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INTRODUCTION

Trichodesmium spp. occur throughout tropical and
subtropical seas where they can use N2 to support net
growth (Capone et al. 1997, Carpenter et al. 1997). N2

fixation is a source of new N (sensu Dugdale & Goering
1967) and therefore, Trichodesmium can contribute to
the alleviation of system-wide N limitation. Because

they fix N2, they are not N-limited and the productivity
of these species in natural systems is limited by other
physical, chemical and/or biological factors.

It has been hypothesized that the availability of some
other dissolved nutrient or trace element limits growth
of diazotrophs in the ocean. Inorganic N (e.g. NH4

+ and
NO3

–) and P (e.g. PO4
3–) are present at low concentra-

tions or at the limits of analytical detection in many
oceanic regions (e.g. Wu et al. 2000, Karl et al. 2001).
Trichodesmium use N2 as their primary N source and
therefore, it has been suggested that dissolved inor-
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ABSTRACT: Trichodesmium spp. fix atmospheric N2 and so an element other than N limits produc-
tion by these species in the oligotrophic ocean. Because dissolved inorganic phosphorus (DIP) is in
short supply in many marine systems, it has been hypothesized that P is a growth-limiting nutrient for
these species in nature. However, Trichodesmium is capable of hydrolyzing dissolved organic P
(DOP) compounds and the inorganic products from hydrolysis may provide an additional source of P
for growth. We investigated P dynamics and alkaline phosphatase activity in cultures and natural
populations of Trichodesmium from the Atlantic Ocean and the north coast of Australia to determine
whether hydrolysis of DOP could supply enough P to fuel growth. During the Atlantic cruise, con-
centrations of DIP were lower and chlorophyll (chl a)-specific rates of alkaline phosphatase activity
by Trichodesmium were higher than during the Australian transect. However, because Tricho-
desmium were much more abundant during the Australian transect, where they represented the bulk
of the surface chl a biomass, total water column rates of alkaline phosphatase activity were higher
along the Australian transect than in the Atlantic. In both systems, DOP could potentially supply a
significant portion of the cellular P necessary for growth. In cultures and natural populations, alkaline
phosphatase activity was inhibited when DIP was present and increased in the presence of DOP. Cul-
tures of Trichodesmium IMS101 grew equally well on media enriched with DOP or DIP at all but the
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ganic P (DIP) may limit the growth of diazotrophs in
some oceanic regions (e.g. Letelier & Karl 1996, 1998,
Karl 1999, Sañudo-Wilhelmy et al. 2001). Alternatively,
Fe is required for growth and for N2 fixation and is also
sparse in oceanic regions that are far from continental
Fe sources leading to the contention that dissolved Fe
may limits productivity in other regions (e.g. Reuter et
al. 1992, Falkowski 1997). In this paper, we will exam-
ine P limitation of Trichodesmium growth.

While cells can fix N2 from the atmosphere to satisfy
their N demand for growth, P flux from deep water may
be insufficient to satisfy the P requirements for growth.
In support of this theory, high particulate N (PN):par-
ticulate P (PP) ratios have been observed in natural
populations of Trichodesmium from the Pacific Ocean
(Karl et al. 1992, 1997, 2001, Letelier & Karl 1996). High
rates of alkaline phosphatase activity (APA) have been
observed in association with Trichodesmium colonies
(Yentsch et al. 1972, McCarthy & Carpenter 1979, Stihl
et al. 2001) and extracellular hydrolysis of dissolved
organic P (DOP) from this pathway may provide cells
with additional P for growth. This cell surface enzyme
has been used as an indicator of P limitation in other
systems (Perry 1972, Ammerman 1993). Although APA
has been observed to be associated with Tricho-
desmium colonies in nature, P uptake and cycling have
not been widely investigated in natural marine and cul-
ture systems to determine whether these species have
the physiological capacity to use DOP.

We compared ambient rates of APA with DIP and
DOP concentrations in 2 oceanic regions where Tricho-
desmium were abundant to assess whether these
organisms could potentially meet their P demand for
growth by hydrolyzing DOP compounds. In addition,
controls on APA were investigated in both natural and
cultured populations of Trichodesmium to determine
the nutrient conditions promoting this activity. In nat-
ural populations of Trichodesmium spp., we compared
rates of APA with respect to DIP concentrations in the

Atlantic and with respect to DIP and DOP in a transect
along the north coast of Australia. To ascertain the
capacity of cells to use organic P for growth, we mea-
sured APA, inorganic and organic P concentrations,
cellular P and cellular PN:PP molar ratios in cultures
of Trichodesmium IMS101 growing under various inor-
ganic and organic P regimes.

