








molecules was not seen until day 10 (data not shown). Microglia also
upregulated CD11c late during infection, corresponding with onset of
morbidity and increased inflammation in the brain (Figs. 4A and B,
panel c). Interestingly, high constitutive levels of PD-1 were detected
on microglia and virus infection induced further expression of this
molecule so that essentially all microglia were PD-1+ two days post-
infection (Figs. 4A and B, panel d). The physiological significance of
the negative regulator PD-1 during acute viral encephalitis is currently
under investigation.

Impact of peripheral dendritic cell ablation on the inflammatory and
primary antiviral immune responses in the CNS

Our previous results demonstrated that microglia became acti-
vated in response to viral infection of the CNS and expressed surface
molecules appropriate for antigen presentation. However, DCs also
infiltrated the encephalitic CNS, complicating the contribution of each
of these cell types to viral clearance and host survival. To more
precisely define the role of microglia in viral clearance and
survivability, DTRTg mice were treated with either PBS (mock) or
DT to systemically deplete DCs and infected with VSV via the
intranasal route. Mice were monitored for survival, euthanized
when moribund, and virus titres determined on the brain and

peripheral organs. It is apparent from Fig. 5 (panel A) that the
majority (63%) of mice depleted of peripheral DCs did not survive this
dose of virus, whereas only 15% of control mice becamemoribund and
had to be euthanized. Decreased survival was associated with delayed
viral clearance in the brain in mice depleted of DCs (panel B). As
previously reported, VSV was rapidly cleared from peripheral organs
even in moribund mice depleted of DCs (Ciavarra et al., 2006). Thus,
ablation of peripheral DCs specifically inhibits viral clearance from the
CNS and as a result likely contributes to the observed increase in
morbidity/mortality.

The inability of mice to efficiently clear VSV from the CNS suggests
that the antiviral immune response was impaired in mice depleted of
DCs. To assess this possibility, DTRTgmicewere treatedwith either PBS
or DT and then infected i.n. with VSV. Six days post-infection, the
number of myeloid (CD11b+CD45high) and lymphoid (CD11b
−CD45high) cells in the brain was examined by flow cytometry. As
expected, microglia were readily detectable as a CD45low/int CD11b+

population (Region 1, R1) in mock-infected mice (Fig. 5B, panel a). No
significant changes in the number of microglia were observed in mice
treated with DT alone, a result consistent with low endogenous CD11c
expression on resting microglia (panel b). However, VSV infectionwas
associated with a microgliosis that was not inhibited by prior DC
depletion (compare R1, panels c and d). As expected, infection of the
brain induced a potent inflammatory response revealed by the
accumulation of a prominent population of CD45high CD11b+ cells
(R2) in the brains of VSV infected mice. Surprisingly, prior DT
treatment profoundly inhibited this infiltrate (panel d). This was
evident whether data were expressed as a percentage or absolute
number of infiltrating myeloid cells (panel C). Clonal expansion and/
or infiltration of VSV-N T cells into the encephalitic brain were also
profoundly suppressed by prior DC ablation (panel D). This response
was also suppressed in the CLN of VSV infected mice because 9,940
and 1,902 CD8+tetramer+ cells were detected in VSV and DT+VSV
treated mice, respectively. Thus, DT treatment of transgenic mice
ablates DCs but preserves resident microglia. In the absence of
peripheral DCs, the inflammatory response as well as the accumula-
tion of clonally expanded CD8+ VSV-specific T cells is markedly
suppressed in the CNS.

As demonstrated in Fig. 5 (panel D) a well-defined CD8+ tetramer
+ population was present in the encephalitic brain despite the small
infiltrate of CD45highCD11b− cells (panel C). This apparent contra-
diction reflects VSV-induced upregulation of CD11b on activated T
cells at this time point (data not presented). Thus, most of the
infiltrating CD8+ T cells are found in the CD45highCD11b+ gate. This
finding is consistent with reports from other inflammation models
(Andersson et al., 1994; Bullard et al., 2005; Christensen et al., 2001;
Soilu-Hanninen et al., 1997).

