Fisheries Bycatch Risk to Marine Megafauna Is Intensified in Lagrangian Coherent Structures

Kylie L. Scales
Elliot L. Hazen
Michael G. Jacox
Frederic Castruccio
Sara M. Maxwell
Old Dominion University, smaxwell@odu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs

Part of the Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, and the Sustainability Commons

Repository Citation
Scales, Kylie L.; Hazen, Elliot L.; Jacox, Michael G.; Castruccio, Frederic; Maxwell, Sara M.; Lewison, Rebecca L.; and Bograd, Steven J., "Fisheries Bycatch Risk to Marine Megafauna Is Intensified in Lagrangian Coherent Structures" (2018). Biological Sciences Faculty Publications. 328.
https://digitalcommons.odu.edu/biology_fac_pubs/328

Original Publication Citation

This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures

Kylie L. Scales1,2,1, Elliott L. Hazen3, Michael G. Jacox4,5, Frederic Castruccio4, Sara M. Maxwell5, Rebecca L. Lewis6, and Steven J. Bograd7

1School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia; 2Environmental Research Division, National Oceanic and Atmospheric Administration Southwest Fisheries Science Center, Monterey, CA 93940; 3Physical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305; 4Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80305; 5Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529; and 6Institute for Ecological Monitoring and Management, San Diego State University, San Diego, CA 92182

Edited by Alistair Hobday, Commonwealth Scientific and Industrial Research Organization, and accepted by Editorial Board Member David W. Schindler May 22, 2018 (received for review January 23, 2018)

Incidental catch of nontarget species (bycatch) is a major barrier to ecological and economic sustainability in marine capture fisheries. Key to mitigating bycatch is an understanding of the habitat requirements of target and nontarget species and the influence of heterogeneity and variability in the dynamic marine environment. While patterns of overlap among marine capture fisheries and habitats of a taxonomically diverse range of marine vertebrates have been reported, a mechanistic understanding of the real-time physical drivers of bycatch events is lacking. Moving from describing patterns toward understanding processes, we apply a Lagrangian analysis to a high-resolution ocean model output to elucidate the fundamental mechanisms that drive fisheries interactions. We find that the likelihood of marine megafauna bycatch is intensified in attracting Lagrangian coherent structures associated with submesoscale and mesoscale filaments, fronts, and eddies. These results highlight how the real-time tracking of dynamic structures in the oceans can support fisheries sustainability and advance ecosystem-based management.

Manuscript:

Managing the competing demands of resource extraction and biodiversity conservation is a central challenge in maintaining ecosystem function across terrestrial and marine systems (1, 2). In the oceans, overharvesting, habitat degradation, and bycatch—incidental catch that is unwanted, unused, or unmanaged (3)—are global-scale barriers to fisheries sustainability. Seafood is a major protein source for more than 3 billion humans worldwide (4), and the importance of a sustainable supply will increase with the rapidly rising global population (5). Prioritizing the ecological sustainability of marine fisheries is crucial to preventing ecosystem collapse and protecting food sources and future livelihoods in fisheries-reliant communities (6, 7).

Nontarget catch represents an estimated 40% by mass of all marine catch (3) and has been identified as the most serious global threat to a diverse array of marine vertebrates including sea turtles, seabirds, marine mammals, pinnipeds, and elasmobranchs (3, 8–10). Marine megafauna populations face a range of cumulative anthropogenic stressors, particularly in coastal zones under intensive human use (11), and many are of immediate conservation concern (12–14). Life history characteristics such as long life span, low fecundity, late maturity, and wide-ranging movements exacerbate the ecological impacts of fisheries bycatch, as populations struggle to buffer anthropogenic pressure. The removal of high-level species, described as trophic downgrading (15, 16), causes substantial changes in ecosystem function (12) and reduces the profitability of fisheries (5).

To halt or reverse these trends, bycatch mitigation measures such as changes to fishing gear and practice and fishing effort reallocation and redistribution have been successfully implemented in many fisheries (17, 18). However, the relative success of these mitigation options relies upon management effort being both well-targeted in space and time, and effectively enforced. Spatial fisheries management solutions, such as Marine Protected Areas, time-area closures, or gear modification zones, require a scale-matched understanding of the spatiotemporal dynamics of fisheries and of the habitat preferences of both target species and bycatch-sensitive populations.