MATERIALS AND METHODS

Trichodesmium IMS101 was grown in batch cultures
on defined artificial medium (YBCII) with no added N
(Chen et al. 1996) and various concentrations of PO4

3–,
Na-glycerolphosphate (glycerol-P) or glucose-6-phos-
phate. Cultures were grown under low light (100 µmol
quanta m–2 s–1) supplied with diel periodicity on a
12:12 h light:dark regime, and were maintained for
several generations on each medium before beginning
experiments. Growth curves were constructed, and P
dynamics were examined over a growth cycle and over
a diel cycle during exponential growth for each P
regime tested. Growth rates were estimated based on
chlorophyll a (chl a) concentrations (Mackinney 1941)
and microscopic enumeration of cell number.

APA, inorganic nutrients and cellular P concentra-
tions were measured in natural populations of Tricho-
desmium during a transect along the north coast of
Australia, from Townsville to Broome, aboard the RV
‘Maurice Ewing’ in November 1999 (Fig. 1). In addi-
tion, APA was measured in incubations enriched with
N and P compounds to determine how nutrients affect
this activity. We had previously measured APA and
surface PO4

3– concentrations during a cruise in the
subtropical North Atlantic aboard the RV ‘Gyre’ in
May 1994 (Fig. 2). Field results were compared to
determine the contribution of Trichodesmium to water
column DOP hydrolysis under ambient and enriched
nutrient conditions.
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Fig. 1. Transect of the north
coast of Australia made aboard
the RV ‘Maurice Ewing’ in No-
vember 1999. Locations of sta-
tions are indicated with circles
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In field experiments, incubations included whole
seawater, with and without added Trichodesmium
colonies, and with additions of NH4

+, PO4
3– or Na-

glycerolphosphate. In the laboratory, incubations
included whole culture and filtered (<5.0 µm) controls
from cultures grown on 1, 3 or 50 µM of PO4

3– or Na-
glycerolphosphate.

Alkaline phosphatase activity. APA was measured
using 4-methyumbellyferyl phosphate (MUF-P) (Am-
merman 1993). Kinetic studies were done to determine
the optimum concentration for MUF-P substrate addi-
tions and optimum length for incubations in each envi-
ronment. Assays were initiated by adding 100 nM
(field studies) or 1 µM (culture studies) MUF-P to assay
bottles. Killed controls and hydrolysis of MUF-P was
monitored under ambient light and temperature condi-
tions either in the laboratory incubators or in on-deck
incubators equipped with running seawater and neu-
tral density screening. Immediately following the addi-
tion of MUF-P, and at 30 min intervals thereafter for a
period of 4 h, a sample was extracted and analyzed
fluorometrically to measure MUF-P hydrolysis against
a MUF standard. Turnover times for MUF-P were cal-
culated (Ammerman 1993) and DOP hydrolysis esti-
mated assuming the entire DOP pool was available for
hydrolysis.

Elemental composition. At each sampling point, two
10 ml samples of cultures or 10 to 30 colonies from a
natural population were filtered for elemental analysis.
PP and PN samples were digested using persulfate
(Raimbault et al. 1999) and analyzed using either a
Technicon II autoanalyzer or a Lachat FIA system. PN
results are reported elsewhere and will not be dis-
cussed here (see J. Krauk et al. unpubl.).

Dissolved nutrients. DIP and DOP measurements
were made on GF/F filtered samples collected at each
sampling point in cultures and at each station in the

field. Inorganic P, as PO4
3–, was measured using the

method of Parsons et al. (1984) or by autoanalysis using
a Lachat or Technicon II autoanalyzer system. Total
dissolved P (TDP) was measured after persulfate oxi-
dation according to the method of Valderrama (1981)
and DOP estimated after subtraction of DIP.