Virus-induced cytokine response in the CNS is not dependent on
peripheral dendritic cells

To determine the functional consequences of DC depletion in vivo,
we evaluated the VSV-induced IFN-γ response in the CNS and CLNs in
mice systemically depleted of DCs. IFN-γ is an important cytokine for
host resistance to this virus because of its antiviral activity in the CNS.
It should be noted that cells were cultured overnight in ELISPOT plates
in the absence of exogenous virus or viral peptide to more accurately
estimate the number of actual cytokine-producing cells in vivo. In
control mice infected with VSV, few IL-2 or IL-4-secreting cells were
detected in the brain and draining CLNs (data not shown). IFN-γ-
producing cells were also detected at very low frequencies in the
brains of mock-infected mice. However, IFN-γ-producing cells were
readily detected in the brains of mice infected with VSV (Fig. 6). In
striking contrast to the proliferative response of class I-restricted VSV-
N T cells, mice depleted of DCs mounted a normal VSV-induced IFN-γ
cytokine response in the CNS. This was consistently observed whether

Fig. 3. Kinetics of T cell subset infiltration in the encephalitic brain. Mice were infected
with VSV and at the indicated times post infection, brains were excised, pooled and
leukocytes isolated by Percol gradient centrifugation. Single cell suspensions of pooled
cervical lymph nodes (CLNs) were also prepared from the same animals. Cell
populations were then phenotyped by flow cytometry. (A) Leukocytes infiltrating the
brainwere stained with mAbs to either CD8 or CD4 and the number of each Tcell subset
per brain calculated based on cell recoveries and percentage of each subset. (B) Cells
were incubatedwith tetramers, washed and then stainedwithmAb to CD8. The absolute
number of CD8+VSV-NTcells present in the brain and CLNwas then calculated based on
the cell recoveries in each organ and percentage of CD8+tetramer+ cells. These values
represent the means±SEM of 2–8 experiments with 3–5 mice per time point.
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the data was expressed as frequency (upper panel) or total number of
IFN-γ-producing cells per brain (lower panel). Indeed, in some
experiments DC ablation actually enhanced this response (data not
shown). Although an IFN-γ response could be detected in the CLNs,
this response was modest at this time point relative to the CNS (data
not presented). Thus, the VSV-induced IFN-γ cytokine response in the
CNS is not inhibited by systemic depletion of conventional and pDCs
and implicates that T cells are not essential for IFN-γ production;
therefore, microglia or other resident CNS cells may be the source of
this cytokine.

Discussion

The present understanding of the CNS as an immune privileged
site is rapidly changing in response to closer scrutiny. It is no longer
held that the BBB is impenetrable because several studies have
demonstrated that some areas of the brain are unprotected by a BBB.
These areas include the meninges, choroid plexus, circumventricular
organs and ventricles (Farina et al., 2007; Galea et al., 2007a).
Furthermore, the perivascular spaces in the CNS were initially termed
lymphatic clefts by Goldman (Bechmann et al., 2007). Current studies
have clearly demonstrated localization of mΦ to these regions, which
may produce a localized region architecturally similar to lymphoid
tissue (also known as tertiary lymphoid regions, Galea et al., 2007a).
The relevant cellular elements (DC, T cells, mΦ) that reside there may
be sufficient to drive T cell activation and clonal expansion. This is in
keeping with low numbers of activated T cells in the draining cervical
lymph nodes despite their presence in the brain, and provides indirect
evidence for more direct, site-specific activation of antigen-specific
T cells.

