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ABSTRACT 

FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS OF A VERY LOW 
EARTH ORBIT CUBESAT MISSION 

Robb Christopher Borowicz 
Old Dominion University, 2022 

Director: Dr. Sharan Asundi 

 
 

 When space programs launch vehicles into orbit, multiple failures could arise throughout 

the mission and corrective actions are often not an option. Applying reliability engineering 

approaches during the design phase focuses on analyzing risk by anticipating potential failures 

and mitigating uncertainties in the design. Old Dominion University, in partnership with the U.S. 

Coast Guard Academy, and the U.S. Air Force Institute of Technology designed and developed a 

3U CubeSat mission to validate on-orbit, three space technology payloads. Mission SeaLion will 

fly as a secondary payload on stage two of Northrop Grumman’s Antares rocket and will be 

deployed in a very low Earth orbit the spring of 2023. 

 Mission SeaLion will have multiple custom-built components on-board that have no 

space flight history that includes the Interface Board, Electrical Power System, and deployable 

composite structure payload. Custom-built components are a much higher risk to mission 

SeaLion when compared to space proven commercial off-the-shelf components. Engineering 

students at universities rarely have hands-on engineering experience in the field. Experts at 

NASA Langley Research Center provided guidance with identifying potential failure modes for 

the custom-built components. The potential risks of failures were evaluated using the Failure 

Mode, Effects and Criticality Analysis in efforts to increase the reliability of mission SeaLion. 

Mitigation strategies for each potential failure mode will include either a redesign or 

functionality, vibration, and vacuum chamber testing. Applying redesigns to the printable circuit 

board, battery pack, electrical connectors, and implementing rigorous inspection criteria 

significantly increased the reliability of the electrical systems. Execution of test plans using a 

thermal vacuum chamber will simulate space condition, which will verify deployment of the 

payload and ensure that electrical components function as designed. 
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1.  INTRODUCTION 

 

1.1 Background to CubeSats 

 Recently, small satellites have become extremely popular at universities around the world 

[1]. Satellites that weigh less than 300 kg (1,100 lb.) are classified generally as being small 

satellites [2]. Small satellites give a great opportunity for educational projects to be executed at a 

fraction of the price when compared to traditional satellites [1, 3]. Historically, small satellites 

built by universities typically have had a tight budget, limited resources, and a time restrictive 

schedule for executing a mission [3]. Due to these factors, verification and validation testing 

processes are not always feasible, which contribute to small satellites having historically high 

failure rates [3].  

 In 1999, CubeSats originated as a collective collaborative effort between Jordi Puig-Suari 

at California Polytechnic State University, and Bob Twiggs, at Stanford University’s Space 

Systems Development Laboratory [2]. The goal of their effort was to develop affordable access 

for space exploration, which was successfully accomplished [2]. For a small satellite to be 

classified as a CubeSat, they must conform to specific criteria regarding weight, size, and shape 

[2, 4]. Standardizing the criteria for the CubeSats allows companies to mass-produce 

components, which reduces the cost for the consumer and allow companies to offer commercial 

off-the-shelf (COTS) components [2].  

 CubeSats acquired their name from being cubical and their size is based on a designated 

standard CubeSat unit referred to as the letter “U” [5]. A 1U CubeSat is a 10 cm cube, but there 

are several larger sizes for CubeSats, such as 2U, 3U, and 6U [2]. The CubeSat design 

requirements are shown in the CubeSat Design Specification (CDS) and must be followed, along 

with requirements from the launch provider [4]. Figure 1 below shows examples of a 1U and 3U 

CubeSat, along with their dimensions.  

 



2 
 

 

Figure 1: 1U CubeSat (left) & 3U CubeSat (right) [2] 

 

 CubeSats are loaded into the dispenser that is attached to the launch vehicle (LV), which 

protects the CubeSats during launch and releases it into space [2]. A dispenser is used as the 

interface between the CubeSat and the LV [2]. The payload is released when the LV sends an 

electrical signal to the dispenser, which opens the door to allow the CubeSats into orbit [2]. The 

launch provider normally chooses the dispenser for the CubeSats [2].  

1.2 Introduction to Mission SeaLion 

 Mission SeaLion is a collaboration effort between Old Dominion University (ODU), the 

United States Coast Guard Academy (USCGA), and the Air Force Institute of Technology 

(AFIT) in which a 3U CubeSat was designed and developed. Mission SeaLion has three separate 

technology payloads to validate on-orbit. The USCGA and AFIT will provide two payloads and 

ODU will provide one payload. Mission SeaLion will fly as a secondary payload on stage two of 

Northrop Grumman Antares rocket, scheduled to be launched from Wallops Flight Facility 

(WFF) in March 2023 [6]. The standard dimensions for the 3U CubeSat are 10 cm x 10 cm x 

34.05 cm ± 0.03 cm and shall have a maximum mass of 4.00 kg [4]. 

 Mission SeaLion will be deployed in a very low Earth orbit (VLEO) at roughly 180 km 

[6]. A low Earth orbit is an Earth-centered orbit that has an altitude of 2,000 km or less and is 

also where the International Space Station (ISS) is currently positioned. The mission life of 

mission SeaLion is projected to be roughly 10 days before burning up in the Earth’s atmosphere 
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from re-entry [6]. Mission SeaLion will be deployed into space by the Canisterized Satellite 

Dispenser (CSD) provided by Planetary System Corporation (PSC) and will be electrically 

connected with CSD through PSC 2001025 separation connector [7]. The payload is released 

when the LV sends an electrical signal to the CSD, which opens the door to allow the CubeSats 

into orbit [8]. The 3U CSD model is shown in Figure 2.  

 

 

Figure 2: 3U Canisterized Satellite Dispenser [8] 

 

 The following mission payloads will be integrated into the mission SeaLion CubeSat: 

impedance probe (IP) designed and developed by the USCGA/ AFIT, a COTS multi-spectral 

sensor (Ms-S), and deployable composite structure (DeCS) designed and developed by ODU. 

The main intent for mission SeaLion is to advance the Technology Readiness Level of the three 

payloads [6].  

 The primary objective of the IP payload is to measure density and temperature of plasma 

on-orbit by using a surface mounted dipole radio frequency antenna. The antenna will collect 

sheath-plasma and plasma resonance information. The surface mounted antenna will have wire 

leads configured to the Interface Board, where data can then be transferred to the on-board 

computer and downlinked to the ground station [6]. 
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 The Ms-S payload is a COTS sensor that is manufactured by Salvo Technologies. 

Spectral data will be captured by the Ms-S and utilized as a baseline for future missions. The Ms-

S uses an on-chip filtering to compress a maximum of eight wavelength-selective photodiodes 

into a compact array [9]. The IP and Ms-S payloads are shown in Figure 3. 

