVAL-CN0301 LVDT signal conditioner, a commercial

off the shelf LVDT electronics system. The excitation signal is boosted by an OPA548

operational amplifier to provide enough voltage and current for the excitation windings. A

power resistor and capacitor (3 Ohms and 4.375 micro Farads respectively) are wired in

series with the model EPS to form a resonant circuit. The EPS output from the pickup

coils is then sent to another operational amplifier, a TL082cp, which amplifies difference of

the two output lines from the EPS. A bandpass filter, the LTC1060, is the final step in the

process which eliminates extraneous frequencies. A diagram of the entire system is included

below.
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Figure 10: Schematic of Entire Signal Conditioning System

The EVAL-CN0301 conditioning board was chosen to provide the driving signal due to

the convenient provision of a suitable excitation carrier signal: 2.36 kHz at 3.84 Vrms and

the possibility of analog signal conditioning. This frequency is easily scalable to the 20 kHz

full-scale EPS.

Figure 11: Schematic of EVAL-CN0301 LVDT Conditioning Circuit Board

However, the output of this board is meant for a much smaller LVDT, the E-100 economy

series, hence the current must be boosted for the much larger model EPS with an operational

amplifier. The full circuit diagram is included in figure 12.

An OPA548 operational amplifier was chosen due to its capability for high-current oper-

ation. The power supplied to the OPA548 is ±15 V, limited to 1.3 amps. There are a few

specifications that must be followed in order to ensure that the amplifier operates correctly.

The power supply wiring should have a low series impedance and be bypassed in series with

low value capacitors; additionally there should be a 0.1µF capacitor placed between both
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the positive and negative voltage supplies to ground and located as close to the OPA548

as possible. A 14.7 kΩ resistor joining the third pin and the negative power pin limits the

current to around 1 amp; this is necessary because the OPA548 has a current range from 0 to

5 amps. While the OPA548 is protected against over-temperature conditions the amplifier

has a tendency to heat up quickly, therefore a heat sink was attached to the metallic flange.

Since the excitation signal of the EVAL-CN0301 consists of two excitation signals, the am-

plifier was set up in differential input configuration. The OPA548 produces 1.06 amps peak

current at output and with a 1 V peak-to-peak input in the chosen configuration resulting

in around 13 Vpp output. The signal feeds an RLC circuit achieving resonance with a 3

Ω shunt resistor and a 4.375 µF capacitor; the excitation coils have an inductance of 1.597

mH. The equation for sizing the capacitor to achieve resonance is

fr =
1

2π
√
LC

(18)

This increases the voltage to ±24 V (48 Vpp) which is then sent into the excitation coils.

The net voltage output of the pickup coils is of a much smaller magnitude compared

to the excitation voltage; the net output from the pickup coils is a few millivolts. When

the model core is not centered in the coils the magnetic flux coupling results in a small

voltage asymmetry between the two pickup coils. The difference between the voltage in each

pickup coil results in the net voltage output sent back to the signal conditioning circuit.

Theoretically the current through the pickup coils would be zero if the model EPS acted as

an ideal transformer, the actual current through the model’s pickup coils is 0.37 milliamps.

The signal output from the pickup coils is read differentially. For the 30 turn configuration

the ingoing end and outgoing end of the same wire are referenced to each other; for 60 turns

the ingoing wire of the bottom pickup coil layer is referenced to the outgoing wire of the

top pickup coil layer. The signal output from the pickup coils is 10-15 mV for the null

condition and around 30 mV when the iron sphere core is at the extremes of the range of
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displacements.

One channel of a TL082cp in basic differential amplifier configuration was utilized to

capture the net signal; the gain was set to ten to allow for the differential reading to be an

order of magnitude larger and hence more easily observed. However, before the signal can

be ready for processing it must be sent to the filter due to noise contamination.

A bandpass filter is appropriate for this application because the exact frequency of the

EPS is known beforehand, therefore all other frequencies can be rejected. The bandpass

filter chosen was a switched-capacitor LTC1060 building block filter utilizing the Butterworth

bandpass function. This filter has two 2nd order sections requiring four resistors each for

operation. The nominal frequency of the filter was chosen to be f0BP = 2.36 kHz, the

frequency of the carrier signal. A bandwidth of 200 Hz was chosen requiring f0
BW

= 10; this

relation indicates on Table 1 of the Reference 13 that the passband frequencies are required

to be f01 = 2.28 kHz and f02 = 2.44 kHz.[13] The filter requires a clock frequency, fc which

was chosen to be 100 kHz. It is important to note that this clock frequency should be 2

Vpp with a dc offset of 1 V; therefore the minimum value of the clock signal is 0 V and the

maximum is 2 V. Again using Table 1 of Reference 13 the Q, a dimensionless value which

relates to the bandwidth, is found to be Q1 = Q2 = 14.2. Given that K = 2.03 from the

same table, the individual bandpass gains H0BP can be found since K is the product of the

individual bandpass gains. The first bandpass gain was chosen as H0BP1 = 1 which set the

second gain as H0BP1 = 2.03. The overall gain of the filter is therefore 2.03.

Using the four frequencies, the Q value, and the H values determined above, the resistor

values can be found using a few mathematical relations. The datasheet of the LTC1060

provides the 2nd order functions of each mode of operation; the equation given is

f0 =
fc
50

√
R2

R4
(19)

This provides the first relationship between resistor 2 and 4. This same equation can be
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used for the passband frequencies as well, providing two equations with two unknowns.

f01 =
fc
50

√
R2

R4
(20)

f02 =
fc
50

√
R2

R4
(21)

Substituting in the known frequencies, these relationships simplify to

R2

R4
= 1.3 (22)

R2

R4
= 1.5 (23)

The mode 3 configuration also provides relationships to characterize Q and H providing

bandpass: [13]

Q =
R3

R2

√
R2

R4
(24)

H0BP = −R3

R1
(25)

By substituting in the two H values given above, equation 18 becomes

−1 =
R3

R1
(26)

and

−2.03 =
R3

R1
(27)

Since Q1 = Q2 = 14.2 and substituting in this value in addition to the values found in

equations 15 and 16, equation 17 simplifies to

12.5 =
R3

R2
(28)
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and

11.6 =
R3

R2
(29)

A bandpass filter operates between two cutoff frequencies as is shown in Figure 12; the

two sections of resistors specify the lower and higher cutoff frequencies. The first system of

equations requires grouping together equations 15, 19, and 22 which all correspond to the

lower cutoff frequency. The second system of equations consists of equations 16, 20, and 22

which correspond to the higher cutoff frequency. Reference 13 recommends to set R2 of the

first system and R4 of the second system as 10kΩ.[13] This results in the following resistor

values:

First section Second section
R11 = 124k R12 = 84.5k
R21 = 10k R22 = 15k
R31 = 124k R32 = 174k
R41 = 7.68k R42 = 10k

Table 1: Table of Resistor Values

The LTC1060 has some design requirements for the power supplies; ±5 V is supplied to

power the filter while Pins 7 and 8 and 13 and 14, which are the analog and digital positive

and negative supply pins respectively, are tied together and bypassed by a 0.1µF disc ceramic

capacitor; the capacitors reduce noise errors in the power supply lines. When operational,

the filter’s bandwidth was confirmed to be 3 dB with a low cutoff frequency around 2.2 kHz.