Bycatch hotspots and trends have been explored using spatially and temporally explicit fisheries data at global (9, 10, 19–21), ocean-basin (22–24), national (25, 26), and regional (27, 28) scales. However, previous studies have predominantly focused on correlations and long-term patterns of spatiotemporal overlap among fisheries and high-use habitats of marine vertebrates (23, 24, 29) and are often population—or species—specific. While these studies have yielded important insights into the location of bycatch hotspots, seldom do the analytical techniques used account for spatiotemporal dynamics, yield insights at management-relevant spatial (kilometers to tens of kilometers) or temporal (daily, weekly, monthly) scales, or attempt to identify the fundamental physical drivers that underlie observed patterns.

It is well-established that biophysical coupling at submesoscale and mesoscale [hereafter (sub)mesoscale] features such as frontal systems and eddies can result in productive foraging habitats for marine predators (29–32). Fronts, eddies, and filaments can become hotspots of productivity through nutrient enrichment, turbulent mixing, and energy cascades (33–35) that support high primary production, which subsequently supports zooplankton communities (36). These communities in turn support higher trophic levels such as marine megafauna including sharks, sea turtles, seals, cetaceans, and seabirds (37). Marine megafauna are typically large-bodied organisms, have long life spans, and are highly migratory (12, 38, 39). Understanding why and when bycatch events take place can provide fisheries sustainability solutions. Here, we model how dynamic structures in the ocean such as fronts and eddies influence fisheries event catch, and bycatch likelihood. We find that bycatch of a diverse range of species is more likely in attracting Lagrangian coherent structures, in which water masses meet and aggregate prey, predators, and fish into hotspots of risk.

Author contributions: K.L.S., E.L.H., and S.J.B. designed research; K.L.S. performed research; M.G.J., F.C., S.M.M., and R.L.L. contributed data; K.L.S. analyzed data; and K.L.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. A.H. is a guest editor invited by the Editorial Board.

Published under the PNAS license.

1To whom correspondence should be addressed. Email: kscales@usc.edu.au.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801270115/-/DCSupplemental.

Published online June 25, 2018.

Significance

Marine capture fisheries provide a valuable source of protein and are economically important in coastal communities. However, fisheries sustainability is impacted by incidental capture of nontarget species (bycatch), which remains a major global threat to marine megafauna such as sharks, sea turtles, seals, cetaceans, and seabirds. Understanding where and when bycatch events take place can guide fisheries sustainability solutions. Here, we model how dynamic structures in the ocean such as fronts and eddies influence fisheries event catch, and bycatch likelihood. We find that bycatch of a diverse range of species is more likely in attracting Lagrangian coherent structures, in which water masses meet and aggregate prey, predators, and fish into hotspots of risk.
vertical mixing (33, 34), proliferation of phytoplankton, and physical aggregation of zooplankton (35). These processes of biophysical coupling attract midlevel consumers such as small pelagic fish and gelatinous zooplankton, which are themselves prey items for marine mega fauna such as seabirds, turtles, cetaceans, pinnipeds, sharks, and large teleost fish. Marine predators of multiple taxa are known to exploit these accessible and predictable foraging opportunities (32, 36, 37), as are the fisheries that target both bait fish and larval/predatory teleosts that are found in higher numbers in association with submesoscale structures (38). Hence, (sub)mesoscale structures can concentrate forage resources, fish, fisheries, and predators into hotspots of bycatch risk to marine vertebrates.

Broad-scale regions of increased fisheries bycatch risk have been identified using overlap-based analyses that map oceanic structures using common remotely sensed measures of the physical environment such as sea surface temperature (SST) and surface chlorophyll-a concentration (23, 24, 28, 39–41). Front frequency and frontal probability indices have highlighted broad-scale regions of persistent frontal activity as core foraging habitats of marine mega fauna, and hotspots of fisheries overlap (29), but are more useful for identifying patterns over seasonal, annual, or climatological scales than for resolving real-time interactions. Time-varying remotely sensed data have been used to examine the correlations among catch rates of key targeted species (e.g., tuna and billfish) and contemporaneous mesoscale structures, using SST, chlorophyll-a, and sea level anomalies (SLA) (42–44). Satellite tracking studies have related animal movements to thermal fronts in SST fields, or chlorophyll-a fronts in ocean color fields, through the derivation of gradient-based metrics (45), spatial SD, or histogram-based edge detection (46). While these techniques have advanced our understanding of structure and function in pelagic systems, they cannot adequately resolve the influence of the dynamic submesoscale flow field in driving real-time fisheries interactions. Objective validation of the functional responses of marine predators, and of fisheries, to dynamic structures is complex and reliant on acquisition of data at sufficient scales to link pattern and process (47).