 

 

Figure 3: IP Payload (left) & Ms-S Payload (right) 

 

 The DeCS payload is a proof-of-concept deployable mechanism with four composite 

booms and will consume 1U volume on-board mission SeaLion [10]. The mechanism is designed 

to potentially host multiple applications, such as a drag sail, solar sail, solar panel, magnetometer 

boom, etc. The primary intent of the DeCS payload is to qualify the mechanics on-orbit, validate 

the booms dynamics during and after deployed on-orbit [6, 10].   

1.3 Mission SeaLion Objectives 

 The primary objective of mission SeaLion is to first, establish an ultrahigh frequency 

(UHF) communication link with Virginia ground station and establish an S-band communication 

link with the MC-3 network of ground station. Mission SeaLion will aim to verify and validate 

the IP as a primary payload by successfully transmitting “mission data” to the ground station on 

the Earth. The secondary mission objectives are to validate operations of the Ms-S and to 

validate, on-orbit, the DeCS experiment as secondary payloads. Verification will occur when 

payload data is successfully transmitted via mission mode 1, mission mode 2, mission mode 3, 
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and safe hold mode downlink packets. Data captured in downlink packets can then be validated 

after review [6]. 

 If the satellite health data includes expected data for on-board operations, then on-orbit 

validation can be awarded to the satellite bus for VLEO CubeSat missions. Validation would also 

include the non-rechargeable batteries as the only power source. Validation of the DeCS 

experiment involves comparing the strain gauge signature that was captured on-orbit to the 

laboratory strain gauge signature. Additional mission objectives and requirements can be 

reviewed in the “Critical Design Review: SeaLion Mission” document [6]. 

1.4 Motivation 

 ODU’s first CubeSat mission was a 1U CubeSat, which was launched from WFF in 2019. 

After months of attempting, ODU failed to establish communication with their satellite. Once the 

communication efforts were concluded, limited information was passed on to the mission 

SeaLion CubeSat team to help understand what may have caused mission failure. The 

engineering teams at the university level and in the private sector often overlook evaluating 

potential failure modes. Surprisingly, CubeSat missions have a relatively high failure rate. 

Statistical studies were reviewed to better understand common failures among spacecrafts.  

 In 2013 a statistical study on the first 100 launched CubeSats from the years 2000 to 2012 

was analyzed at a high level [11]. The study showed that roughly 40% of the CubeSat-class 

satellites failed to meet their basic mission objectives, with majority of failed CubeSat missions 

being contributed by university-lead projects (27 of 34 failures) [11]. Evaluating the failure 

reports more closely, it was determined that nearly half of all failures had a common trend. The 

failure reports showed that 27% of failures were attributed to the configuration or interface 

between communication hardware, 14% were attributed to the Electrical Power System (EPS), 

and 6% were attributed to the flight processor [11]. 

 In 2005, a study of on-orbit spacecraft failures evaluated 129 satellites of all classes from 

1980 to 2005 [12]. Spacecraft failure types were examined, and the following was discovered: 

the electrical and electronics were responsible for 45%; mechanical/ thermal 32%; software 6%; 

and 17% was determined to be unknown [12]. Another study focused on student-run small 

satellite programs evaluated 95 spacecrafts launched through 2007 [13]. The study found a 
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significant trend in which 80% of the satellites’ experiences partial failure due to power 

subsystem failures [13].  

 Reviewing the statistical studies, the main contributors to mission failures were power 

and communications. Using this information as a starting point, a Failure Mode, Effects and 

Criticality Analysis (FMECA) was conducted for the current ODU CubeSat – mission SeaLion. 

A Fault Tree Analysis (FTA) was also used to assist with identifying potential failure modes, 

which contributed to the FMECA. By executing an FMECA, potential failure modes will be 

identified, and mitigation strategies will be implemented to increase the probability of executing 

a successful mission.  
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2.  RELIABILITY, FAILURE MODE EFFECTS & CRITICALITY 

ANALYSIS, AND FAULT TREE ANALYSIS 

 

2.1 Reliability Analysis 

 Reliability is defined as the probability that a component within a system will perform its 

intended designed function for a specified period under a set of normal operating conditions [14]. 

The focus of reliability is to minimize the probability of failure occurring and to aim towards 

producing repeatable measurements [14]. Reliability in a broader sense is associated with 

dependability, a successful operation, and an absence of breakdown or failure [14]. The goal of 

reliability engineering is to analyze the reliability of a process or system and identify potential 

areas of improvements that would minimize the probability of failure. Realistically, all potential 

failures may not be eliminated from a design but identifying the high-risk failures and mitigating 

the effects from those failures is the goal of conducting a reliability analysis [14].  

 Reliability engineering should be initiated at the conceptual design phase and continue 

throughout all phases of a production lifecycle [15]. The focus is to identify potential reliability 

issues as early as possible during the conceptual design phase, so that time and money is not 

spent evaluating an issue after an item is manufactured or purchased. The changes to a design 

early in the design phase are orders of magnitude less expensive vs. implementing design 

changes after an item is manufactured and in service [15]. Through expert knowledge and system 

research, one can identify common issues that will hinder the reliability of a system [15].  

 When a component or system ceases to fulfil its intended function, it is said to fail [14]. 

In many cases, the function of a component is the reason why it was designed or purchased [14]. 

An individual subsystem failure may not impact performance, but if multiple subsystem failures 

occur, the overall system may experience failure [14]. A single point failure is the failure of a 

component, which would cause a failure to the subsystem or system and is not compensated by 

redundancy [16]. An event in which it is likely to cause a component to a failed state is defined 

as a failure mode [17].  
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2.2 Introduction to Failure Mode, Effects & Criticality Analysis 

 In the early 1960s, FMECA was developed by the National Aeronautics and Space 

Administration (NASA) to analyze hardware that contributed to the unreliability of systems and 

crew safety problems during the Apollo program [18]. Since then, a series of Military Standards 

have been published to describe the methods and techniques associated with the FMECA, with 

MIL-STD-1629A being the most prominent [16, 19]. The FMECA should be initiated as soon as 

information becomes readily available from the design engineers, which is typically when the 

preliminary design is complete. The analyst that is conducting the FMECA should not be 

involved with the design to avoid subjected opinions during the analysis. 

 FMECA is a combination of the traditional Failure Mode Effects Analysis and criticality 

analysis (CA) [20]. Conducting a FMECA identifies potential failure modes at a component, 

subsystem, and system level [21]. Failure modes can be a function, interface, and/or hardware 

[21]. The effects caused by the failure modes are evaluated, along with its associated detection 

methods [19, 20]. Severity and likelihood of occurrence for each failure mode are analyzed and 

assigned a ranking value.  

 A risk matrix is used for as a visual representation for comparing failure modes [22, 23]. 

The risk matrix identifies severity on the horizontal axis and likelihood of occurrence on the 

vertical axis, which is shown in Figure 4 [24]. Facilitating risk discussions can be used from the 

risk matrix, but it is not an assessment tool [25]. The definitions of each risk are widely used by 

NASA and are documented in NASA Systems Engineering Handbook as follows [25]:  

Low (Green) Risk: Has little or no potential for increase in cost, disruption of schedule, or 

degradation of performance. Actions within the scope of the planned program and normal 

management attention should result in controlling acceptable risk. Criticality number is less than 

or equal to 5 except when the severity is 5 and likelihood is 1. Insignificant to minimum impact.  