This allows only signals with frequencies within the cutoff frequency range to pass through

the filter, rejecting most noise of the electronic system.
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Figure 12: Frequency Response of LTC1060
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Figure 12 below is a schematic of the entire conditioning circuit.

((a)) Pre-Excitation Amplifier

((b)) Post-Pickup Amplifier and Filter

Figure 12: Schematic of Conditioning Circuit

Once the design was proven functional in a breadboard, a printed circuit board was de-

signed using the open sourced software ExpressPCB. There were multiple factors to consider
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in the design: inputs and outputs must be kept as far from the power supply lines as possible,

most capacitors must be placed as close as possible to the chips, and all power supply lines

must be 0.05 inches in width to accommodate the voltage and current required. Figure 13

is the conditioning circuit board designed.

Figure 13: EPS Conditioning Circuit PCB Design

3.1.2 COMSOL MODEL

Using COMSOL multiphysics, an idealized model was developed to compare to the phys-

ical model. By calculating the voltages induced in the pickup coils using the equations above

in 2.1 on a finite element model, COMSOL provides a theoretical comparison to the phys-

ical results. As described earlier, both the magnetic field and electric circuit physics are

employed in this model to provide as much information from the physical model as possible.

The excitation and pickup coil geometry is input by the user as parameters of the system

and the materials of the coils and the core are specified as copper and iron respectively. Each
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coil set has different settings due to their different functions; since the excitation coils have a

set current and voltage these are provided to the excitation coil model. However the pickup

coils receive their voltage and current via coupling from the excitation coils; these values

must be calculated by the software. Figure 14 is a cross section of the 3D cylindrical render-

ing made by COMSOL; the excitation coils are the larger, interior rectangular cross sections

and the pickup coils are the smaller, outer rectangular cross sections, both are symmetrically

arranged above and below the cylindrical model core.

Figure 14: Surface Magnetic Flux Density Norm (T) of Cross-section of 1D EPS in COMSOL

The results of model evaluation provide the voltage in each pick up coil considering one

coil to be the 60 turns on one side of the axial origin and the other coil to be the 60 turns on

the other side - in Figure 14 the coils above and below the model core. By subtracting the

voltages in each coil, the total output of the pickup coils can be ascertained. When the iron

core is modeled at the exact center of the coils, the voltage on each coil is the same resulting

in zero output signal. When the iron core is at maximum displacement corresponding to the

distance of each pickup coil, the voltage on each coil is a complex number which is broken

down into magnitude and phase. The voltage magnitude is found with the equation

c =
√
a2 + b2 (30)
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where a is the real component and b is the imaginary component of the complex number

output in COMSOL. The phase angle is found by computing the angle between the real and

imaginary components using

θ = arctan
b

a
(31)

In order to confirm that phase shifts exhibited by the output of the 1D EPS are material

dependent, multiple materials were tested as the model core. The main model core utilized

was a 1.25 inch steel sphere; this was the core used for all data measurements. The two

other materials used for comparison were an aluminum cylinder and a copper disc.

3.2 DATA COLLECTION PROCEDURE

A data acquisition module was used to convert the analog output signals from the excita-

tion and pickup coils into corresponding digital signals: the reference and measured signals.

An NI 9205 A/D connector with 250 kS/s (kilosamples per second) maximum sample rate

and 16-Bit resolution was connected to the analog outputs of the conditioning circuit. Since

the NI 9205 has a maximum range of 12 V peak to peak, the 48 V peak to peak reference or

excitation signal was scaled to 8 Vpp for data aquisition using a voltage divider; the resistor

values used were 15 kΩ and 75 kΩ. The measured signal ranges from 0 V to 300 mVpp

during displacement. To avoid interaction between the A/D and the filter feedback paths, a

separate TL082cp amplifier was added to the filter output, operated in single-supply mode

with a gain of 1. The scaled reference signal and the conditioned measured signal are sent as

ground-referenced differential pairs to two channels of the NI 9205. A LabView code samples

each signal at a sample rate of 50 kHz, more than twenty times the Nyquist frequency. Dur-

ing processing it is preferable to ensure an integer number of waves in each record so as to

avoid windowing distortion. This kind of distortion occurs when an infinite duration signal

is truncated into a finate duration signal; the best way to avoid distortion is to ensure that

the beginning of the finite signal aligns well with its end. Record lengths of 250,000 samples

were recorded for evaluating the performance matrics of the digitization algorithm. The
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digital voltage data is sent to a text file which documents the signal each time the program

is run.

Procedure for data collection is as follows: the core is manually centered within the

model coils to produce as close to null voltage as possible, then using the core displacement

system the core is displaced 5 mm in either direction. In this case the core was displaced to

the left or thick side of the EPS, or away from the stepper motor. This provides the first

data point; the reference signal and the pickup signal produced by the core at -5 mm are

recorded in Excel using the LabView file. The core displacement system then moves the

core 1 mm forwards, taking another data point and recording each signal; this is repeated

until 11 data points are collected. The information provided by each data point includes the

constant reference signal of 8 V and the measured pickup signal. As the core moves from

maximum displacement to zero and back to maximum, a corresponding change in amplitude

is evident in the pickup signal. The phase change of the measured signal corresponds to the

orientation of the core with respect to the origin of the axis of the model EPS. For raw signal

data graphs, see Appendix E.

3.3 ALGORITHM DESIGN

To process the digital data collected, it was necessary to design a digital algorithm using

the principles of cross-correlation as detailed in Section 2.2. The inputs of the algorithm

are the measured and reference signals collected from the processed pickup signal and the

excitation signal respectively. A simulation algorithm was designed in parallel with the data

processing algorithm to allow for a control version utilizing ideal signals. The simulation

and measured data algorithms are compared to test functionality and to experiment with

different processing conditions and techniques.

3.3.1 SIMULATION ALGORITHM

Both the simulation and measured data algorithms were programmed in MATLAB, in

most respects identical to each other. The main difference is that the simulation algorithm
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uses simulated signals, idealized sine and cosine signals produced by MATLAB functions,

instead of digital data. A sine function with added noise represents the measured signal

while another sine wave represents the reference signal. The simulated measured signal is

given a changing amplitude to represent model displacement: a range from -1 to 0 to 1 V

represents the phase shift at the origin as a change in sign. This scale change occurs over

41 simulated data points which represent incremental displacement of the model core. A

specified phase difference due to core characteristics (see Chapter 3.1.2) of 50 degrees is

given in the script preamble. Two main purposes of this script are to verify that the range

of the processed phase difference equals the given phase difference and that the processed

amplitudes of each simulated signal equals the corresponding specified amplitudes of the

simulated sine functions. The full MATLAB script is given in Appendix D.1.

The theoretical principles used to process the amplitude and phase information are spec-

ified in Section 2.2 as auto- and cross-correlation. To extract amplitude information from

both simulated signals at each data point, discretized equations 16 and 17 are utilized. To

process the cross correlation of the simulated signals equation 15 must be utilized since it

is the discrete form. Equation 9 is then used to find the phase difference between the two

signals at each data point. These operations are performed for each data point representing

an incremental displacement of the model through the coils. The amplitude ratio and phase

change are then plotted for analysis over the scale range. Graphs of the simulated signals

are included in Appendix D-2. In Figure 15, the four graphs represent the processed data:

R represents the cross-correlated data of both signals, X represents the auto-correlation of

the reference signal data, and Y represents the auto-correlation of the measured signal data.