The susceptibility to and kinetics of VSV infection in the CNS vary
with mouse strain and gender (Barna et al., 1996). The work of
Huneycutt et al. demonstrated that VSV antigen is detectable in the
olfactory bulb as early as 12 h post-infection and spreads caudally
through the forebrain by 7 days post-infection, with only a few areas
of the midbrain demonstrating antigen reactivity (Huneycutt et al.,
1994). Previous studies by Reiss and colleagues demonstrated a high
rate of morbidity/mortality in this model that correlated with high
titres of VSV at 7 days post-infection and loss of the BBB function late
in the infection. Surviving mice efficiently cleared VSV from the CNS,
suggesting that the host can mount an efficient antiviral immune
response in the CNS (Barna et al., 1996; Huneycutt et al., 1994; Plakhov
et al., 1995). This view is further supported by immunohistochemical
studies that demonstrated a VSV-induced CNS infiltrate composed
primarily of mΦ and lymphocytes (Bi et al., 1995a). The kinetics we
demonstrated in the CB6F1/DTRTg mouse are similar to those
previously reported (Bi et al., 1995b). Starting as early as 3 days
post-infection, we observed a mixed infiltrate of leukocytes in the
CNS. Consistent with the findings of Bi et al. (1995b), the infiltrate
contained primarily mΦ, DCs, and T cells, but did not include B cells,
NK or NKT cells. Macrophage and lymphocyte infiltration of the CNS
increased sharply between days 6–8, corresponding with the peak of
viral infection and onset of hind-limb paralysis, morbidity, and
mortality. By 8 days post-infection, a significant number of both CD4
+ and CD8+ Tcells (both antigen-specific and nonspecific) had entered
the brain. Our data demonstrate that CD8 infiltration coincides with
CD4 entry into the brains of infected mice, consistent with previous
studies (Ireland and Reiss, 2006).

Microglia become phenotypically similar to DC when activated
(Ponomarev et al., 2005a, 2005b; Shortman and Liu, 2002) and can
upregulate several cell surface antigens, including MHC I and II, CD80,
and CD40 (Ponomarev et al., 2005a, 2005b), and assume a more
spheroid shape. Activated microglia can present antigen to CD4+ T
cells and secrete various chemokines (Persidsky et al., 1999) that help
recruit activated lymphocytes. Additionally, exposure to GM-CSF has
been reported to direct the phenotypic and morphologic maturation

of naive microglia into DC-like cells (Fischer and Reichmann, 2001).
Juedes and Ruddle (2001) showed that CNS derived microglia can
stimulate IFN-γ production in T-MOG (myelin oligodendrocyte
glycoprotein)-specific lymphocytes. Following these studies, Mack
et al. demonstrated that microglia from the inflamed CNS in the
presence of antigen can serve as antigen-presenting cells (APC) for
myelin proteolipid protein (PLP139–151)-specific T cells, resulting in the
production of IFN-γ and cellular proliferation (Mack et al., 2003). Our
results demonstrated that microglia upregulated MHC I and II in
response to infection, with MHC I appearing as early as 2 days post-
infection and MHC II increasing much later during the course of
infection (days 6–10). The prompt expression of class I antigens on
microglia is consistent with their putative role as APCs in the CNS.
Together, these data suggest that microglia express peptide/MHC
class I molecules essential for antigen recognition by naive CD8+ T
cells. However, we have not detected expression of CD80 and CD86 on
microglia isolated from VSV-infected brains although these are
preliminary studies that have not examined multiple time points or
specific brain regions to detect regional expression of costimulatory
molecules on these cells. Nonetheless, even if microglia do not express
costimulatory molecules, they can still function as APCs for T cells
activated in the CLN or VSV memory cells to further propagate the
immune response in the CNS. Thus, their role as functional APCs for a
primary antiviral immune response in the CNS remains to be
confirmed.