Moderate (Yellow) Risk: May cause some increase in cost, disruption of schedule, or 

degradation of performance. Special action and management attention may be required to handle 

risk. Criticality number is greater than or equal to 5 and less than 15, except when severity is 1 

and likelihood is 5. Some impact.  
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High (Red) Risk: Likely to cause significant increase in cost, disruption of schedule, or 

degradation of performance. Significant additional action and high-priority management 

attention will be required to handle risk. Criticality greater than or equal to 15. Significant 

impact.  

 

 

Figure 4: Risk Matrix 

 

 The criticality number (CN) for each failure mode can be calculated using the severity 

and the likelihood of occurrence ranking values. The CA uses the CN to provide a relative 

measure of significance of the effects from a failure mode occurring. In essence, CA ranks the 

significance of each potential failure mode for each component within the system’s design from 

highest to lowest priority based off the CN values. The ranking process of the CA can be 

executed using a quantitative approach where historical failure data for each component is 

known or by a qualitive approach where a system matter expert conducts a subjective ranking 
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procedure [20]. Once the criticality for each failure mode is identified and ranked, the high 

priority failure modes should be addressed first to mitigate potential failure modes in efforts to 

increase the probability of executing a successful mission. A mitigation plan can then be 

developed to reduce the probability of a failure occurring. [23].  

2.3 Introduction to Fault Tree Analysis 

 For complex systems, an FTA can be used to assist with identifying failure modes for a 

particular system which compliments the FMECA. FTA was developed by H. Watson and A. 

Mearns in the year 1962 and has been utilized by aerospace, chemical, nuclear, and other 

industries for evaluating potential risk [26]. A fault tree involves converting the physical system 

into a logic diagram. The logic diagram use shapes as logic symbols, which are broken up in to 

two categories: Event symbols and Gate symbols [26]. Figure 5 shows the FTA symbols that 

were used in the mission SeaLion analysis, but there are more that were not utilized.  

 Event symbols that are primarily used are shown as a rectangular box, circle, or diamond. 

A fault event is shown as a rectangle box, which is normally the result from a logical 

combination [14]. An independent primary fault event is shown as a circle and a triangle is used 

to display a continuation of sub-tree [14]. The two primarily used Gate symbols are AND-gate 

and OR-gate [14]. The output (top) event occurs if and only if all the inputs (bottom) occur is 

indicated by an AND-gate [14]. The output (top) event occurs if at least one or more inputs 

(bottom) occur is indicated by a OR-gate [26]. 

 

 

Figure 5: FTA Symbols [26] 

 

 Defining the primary failure is identified as the undesired top event on the fault tree [26]. 

Once the primary failure is identified, the analyst asks the question: How did this failure occur? 

Asking this question leads into the first level of contributing factors. The factors are listed below 

the top event that led to the failure, which are linked using logical gates [26]. Identifications of 
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the second level contributors are listed below the first level and are again linked together using 

logical gates [26]. Repeating this process is required until the primary failure causes are 

identified, which completes the FTA [26]. For mission SeaLion, the FTA was used as a 

secondary tool to further analyze high level failures that were identified in the FMECA.  
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3.  MISSION SEALION FAILURE MODE, EFFECTS & CRITICALITY 

ANALYSIS 

 

3.1 Mission SeaLion Failure Mode, Effects & Criticality Analysis Framework 

 For mission Sealion, there was limited information available due to an absence of 

successful flight heritage and limited information obtained from ODU’s previous launch. 

Therefore, conducting a subjective analysis was a difficult task, but this analysis can now be used 

as a foundation for future efforts. When no reliability data is available, it is essential that system 

matter experts conduct the analysis. Extensive efforts were executed to gain knowledge from 

experts by communicating to multiple engineers at NASA Langley Research Center (LaRC) in 

Hampton, V.A. The engineers that provided guidance have extensive experience with building 

circuit boards, designing electrical systems, and conducting thermal vacuum chamber (TVAC) 

testing. They contributed to identifying potential failure modes and assisted with initial set-up of 

ODU’s new TVAC. 

 Mission SeaLion is ODU’s second CubeSat mission, which is being jointly developed by 

ODU, USCGA, and AFIT. This mission is also the first joint CubeSat mission that ODU has 

conducted with another university, which added additional challenges regarding implementation 

of the IP and Ms-S payloads to the SeaLion CubeSat. The custom-built components are a higher 

risk to mission SeaLion when compared to space proven COTS components. The potential risk 

of failures for the custom-built components were evaluated using the FMECA, with the intent to 

increase the reliability of mission SeaLion. These custom-built components include the EPS, 

Interface Board, and the DeCS. The FMECA framework that is described below was conducted 

using Microsoft Excel worksheet. The FMECA worksheet includes the following columns, and 

an outline is shown in Table 1 [16, 17]: 

 Component 

 Failure Mode 

 Failure Cause 

 Failure Effects 

 Severity (1 - 5) 
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 Likelihood (1 - 5) 

 Critical Number 

 Detection method 

 Mitigation Strategies 

 

Table 1: FMECA Outline 

 

 

The following steps describe the framework that was used for executing the FMECA for 

mission SeaLion:  

Step 1: Construct a Functional Block Diagram 

 A functional block diagram (FBD) is utilized to show the operations and 

interrelationships between systems and operating modes [20]. The FBDs are used to provide a 

graphical representation showing how functions and relationships between different components 

are integrated within a system [20]. Identifying a component’s primary function will help with 

developing the functional block diagram and will assist in determining failure modes for the 

system [17]. Constructing a FBD is necessary for understanding the system’s architecture, which 

helps identify: the functions of each component, what downstream functions are affected when a 

component fails, how backups and redundancies may be designed into the system to increase 

reliability in the event of failures occurring [20, 27].  

 Microsoft Visio was chosen for creating the FBDs for mission SeaLion, but other options 

are available for use. The symbols that were used for creating FBD composed of rectangles and 

arrow connectors. The rectangles were used for representing a mechanical and electrical event. 

Solid arrow connectors represented how events were connected and an electrical signal, which 

was mainly used to show power supply and data flow. Lastly, the dashed arrow connector 
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represented feedback, which was used to point the viewer back to an event symbol. The FBD 

symbols that were used are shown in Figure 6. 

 

 

Figure 6: Block Diagram Symbols 

 

Step 2: Identify the Failure Modes 

 Failure mode is an event which could cause a failed state in a function, subsystem, or 

component [17]. There are several modes that can cause a component or system to fail [20]. 

Failure modes regarding satellites depend heavily on the environment and component flight data 

if historical data is available [20]. A noun and verb should be used when describing a failure 

mode [17]. All failure modes should be identified and then evaluated if they are realistic enough 

to be analyzed or not. As previously mentioned, an FTA can be utilized to assist in breaking 

down a high-level failure mode. 