The cross-correlation is at a maximum where the signals match, at the extremes of the

displacement points. The auto-correlation of the reference signal, X, is constant because

the signal does not change over time; however the auto-correlation of the measured signal,

Y, does change incrementally as the core displacement changes. The maximum amplitude

occurs at the extreme displacement points where the original signal has the greatest ampli-
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tude. The amplitudes in the second graph are calculated using equations 7 and 8 once the

autocorrelations have been found.

Figure 15: Graphs of Simulated Amplitude Ratio and Phase Difference

A zero-point has been omitted from this processed data in the relative phase graph due

to the indeterminate phase calculation at that point. The relative phase calculation in

equation 9 includes the cross-correlation value in the numerator of the inverse cosine. Since

the middle point signal has an amplitude of zero, the cross correlation at that point is also

zero. However, this only occurs when there are perfect, noiseless signals with no error. Since

this will not be the case with actual signals, this phenomenon will not occur when processing

real data.

The relative phase for the first twenty data points is -130 degrees (230 degrees) and

shifts at the middle point to +50 degrees for the last twenty data points. In this run

of the simulation algorithm, 50 degrees was the specified phase shift so the results match
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expectations. The mechanism of the phase calculation first subtracts 180 degrees from the

specified phase shift of 50 degrees resulting in a 130 degree phase lag.

These results are accurate since they represent the relationships between the signals

correctly, however it has been noted that the range of the phase angle now corresponds to

the opposite direction of motion as the analog system. This difference is easily taken into

account for future experiments and calculations.

Once the simulation algorithm was operational it was necessary to add noise, change

the sample rate to test for discretization error, change the sample length, and to change

the number of bits to investigate quantization error; all these processes are required to test

the algorithm for robustness when converting a real-time continuous signal into a discrete,

digitized signal at a finite rate. Quantization error occurs in analog to digital conversion

due to the approximation of a continuous signal into discrete values utilizing quantization

levels; the voltage is changed from continuous to discrete levels. The more bits utilized by an

analog-to-digital converter results in more levels and less quantization error. Discretization

error also occurs due to analog to digital conversion; because of sampling the continuous

signal is converted into a discrete-time signal. In this case, the continuous time signal is

replaced with a sequence of discrete samples. In order to represent the signals properly, the

Nyquist theorem suggests that the sample rate must be above two times the frequency of

the continuous signal, however the standard practice is to use ten times the frequency of

the carrier signal. It is advantageous to this thesis that the exact frequency of the system is

known beforehand; this is also the case with the full-scale EPS and MSBS which operate at

20 kHz. The fidelity of the sampled signal increases as the sample rate increases, therefore it

is important to sample at as high a sample rate as possible. By decreasing the sample rate,

fewer data points are taken from the original signal; this results in the possibility of error

upon reconstruction of the signal.[5]

3.3.1.1 NOISE ANALYSIS

To test the simulated algorithm for sensitivity to noise, two different sources of noise
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were simulated: random noise and current ripple or discrete frequency noise. Current ripple

noise is another source of unsynchronized noise produced by an AC power source. In the real

MSBS and EPS system, the power supply ripple is 51 kHz. Both current ripple and random

noise was added onto the simulated signal and the relative amplitude values for each data

point were calculated. Each noise error case was run 10 times.

The algorithm responds relatively well to random noise; the amplitude of noise signals

was chosen to be 10% and 20% of the maximum displacement of the pickup signal, which is 1

V. Therefore, the 10% noise signal has a peak amplitude of 0.1 V, the 20% noise signal has an

amplitude of 0.2 V. The mean of the relative amplitude for each error case’s 10 runs is shown

in the figure 16. When random noise reaches 0.1 V, the relative amplitude exhibits a slight

nonlinearity around the origin. When increased to 0.2 V, the linearity of the relationship

breaks down around the origin. This phenomena is shown in Figure 16.

((a)) Random Noise Comparison, Mean Over 10 Runs ((b)) Detail

Figure 16: Comparison of Random Noise: 10% & 20% of Maximum Pickup Amplitude

The standard deviation of each noise comparison was found between the 10 runs with

each added noise case (10% and 20%); this was performed on a point-by-point basis and is

shown in Figure 17.
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Figure 17: Random Noise Level Standard Deviation (V)

The deviation was calculated between the means of each random noise case and the

noiseless run. The greatest error occurs at the center point as expected.
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Figure 18: Random Noise Level Deviation

The other source of noise to consider is the current ripple noise; it has a specified frequency

ratio of 2.55, the ratio of the real MSBS EPS system’s current ripple frequency to operating

frequency (51kHz
20kHz

= 2.55). The algorithm breaks down when ripple has a peak amplitude of

0.1 V, therefore the two cases are 5% and 10% of maximum peak amplitude; the current

ripple has a greater effect on the algorithm than random noise. The breakdown of the relative

amplitude linearity is illustrated by the detail graph in Figure 19.
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((a)) Ripple Noise Comparison, Mean Over 10 Runs ((b)) Detail

Figure 19: Comparison of Ripple Noise: 0.05 V peak and 0.1 V Peak Amplitude

The standard deviation of the 10 runs was found; the deviation of each run compared

with the others is a very low order of magnitude. Some of the computed points are missing

because they achieved exactly zero deviation. This signifies very little variance between each

run when current ripple noise is present.



40

Figure 20: Current Ripple Noise Level Standard Deviation (V)

The deviation displays a similar trend to the random noise cases. Figure 21 illustrates

how 0.1 V peak of current ripple noise results in the same order of magnitude of error as 0.2

V of random noise.
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Figure 21: Current Ripple Noise Level Deviation

The last step in noise analysis is to mix the two sources of unsynchronized noise. This

was accomplished by adding 5% (0.05 V) current ripple noise and 5% random noise to the

pickup signal; the next case adds 5% current ripple noise and 10% (0.1 V) random noise.

The third case adds 10% current ripple noise and 5% random noise, and the final case adds

10% current ripple noise and 10% random noise. All cases were run 10 times and the mean

relative amplitude was calculated for each case.
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((a)) Mixed Noise Comparison, Mean Over 10 Runs ((b)) Detail

Figure 22: Noise Comparison: Random & Current Ripple Mixed: 0.05 V Peak & 0.1 V Peak

Again, the standard deviation of the 10 runs was found and are compared to each other

in Figure 23.

Figure 23: Mixed Noise Level Standard Deviation (V)
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The deviation of each case from the noiseless case was calculated as well. It is evident

that the random noise has a greater effect on the algorithm when both noise sources are

added.

Figure 24: Mixed Noise Level Deviation

The ripple noise is no longer the dominant error factor when both noise types are added

to the pickup signal; this is encouraging since the peak amplitude of the ripple noise can be

larger than the pickup signal.

3.3.1.2 SAMPLE RATE ANALYSIS

To test for discretization error, the sample rate was reduced from its original value. The

simulation algorithm’s baseline sample rate is defined by multiplying the number of complete

cycles by ten; since the reference number of cycles is ten this results in a sample number

of 100 points per ten cycles. Sample sequences at half and one quarter the original rates

were developed by downsampling the original data sequence. When testing the algorithm

for discretization error it withstood sample rate decreases down to one fourth of the original

sample rate, or 25 points per ten cycles.
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When the sample rate was reduced by half for a total of 50 points per ten cycles, there

was hardly a difference in the amplitude or phase calculations. The sinusoidal signal contains

half the points of the original and retains its frequency, but the fidelity of the signal is greatly

reduced as is evident in Figure 25.