An alternative technique is to use Lagrangian methods to identify dynamic structures in ocean surface velocity fields. For example, the Finite-Time or Finite-Size Lyapunov Exponents [FT(S)LE] can be applied to sequences of surface velocity fields to identify Lagrangian coherent structures (LCS) in the surface flow (48). LCS are material curves that map dynamic flow features (49) and are known to contribute to the structuring of marine ecosystems (50). LCS mapping identifies attracting structures in the surface flow field using ridges in backward-in-time FT(S)LE and repelling structures using forward-in-time FT(S)LE. LCS mapping is emerging as a powerful technique in marine spatial ecology and has been used to identify habitats of marine predators such as seals (37, 51), seabirds (52), and baleen whales (36, 53) and to evaluate the design of Marine Protected Areas (54). However, FSLE derived from satellite altimetry fields is served only as a coarse resolution (0.25°) 3-d composite, limiting its utility for inferring real-time mechanistic linkages. The periodicity of satellite overpasses (1 wk to 10 d) can result in over-smoothing in the velocity field defined through altimetry, reducing the temporal and spatial resolution in the resultant FSLE product, and satellite altimetry can exhibit lower performance in upwelling regions, such as the California Current System (CCS), than elsewhere.

Here, we present a high-resolution LCS mapping product derived from daily velocity fields of a data assimilative CCS configuration of the Regional Ocean Modeling System (ROMS). We take a detailed, multispecies approach to quantifying the influence of the dynamic physical environment on the likelihood of marine mega fauna bycatch in the CCS. Seasonal wind-driven upwelling in the CCS, a global marine biodiversity hotspot, results in the development of rich feeding grounds that support vast numbers of marine vertebrates, both migrant and resident (39), many of which are protected under international and US federal legislation (Marine Mammal Protection Act 1972; Endangered Species Act 1973). The CCS is a highly energetic eastern boundary upwelling system with a complex, dynamic flow field characterized at the submesoscale by fronts, eddies, and filaments. Using a spatially explicit time series (1990–2010) of National Oceanic and Atmospheric Administration (NOAA) fisheries observer data from a drift gillnet fishery, coupled with high-resolution FTLE fields derived from ROMS, we explore how attracting LCS influence the likelihood of fisheries interactions with both exploited and protected marine mega fauna.

Results

Attracting LCS, and the spatiotemporal evolution of these convoluted and dynamic features, were mapped daily over the CCS domain for the period 1990–2010 (Fig. 1). Our findings demonstrate that over the 21-y period examined, fisheries effort in the California drift gillnet fishery was significantly more likely to be associated with increased magnitude of FTLE, establishing that this fishery targets attracting LCS associated with (sub)mesoscale surface structures such as upwelling filaments, fronts, and eddies. The locations of gillnet sets on haul-out were more likely than unfished locations to be associated with attracting LCS (as indicated by the median FTLE magnitude; see Methods). The slope of the relationship between the probability of fishing vessel presence and the strength of the attracting LCS field was highly significant in all model iterations (SI Appendix).

The primary target species of this drift gillnet fishery is broadbill swordfish Xiphias gladius. Several secondary target species are accidentally caught yet retained for sale (e.g., Pacific bluefin tuna Thunnus orientalis, pelagic thresher shark Alopias pelagicus, common thresher shark Alopias vulpinus, shortfin mako shark Isurus oxyrinchus, smooth hammerhead shark Sphyrna zygaena, opah Lampris guttatus), and a range of nontarget species are caught as bycatch (e.g., blue shark Prionace glauca, ocean sunfish Mola mola, leatherback turtle Dermochelys coriacea, loggerhead turtle Caretta

Fig. 1. Attracting LCS in the California Current System, mapped as a daily field using FTLE_b applied to zonal and meridional velocity fields from California Current configuration of the ROMS (65).
We found a highly significant influence of FTLE magnitude on swordfish catch probability (Fig. 2 A and B and SI Appendix). Swordfish were more likely to be caught in drift gillnets, and in higher numbers, when sets were associated with attracting LCS. Other predatory fishes including economically valuable, and vulnerable, Pacific bluefin tuna, several species of shark (common thresher, pelagic thresher, shortfin mako shark, and blue shark), opah, and ocean sunfish were landed as secondary targets or bycatch significantly more frequently, and in higher numbers, in attracting LCS (Figs. 2 and 3 and SI Appendix). In particular, attracting LCS strongly influenced rates of blue shark bycatch (Fig. 3 E and F and SI Appendix).