Step 3: Identify the Failure Cause 

 To understand failure modes, the ‘root cause’ shall be identified. Root cause is the basis, 

or the source from which a failure derives from [17]. It implies that if one drills down far 

enough, the origin of the failure arrives at a final and absolute level of causation [17]. Referring 

to the FBD and FTA, an analyst could maximize both for assisting with identifying the cause of 

failures.  

Step 4: Identify the Failure Effects 

 Failure effects describe the repercussions of when a particular failure mode occurs. A 

failure effect answers the question “what happens downstream if a component stops fulfilling its 
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function?” and it is used to evaluate the severity of impact it has to the system. When describing 

the effects of failure, the following should be recorded [17]: 

 What evidence (if any) that the failure has occurred 

 In what ways (if any) it affects operations 

 What damage (if any) is caused by the failure 

 

Step 5: Assign Severity Ranking  

 Ranking the severity for each failure mode will evaluate the impact the failure has on the 

system and the mission [28]. The Level of Severity (LS) of failure will be ranked based on 

established criteria and an assigned numbering scale from 1 to 5 will be used. Assigning a lower 

ranking for a failure mode indicates a failure effect that is less severe. A high ranking for a 

failure mode indicates a more severe failure effect [20, 28, 29]. Each failure mode will be 

analyzed and assigned to a level of severity in accordance with Table 2. 

 

Table 2: Level of Severity (LS) of Failure [20, 28, 29] 

 

 

Step 6: Assign Likelihood of Occurrence Ranking 

 For the CA to be executed, the likelihood of occurrence for each failure mode will need 

an assigned ranking value. Likelihood of occurrence can be performed using either a quantitative 

or a qualitative approach. For a quantitative analysis to occur, reliability data will be needed or 
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determined by conducting testing [20]. Reliability data, such as failure effects probability, failure 

rates, Mean Time to Failure (MTTF), etc. could be used for the quantitative approach [14].  

 If no reliability data is obtained, a qualitative analysis can be performed. A qualitative 

analysis involves the analyst’s ability to subjectively rank each failure mode based on established 

criteria. The criteria for the failure modes are related to the probability of failure [20]. Since the 

ODU CubeSat program is still relatively new, no historical data regarding failure rates were 

referenced and the manufactures of the COTS components would not provide any reliability data 

to calculate failure rates. Instead, a qualitative analysis was conducted for evaluating likelihood 

of occurrence. Failure mode probability, failure mode ratio, and MTTF are not used in this 

analysis.  

 The ranking criteria was established based on whether the components were COTS or 

custom developed. The Level of Likelihood (LL) of occurrence for each failure mode was 

ranked using a 1 to 5 numbering scale [29]. Assigning a lowering ranking for a failure mode 

indicates a lower likelihood of occurring. A high ranking for a failure mode indicates a higher 

likelihood of occurring [1, 20]. Each failure mode will be analyzed and assigned to a likelihood 

of occurrence in accordance with Table 3. 

 

Table 3: Level of Likelihood (LL) of Occurrence [1, 20] 

 

 

Step 7: Perform the Criticality Analysis 

 Once the severity and likelihood of occurrence has been scored using the ranking scale, 

the CA can be executed. The CA involves calculating the CN for each failure mode using the 
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qualitative approach. The CA provides a relative measure of ranking the significance of the 

effects of each failure mode, which will result in prioritizing and minimizing the effects early in 

the design process [20]. The CN aims at prioritizing the importance of mitigating or redesigning 

the component that is being evaluated as a worst-case scenario [28]. The CN is the product of the 

severity (S) and likelihood of occurrence (O), which can be calculated using Equation 1 [29]: 

Equation 1: 𝑪𝑵 = 𝑺 × 𝑶 

Step 8: Rank the Failure Modes 

 The CN that was calculated using Equation 1 will be used to rank one failure mode to one 

another. Ranking the failure modes is part of risk analysis and is the base for allocating 

mitigation plans. A high CN value means that the failure mode poses the greatest amount of risk 

to the system. A low CN value will be evaluated as having a risk that is considered negligible 

and may not be mitigated due to schedule and cost [29]. 

Step 9: Detection Method  

 Detection Method is used to identify premature failure modes from the ground station [1]. 

If there are signs that a component is failing or has already failed, the ground station operator 

may have some means of isolating power to the component on-board the satellite to conserve the 

power budget and/or to prevent downstream failures from cascading. Identifying detection 

methods may also assist in hypothesizing how a failure occurred if failure takes place during the 

mission.  

Step 10: Identify Mitigation Strategies 

 After the CN for each failure mode has been ranked accordingly, efforts for mitigating or 

eliminating the potential risks for each failure mode will be executed [28]. The highest priority 

failure modes will be executed first due to the failures having the most critical consequences 

[30]. ODU’s new TVAC will be utilized, along with vibration and software testing. Thermal 

vacuum cycling test (TVCT) and vibration testing will be essential for qualifying the custom-

build components for mission SeaLion. The testing effort will be in addition to qualifying the 

satellite for flight, which is required by the launch provider. If testing identifies a failure or re-

design is required, the FMECA will be re-executed once the design change is implemented.  
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For the SeaLion CubeSat mission, the FMECA was conducted for the following main 

systems and operation:  

 EPS 

 Interface Board 

 DeCS payload 

 Structure 

 Mission SeaLion Deployment and Start-Up 

3.2 Electrical Power System 

 The EPS was designed and developed by ODU to support the operating modes, all three 

payloads and on-board operations of the mission SeaLion. The EPS consists of a battery pack of 

non-rechargeable batteries and a printed circuit board (PCB). Since the mission life of SeaLion 

CubeSat is projected to be roughly 10 days, a decision was made to use non-rechargeable 

batteries for the SeaLion CubeSat power source, which eliminated the use of solar cells for 

power regeneration [6]. An extensive evaluation was conducted with ODU’s electrical design on 

the EPS and mitigation strategies were implemented to ensure that the system is robust and 

reliable. The EPS electrical schematic is shown in Appendix A and the EPS component list is 

shown in Appendix B [31]. 

3.2.1 Non-Rechargeable Battery System 

 The primary function of the battery pack is to supply power to mission SeaLion’s 

components and operating modes for the projected on-orbit duration. The battery pack power 

supply for mission SeaLion is composed of 8 non-rechargeable batteries that consume 1U 

volume on-board. The battery model being used is the UltraLife UHR-XR34610 Li-CFx/MnO2 D 

form battery cells [32]. Due to the 1U volume constraint, the selected chemistry provided a high 

specific energy density that was sufficient to meet the estimated power budget. The batteries are 

configured in a 4 Series 2 Parallel (4S2P) configuration to meet the power requirements of 

mission SeaLion and is shown in Figure 7 [6]. The configuration supports a nominal output 

voltage of 12VDC with 32Ah of each 2P arrangement allowing for 384Wh for mission SeaLion. 