RESULTS

Natural populations

The per colony rates of MUF-P hydrolysis by Tricho-
desmium were up to 350 times higher in the subtropi-
cal Atlantic Ocean during the cruise in May 1994
(Table 1) than in the tropical seas along the north coast
of Australia during the cruise in November 1999 (data
not shown). Per colony rates of MUF-P hydrolysis
ranged from 0.03 to 0.24 µmol µg chl a–1 h–1 in natural
populations from the subtropical North Atlantic
(Table 1); rates which were comparable to the lowest
rates measured by Stihl et al. (2001) in the Gulf of
Aqaba using another organic substrate, p-nitro-
phenylphosphate (PNPP). By contrast, when we cal-
culated per colony rates of APA based on the turn-
over time of MUF-P and ambient DOP concentrations
along the north coast of Australia, the highest rates
(0.013 µmol µg chl a–1 h–1) were an order of magnitude
or more lower than those measured in Trichodesmium
populations from the Gulf of Aqaba in the other recent
study (Stihl et al. 2001). These results suggest that APA
varies among basins, even those with low or unde-
tectable DIP concentrations. One possible explanation
for the differences is that the Gulf of Aqaba study used
a spectrophotometric assay in which high concentra-
tions (0.4 mM) of PNPP were added as the hydrolysis
substrate (Stihl et al. 2001). In addition, the assay was
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Fig. 2. Transect into the Western subtropi-
cal North Atlantic Ocean made aboard the
RV ‘Gyre’ in May 1994. Locations of sta-

tions are indicated with circles
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longer in duration (12 h) and conducted at high tem-
peratures (37°C) and so APA rates reported may not
reflect in situ rates of DOP hydrolysis.

Even though rates appeared to be lower on a per unit
chl a basis and the biomass of individual colonies was
50 to 67% smaller along the Australia transect than in
the Atlantic (resulting in a lower per colony estimates),
per volume seawater rates of APA were much higher
along the Australia transect because Trichodesmium
were much more abundant (100s to 1000s of colonies l–1

in Australia vs <1 colony l–1 in the Atlantic; E. Car-
penter et al. unpubl.). Lower DIP concentrations in the
Atlantic Ocean (Table 1) may have stimulated APA on a
per colony basis in this basin relative to the Australian
coast, where DIP concentrations of at least 0.1 µg were
always detectable in the surface waters throughout No-

vember 1999 (Table 2). We pooled rates
of APA from the Australia cruise and
compared them to concentrations of
DIP; rates of APA were higher when
ambient DIP concentrations were
lower (e.g. <1.0 µM) and decreased
as concentrations of DIP increased
(Fig. 3).

Despite measurable DIP concentra-
tions (Table 2), PN:PP molar ratios
of Trichodesmium were always 25 or
higher in waters along the north coast
of Australia (results reported else-
where; Krauk et al. in prep.). In these
populations, we found no correla-
tions between Trichodesmium colony
abundance, per colony rates of APA,
P colony–1, DIP concentration, or DOP
concentration and the PN:PP molar
ratio of Trichodesmium (all R2 < 0.1;

data not shown). However, rates of APA were high in
bulk seawater that did not contain Trichodesmium,
ranging from 0.006 to 0.955 µmol µg chl a–1 h–1 (Table 2).
While chl a concentrations in the surface waters were
typical of oligotrophic environments, there were a vari-
ety of large dinoflagellates in the water column and
subsurface chl a maxima; consequently, other taxa
could have produced a substantial amount of enzyme.
In general, however, Trichodesmium accounted for the
bulk of the water column chl a and so could account
for the bulk of the water column enzyme activity on a
volumetric basis.

To determine whether APA could supply any or all of
the P demand for growth, we calculated the hypotheti-
cal turnover rates of Trichodesmium P biomass based
on the observed P biomass of colonies, DOP concentra-

48

Stn Date DIP APA
nmol MUF-P hydro- µmol MUF-P hydro-

(µM) lyzed (colony–1 h–1) lyzed (µg chl a–1 h–1)*

3 23 May 0.01 4.71 (1.09) 0.15
3 23 May 0.02 3.13 (0.35) 0.10
4 24 May DL 7.76 (0.81) 0.24
5 25 May DL 1.78 (1.30) 0.06
6 26 May DL 7.12 (0.80) 0.22
7 27 May 0.03 2.67 (0.11) 0.08
7 27 May 0.02 1.14 (0.62) 0.04
8 28 May 0.01 0.84 (0.15) 0.03
9 29 May 0.01 2.40 (1.20) 0.08

*Calculated using average of 0.032 µg chl a colony–1 from Stns 23 to 29 on
the same cruise