Moreover, our analyses revealed a pattern of increased risk of entanglement of protected species including cetaceans, sea turtles, and pinnipeds in association with attracting LCS (Fig. 4 and SI Appendix). While rates of marine megafauna bycatch in the fishery have decreased substantially since the introduction in 2001 of a large-scale seasonal closure designed to reduce sea turtle bycatch (the Pacific Leatherback Conservation Area), the observed pattern of increased bycatch likelihood of attracting LCS held true for the protected marine vertebrate group including sea

![Fig. 2. Effect of FTLE on probability of capture (A, C, E, and G) and catch per trip (B, D, F, and H) of target or secondary target species, (A and B) broadbill swordfish, (C and D) opah, (E and F) shortfin mako shark, and (G and H) bluefin tuna. Higher magnitude of negative FTLE indicates number and strength of attracting Lagrangian coherent structures in the vicinity of each gillnet set. Shaded gray polygons show 95% confidence intervals.](image)

![Fig. 3. Effect of FTLE on probability of incidental capture and predicted bycatch densities of nontarget pelagic fish species. Taxon-specific probability of bycatch (A, C, E, and G) and total bycatch per trip (B, D, F, and H) for all bycatch species, (C and D) all shark species, (E and F) blue shark, and (G and H) ocean sunfish. Higher magnitude of negative FTLE indicates number and strength of attracting Lagrangian coherent structures in the vicinity of each gillnet set. Shaded gray polygons show 95% confidence intervals.](image)
turtles, such as the endangered loggerhead and critically endangered leatherback turtles, cetaceans listed under the Marine Mammal Protection Act (MMPA 1972) such as sperm whales Physeter macrocephalus, humpback whales Megaptera novaeangliae, beaked whales and delphinids, and MMPA-listed northern elephant seals Mirounga angustirostris.

Comparing probabilities of capture and predictions of total catch across the range of species with which the fishery interacted over the 21-y study period (Figs. 2–4 and SI Appendix) yields valuable information regarding which species are more at risk in association with the bycatch hotspots in LCS. For example, our models predict catch rates of 40 swordfish, 60 blue shark, 75 mola, and 10 bluefin tuna per fishing trip, associated with intense LCS fields (Figs. 2 and 3). Bluefin tuna are less likely to be caught than swordfish, blue shark, or mola, but have considerably higher economic value and conservation interest.

Discussion

Given the pressing need to reduce bycatch while maintaining fisheries profitability, understanding the role of the dynamic physical environment in structuring the distributions of marine megafauna is essential in designing sustainable fisheries solutions. Our results provide an objective demonstration of the effect of (sub)mesoscale LCS in the spatial structuring of marine ecosystems and, hence, fisheries bycatch interactions. The established mechanistic function of (sub)mesoscale structures in aggregating low trophic level organisms (33–35, 55) suggests that the observed intensification of bycatch risk in LCS is mediated through regulation of forage resource availability for marine predators of both exploited and protected status.

In contrast with previous work documenting long-term, broad-scale patterns of overlap between fisheries and core habitats of marine vertebrates (23, 24, 29, 41), this study uses high-resolution Lagrangian products time-matched with spatially explicit fisheries data to quantify the influence of (sub)mesoscale structures on fisheries effort, catch rates, and the likelihood of marine vertebrate bycatch events across multiple taxa. Our approach focuses on the biophysical processes that underlie fisheries interactions, yielding important insights into the influence of the contemporaneous physical environment on spatial and temporal scales that are relevant to the design of conservation and management initiatives, particularly in developing tools for dynamically spatial ocean management (56–60).