The computer-aided design (CAD) generation of the eight battery cells arranged in the 1U 

volume constraint is shown in Figure 8 [6].  
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Figure 7: 4 Series 2 Parallel (4S2P) Battery Configuration 

 

 

 

Figure 8: 1U Battery Pack CAD Generation 

 

 The studies on the exact chemistry of the batteries being used on mission SeaLion were 

not found, but information regarding lithium-ion battery failures were found through research. 

High energy density lithium-ion batteries are desired for spacecraft applications due to the run 

time being significantly longer when compared to other battery chemistries [33]. The main 

failure concerns for lithium-ion batteries are external short circuit, internal short circuit, high 

temperatures, structural integrity, and outgassing [34]. The operating temperature at which a 

battery discharge has a significant effect on the capacity and voltage characteristics [34]. This 

occurs due to the reduction in the chemical activity and the increase in internal resistance of the 

battery at lower temperatures [34]. Lithium-ion battery failures commonly occur when power 

demand is high causing the internal temperature to rise where the electrolyte is gasified, causing 

it to release and possibly explode [35]. High vacuum environments can also cause the batteries to 
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outgas excessively which will be discussed in Section 3.7 Outgassing. The likelihood of the 

batteries experiencing high levels of outgassing was listed as highly likely (LL4). 

Thermal Runaway 

 Dr. Christopher Iannello, who is a NASA Technical Fellow for Electrical Power, explains 

potential failures regarding lithium-ion batteries. He explains in an article that at high 

temperatures, the lithium-ion cell becomes thermally unstable [33]. Exothermic reactions occur 

and release heat faster than the cell can dissipate the generated heat, which creates a state known 

as thermal runaway [33]. The main concern is that during a single-cell thermal runaway, the heat 

generated from one failing cell can propagate to the adjacent cell, resulting in a chain reaction of 

thermal runaways [33].  

 If mission SeaLion’s battery power supply were to experience a thermal runaway, the 

result would lead to catastrophic failure to the mission. The severity of the batteries exploding 

due to temperatures exceeding the upper battery operating temperature limit was listed as 

catastrophic impact (LS5) for level of severity. Due to the power supply being the most 

important component on-board mission SeaLion, all the following failure modes regarding the 

batteries, battery wire and battery connector were listed as catastrophic impact (LS5) for severity 

of failure. The likelihood of failure for the batteries exploding was listed as highly likely (LL4). 

Mitigation strategies include monitoring the batteries’ operating temperature and output voltage 

while under load to ensure power meets the minimum threshold to operate systems during the 

TVCT.  

 Implementing a battery management system (BMS) is commonly used to monitor the 

battery pack to mitigate and prevent thermal runaway [36]. The BMS has safety features that aim 

to prevent overvoltage, over-discharge, high temperatures, and other problems from occurring. 

This ensures that the batteries are operating at safe levels [36]. A battery monitor was integrated 

into the EPS, which will capture current and voltage data that will be downlinked in the mission 

SeaLion satellite health packet, but no additional actions were implemented to turn off power 

supply to mission SeaLion if the upper temperature limit was being approached. System 

protection could have been implemented into the on-board flight software through which an 

electrical signal could be sent to a switch to turn off power supply when mission SeaLion 

temperatures increase to the upper limit.  
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Battery Short Circuit 

 Short circuit failures can occur both external and internal to a battery cell or battery pack 

[34]. Faulty connections between the positive and negative terminals and broken or loose battery 

connections can cause an external short circuit on the battery pack [34]. External short circuits of 

lithium-ion cells can cause the internal cell pressure to increase from the high current spikes, 

which could result with potential battery explosion [34]. Implementing the battery connections 

was conducted in-house, so the likelihood of an external short circuit was listed as likely (LL3). 

Mitigation of external short circuit involves conducting a manual visual inspection (MVI) on the 

battery terminals and connections, along with conducting an electrical continuity using a volt-

ohmmeter and functionality test on the battery pack.  

 Internal short circuits can be caused by deformations of the battery cells, along with high 

vibration levels from launch [34]. Deformations of the battery cells can cause membrane leakage 

and could lead to thermal runaway [34]. Vibrations from the launch can cause internal shorts, 

misalignment, or other means of direct contact issues between positive and negative materials 

inside the battery cell [34]. The effects could lead to venting of the electrolyte, possible 

explosion, and thermal runaway [34]. Since the selected Ultralife batteries were not initially 

designed for space use, the likelihood of failure regarding internal short circuit were listed as 

likely (LL3). Mitigation strategies include monitoring for signs of potential electrolyte leakage, 

swelling and deformations of the batteries during the TVCT, and conducting vibration testing on 

the battery pack. 

Battery Wire Short Circuits 

 The battery pack will have a wire that is configured to the battery supply electrical 

connector on the EPS Board. At excessive high temperatures, the insulation could breakdown on 

the battery power supply wire, causing a short circuit. This could potentially lead to an explosion 

or reach the state of thermal runaway [34]. All wiring on mission SeaLion is space grade and is 

rated for high temperature, so the likelihood is listed as unlikely (LL2). For additional external 

thermal protection, a recommendation was made to wrap all wires on-board mission SeaLion 

with a high temperature polyimide tape.  
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Voltage Reversal 

 As previously mentioned, eight batteries were configured in a 4S2P configuration [6]. 

The capacity for each battery will not have the exact same discharge capacity, due to a slight 

variability in manufacturing. This means that the capacity of the weakest cell will deplete before 

the other cells, when discharged in a series configuration. The battery cell with the weakest 

capacity will eventually reach 0-VDC during a continuous discharge and the voltage path will 

reverse. The battery cell could begin to vent electrolytes or potentially explode due to the 

increase in heat generation and internal pressure built-up [37].  

 The likelihood of failure was listed as highly likely (LL4) due to the battery pack power 

supply being designed built in-house. “Some battery designers, particularly for multicell lithium 

primary batteries, add diodes in parallel to each cell to limit voltage reversal. As the cell voltage 

drops below zero volts and into reversal, the diode becomes conducting and diverts most of the 

current from flowing through the cell. This limits the extent of the voltage reversal to that of the 

characteristic of the diode [37].” Adding diodes in parallel to each cell in the battery pack 

configuration will help limit potential voltage reversal. 

Battery Structure  

 Thermal stresses from the harsh space environment conditions can reduce the integrity 

and casing of the batteries [34]. The effects can lead to the battery casings being fractured and 

material degradation to the battery mounts, causing a short circuit and excessive movement due 

to the batteries being unconstrained [34]. Again, since the Ultralife batteries were not initially 

designed for space use, along with the mounting and configuration being conducted in-house, the 

likelihood of failure was listed as highly likely (LL4). Additional observations during the TVCT 

include monitoring for signs of degradation to the batteries mounts and casings, along with any 

signs of thermal expansion that may occur [34].  