Table 1. Dissolved inorganic P (DIP) concentrations and alkaline phosphatase
activity (APA) during a cruise transect in the subtropical Western North Atlantic
in 1994. Standard deviations are in parentheses. DL indicates the concentration 

was at the limit of analytical detection (0.01 µM)

Fig. 3. Trichodesmium spp. Relationship
between alkaline phosphatase activity
(APA) and dissolved inorganic P (DIP)
concentrations estimated during incuba-
tions of natural populations. Results are
pooled from assays conducted on nat-
ural populations enriched with 10 to
150 mM DIP (as PO4

3–) during the 
November 1999 cruise
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tions and the turnover time of MUF-P for the Novem-
ber 1999 cruise along the north coast of Australia,
assuming that APA was constant over a 24 h day
(Table 2). The cellular P concentrations ranged from
0.34 to 2.55 nmol P colony–1. These numbers are simi-
lar to the tropical (0.51 nmol colony–1) and subtropical
(1.10 nmol colony–1) medians observed in the Atlantic
during a previous study (Sañudo-Wilhelmy et al. 2001).
We calculated that turnover times of Trichodesmium P
biomass due to APA ranged from 6 to 150 h during the
Australia transect. If we estimate Trichodesmium dou-
bling times of 2 to 5 d, then APA can supply a signifi-
cant portion of the P necessary for growth.

During the Australia cruise, we performed treatment
incubations to compare rates of APA among Trichodes-
mium colonies incubated with high concentrations of
DIP, DOP and NH4

+. Similar responses were observed
in 5 sets of incubations; rates of APA were inhibited
when DIP was added but enhanced when NH4

+ was
added (Fig. 4A) and rates were enhanced with the
addition of 2 different DOP substrates (Fig. 4B). Ele-
vated rates of APA in response to NH4

+ additions, sug-
gests that the supply of fixed N may limit P acquisition

by APA in at least the short term. When we compared
rates of APA by Trichodesmium over a diel cycle dur-
ing the Australia transect, APA was highest during the
morning and mid-day when N2 fixation rates were also
high (Fig. 5A). In cultures, the diel pattern was not as
pronounced, although rates were low during the mid-
dle of the dark period (Fig. 5B).

Cultured populations

Cultures of Trichodesmium IMS101 grew somewhat
faster on DIP (as PO4

3–) than on the organic P substrate,
Na-glycerolphosphate (Fig. 6; cultures were unable to
grow on glucose-6-phosphate, data not shown). The
highest growth rates were observed on medium con-
taining the highest concentration of DIP (50 µM), and
growth rates were comparable between cultures
grown on 3 µM DIP and 1 or 3 µM DOP (as Na-glyc-
erolphosphate; Fig. 6). Growth was much slower on
medium enriched with 50 µM DOP than on media
with the lower concentrations of DOP (Fig. 6); how-
ever, inorganic P rapidly accumulated in the culture
medium (Fig. 7A) while DOP decreased suggesting
that APA facilitated DOP hydrolysis (Fig. 7C) even
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Fig. 4. Trichodesmium spp. APA in natural populations
enriched with (A) DIP or NH4

+, or (B) DOP (as Na-glycerol-
phosphate) over time-course incubations conducted on the 

November 1999 cruise. Error bars are ±SD

Fig. 5. Diel pattern of APA in (A) natural populations of
Trichodesmium spp. collected on 25 and 26 November 1999
and (B) cultures of Trichodesmium IMS101. Error bars are ±SD
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though the total chl a accumulation was low. In another
study, growth rates of Trichodesmium IMS101 were
comparable on 20 µM PO4

3– and 20 µM Na-glyc-
erolphosphate (Stihl et al. 2001). At lower concentra-
tions of DOP (e.g. 1 or 3 µM), DIP concentrations in the
media increased initially (Fig. 7B) while DOP concen-
trations were depleted (Fig. 7D). Over time, the DIP
produced in the media from DOP hydrolysis de-
creased, very likely because it was being taken up by
growing cells.