Importantly, we find evidence of intensified likelihood of fisheries interactions in attracting LCS that holds true for target species, secondary targets, and bycatch-sensitive species. Catch rates of a diverse array of species, including elasmobranchs of management concern (e.g., blue shark, shortfin mako, common thresher, pelagic thresher), large teleost fish such as bluefin tuna, opah, and M. mola, and of protected species including cetaceans, sea turtles, and pinnipeds, are higher in association with LCS. Our analyses indicate that these are not coincidental interactions, as gillnet set locations are strongly associated with attracting LCS. Communication with the fisher community supports the hypothesis that the fishery actively targets (sub)mesoscale surface structures, which can be indicated by lines of advected drifting foam and debris at the surface. Some LCS are also coincident with SST discontinuities that are visible in satellite imagery, although many features do not have a signature in SST. A strategy of targeting attracting LCS appears to be profitable in that it increases the probability of catching greater numbers of the target species (see also ref. 38), but may in fact be counterproductive in also increasing the likelihood of interactions with protected species, which the fishery seeks to avoid.

Our findings suggest that including examples such as LCS in the design of dynamic ocean management solutions could facilitate bycatch reduction in marine fisheries (57). For example, dynamic time-area closures could track regions of intense submesoscale variability, such as persistent frontal zones (32), or areas in which attracting LCS manifest frequently, such as the peripheries of eddies and upwelling filaments. However, developing effective spatial subsets for fisheries sustainability relies upon a known strategy for identifying factors that delineate and separate the distributions of target and nontarget species (44). In data-rich systems such as the CCS, using species distribution models (SDMs) that can resolve the relative distributions of target and nontarget species can inform fisheries of resource distributions and facilitate separation of catch and bycatch hotspots (40, 58, 59). Including LCS as predictors in these SDMs has potential to enhance predictive capabilities for separating fine-scale habitat preferences of target and bycatch-sensitive species, particularly where species-specific mechanistic responses to the contemporaneous physical environment are considered explicitly. Our multispecies quantification of catch and bycatch probabilities enables the development of preferential catch–bycatch strategies based on near real-time environmental conditions (see also ref. 59).

Alongside dynamic time-area closures, fine-scale set positioning with respect to LCS, as well as gear modifications for depth selectivity, could allow for continued exploitation of aggregations of target species while reducing bycatch risk. For example, the observed functional responses of tunas to submesoscale thermal fronts establishes that teleost fish are likely to be closer to the surface when exploiting thermal resources on the warm side of a front, and deeper in the water column when targeting forage resources on the cold side (47). This suggests that a strategy targeting surface aggregations on the warm side of a convergent front could avoid interactions with other nontarget endothermic predators exploiting the same bait fish aggregation near the thermocline beneath the cooler side of the front.

Vertical niche separation also confers opportunity for fine-scale selectivity through the targeting of particular depth ranges, as pelagic habitats are structured over three dimensions. Dissimilar foraging ecology, physiological constraints, and diel vertical migratory behavior influence the use of the water column by different species and age classes of large pelagic fish (61). For example, whole-body endothermy in opah allows the fish to remain in deeper, colder water for extended periods (62), whereas poikilotherms with organ-specific countercurrent heat exchange such as tuna and swordfish are more sensitive to thermal constraints and appear to use thermal fronts to maximize energy and foraging (47). Moreover, air-breathing endotherms such as marine mammals and seabirds exhibit divergent depth utilization strategies to those of true pelagics such as sharks and large teleost fishes. Depth utilization by air-breathing predators is limited by physiological constraints, which necessitate regular dives interspersed by forays to the surface to breathe. Therefore, it would be reasonable to expect species-specific patterns of depth utilization around (sub)mesoscale structures, which could be exploited to target
High-resolution, data-assimilative ocean models have vast potential to generate tools for spatial fisheries management through improved understanding of species’ dynamic distributions over broad scales and in three dimensions (63). By calculating FTLE from velocity fields of a data-assimilative ocean model, we better quantify physical drivers of fishery interactions than the coarse-scale overlap analyses that precede this study. Using FTLE fields derived from regional ocean models (e.g., ROMS) has several distinct advantages over satellite-based products. Data-assimilative ocean models validate and adjust hindcasts and nowcasts using real-time satellite and in situ observations. Physical data are of higher spatial resolution (here, ROMS outputs are 0.1° compared with 0.25°) and temporal frequency (daily fields as opposed to 3-d composites) than those available from satellite altimetry. Ocean models provide full velocity fields, while only geostrophic flow can be calculated from satellite altimetry. The ocean model output includes gap-free atmospherics and management value of understanding the mechanisms through which the physical environment structures marine species distributions. Including high-resolution Lagrangian metrics in future investigations of the spatiotemporal dynamics of marine capture fisheries, and in the development of tools for dynamic ocean management, has considerable potential for enhancing fisheries sustainability and blue growth.