((a)) 100 samples per 10 cycles ((b)) 50 samples per 10 cycles

Figure 25: Graphs of Signals: Downsampling at Half Sample Rate Comparison

When attempting to find the breaking point of the algorithm, it was found that a sample

rate of one fifth of the original would accomplish this due to the violation of the Nyquist

theorem. At one fourth of the sample rate, the algorithm can still function as intended. For

comparison, Figure 26 shows the original signals versus the downsampled signals and Figure

27 shows the processed amplitudes and their deviations down to one fourth the sample rate.
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((a)) 100 samples per 10 cycles ((b)) 25 samples per 10 cycles

Figure 26: Graphs of Signals: Downsampling at One Fourth Sample Rate Comparison

((a)) Sample Rate Comparison (10 cycles) ((b)) Deviation

Figure 27: Comparison of Different Sample Rates

Instead of exhibiting nonlinearity around the center point, a reduction of sample rate

past 25 samples per 10 cycles alters the slope of the relative amplitude graph past acceptable

margins. This phenomenon begins to occur at 25 samples per 10 cycles and can be seen in the

first graph of Figure 27. However, at 25 samples per 10 cycles the percent deviation remains

just below the 10−1 order of magnitude threshold. It is encouraging that the simulated data
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algorithm can withstand a one-fourth reduction of sample rate, however current and future

technology will enable the algorithm to run at high sample rates.

3.3.1.3 RECORD LENGTH ANALYSIS

Changing the record length had no effect even down to a minimum of one cycle. As is

evident in Figure 28, all processing occurs just as well with one period of signal as it did

with ten periods of signal.

Figure 28: Graphs of Amplitude Ratio and Phase Difference: Record Length One Cycle

This performance cannot be expected from a digitized and hence discretized data set, or

once noise is added.

3.3.1.4 QUANTIZATION ANALYSIS

To test the algorithm for quantization error, the number of bits of simulated data were

changed until the minimum number of required bits was found. Quantization error was
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ascertained by varying the bits inherent in the data acquisition; by varying the number of

bits the signal is divided into different numbers of levels according to the equation

M = 2N (32)

where M is the number of levels and N is the number of bits. The more levels are included, a

more complete picture of the signal can be reproduced digitally. For example, a 2-bit length

will result in only four levels of discrete values for the signal. For illustrative purposes, a

3-bit quantized signal with eight levels is shown below.

Figure 29: 3-bit Quantized Signal with 8 Levels

In order to find the minimum bits necessary the simulation was run with 8, 10, 12, and

16 bits to represent different levels of quantization error with 16 bits representing nominally

zero error. The results are shown in Figure 30; a detailed view is also included.
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((a)) Quantization Comparison ((b)) Detail

Figure 30: Comparison of Bit Levels

For the purposes of this simulation, it appears that 10 bits will be enough to process

amplitude ratio information with only a small amount of error. The center of displacement

is the area of primary concern; since the ratio involves a correlation with a signal very close

to zero the highest potential for error exists in this range. For the 10 bit simulation, there is

a small amount of deviation from the 16 bit ideal case. However, for higher fidelity analysis

12 bits are recommended for processing since it deviates very little from the 16 bit ideal case.

A graph of the deviation of each case from the ideal case is included in Figure 31 below.
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Figure 31: Deviation of Bit Values

For the purposes of this simulation, 10 bits would be the minimum required to maintain

algorithm fidelity. The percent deviation of the 10 bit case from the 16 bit case is less than

10−1 percent, and the 12 bit case is one further order of magnitude less.

3.3.1.5 MIXED ERROR SOURCE ANALYSIS

When combining error sources the quantization, decrease in sample rate, and increase

in noise all must be made to vary. The 25 sample per 10 cycle case was omitted due to

the shifting of the slope. Since noisy signals are expected, the comparison was made with a

constant noise level at 10% of maximum peak amplitude (0.1 V) for both random noise and

current ripple.
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((a)) Quantization and Sample Rate Comparison

((b)) Detail

Figure 32: Comparison of Quantization and Downsampling Errors: 0.1 V Noise



51

Figure 33: Deviation of Quantization and Downsampling Errors at 0.1 V Noise

The case with the highest deviation at the center point is the 10 bit, 33 samples per 10

cycles case as is evident in Figure 32. The 12 bit 33 sample case and the 10 bit 50 sample

case exhibit almost the same deviation. When considering the deviation over the entire

displacement, the 10 bit 33 sample case exhibits the most deviation for most locations, as is

evident in Figure 33.

Based on this analysis, if the sample rate is expected to decrease significantly 12 bits are

recommended. If the sample rate is not expected to go below half of the idealized rate, then

10 bits are sufficient.
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CHAPTER 4

RESULTS

In the previous three chapters the theoretical formulations and simulations pertaining

to the model EPS have been detailed. In this chapter, the results comparing theory with

reality will be explored. First is an explanation of the comparison of COMSOL results with

measured voltages. This is followed by details of the digital processing algorithm and how

it handles real, discretized signals.

4.1 COMSOL ANALYSIS

In addition to the 1.25 inch steel sphere, two other materials used for comparison were a

1.25 inch tall aluminum cylinder and a 1.25 inch wide copper disc. The voltage magnitude

was measured directly off each pickup coil in order to compare to the theoretical values in

COMSOL. The phase angle was ascertained by utilizing the same data acquisition process as

the steel sphere and calculating the phase angle with the EPS conditioning algorithm. Two

polar plots are included below to demonstrate the difference between theory and reality of

the three materials. In Figure 34, each point on the plot is labeled as it displaces from 0 to

5 mm.
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Figure 34: Comparison of Core Materials
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The steel sphere was modeled as iron in COMSOL and the phase angle between excitation

and output was found to be 0.27 radians or 15.47 degrees, more or less independent of core

position. The aluminum cylinder exhibits a phase angle of 1.23 radians or 70.47 degrees and

the copper disc exhibits a similar phase angle of 1.36 radians or 77.92 degrees. The measured

voltage values were taken using a sensitive oscilloscope and moving the core 1 mm at a time.

The measured phase values were ascertained with the digital processing algorithm.

When comparing the measured voltage to the theoretical voltage of the steel ball, the

most notable difference is that the signal does not start at 0 V, the origin, at the center

point. This is due to the very sensitive nature of the model EPS; while efforts were made to

isolate any metallic objects from the model EPS, it is inevitable that a background signal is

present. Since the EPS operates in an electromagnetic environment with metallic equipment

in its vicinity, the presence of a background signal is expected. The background signal

results in a small signal at the center where there should be no signal, or a null point; the

MSBS EPS system at Langley has an analog nulling system for the purpose of nulling any

background signals. The lack of a null point in the measurements is made apparent in Figure

35 which compares the theoretical COMSOL voltage magnitude to the measured voltage

magnitude; the background signal also causes nonlinearity around the origin. However, the

total lengths of the lines in Figure 34 are comparable and the phase values of the computed

versus measured data are within 15 degrees of each other.