It is interesting to note that ≤25% of CD8+ T cells bound class I
tetramers at the peak of the proliferative response. This suggests that
most brain infiltrating CD8+ T cells are either not specific for VSV.
However, it should be noted that while C57BL/6 mice recognise a
single immunodominant epitope for VSV (H-2Db restricted), Balb/c
mice can recognise two epitopes for VSV (H-2Ld and H-2Db restricted)
(Forman et al., 1983). The CB6F1 mice used in these studies may
therefore be able to recognise both VSV epitopes, whereas the
tetramers used recognise only the H-2Db restricted antigen. A novel
VSV cryptic determinant displayed in the CNS but not in the periphery
may be another possible explanation for the lack of antigen specificity
among infiltrating T cells. Recent studies demonstrated an antigen-
specific pathway for CD8+ T cells across the BBB (Galea et al., 2007a,
2007b). It is perhaps not surprising that non-specific CD8+ T cells
infiltrate the brain. VSV upregulates both early (CD25, CD69) and late
(CD11a, CD49d) activation antigens on essentially all CD8+ and CD4+

T cells by a DC-independent mechanism (Fig. 5, data not shown) and
expression of some of these activation antigens (CD49d, VLA-4) may
be required for penetration of the BBB. VSV also disrupts the BBB and
this may also contribute to Tcells penetration of the brain parenchyma
(Bi et al., 1995b). Thus, both of these factors may contribute to the
predominance of CD8+ T cells in the CNS that lack obvious specificity
for the inducing virus. It is unclear why activated CD8+ T cells remain
in the brain in the absence of cognate antigen. This study suggests that
the paradigm that only T cells activated in the DLN infiltrate the CNS
may not apply to VSV and other viruses with similar mitogenic
properties. For these viruses, non-specific T cell activation and
disruption of the BBB may allow CNS penetration of T cells with a
variety of specificities. Activatedmicroglia could then function as APCs
to induce or propagate a primary antiviral T cell-mediated immune
response within the CNS and not the CLN. Additional studies in this
model are underway to test this hypothesis.

We previously reported that depletion of conventional and pDCs
with DT treatmentmarkedly inhibited clonal expansion of naive CD8+

VSV-N T cells in non-neuronal sites (Ciavarra et al., 2006). However,
recent studies by Probst et al. (2005) questioned the specificity of this
ablationmodel because they reported that DCs andmΦwere depleted
by DT treatment of DTRTgmice. In our experience, the dose of DT used
by these investigators was toxic and killed a significant percentage of
mice prior to virus infection. Furthermore, we titrated the dose of DT
administered to deplete DCs and found efficient and systemic
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depletion of DCs was achieved with as little as 0.5 ng/g DT (data not
shown) without any detectable morbidity. We also observed that
different commercial preparations of DT vary in toxicity and potency.
The lowest dose (per preparation of DT) that efficiently and
specifically depleted DCs in vivo was used in the studies presented
in this report.

Our current studies expand the observed inhibition of CD8+ VSV-N
T cells resulting from DT treatment to include the CNS. Thus, in both
the periphery and the CNS, clonal expansion of naive VSV-specific T
cells is in DC-dependent, an observation consistent with studies
demonstrating that CNS DCs are crucial for antigen presentation to
CD4+ T cells (Bailey et al., 2007; Miller et al., 2007). Ablation of DCs
also profoundly inhibited VSV encephalitis. These results were
somewhat surprising, given that the traditional role for DCs is
primarily as an activator of naive T cells. The mechanistic basis for
the failure of peripheral blood cells to infiltrate the brain in mice
depleted of peripheral DCs remains to be clarified. Although DT can
penetrate the blood–brain barrier and has been used to selectively kill
oligodendrocytes in a similar DTR depletion model (Buch et al., 2005;
Gropp et al., 2005), this required a high dose of DT (100 ng/injection)
and 3 injections/day for one week. Diphtheria toxin has a very short
serum T1/2 life (90% cleared in 6 h) with poor CNS penetrance (low
blood/CNS transfer constant) (Wrobel et al., 1990), and this may
explain why multiple high dose injections were required to deplete
oligodendrocytes. Thus, it is very unlikely that we depleted DCs in the
brain because such treatment conditions were not employed in our
studies (≤20 ng/injection, two injections). This view is further
supported by the observation that microgliosis was not diminished by
DT treatment despite upregulation of CD11c during virus infection
(data not shown). These studies imply that activated microglia are not
sufficient for a normal inflammatory response to VSV indicating that
peripheral DCs provide a unique and essential function in the CNS.
This function could be early chemokine production by these cells or,
alternatively, reflect a DC–glial cell interaction essential for chemokine
production and blood cell infiltration into the CNS. Although the lack
of T cell infiltration is in keeping with the paradigm of lymphocyte
activation in the CLN, the infiltration of monocytic cells was also
profoundly inhibited by depletion of DCs. Previous characterization of
the DTRTgmodel and our titration of DT demonstrated that our dosage
did not deplete macrophages (Ciavarra et al., 2006); therefore,
peripheral DC apparently play a role above and beyond that of T cell
activation in regulation of the CNS immune response.