Depleted Batteries 

 Although mission SeaLion will have a relatively short mission, there is a chance that 

power is consumed faster than anticipated from on-board operations. The batteries could also not 

perform at the desired level due to the extreme temperatures and pressure that will be 

experienced on-orbit. The batteries could discharge faster than expected, resulting in depleted 
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batteries. Depleted batteries would end the mission and could occur at any time, but indications 

would be given in the mission SeaLion satellite health packet from the data that will be recorded 

by the battery monitor. A conservative power budget was calculated in-house by ODU, so the 

likelihood was listed as highly likely (LL4). For mitigation, operating loads can be simulated 

during the TVCT and a discharge voltage curve can be generated and compared to the Ultralife 

performance graphs shown on the technical datasheet [32]. Mission SeaLion’s power budget and 

balance is shown in Appendix G [6, 31]. The FMECA for the batteries is shown in Table 4 

below. 

 

Table 4: Battery FMECA 
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3.2.2 Electrical Power System Board 

 The EPS Board was designed with a 3.3-VDC and 5-VDC voltage bus to support 

components on-board. Each bus has a switching voltage regulator LM2576 to step down voltage 

from the non-rechargeable battery power supply to each required bus level [38]. A battery fuel 

gauge LTC2944 was used to monitor the battery bus voltage and current, which is communicated 

to the on-board computer (OBC) via inter-integrated circuit (I2C) [39]. The battery bus data will 

be a part of the SeaLion health packet that is downlinked during mission SeaLion [31]. 

 Voltage capacity is monitored on each bus by using a voltage and current monitor 

LTC2990 [40]. Each voltage bus has its own integrated circuit (IC) LTC4361-2 which provides 

overcurrent, overvoltage, and undervoltage protection for the load components [41]. The EPS 

Board communicates and interfaces with the Interface Board and NanoDock DMC-3 dock 

through the PC/104 form factor. Figure 9 is the CAD generated model of the EPS Board [31]. 

 

 

Figure 9: KiCAD Generated EPS Board 

 

There are several factors that could result in the electrical components or systems failing during 

launch and while on-orbit. Excessive vibration, high temperatures, radiation, and power supply 

components issues are of mission SeaLion’s greatest concerns.  
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Voltage Regulator 

 Voltage regulators are used in electrical circuits to regulate voltage supply within a range 

that is compatible with other electrical components [42]. The primary function of a voltage 

regulator is to provide a constant output voltage, even if the input voltage or load conditions are 

varying [42]. A step-down converter, also commonly known as a buck converter, will step down 

the high unregulated input voltage to a lower regulated output voltage signal [42].   

 The EPS Board was designed with a step-down switching regulator for both the 3.3-VDC 

and 5-VDC voltage supplies. Failure modes for both 3.3-VDC and 5-VDC voltage regulator will 

be evaluated at the system component level, while the capacitor, inductor, and diode will be 

evaluated at the sub-system level since these components support isolation and feedback for each 

of the switching voltage regulators. The voltage regulators could fail due to high voltage surges 

or from excessive voltage fluctuations [43, 42]. The failure effects for both failure modes are that 

the voltage in the circuit will not be unregulated and downstream components could potentially 

be damaged from receiving a high voltage surge or receiving a low voltage supply. Since both 

voltage regulators supply different components, additional explanations will be given for failure 

effects. 

 The main components that the 3.3-VDC voltage regulator powers are the sun sensors, 

GPS receiver, UHF radio and the OBC. Loosing or having insufficient power to the OBC is of 

greatest concern among the three components. The OBC will execute telecommunications with 

the ground station and store all data that is captured on-board. Thus, the severity of the OBC 

failing was listed as catastrophic impact (LS5). 

 The main components that the 5-VDC voltage regulator powers are the S-band radio, 

inertial measuring unit (IMU) and the accelerometer. In the event where the IMU and 

accelerometer data is not received in the mission SeaLion downlink packet, then ground station 

personnel will not have any means for determining the spacecrafts attitude. The severity of 

failure was listed as a major impact (LS4). The likelihood for both voltage regulators was listed 

as unlikely (LL2) since a robust component was selected and the manufacturer provided 

extensive test data for multiple scenarios [38]. Mitigation strategies involve monitoring voltage 

output while conducting a functionality test and selecting supporting electrical components in-
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line with the voltage regulator that are capable of handling voltage surges and fluctuations. The 

FMECA for the voltage regulators is shown in Table 5. 

 

Table 5: Voltage Regulator FMECA 

 

 

Inductor 

 The voltage regulator sub-system components are described and evaluated next. The 

primary function of an inductor is to store current and provide a supply to the circuit when the 

current levels decrease, which will help maintain a constant current supply in the circuit [43]. 

Inductors have a large impact on the transient response, control loop stability, and will ultimately 

impact efficiency [44]. Proper inductor selection is an extremely crucial aspect to a converter 

design [44]. Improper inductor selection can cause the inductor’s magnetic core to saturate, 

which should be avoided [44]. Inductor saturation can cause damage to the converter, which 

could limit the output current from the converter. [44]. When conducting thermal testing on the 

PCB assembly, plot the inductors current waveform to ensure that current saturation is not 

occurring in circuit [44].  

 When the inductance value selected is too low, large peak-to-peak inductor current ripple 

can be experienced, which will exert addition stress on the capacitor and voltage regulator, 

ultimately impacting the efficiency of the inductor [43, 44]. Inductors can reach high 

temperatures when there is a large amount of core loss caused by the high current ripples [44]. 

The increase in the inductor’s thermal generation could affect the performance of other 
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components in the circuit. Figure 10 shows an example of a waveform when the inductance 

rating of a component is too low, and saturation occurs [44].  

 

 

Figure 10: Poor Inductor Current Waveform [44] 

 

A constant slope for the inductor current should be displayed during the switch intervals 

when proper inductors are selected. Figure 11 shows an example of a waveform when the correct 

inductor is selected for application, when no signs of saturating current being displayed [44].  

 

 

Figure 11: Proper Inductor Current Waveform [44] 

 

Texas Instruments Incorporation recommends selecting the inductance value that will keep the 

current ripple to roughly 30% of the full load current [44]. The three inductor failure modes that 

were previously described were evaluated to having a severity of major impact (LS4) to the 

circuit due to the inductor’s contribution to the converters design. The likelihood of the failure 

occurring was listed as unlikely (LL2).  
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Diode 

 A diode is a semiconductor device that has a primary function of only allowing current to 

flow in one direction and restricts current from flowing in the reverse direction [45]. A diode 

essentially acts as a one-way switch for current and assists the voltage regulator within the circuit 

[43]. Diode failures can occur when excessive current is flowing in one direction and a large 

surge of voltage flows in the reverse direction [46]. When excessive forward current is 

experienced, the diode will fail open which may result in unregulated voltage cascade [46]. 

Downstream components could be damaged from voltage surging, or the voltage supply is 

insufficient for operations [43]. 

 When a large reverse voltage is experienced in the circuit, the diode will short circuit 

[46]. The performance of the voltage regulator could be impacted or cause failure due to a high 

voltage ripple reversing back through the excited field (dI/dt) [47]. Mitigation strategies involve 

monitoring voltage during thermal testing and TVCT. The severity of the diode failing was listed 

as having a moderate impact (LS3) to the circuit and the likelihood was listed as very unlikely 

(LL1). 