The measured and theoretical voltages of the aluminum cylinder and copper disc are

quite similar considering the small size of the values. Since the amplitudes of the voltage

for these two materials are so small, the first measured data point was assumed to be zero

for consistency; however if the accuracy of the oscilloscope was higher the first measured

data point would likely be slightly greater than zero. The phase values of computed versus

measured data are within 35 degrees of each other.
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Figure 35: Comparison of Steel Voltage Magnitude: COMSOL vs. Measured

While the base voltage on the pickup coils is slightly lower in reality than in theory as

calculated by COMSOL, the measured value is within 40 percent of the theorized value for

most points. The deviation increases around the center point because accurate measurement

at such small voltages is difficult, even with a sensitive oscilloscope.
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Figure 36: Deviation of Steel Voltage Magnitude: COMSOL vs. Measured

Since the theoretical measurement in COMSOL at the center point is 0 V, the deviation

calculated for the center point is infinite and does not appear on the graph in Figure 36.
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4.2 DIGITAL PROCESSING ALGORITHM

Since it has been established that the simulated algorithm has been proven to operate

within the specified constraints, the same approach was applied for the algorithm to be im-

plemented in real time. The objective is to formulate the algorithm in an efficient manner

suitable for real-time execution on dedicated hardware, thereby minimizing latency while

each consecutive set of samples are being processsed. The processing algorithm is another

MATLAB script using the same discreet sum representation of the cross-correlation of the

reference and measured signals utilizing equations 15, 16, and 17. The discrete sum repre-

sentations of the auto-correlations of each signal are used to find the amplitude at each data

point. The full MATLAB script is given in Appendix D.3.

LabVIEW was used to collect discrete data at a rate of 50 kHz for 250,000 samples per

data point; the total number of points for each 11 positions was 2,750,000 points. After

these eleven pairs of signals from each data point were collected into a text file the data

is uploaded into the MATLAB script for post-processing. The script calculates the cross-

correlation of the reference and measured signals and the autocorrelations of each signal for

each data point as the core displaces 1 mm at a time for a total displacement of 10 mm and

a total of 11 data points for analysis. The amplitudes of each signal are calculated using

the corresponding auto-correlation at each point; the phase difference is calculated using

equation 9 at each point. The desired effect of this processing is for the cross-correlation to

be at a positive maximum at one extreme of the displacement and at a negative maximum

at the other extreme. The auto-correlation of the reference signal should remain nearly

constant, therefore the amplitude of the reference signal should remain nearly constant at

around 4 Vpp. The auto-correlation of the measured signal should be at a maximum at the

extremes of displacement and a minimum at the null center, therefore the amplitude of the

measured signal should do the same ranging from 600 mVpp to less than 50 mVpp.

In the next section, the details and analysis of the digital processing algorithm are ex-

plained. This algorithm uses the data acquired from the NI-DAQ 9205, stored in a text file
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as digital, discrete data. This algorithm was then tested for functionality within the same

constraints and using the same techniques as the simulation algorithm.

4.3 DATA ANALYSIS

The analog-to-digital conversion of signal data occurring in the NI-DAQ 9205 required

some adjustments before the MATLAB processing script could use the data. The raw data

had a slight negative offset on the pickup signal; see Appendix E for graphs of raw signals.

The offset was removed using MATLAB’s detrend function; for future reference if the

acquired data does not exhibit an offset then this part of the code may be left out. The

detrend function computes and subtracts the mean value from each time-domain signal.

As the model core was made to displace from the connector end of the EPS to the other

end it was necessary to use negative displacement units for half of the axis and positive

displacement units for the other half. The negative displacement units correspond to the

first five data points approaching the null center point and the positive displacement units

correspond to the last five data points moving away from the null center. The signals for

each of the 11 points are displayed in Figures 37 and 38. For ease of viewing, the graphs

that display amplitude of the measured signal are shown in Figure 37: the red signal is

the pickup signal, which varies in amplitude; the blue signal is the reference signal which

remains constant in amplitude. In Figure 38 the peaks of both signals, and therefore the

phase difference between them, are displayed.
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((a)) Core at -5 mm ((b)) Core at -4 mm

((c)) Core at -3 mm ((d)) Core at -2 mm

((e)) Core at -1 mm ((f)) Core at 0 mm

Figure 37: Data graphs as model core displaces 11 mm, Pickup Amplitude Detail
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((g)) Core at 1 mm ((h)) Core at 2 mm

((i)) Core at 3 mm ((j)) Core at 4 mm

((k)) Core at 5 mm

Figure 37: Data graphs as model core displaces 11 mm, Pickup Amplitude Detail
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((l)) Core at -5 mm ((m)) Core at -4 mm

((n)) Core at -3 mm ((o)) Core at -2 mm

((p)) Core at -1 mm ((q)) Core at 0 mm

Figure 38: Data graphs as model core displaces 11 mm, Phase Difference
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((r)) Core at 1 mm ((s)) Core at 2 mm

((t)) Core at 3 mm ((u)) Core at 4 mm

((v)) Core at 5 mm

Figure 38: Data graphs as model core displaces 11 mm, Phase Difference
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It is apparent that the pickup signal amplitude decreases until the null point and increases

again as the model core displaces axially through the model EPS. The phase of the signal

also changes from opposing in phase to aligning in phase; this causes the relative phase to

change from negative to positive around the null point.

These graphical representations of each signal at the 11 data points of displacement were

then used by the algorithm to determine the relative amplitudes and phases at each data

point. Utilizing equations 15, 16, and 17 to find the discretized cross-correlation of both

signals and the auto-correlation of each signal at every data point, the relative amplitude

and phase of the measured signal with respect to the reference signal can be determined as

they change with axial displacement.

4.4 ALGORITHM RESULTS

The signals in the previous section at each data point were sampled at 16 bits, 50 kHz,

with 250,000 samples per position. They were processed with the MATLAB algorithm em-

ploying discrete cross correlation and autocorrelation to find the resulting relative amplitude

and phase at each point. Since the reference signal has a constant amplitude and phase, the

amplitude and phase of the measured signal can be determined using the relative amplitude

and phase information. The relationship between relative amplitude as the model displaces

axially is ideally linear with a sign change occurring at the origin.

The raw data collected required some correction before it could be processed with cross-

correlation analysis. As was introduced in Section 4.1, a background signal was present on

the pickup signal. At the center point location, the signal obtained had a small amplitude

instead of being 0 V or a null point. It also introduced nonlinearity around the origin.
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Figure 39: Raw Measured Relative Amplitude

Employing the theory of subtraction of phasors, the relative amplitude and relative phase

values output by the algorithm were used to construct a series of complex numbers to rep-

resent a phasor. The midpoint of the series of complex numbers was not zero, hence the

background signal was identified as the complex number at this center point. For this set of

data, the value is -0.00005332875 + 0.0030995i. This complex number was subtracted from

each of the series of complex numbers using phasor subtraction. The nulled version of figure

39 is shown in figure 40, where the background signal is removed.
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Figure 40: Nulled Relative Amplitude

A diagram representing the process is included in Figure 41.

Figure 41: Phasor Representation of Background Signal Addition
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In the diagram, the experimental signal is the result of the ideal pickup signal being

altered by the addition of a background signal. In order to extract the ideal pickup signal, the

background signal must be subtracted from the measured signal. This process is similar to the

nulling process required by the analog system for EPS operation. Instead of making manual

analog corrections to the pickup signal by nulling any background signals, the algorithm

can identify the background signal and subtract it resulting in an ideal pickup signal for

processing.