Although DC ablation profoundly inhibited CNS inflammation
and proliferation of VSV-N T cells, it reduced neither microgliosis
nor the secretion of IFN-γ in response to viral infection. While IFN-γ
is primarily considered a product of T cells, the levels observed in the
brains of mice do not correspond with T cell infiltration and are not
sensitive to DT-mediated loss of T cell infiltration. Thus, it is apparent
that a cellular source of IFN-γ is present in the native CNS and studies
in other models suggest that microglia may represent one source of
non-lymphoid derived IFN-γ (Kawanokuchi et al., 2006; Suzuki et al.,
2005; Wang and Suzuki, 2007). This view is further supported by the
observation that IFN-γ production in response to EAE was not
significantly reduced in CD11b−/− mice that also showed impaired
T cell infiltrate (Bullard et al., 2005). Microglia can also produce
significant amounts of IFN-γ in response to antigenic stimulation
(Bi et al., 1995b; Fischer and Reichmann, 2001; Mack et al., 2003;
Speth et al., 2007). Perhaps importantly, IFN-γ does not appear to
have a significant protective effect in peripheral VSV infections

(Muller et al., 1994);, however, it does appear to promote VSV
clearance in the CNS (Bergmann et al., 2003; Kundig et al., 1993; Parra
et al., 1999).

In summary, VSV applied to the nasal mucosa causes reproducible
encephalitis in mice characterized initially by microglia activation and
microgliosis followed by a massive infiltrate of myeloid and lymphoid
blood cells. CD8+ Tcell infiltration into the brain correlates temporally
with the rapid upregulation of MHC class I on microglia. Kinetic
analysis of the development of VSV-N T cells support a model wherein
VSV-N T cells become initially sensitized to VSV in the CLN, undergo
clonal expansion and then emigrate from the CLN into the brain. This
view is consistent with studies by Mendez-Fernandez et al. who
demonstrated that sensitization of naive CD8+ TMEV T cells requires
the presence of peripheral lymph nodes (Mendez-Fernandez et al.,
2005). It is possible that once in the CNS, sensitized VSV-N T cells
undergo further clonal expansion and effector cell differentiation
driven by peptide/MHC class I complexes displayed on activated
microglia. Peripheral DCs, either conventional and/or pDCs, play an
essential role promoting CNS inflammation and clonal expansion of
virus-specific CD8+ T cells in both the CNS and CLN in vivo. However,
VSV-induced production of IFN-γ is completely independent of
conventional and pDCs suggesting that this response is driven by an
APC resident in the CNS. The cellular interactions and underlying
mechanism(s) that render both the innate and adaptive antiviral
immune response dependent on peripheral DCs is currently being
investigated.