ACKNOWLEDGMENTS. We thank two anonymous reviewers for suggestions that improved the manuscript; acknowledge the ongoing cooperation of the California drift gillnet fishery and NOAA fisheries observers; and thank certain species while avoiding others. Indeed, vertical niche separation has informed the imposition of regulation in the California drift gillnet fishery that requires fishermen to set nets at least 10 m below the surface, in an effort to avoid interactions with air-breathing species. Further gear modifications to improve selectivity through the targeting of different depth ranges could facilitate progress toward the goal of reducing bycatch.

Fisheries effort was determined using data from the NOAA Fisheries Onboard Observer Program for the drift gillnet fishery. Fisheries observers recorded the location and time of haul-out of 7,996 gillnet sets deployed over a total of 1,357 fishing trips during the drift gillnet operating seasons (May–January) of 1990–2010 and coincident catch and nontarget catch data for each set. Observer coverage rates over this period are estimated at 15%. Fishing trips started from 28 ports along the US West Coast, with the majority of vessels docking in Southern California (San Diego: 51%, Morro Bay: 12%, Los Angeles: 8%; see ref. 63).

We explored the distribution of fisheries effort in relation to LCS by comparing the locations of gillnet sets with unfished locations sampled using random walkers parameterized to vessel movements. We compared the strength of the LCS field in the proximity (median over a 3 × 3-pixel radius; geostrophic flow 0.0125°) of each set location (presence) with the background field (absence) by calculating the median FTLE of each set. Observer coverage rates estimated from this full presence–absence dataset to fit a binomial generalized linear model with a presence-absence response 1,000 times. All analyses were conducted using R v.3.3.1 (69).

We interrogated fisheries observer data to generate one master target catch dataset containing the locations, dates, and times of gillnet sets with and without swordfish catch and total catch for each successful set. To quantify the influence of attracting LCS on target catch, measures of (i) presence–absence of swordfish per set and (ii) the number of swordfish caught per set, we calculated the median FTLE of sets with 0.3-pixel window centered on each set location. We used the cumulative sum over each fishing trip to generate a single per-trip FTLE, metric, avoiding pseudoreplication at the trip level. We then used Generalized Additive Models (GAMs) to model the influence of LCS on (i) the probability of the presence of swordfish and (ii) cumulative total catch, as separate responses.

We used a binomial error family and logistic link function for presence–absence responses, and a negative binomial error family with a logarithmic link function for count responses. For count models, we used inbuilt theta estimation (“glm” package for R), checked models for overdispersion, and retained only models where the overdispersion metric was <1.4. Models were selected on the basis of parameter significance, percentage deviance explained, adjusted-R², and comparison of Aikake’s Information Criterion against a null model of intercept-only. Model assumptions pertaining to GAMs, including normality and homogeneity of variance, were explicitly considered in model construction and checked using plots of residuals against fitted values and predictors where appropriate (70). The same protocol was applied to secondary targets of the fishery, including opah, bluefin tuna, thresher sharks, and shortfin mako sharks.

We modeled the correlation between total bycatch over each fishing trip and the sum of the strength of the attracting LCS field associated with each gillnet set in the same trip, using the same modeling protocol. We matched location and date information with the concomitant protected species catch dataset to obtain metrics of the incidence (0/1) and total catch of each nontarget species per gillnet set. Bycatch events were less frequent, and involved lower numbers, than catch rates of target species, and so we summarized the data in taxon-specific groupings for modeling (SI Appendix). For some species, such as blue shark Prionace glauca (caught in 54% of all sets, with a total catch of 21,146 in 21 y), sample sizes were sufficient to model a species-specific response. The rare nature of bycatch events involving protected marine vertebrates resulted in low taxon-specific sample sizes, so we combined all protected cetaceans, sea turtles, and pinnipeds into a single group for analysis.