Once the background signal was removed, the resulting relative amplitude data points

were plotted and a linear fit was imposed upon them. The linear fit calibration makes it

clear that the displacement points in millimeters are accurate within margins specified in

figure 42. It is important to verify that the derived displacement locations are an accurate

portrayal of the measured displacement locations.
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((a)) Relative Amplitude

((b)) Linear Fit Error

Figure 42: Corrected Relative Amplitude with Linear Fit
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The MATLAB code used to find and remove the background signal is included in Ap-

pendix D.3.

The second set of corrections involve changing the relative phase and amplitude values

within the algorithm’s functionality. First, the relative phase must be corrected. Since the

relative phase is found using equation 9, the arccosine can only output angles between 0

and 180 degrees. In order to allow for the relative phase angles to span over a 180 degree

difference as expected, the last five angle measures were shifted by subtracting them from 2π.

In this way, the first values of relative phase at 137 degrees and the last values at -43 degrees

span a total of 180 degrees. Another correction must be made to the relative amplitude

values to ensure a linear relationship. The slope of the first half of the data points must be

negated in order to reflect an increase in amplitude from the furthest point to the center

point. When the relative amplitude of the first five points is negated, the expected linear

relationship occurs.

The results of both the cross-correlation and auto-correlations at each data point con-

tribute to the phase difference information as specified in equation 9. The results of each

autocorrelation contribute to the relative amplitude information as specified in equations 16

and 17. The resulting relative amplitude and phase difference calculated at each data point

is tabulated below:
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Displacement (mm) Relative Amplitude Phase Difference (Degrees)
-5 -0.0138 137.4456
-4 -0.0112 137.6978
-3 -0.0084 137.3174
-2 -0.0056 137.4276
-1 -0.0028 137.3061
0 0.00004 91.3156
1 0.0027 -39.8396
2 0.0058 -44.5625
3 0.0085 -43.0654
4 0.0112 -42.8268
5 0.0138 -42.0263

Table 2: Table of Relative Amplitude and Phase Difference Values

The graphical representation of this data is displayed in Figure 43.

((a)) Relative amplitude vs. displacement ((b)) Phase difference vs. displacement

Figure 43: Phase Difference and Relative Amplitude Graphs

The phase difference values correspond with the phase difference of the signal graphs at

each data point. As is evident by the graphs in Figure 43, the phase values of the first three

data points are almost the same. The pickup signal leads the reference signal by around

137 degrees. Once the model core approaches closer to the midpoint, the phase difference

decreases by more each time with each data point. This is consistent with the behavior of
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the signals in Figure 37. The phase then decreases to 91 degrees at the midpoint, it then

jumps by about 134 degrees so that the pickup signal is more in phase with the reference

signal at a -43 degree difference. This is also consistent with the behavior of the signals in

Figure 38.

4.5 DESCRIPTIVE ANALYSIS

Since the algorithm has been proven to be operational for the data aquired, it was nec-

essary to test it for robustness with similar techniques utilized for the simulation algorithm.

The algorithm was tested for quantization error, discretization error, noise sensitivity, and

windowing error. In order to provide realistic conditions for processing, the record length

was shortened to around 10 cycles long, or 250 samples, for quantization and downsampling.

4.5.1 QUANTIZATION ANALYSIS

The algorithm was computed utilizing 10, and 12 bits with 16 bits representing the ideal

case. Once the quantized signals were then put into the algorithm to be processed with

correlation, the amplitude ratio graphs were compared to analyze the quantization error. As

was mentioned above, the center area of the amplitude ratio graph is of most concern and is

where the highest concentration of quantization error will be represented. The graph of the

amplitude ratios for each bit case is included in Figure 44.
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Figure 44: Quantization Error of Relative Amplitude Graphs

As is evident in Figure 44, the 10-bit quantization error introduces nonlinearity to most

of the relative amplitude graph. However, the 12-bit quantization error is minimal for the

entire signal. Each bit case’s deviation from the 16-bit case is plotted in Figure 45. The

processing algorithm was run once for each bit case, then each case’s relative amplitude was

compared to the 16-bit ideal case’s relative amplitude on a point-by-point basis to compute

the deviation for each bit case.
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Figure 45: Deviation from 16 Bit

As the quantization level increases in bits, the error decreases by one order of magni-

tude. The 12-bit quantization outperforms the 10 bit case. For analog-to-digital conversion

purposes, if a 12-bit processor is easily found it would be preferable to a 10-bit processor.

4.5.2 SAMPLE RATE ANALYSIS

Discretization error was ascertained by decreasing the sample rate from its original rate

of 50 kHz. Multiple attempts were made by decreasing the sample rate until the algorithm

began to degrade. The first attempt was at half the original sample rate or 25 kHz which is

slightly more than 10 times the carrier signal rate of 2.36 kHz; there was barely a difference

in the results of the algorithm. Figure 46 shows the difference between the original signals

and the downsampled signals at half the sample rate. Again, the blue signal is the reference

signal, the red signal is the pickup signal.
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((a)) Pickup Signal (Red) Detail, 50kHz ((b)) Both Signals, 50kHz

((c)) Pickup Signal (Red) Detail, 25kHz ((d)) Both Signals, 25kHz

Figure 46: 50 kHz vs. 25 kHz

At this decreased sample rate, the discretization of the signals has led to minimal loss of

fidelity. However, the amplitude ratio and phase difference data remains very close to the

non-downsampled data.

When the discretization error is increased, the algorithm breaks down at one tenth the

original sample rate, or at 5 kHz. The signals sampled at 5 kHz are included in Figure 47

for comparison.
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((a)) Pickup Signal (Red) Detail, 50 kHz ((b)) Both Signals, 50 kHz

((c)) Pickup Signal (Red) Detail, 5 kHz ((d)) Both Signals, 5 kHz

Figure 47: 50 kHz vs. 5 kHz Sample Rate

This breaking point at 5 kHz is consistent with the simulated data algorithm’s perfor-

mance. Since the simulated data was sampled at 10 times the number of total samples,

corresponding to a theoretical sample rate of 23.6 kHz, the breaking point was at a sample

rate of 4.72 kHz.

As a result of the decreasing sample rate, the relative amplitude graph displays a loss of

linearity. A comparison of the relative amplitude graphs is included in Figure 48.
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((a)) Relative Amplitude Graph Comparison ((b)) Detail Around Center Point

Figure 48: Downsampling Comparison of Relative Amplitude

Figure 49 shows the deviation of the relative amplitude derived at each sample rate from

the 50 kHz case.

Figure 49: Downsampling Comparison Deviation

To preserve a maximum amount of fidelity, the sample rate should remain above or at

10 times the driving frequency. However, it is encouraging to note that there is minimal
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discrepancy when sampled at around half the driving frequency; the deviation of the 12.5

kHz sample rate case remains under 10−1 for most data points.

4.5.3 RECORD LENGTH ANALYSIS

The next source of error to be explored is window length error. In Chapter 3.3.1.3, it

was demonstrated that reduction in window length had no effect even down to one cycle.

However, the simulation algorithm used idealized signals. Since the real algorithm utilizing

data does not, this cannot be an expected result.