Materials and methods

Mice

To assess DC function in vivo, we utilized a recently described
transgenic mousemodel that allows for the selective ablation of DCs in
vivo. Diphtheria toxin (DT) receptor transgenic (DTRTg) mice (C.FVB-
Tg(Itgax-DTR/EGFP)57Lan/J were purchased from Jackson Labora-
tories (Bar Harbor, ME) and subsequently bred to C57BL/6 mice (also
purchased from Jackson Laboratories) to generate CB6F1 mice. The
transgenic F1 mice are subsequently referred to DTRTg mice for
simplicity. DTRTg mice possess a hybrid gene composed of the simian
DTR and green fluorescent protein (GFP) under the control of the
CD11c promoter. Mice injected with DT show rapid depletion of DCs
from the spleen, lymph nodes, nasalmucosa, lungs, bladder, peritoneal
fluid, thymus, and blood (Ciavarra et al., 2006; Engel et al., 2006; Jung
et al., 2002; KleinJan et al., 2006). Expression of the simian diphtheria
toxin receptorwas confirmedbymultiplex PCR as previouslydescribed
(Ciavarra et al., 2006; Genotyping Protocol for Itgax-DTR/GFP, 2007).
Primer pairs were purchased from Integrated DNA Technologies,
Coraville, IA. Mice lacking the transgene were used as non-DTRTg
controls. Although flow cytometry for CD11c+ cells is often used to
assess depletion of DCs, we have determined that the most sensitive
indicator of DC depletion is the loss of T cell activation and clonal
expansion (Ciavarra et al., 2006).

Virus and cell depletion

Wild-type VSV-Indiana strain, provided by Dr. Philip Marcus,
University of Connecticut, was grown and assayed as previously
described (Marvaldi et al., 1977). Virus was grown in confluent
monolayers of Vero cells and virus titres determined by standard

Fig. 4. Vesicular stomatitis virus induces the rapid activation of microglia and a delayedmicrogliosis. Micewere given a single intranasal instillation of VSV at the indicated times prior
to euthanasia. Single cell suspensions of the brain were then prepared, subjected to Percoll gradient centrifugation and immunostained for flow cytometric analysis. (A) Microglia
were defined as CD45low/intCD11b+ cells and expression of MHC I/II, CD11c, and PD-1 on gated microglia determined at early time points post-infection (4 mice per time point). The
numbers in each panel refer to either % positive (upper) or MFI (bottom). Marker bars were set based on appropriate isotype controls (b4% positive). (B) Kinetics of VSV-induced
upregulation of MHC class I (panel a), class II (panel b), CD11c (panel c), or PD-1 (panel d) molecules expressed either as a percentage of total leukocytes per brain or absolute
number ofmicroglia per brain (calculated from cell recoveries in each organ). The values in panel B represent themean±SEM of 2–7 experiments using the pooled brains of 3–5mice
at each time point.
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plaque assays (Sekellick and Marcus, 1979). Mice were infected with
either 5×104 (male) or 2×105 (female) PFU VSV by i.n. inoculation of
5 μL/nostril (Barna et al., 1996). For depletion of dendritic cells, mice
were treated i.p. with 2 ng/g DT (Sigma, St. Louis, MO) one day before
and after virus infection. Mice were euthanized at various time points
post-infection by CO2 asphyxiation. All mice were utilized at 6–10
weeks of age following protocols approved by the Institutional Animal
Care and Use Committee according to federal guidelines.

Multicolour flow cytometry

Brains were excised and individually homogenized in a glass
Tenbroek homogenizer with 2 mL PBS for 20 strokes. Cell suspensions

were centrifuged for 8 min at 300 ×g. Supernatants were stored
separately and the cell pellets were subjected to discontinuous Percoll
centrifugation. Briefly, cells were resuspended in 70% Percoll over-
layered with 35% Percoll and PBS, then centrifuged for 45 min at 20 °C
and 1200 ×g. The cells at the 35–70% interface were collected, diluted
in PBS, and centrifuged for 8 min at 300 ×g. Cervical lymph nodes
were dissected and scrubbed through a 40 μm nylon mesh cell
strainer, then centrifuged at 300 ×g for 8 min. Cells were resuspended
in flow cytometry wash buffer (1% goat serum, 0.1% sodium azide in
PBS) for staining according to standard protocols. Monoclonal
antibodies for leukocyte antigens were obtained from eBioscience
(San Diego, CA): CD11b, clone M1/70; CD45, clone 30-F11; MHC II,
clone M5/114.15.2; CD11c, clone N418; CD4, clone GK1.5; CD8α, clone