In cultures grown on medium containing either 0, 1
or 3 µM DIP, rates of APA increased with decreasing
concentrations of DIP in the growth medium (Fig. 8;
APA scaled for 1 and 3 µM DIP treatments). When inor-
ganic P in the culture medium was 50 µM, there was no
detectable APA over the 22 d the cultures were moni-
tored (data not shown) and DIP was never depleted
from the culture medium. When cultures were grown
on medium enriched in DOP, it was difficult to measure
MUF-P hydrolysis because our MUF-P additions were
small (1 µM) relative to culture enrichments (1 to
50 µM). We estimated APA by the disappearance of
DOP from the culture media (these are most likely

minimum APA estimates). Because DIP accumulated in
the medium during growth on 50 µM DOP, rates of
APA must have exceeded the rate of uptake of the DIP
produced. We therefore calculated the maximum
turnover times for cellular P using the estimated rates
of APA which were very fast, i.e. 0.1 h (Table 3).
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Fig. 6. Trichodesmium IMS101. Growth on media variably
enriched with DIP (as PO4

3–) or DOP (as Na-glycerolphos-
phate) over 14 d. Error bars are ±SD

Fig. 7. Trichodesmium IMS101. Concentrations of (A,B) DIP and (C,D) DOP in Trichodesmium IMS101 cultures grown on media 
enriched with (B,D) 1, 3 or (A,C) 50 µM PO4

3– or Na-glycerolphosphate. Error bars are ±SD
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Cellular P concentrations increased and the cellular
PN:PP molar ratio decreased in cultures enriched with
organic P suggesting that organic P alleviated P limita-
tion and promoted P uptake and growth. However,
PN:PP ratios were near Redfield only in cultures grow-
ing on 50 µM DOP (Fig. 9A) or those growing on 3 or
50 µM DIP (Fig. 9B). The cellular PN:PP ratios were
highest in the cultures grown on 1 or 3 µM DOP and
ratios increased as P was depleted in cultures growing
on low DIP (e.g. 1 µM).

DISCUSSION

As for other species, APA by Trichodesmium is sen-
sitive to environmental DIP concentrations; activity ap-
pears to be inhibited when concentrations of DIP are
high. In this study, chl a-specific rates of APA by Tricho-
desmium were higher in the Atlantic Ocean than along
the north coast of Australia, including several stations
in the Coral Sea. This is consistent with the relative de-
pletion of DIP in the Atlantic Ocean during our cruises.
Recently, it has been argued that the North Atlantic is
more severely P limited than the Pacific and our results
for the Atlantic would indicate a very high level of P
stress (Wu et al. 2000, Sañudo-Wilhelmy et al. 2001).

In addition, we determined that for 2 geographically
distinct populations of Trichodesmium, levels of APA
vary dramatically, and this may reflect the relative
availability of labile P sources for growth and the phys-
iological status of cells. Much higher per colony rates
of APA were found in Trichodesmium populations from
the tropical Atlantic, where DIP concentrations were
an order of magnitude lower, compared to populations
in waters along the north coast of Australia. Tricho-
desmium colonies from both the Atlantic and Aus-
tralian coastal waters exhibited lower rates of APA
than those from the Gulf of Aqaba, where DIP concen-
trations were at or near the limits of analytical detec-
tion (Stihl et al. 2001). It is difficult to make quantita-
tive comparisons between this and the other study,
however, because the APA assays used different sub-
strates and were performed under different conditions.
In particular, the Stihl et al. (2001) study employed
assays using saturating additions of PNPP (0.4 µM) and
these were performed over 12 h incubations at 37°C
(optimum temperature for enzyme activity), and so
their results are likely maxima. An advantage of using
saturating additions is that competition with ambient
DOP pools does not greatly affect the ability to observe
hydrolysis of the model substrate, but a disadvantage
is that in situ rates can be overestimated.

52

Treatment PP PP PN:PP DOP DIP APA APA Turnover
day (µmol l–1) (µmol µg molar (µM) (µM) (µmol l–1 h–1) (µmol µg of cellular P

chl a–1) ratio chl a–1 h–1) (h)

1 µM glycerol-P
0 0.08 (0.03) 0.018 26.2 (16) 1.7 (0.1) 2.4 (0.2)
3 0.08 (0.02) 0.015 140 (8.1) 0.5 (0.1) 2.5 (0.4) 0.008* 0.002 9.6
6 0.14 (0.10) 0.019 110 (34) 0.6 (0.2) 1.0 (0.3)
11 0.16 (0.05) 0.020 72.0 (0.8) 0.4 (0.2) 0.4 (0.2)
14 0.26 (0.03) 0.021 41.5 (6.0) 0.7 (0.5) 0.2 (0.05)
22 0.62 (0.17) 0.031 23.6 (1.5)