The original data signals were sampled at 250,000 samples per channel, therefore the

total number of samples was reduced to create shorter windows of signals sampled at the

same rate of 50 kHz. The shortened window signals were processed and each case’s relative

amplitudes are compared in Figure 50. The window lengths range from the original 250,000

samples down to 25 samples.

((a)) Window Length Reduction Comparison ((b)) Detail

Figure 50: Window Length Comparison

The deviation of each case compared to the original window length is shown in Figure

51.
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Figure 51: Window Length Comparison Deviation

The algorithm starts to break down at a window length of 25 samples, or just over one

cycle of the excitation signal. However, window lengths above 250 samples have a deviation

from the ideal of at or below 10−3. It is recommended that window length remains at or

above 250 samples per channel, or around 10 cycles of the excitation signal, for optimal

precision in relative amplitude data.

4.5.4 NOISE ANALYSIS

The final source of error to be tested is noise put on the signals as they are being recorded.

Since the MSBS and EPS are in an electrically noisy environment, this source of error is

always a factor. In order to quantify the amount of noise on the signals as they were recorded

as digital data, the 250,000 sample records were split into twelve records of 20,000 points in

length. Each length was then run through the algorithm and the relative amplitudes of each

set was compared. The standard deviation quantifies the difference between all twelve sets

and represents the amount of noise.
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Figure 52: Set Relative Amplitude Comparison

Figure 53: Set Comparison Standard Deviation (V)

It is encouraging that the difference between each set of samples differs so little. The

standard deviation of the sets taken together remains below 10−5 V. The noise rejection
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inherent in cross correlation analysis has been made manifest.

4.5.5 MIXED ERROR SOURCE ANALYSIS

The final step in the error analysis is to combine all sources of error. This was accom-

plished by first using the noisy 250,000 sample pair of signals, then reducing the window

length of each. Then the signals are discretized and finally quantized.

When testing the algorithm to ascertain its breaking point, two cases were tested. Since

the 12 bit quantization and 10 bit quantization had such marked deviation from each other,

the mixed error sets were broken into 12 bit and 10 bit cases. The window length was set

250 at samples (about 10 cycles) and was then reduced to 50 samples (about 2 cycles). A

graphical representation of the relative amplitudes at 12 bits is included in Figure 54. The

deviation of each case from the ideal case is shown in Figure 55.
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((a)) Relative Amplitude Comparison

((b)) Detail

Figure 54: Mixed Error Sources Relative Amplitude Comparison: 12 bits
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Figure 55: Mixed Error Sources Deviation: 12 bits

The 10 bit case exhibited much higher error than ther 12 bit case when errors were

mixed. The algorithm could only tolerate reduction of sample rate to 12.5 kHz when using

250 samples (about 10 cycles); at 50 samples (about 2 cycles) it begins to break down. A

graphical representation of the relative amplitudes at 10 bits is included in Figure 56 and

the deviation in Figure 57.
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Figure 56: Mixed Error Sources Relative Amplitude Comparison: 10 bits

Figure 57: Mixed Error Sources Deviation: 10 bits

It is clear that the 12 bit case outperforms the 10 bit case in all circumstances. It is

recommended that the window length be around 10 cycles, or 250 samples if the sample
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rate is expected to decrease past one quarter of the original sample rate. In this case, since

the original sample rate was 50 kHz, or around twenty times the frequency of the EPS, the

minimum recommended sample rate would be 12.5 kHz if at a window length of 10 cycles.

4.6 REAL TIME CODE

The final step in the digitization is to convert the algorithm into as minimal a code as

possible to allow for computation in real time. Currently, the NASA LaRC team is using

a SpeedGoat real time target computer to process the EPS sensor information and allow

for real time feedback control. While the SpeedGoat is not quite fast enough to process

this algorithm in real time, the hardware to run this code quickly enough is imminent. The

target execution time for the real time algorithm is 0.5 milliseconds. In the algorithm, an

arbitrary sample size is specified by the user to allow for sequential processing where data

points are added one by one and dropped off one by one. The original sample is 250,000

data points; the sample size used in the run in Figure 58 was 250 data points long. The

mathematics in the code have been stripped down for the fastest possible processing time;

no Matlab functions are included for this purpose. For 16 bits at 50 kHz and 250 samples,

the processing time of the entire code can vary around 0.007 s.
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Figure 58: Time Analysis of Real Time Code

The majority of the run time was occupied by loading the digital data which is two lines

of 2,750 samples; loading the data takes 0.003 s. Therefore, since loading data will not be

necessary for real time processing, the actual total run time is 0.005 s.

The real time algorithm includes an indicator where the user can specify which displace-

ment position point is desired for processing. For example, one run of the real time algorithm

can be at the first displacement point and another run can be at a middle displacement point.

Figure 59 is the real time code.
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Figure 59: Real Time Code

While the run time of 0.005 s is one order of magnitude larger than the target of 5 ms,

the real time code was run on a regular home PC. The factor of ten is acceptable considering

custom hardware will be purchased to allow for faster processing than was allowable on the

home PC.



86

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

A one degree of freedom model of the unique MIT-constructed EPS has been demon-

strated along with its digital processing algorithm. The sensor physically performs as ex-

pected; when a magnetizable conductive model displaces axially through the model EPS

amplitude and phase shift of a driving signal is evident. Theoretical data obtained from

COMSOL AC/DC multiphysics software confirmed the operational status of the EPS. The

conditioning circuitry receives input from the 2.36 kHz driving signal from a commercial

off the shelf LVDT driving circuitboard and successfully adapts it to the scale of the model

EPS. Finally, the digital processing algorithm has been demonstrated to extract amplitude

and phase information. It has been proven to be stable when multiple error sources have

been applied; the recommended minimum for reliable performance is 12 bits, a sample rate

of 12.5 kHz, and a record length over 250 samples. It has also been demonstrated that the

algorithm can be applied to a real time active feedback control mechanism when all functions

are replaced by simple mathmatics.

5.2 FUTURE WORK

This study has been a proof of concept of a one degree of freedom physical and digital

model EPS. As such, much work remains to be completed by the NASA LaRC team. The

one degree of freedom model must be expanded into six degrees of freedom to be useful to

the MIT built EPS. This will be accomplished by expanding both the conditioning circuitry

and the digital algorithm. Next, the conditioning circuitry must be scaled up to 20 kHz, the

operating frequency of the MIT EPS. Finally, the real-time digital processing algorithm must

be optimized for speed and performance to reject corruption from multiple error sources. The

end result will be a fully digitized MSBS and EPS system with active feedback control.
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APPENDIX A - Core Displacement System

To ensure that the core displaces in accurate increments a system was constructed to move

the core 1 mm at a time using a stepper motor programmed with LabView. An aluminum

structure supports the stepper motor which is attached to a wooden pole terminating in a

3D printed cradle for a 1 inch diameter steel ball; all materials used were chosen for their

low electrical and magnetic conductivity.