Fig. 5. Ablation of peripheral dendritic cells in vivo markedly suppresses the CNS innate and adaptive antiviral immune responses. (A) DTRTg mice were given either PBS or DT one
day before and after intranasal instillation of VSV (2×105 PFU). Mice were then monitored for morbidity (panel a). Mice were euthanized when moribund and brains and peripheral
organs evaluated for VSV titres by plaque assay (panel b). This data is derived from 17 VSV-infectedmice and 18 DT-treated, VSV-infected mice. (B) Mice were treated with either PBS
(panels a, c) or DT (panels b, d). Cohorts either remained uninfected (panels a, b) or were given an intranasal inoculation of VSV at 2×105 PFU/mouse (panels c, d). Six days post-
infection, brainswere homogenized and then subjected to Percoll gradient centrifugation to enrich for leukocytes. Cells were then phenotyped by flowcytometry and amicroglia gate
defined as CD11b+CD45low/int cells (panel a, R1 gate). A second gatewas established for peripheral mΦ/monocytes defined as CD11b+CD45high (panel c, R2). A final CD11b−CD45high

gate was used to evaluate lymphocytes (panel d, R3). (C) The percent positive and absolute number of cells was then calculated within each of these gates and is summarized in the
bar graphs. (D) To identify CD8+VSV-specific Tcells, cells were first incubatedwith H-2Kb/VSV-N52–59 tetramers and then stained withmAbs to CD45, CD8, and the activation antigen
CD49d. CD8+ cells were gated and the percentage of VSV-specific T cells within this gate determined by tetramer staining and co-expression of CD49d. Brains from 3 to 5 mice were
pooled within each group. This experiment has been repeated two additional times and yielded similar results.
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53-6.7; CD49b, clone DX5; CD45R, clone RA3-6B2; MHC I, clone 34-1-
2S; PD-1, clone J43; and CD49d, clone R1-2. PDCA-1 (clone JF05-
1C2.4.1) was purchased from Miltenyi Biotec, Auburn, CA. Tetramers
directed against the immunodominant VSV nucleocapsid protein
(VSV-N52–59, RGYVYQGL) were obtained from the NIH Tetramer Core
Facility. Fluorophore conjugates varied based on staining profiles used.
Acquisition of 20–200,000 events was performed using a Becton
Dickinson (San Diego, CA) FACSCalibur in conjunction with CellQuest
software (v3.3, Becton Dickinson). Nonspecific binding in the absence
of additional Fc block was previously evaluated and did not affect
staining patterns. To determine the absolute number of microglia and
blood cells in the CNS, a gate was first defined for these cells based on
forward and side scatter characteristics. The percentage of microglia
(CD45low/int) or infiltrating blood cells (CD45high) within this gatewas
then used to calculate cell recoveries. All gates and quadrants were
established with the use of appropriate isotype controls.

Cytokine ELISPOT assay

Detection of IL-2, IL-4, and IFN-γ was performed with standard
ELISPOT assays according to manufacturer's protocols. Briefly, brain
cells from a 70–35% Percoll interface were incubated overnight in
ELISPOT plates (Millipore) containing anti-cytokine capturemAbs (IL-
2, clone JES6-5H4; IL-4, clone 11B11; IFN-γ, clone AN-18; all
purchased from eBioscience). No exogenous virus was added during
this incubation. The following day, ELISPOTs were detected with the
appropriate biotin-conjugated detection mAb (IL-2, clone JES6-5H4;
IL-4, clone BVD6-24G2; IFN-γ, clone R4-6A2; all purchased from

eBioscience) and then revealed with horseradish peroxidase-
conjugated avidin (Sigma-Aldrich) followed by AEC (3-amino-9-
ethylcarbazole; Sigma-Aldrich) substrate.
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