3 µM glycerol-P
0 0.04 (0.01) 0.009 150 (87) 3.0 (0.1) 3.0 (0.4)
3 0.08 (0.02) 0.022 156 (82) 1.1 (0.3) 4.2 (0.3) 0.050* 0.009 1.6
6 0.23 (0.02) 0.037 111 (57) 1.0 (0.6) 3.5 (0.4)
11 0.31 (0.04) 0.043 88.7 (28). 0.4 (0.3) 2.5 (0.8)
14 0.44 (0.04) 0.033 118 (60) 0.2 (0.4) 1.2 (1.0)
22 0.78 (0.05) 0.035 23.8 (0.8)

50 µM glycerol-P
0 0.22 (0.05) 0.049 35.2 (5.0) 34 (3.0) 11.8 (1.5)
3 0.28 (0.02) 0.062 12.9 23 (6.7) 22.4 (3.8) 3.381* 0.626 0.1
6 0.30 (0.06) 0.083 4.37 (2.4) 0.5 (0.3) 39.2 (2.0)
11 0.57 (0.04) 0.158 20.2 (2.7) DL 41.6 (2.4)
14 0.90 (0.04) 0.101 23.9 (2.4) DL 41.0 (0.6)
22 1.09 (0.10) 0.094 5.7 (4.7)

*Calculated based on disappearance of DOP from the medium

Table 3. Cellular concentrations of particulate P (PP), PN:PP molar ratio, DOP and DIP concentrations, alkaline phosphatase 
activity (APA) and turnover of cellular P in culture experiments using Trichodesmium IMS101. Standard deviations for triplicate 

cultures are in parentheses. DL indicates the concentration was at the limit of analytical detection (0.03 µM)
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Despite lower chl a specific APA rates, colonies were
more abundant, although smaller, along the north
coast of Australia, and so volumetric rates of APA were
higher than those estimated from the Atlantic; Tri-
chodesmium-associated APA represented the bulk of
the water column APA at most stations (Table 2). Con-
centrations of DOP along the Australia transect ranged

from 0.32 to 0.87 µM and this may have also stimulated
APA. In natural populations, additions of DIP inhibited
APA while additions of DOP enhanced APA. Concen-
trations of DOP were not measured in the Atlantic or
reported for the Gulf of Aqaba study (Stihl et al. 2001)
and so the extent to which DOP stimulates APA in
nature could not be assessed.

Our results demonstrate that Trichodesmium
IMS101 can grow well using the DOP substrate, Na-
glycerolphosphate, and that APA varies as a function
of P availability in the culture medium. These results
are consistent with another recent study where growth
rates of Trichodesmium IMS101 were comparable on
20 µM concentrations of either DIP (as PO4

3–) or DOP
(as Na-glycerolphosphate; Stihl et al. 2001). Based on
the cellular P concentrations and rates of APA, we esti-
mate that Trichodesmium can meet its P demand for
growth by using DOP if DOP is in adequate supply.
Estimates of doubling times for natural populations of
Trichodesmium range between 3 and several 100 d
(Carpenter 1983, Mulholland & Capone 2001); cul-
tured Trichodesmium have doubling times that range
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Fig. 8. Trichodesmium IMS101. Relationship between DIP,
DOP, and APA activity in Trichodesmium IMS101 grown on
medium with (A) no added DIP, (B) 1 µM DIP (APA scaled by
a factor of 10) or (C) 3 µM DIP (APA scaled by a factor of 100). 

Error bars are ±SD

Fig. 9. Trichodesmium IMS101. N:P ratios in Trichodesmium
IMS101 grown on medium with (A) 1, 3 or 50 µM DOP (as 

Na-glycerolphosphate) or (B) 1, 3 or 50 µM DIP (as PO4
3–)
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from 1 to 10 d (Ohki et al. 1992, Mulholland & Capone
2000). Our estimates of potential cellular P turnover
times due to APA ranged from 6.1 to 150 h, suggesting
that APA can potentially supply nearly all of the P
demand for growth, if the available DOP supply is suf-
ficient.