Capacitor 

 The primary function of a capacitor is to store electrical energy from a source and release 

the electricity when activated in a circuit (dV/dt) [48]. Inside the capacitor are terminals that 

connect two metal plates that are separated by a non-conductive substance or dielectric [48]. 

When activated, the capacitor will release electricity very quickly [48]. A very common failure 

mode for capacitors is dielectric breakdown. When a device is continuously being operated at its 

upper threshold rating, the dielectric materials will degrade until reaching failure. There are 

several reasons why this occurs, but the most common is due to excessive high temperatures 

which can result in a short circuit [49]. 

 Environmental breakdown of capacitors can cause failures due to the following scenarios 

[49]. Capacitance will vary with temperature depending upon the dielectric, which is caused by a 

change in the dielectric constant [49]. This occurs due to thermal expansion and contraction of 

the dielectric material/electrodes [49]. The changing of temperature may vary the dissipation 

factor of the capacitor [49]. As temperature increase, the dielectric strength decreases [49].  The 
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decrease in dielectric strength is caused by the chemical activity of the material, resulting in the 

electrical or physical properties of the capacitor to change [49].  

The following three thermal system protection mitigation strategies could be implemented 

for all electrical failure mode involving high temperature: 

1. Integrating thermal safety measures into the on-board flight software could be designed 

to shut off the battery pack power supply to allow system temperatures to decrease.  

2. Implementing thermal control heat shielding to mission SeaLion’s outer surface would 

help control temperature internal. 

3. Implementing a hardware fail-safe could also be configured onto mission SeaLion. As 

temperature increases, resistance increases so hardware could be used to shut down the 

power supply when resistance reaches a pre-defined threshold limit to prevent 

components from potentially short circuiting or reaching thermal runaway.  

 Radiation can cause electrical degradation in the form of dielectric embrittlement, which 

can cause the capacitors to short circuit or cause an open circuit [49]. Implementing radiation 

protection externally on mission SeaLion could mitigate the effects that radiation could impose 

on components and the same strategy found could be implemented on all failure modes involving 

radiation [49]. Capacitors can fail from the number of cycles during the duration of its lifetime. 

Selecting a component with the proper rating regarding number of cycles will prevent the 

capacitor from failing [43]. 

 The failure effects, severity, and likelihood are all the same for the capacitor failure 

modes that were described above. If failure occurred, then the capacitor would not assist with 

maintaining constant voltage in the circuit, which could possibly disrupt operations of the 

supplied current and damage downstream components [50]. The severity of the capacitors failing 

was listed as some impact (LS2) but will not create a major impact on the circuit. The likelihood 

of the capacitors failing was listed as unlikely (LL2) and very unlikely (LL1) for failure due to 

number of cycles since mission SeaLion is estimated to be relatively short on-orbit duration. The 

voltage regulator sub-components FMECA are shown in Table 6. 
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Table 6: Voltage Regulator Sub-System Components FMECA 

 

 

Battery Monitor 

The primary function of the battery monitor is to record the raw voltage and current data 

from the battery pack power supply. The data will then be converted to I2C data and sent to the 

OBC, where the data will be downlinked in the SeaLion satellite health packet [31]. The battery 

pack power supply data is important because it allows the ground station personnel to know the 

current state and remaining battery life for conducting operations. If the battery monitor fails, the 

mission would be greatly affected but operations could continue. The ground station personnel 

would not know the current state of the battery pack power supply, which may create additional 

operational decision challenges. The severity of the battery pack failing was listed as major 

impact (LS4). Failure could occur when temperatures exceed the upper battery monitor operating 

temperature limit, but the likelihood of failure occurring was listed as unlikely (LL2) due to the 

wide operating range specified on the component’s datasheet [39].  
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Metal-Oxide-Semiconductor Field-Effect Transistor 

 A metal-oxide-semiconductor field-effect transistor (MOSFET) is a device that is used 

for switching states and for amplifying electronic signals in a device, essentially acting as a 

switch [51]. The primary function of the MOSFET transistor is to control the voltage and current 

flow between the source and drain terminals [51]. A common failure mode for a MOSFET is 

when high voltage is experienced, the result may cause a short circuit between the source and 

drain [52]. The short circuit will cause the MOSFETs component failure, eventually opening the 

circuit [52]. If the failure results in an open circuit, then downstream components will not receive 

power [43]. The severity was listed as catastrophic impact (LS5) if the 3.3-VDC MOSFET failed 

due to the OBC being downstream of the device and major impact (LS4) was listed for the 5-

VDC MOSFET because other mission objectives could still be achieved.  

 A high voltage transient spike (dV/dt), positive or negative could cause the MOSFET to 

fail. The initial voltage spike will damage the gate-body insulation, causing the gate and body to 

connect. Once that occurs, the MOSFET will explode causing catastrophic failure to mission 

SeaLion for both the 3.3-VDC and 5-VDC device, so the severity was listed as catastrophic 

impact (LS5) [53]. The likelihood was listed as unlikely (LL2) for all failure modes described for 

the MOSFET. Failures would occur primarily if the upstream voltage regulator failed. The 

FMECA for the battery monitor and MOSFET is shown in Table 7. 

 

Table 7: Battery Monitor and MOSFET FMECA 
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Integrated Circuit 

 Each voltage bus has an IC for system protection. The primary function of the IC is to 

provide overcurrent, overvoltage, and undervoltage protection for the load components on the 

EPS Board [31]. Excessive voltage and current levels beyond the devices design limits can cause 

an electrical overstress due to improper regulated power supplies from the upstream voltage 

regulator failing [54]. The result would lead potential current leak through or physical damage of 

the IC device [54]. In the event of electrical overstressing occurring, downstream components 

could be potentially damaged. The likelihood of failure was evaluated as very unlikely (LL1) due 

to the selected voltage regulator being very robust, hence the IC should see expected loads [38]. 

Mitigation strategies involve monitoring the current traveling through the IC and temperature of 

the IC during thermal testing of the EPS Board. 

 Radiation can damage the IC, causing random bit-flips of the state change to the flip-flop 

and could change parameters on the device [55, 56]. If random IC bit-flipping occurs or 

parameters are changed, the device will not respond to the circuit correctly and component 

performance could be impacted. The severity for both 3.3-VDC and 5-VDC IC failing was 

evaluated to having a major impact (LS4) since one or more components could be affected from 

failure. The likelihood of radiation causing failure to the IC was evaluated as likely (LL3). The 

FMECA for the IC is shown in Table 8. 

 

Table 8: Integrated Circuit FMECA 
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Inter-Integrated Circuit 

 Communications between the battery bus monitor and OBC are executed using an I2C. 

Data is sent through the PC/104 multi-pin interface stacks on the EPS Board and Interface Board. 

The battery bus data is communicated to the OBC for telecommunications to the ground station 

[31]. Bus lockups appear to be a major issue for the I2C data bus and has been proven to result in 

a catastrophic failure in some scenarios [57]. I2C signal malfunction is another failure which 

could prevent communication from the EPS Board to the Interface Board [1]. 