A-1: Photo of Core Displacement System

The components used for the core displacement system were a Superior Electric Slo-Syn

M061-LS08 step motor, a Mean Well PS-65-R16VAI power supply, and a TB6600 Stepper

Motor Driver microcontroller. The Slo-Syn motor requires 3.8A at 1.25V DC to move 200

steps per revolution. A step motor converts digital signal pulses into shaft rotation providing

displacement; in order to send a digital signal pulse to the motor the driver and microcon-

troller must be wired into a LabView controller, a Measurement Computing USB-1208LS

PMD. The LabView code then outputs a square wave at a user-specified frequency, each

signal pulse causes a step corresponding to 1.8 degrees of rotation.
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Power was supplied to the Slo-Syn motor using a Mean Well PS-65-R16VAI power supply

and control is provided by the TB6600 microcontroller [14]. There are six power lead wires

from the Slo-Syn motor which are color coded: red solid, red striped, green solid, green

striped, white, and black. The motor is composed of two motor coils, the A and B coils,

each of which has two corresponding wires. The red solid and striped wires correspond to

the A+ and A- ends of the A coil, the green solid and striped wires correspond to the B+

and B- ends of the B coil. These four wires, in addition to the white and black wires, are

connected to a cable with six color coded wires each with a black ground reference. The

connections are made as follows: red solid to red, red striped to brown, green solid to green,

green striped to blue, white to white, and black to yellow.

A-2: Photo of Motor Power Lead Wires
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The microcontroller only requires four wires for operation, namely the wires correspond-

ing to each end of both the A and B coils. Hence, a 2-phase 6-wire motor wiring was used

with the yellow and white wires excluded.

A-3: Photo of Motor Driver Wiring

The common-anode connection was used to connect the driver to the microcontroller exclud-

ing the EN terminal which allows for off-line function. The pulse and direction information

are sent from a LabView program to the MC PMD. The common-anode connection entails

utilizing the pulse wire from pin 21 of the PMD as the pulse minus terminal on the motor

driver. The direction wire from pin 22 connects with the direction minus terminal on the

driver. The ground wire from the PMD is wired to the pulse plus terminal on the driver.

The red wire which is unconnected to the PMD is wired to the enable minus terminal on the

driver. Two more connections are necessary: a red wire connects the enable plus terminal to
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the pulse plus terminal, and a black wire connects the pulse plus terminal to the direction

plus terminal.

A-4: Photo of Motor Driver Wiring
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A-5: Photo of LabView PMD

Additionally the motor driver has six DIP switches; the first three signify the micro step

and pulse per revolution and the last three signify the current. The switch settings selected

were S1 off, S2 off, and S3 on to signify 16 micro steps and 3200 pulses per revolution.

A-5: Photo of Motor Driver DIP Switches
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Since the Slo-Syn motor has a 1.8 degree step angle, the final step angle would be 1.8/16 =

0.1125 degrees. The other three switches were selected to be S4 on, S5 off, and S6 on to

signify current control at 1A.

It is essential for proper operation of the microcontroller that the data acquisition device

be powered on and the LabView program be open before power is supplied to the driver.

The clock from the LabView program must be on and sending a signal to the driver before

the power can be turned on. As mentioned previously, there are two pins of the PMD

which supply relevant information to the microcontroller from LabView: pins 21 and 22.

Pin 21 sends the proper pulse information from LabView into the pulse plus terminal of

the microcontroller. Pin 22 sends the proper direction information from LabView into the

direction plus terminal of the microcontroller. Once the pulse and direction information

has been supplied by LabView, the information was sent into the microcontroller to power

the step motor. The degrees of rotation were converted into displacement, the desired

displacement of 1 mm at a time was achieved. For details about the LabView program,

please refer to Appendix C-2.
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APPENDIX B - Measurement Details

To measure the voltage output of the model EPS, the signal on the pickup coils was ob-

tained using an oscilloscope with precise voltage measurement capabilities; since the driving

frequency is 2.36 kHz a voltmeter could not be used due to its maximum frequency allowance

of 1 kHz. The voltage on each coil was measured to be about 8.6 V, therefore a change on

the mV scale would not be noticeable on the oscilloscope. The voltage measurements were

taken for each coil set including both coils wound in series; the steel sphere was placed first

at one end of the model EPS and then the other. With the sphere at the top of the model

EPS, the first coil set measured 52 mV and the second set measured 32 mV, totalling 84

mV. With the sphere at the bottom of the model EPS, the first coil set measured 28 mV

and the second set measured 60 mV, totalling 88 mV.
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APPENDIX C - LabView Codes

C-1: LabView Step Motor Driver Control Panel
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C-2: LabView Step Motor Driver Block Diagram
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C-3: LabView Data Collection Block Diagram
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C-4: LabView Data Collection Block Diagram
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APPENDIX D - Algorithm MATLAB Code

D-1: MATLAB Simulation Scripts
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D-2: Simulated Signal Graphs

41 displacement points: Time (ms) vs. Amplitude (Voltage)
Blue signal: Reference or excitation signal. Red signal: Measured or pickup signal.

Figure 60: Simulated Signals, Displacement Points 1-4
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Figure 60: Simulated Signals, Displacement Points 5-10
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Figure 60: Simulated Signals, Displacement Points 11-16
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Figure 60: Simulated Signals, Displacement Points 17-22
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Figure 60: Simulated Signals, Displacement Points 23-28
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Figure 60: Simulated Signals, Displacement Points 29-34
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Figure 60: Simulated Signals, Displacement Points 35-40
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Figure 60: Simulated Signals, Displacement Point 41
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D-3: MATLAB Data Processing Scripts
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APPENDIX E - Graphs of Pickup Signals, Raw Data

These graphs have been included to illustrate the slight negative offset put on the signals by
the NI9205 data acquisition unit.

((a)) Core at -5 mm ((b)) Core at -4 mm

((c)) Core at -3 mm ((d)) Core at -2 mm

Figure 61: Raw Data Graphs, Displacement -5 to -2 mm
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((e)) Core at -1 mm ((f)) Core at 0 mm

((g)) Core at 1 mm ((h)) Core at 2 mm

((i)) Core at 3 mm

Figure 61: Raw Data Graphs, Displacement -1 to 3 mm
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((j)) Core at 4 mm ((k)) Core at 5 mm

Figure 61: Raw Data Graphs, Displacement 4 to 5 mm



130

APPENDIX F - Displacement Direction Relative Phase Difference

In this appendix, information about the model core displacing in the opposite direction
is included. This data was not used for the final thesis because the record length was too
short. However, it does illustrate that if the model core displaces from right to left (thinner
end of EPS to connector end), the phase difference values will be between 0 and 90 degrees
when the core is moving towards the center of the EPS and the values will be between 90
and 180 degerees when the model core is moving away from the center of the EPS. In this
way it is shown to be consistent with the original formulation in Chapter 1.1 and Reference
7 if the motion is in this direction.

Figure 62: Displacement Right to Left, -5 to -2 mm
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Figure 62: Displacement Right to Left, -1 to 3 mm
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Figure 62: Displacement Right to Left, 4 to 5 mm

Table of Relative Amplitude and Phase Difference Values:
Displacement (mm) Relative Amplitude Phase Difference (Degrees)

-5 0.3128 58.9987
-4 0.2503 61.3886
-3 0.1937 63.0399
-2 0.1312 70.4944
-1 0.0759 86.4654
0 0.0447 142.2705
1 0.0758 165.7061
2 0.1340 148.0255
3 0.1947 142.7048
4 0.2531 139.3271
5 0.3135 138.3951
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Figure 63: Relative Phase

After negating the first 5 data points, the relative amplitude graph below is the result.
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Figure 64: Relative Amplitude
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