These results have important implications with regard
to Trichodesmium growth in natural systems. Abell et al.
(2000) calculated that DOP concentrations and turnover
in the Pacific could meet Trichodesmium P demand
based on N2 fixation. We confirm that this is physiologi-
cally plausible if there are sufficient DOP substrates
available for hydrolysis. However, the quality and
relative availability of DOP in the marine environment
is largely unknown. In cultures of Trichodesmium
IMS101, 2 DOP substrates were tested, Na-glycerol-
phosphate and glucose-6-phosphate, but only the former
yielded culture growth. In this study, we assumed that
the entire DOP pool was available for hydrolysis and this
is not likely to be the case. Therefore, our turnover times
should be considered as maxima.

There are few studies that have investigated the
kinetics of non-nitrogenous nutrient uptake by Tricho-
desmium. In the only kinetic study published re-
garding P uptake, it was demonstrated that Tricho-
desmium have a low affinity for orthophosphate (Ks =
9 µM) but a high potential for utilizing phospho-
monoesters (170 to 300 nmol P µg chl a–1 h–1; McCarthy
& Carpenter 1979). We observed that in cultures,
Trichodesmium IMS101 grew rapidly when supplied
with high concentrations of DIP (50 µM). Growth rates
and biomass accumulation were lower when DIP was
supplied at lower concentrations (1 to 3 µM) or when
DOP was the sole source of P for growth. However,
APA was not observed in cultures until the DIP pool
was depleted and even low concentrations of DIP sup-
ported significant growth. This suggests that the affin-
ity for DIP may be higher than previously thought. We
did not measure P uptake kinetics during this study.
High rates of APA in cultures growing on DOP resulted
in the accumulation of DIP in the culture medium,
suggesting that rates of APA exceeded rates of DIP
uptake. This also suggests that APA does not limit DIP
uptake when there is sufficient available DOP. Inor-
ganic P has been shown to accumulate under bloom
conditions (Devassy et al. 1978, Letelier & Karl 1998). It
is unlikely that DIP is directly released by Tricho-
desmium and therefore, we speculate that accumula-
tion of DIP is most likely the result of hydrolysis of
organic P by Trichodesmium or associated taxa.

A scenario referred to as ‘P mining’ has been sug-
gested as a mechanism whereby Trichodesmium spp.
might acquire the necessary P, as DIP, for growth in
natural systems. Essentially, this mechanism involves
vertical migration of Trichodesmium, on some time

scale, down to the phosphocline where they take up
DIP, store it as polyphosphate granules and then buoy
up to the surface where N2 fixation can be energeti-
cally supported by photosynthesis (Karl et al. 1992,
Hood et al. 2000). This theory is supported by observa-
tions that Trichodesmium can physiologically regulate
their buoyancy (Romans et al. 1994); however, it is
counterintuitive in that cells rich in polyphosphate
bodies would most likely be heavier than those deplete
in P. In one study, sinking colonies collected in the
Atlantic were replete in C and P reserves, while rising
colonies had low reserves of both elements, suggesting
that ‘P mining’ does not occur (Romans et al. 1994).
Alternatively, if buoyancy regulation is effected
through C reserves or some other physiological factor
such as gas exchange, than this mechanism might be
possible. Carbon reserves were responsible for the
major fraction of density ballasting in the study by
Romans et al. (1994), and it is possible that in the
Pacific Ocean, sinking cells have low P reserves and
engage in ‘P mining’.

Cells that are able to hydrolyze DOP and compete
for the hydrolysis products may be able to acquire suf-
ficient P in the photic zone if there are adequate sup-
plies of available DOP. Trichodesmium IMS101, the
most widely available clone of this species, has been
tentatively identified as T. erythraeum based on gen-
etic and cytomorphological observations (Jansen et al.
1995, 1999). This species is positively buoyant because
it has abundant gas vesicles and its ability to take
advantage of DOP may allow it to compete for limited
P resources in the surface waters of the oligotrophic
ocean, precluding the need to vertically migrate to the
phosphocline.

Our results from culture studies confirm that Tricho-
desmium IMS101 can grow when DOP is the sole
source of P. However, low cellular P concentrations
and high PN:PP ratios result from growth on low con-
centrations of DOP or from DIP limitation of growth.
When ambient DIP concentrations are low or at the
limit of analytical detection, natural populations of
Trichodesmium can hydrolyze DOP at high rates. This
suggests that so long as there is an adequate supply of
either DIP or DOP, surface populations can acquire P
for growth without needing to ‘mine’ P at or below the
phosphocline.
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