 A bus lockup or signal malfunction would prevent the 3.3-VDC or 5-VDC bus voltage 

and current data from being transferred to the OBC, which would prevent data from being 

present in the mission SeaLion satellite health downlink packet. The severity was listed as have a 

major impact (LS4) and a likelihood of unlikely (LL2) for both failure modes. Mitigation 

strategies involve implementing a hardware reset to clear software lockups on the EPS Board. 

Another effort could be implemented by adding a load switch onto the EPS Board to reset the 

power of all its slave devices [55]. Conducting functionality and software testing to ensure the 

algorithm is converting battery bus data correctly will ensure data transfer is working as intended 

[1]. 

 Radiation could damage the I2C and cause random bit-flips throughout the memory 

address. The effect would result in an incorrect 3.3-VDC or 5-VDC bus data being present in the 

mission SeaLion satellite health packet, which could cause confusion to the ground station 

personnel [55, 56]. The severity for both 3.3-VDC and 5-VDC I2C failing from radiation was 

evaluated to having a major impact (LS4) and a likelihood of unlikely (LL2). The FMECA for 

the I2C is shown in Table 9. 
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Table 9: Inter-Integrated Circuit FMECA 

 

 

Electrical Connectors 

 The following text will describe failure modes regarding PCBs, which include both the 

EPS Board and Interface Board. Both PCBs were manufactured by a private company and 

extensive inspection and testing will be conducted. The failure modes already mentioned 

describe mitigation strategies that involve conducting a MVI and functionality of the individual 

components on the EPS Board assembly. Next, further descriptions of failure modes regarding 

the PCB assembly will be described.  

Every electrical connector and soldered joint on the PCBs will have a risk of failing due 

to the excessive vibrations. High vibration levels from the launch could cause a poor electrical 

pin connection within the electrical connector housing. If the electrical battery connection loses 

electrical continuity during mission SeaLion, the effects would result in the EPS Board not 

receiving power from the battery pack, which would prevent the distribution of power to the on-

board components and operating modes. If the separation switch connection loses electrical 

continuity at any time prior to the mission SeaLion deployment from the CSD, then start-up of 

EPS will not occur.  

 PC/104 form factor interfaces the EPS Board to Interface Board by a multi-pin stack-

through connector [31]. If continuity is lost, power will not reach the OBC and 

telecommunication with the ground station would be compromised. A loss of continuity for the 

three failure modes described could occur from launch vibrations or micromotions of thermal 

expansion and contraction from on-orbit thermal cycling. The electrical connector FMECA are 

shown in Table 10. The severity for the three failure modes were listed as catastrophic failure 
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(LS5). The likelihood was listed as likely (LL3) due to electrical pin connectors traditionally 

being sensitive to temperature gradients.  

 Mitigation strategies include adding double the number of pins in both the electrical 

housing and PC/104 stack-through connections for redundancy [43]. If it is possible, crimp and 

solder pins internally to electrical connector housing together once continuity is verified using a 

volt-ohmmeter [43]. Adding electrical pin redundancy will increase the reliability, since the 

electrical connectors are single point failures. Additional mitigation efforts involved conducting 

a MVI for sufficient interface connection and applying epoxy to the electrical connector housing 

to ensure the interface connection does not separate during mission SeaLion [43].  

 

Table 10: Electrical Connectors FMECA 

 

 

Soldered Joints 

 The PCB was manufactured by a private manufacturing company and was custom 

designed for mission SeaLion, meaning the use of robotics during the manufacture phase was not 

conducted. Thus, components were soldered to the PCB manually. High vibration levels 

experienced during the launch can cause mechanical overstress and fatigue to the soldered joints, 

resulting in electrical components detaching from the EPS Board [58]. Electrical components 

could also detach from the EPS Board due to improper soldering techniques, which can cause 

deficiencies in the soldered joint [59]. The failure effects, severity, and likelihood for the failure 

modes involving the battery connector and separation switch connector were evaluated the same 

for the solder joint failure modes.  
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 The remaining EPS Board components could all experience failures regarding the solder 

joint as well. The failure effects, severity, and likelihood all differ from each other, but have 

already been discussed previously in this sub-section regarding each component failure mode. 

Failure cause and mitigation strategies are the same for each solder joint failure mode. Mitigation 

strategies for all failure mode regarding soldered joint failure will include the use of 63/37 Sn-Pb 

(tin-lead) solder during manufacture which will greatly reduce the risk of thermal damage to the 

PCB and is further explained in Section 4.1 Design Changes Implemented.  

 Executing a MVI using the inspection instructions provided in Appendix C will ensure 

that the quality of the soldered joints is satisfactory. Conducting vibration testing will simulate 

flight time during launch by using a vibration shaker platform. Testing the PCBs on the vibration 

shaker platform will verify that all soldered components hold its structural integrity. If the 

soldered joints’ integrity is lost at any point, testing will pause until corrective actions are taken 

to avoid any additional damage. Inspecting the solder joints after vibration testing will mitigate 

any potential risks involving soldered joint failure. The FMECA for soldered joints on the EPS 

Board are shown in Table 11.  
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Table 11: EPS Board Soldered Joints FMECA 

 

 

Manufacturing of Printed Circuit Board  

 The bathtub curve is a graphical representation of the lifetime of a population of 

components and is shown in Figure 12 [60]. The bathtub curve is composed of three periods: an 

infant mortality period that has a decreasing failure rate, a normal operating life period that has a 

low constant failure rate, and a wear-out period that has an increasing failure rate [60].  
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Figure 12: The Bathtub Curve 

 

The infant mortality period occurs during initial start-up where the failure rate is decreasing but 

is critical due to a significant number of failures could potentially occur in a short time duration 

making them undesired [60]. The failures in this period are commonly caused by defects in the 

design or from insufficient assembly [60]. The flat area of the bathtub curve is where the normal 

life of a component operates at, and failures are random [60]. The end-of-life wear-out period 

will have an increasing failure rate and failures are commonly due to fatigue or depletion of 

materials [14, 60].  

 To avoid failures in the infant mortality period, there are two commonly used stress tests 

that are used for mitigation [60]. One of the stress tests is called highly accelerated stress audit, 

which is used to identify defects in the material or imperfections caused by assembly that can 

lead to failure [60]. The other stress test is called a burn-in, which is a 100% screening that aims 

to test-out any defects in the component where eliminating the root causes is not feasible [60].   

 COTS components that were purchased go through extensive qualification testing at the 

manufacturing site during initial design development, but once the components are mass 

produced, no additional testing is typically conducted. To mitigate potential failures regarding 

the PCBs from occurring in the infant mortality period, a burn-in test using ODU’s TVAC will 

be executed to ensure operations are satisfactory [14, 60].  Once the burn-in test is complete, the 

PCB will operate in the normal life period during mission SeaLion. Since mission SeaLion 

projected orbit duration is short, end-of-life wear-out is not of concern. The severity was 

evaluated as having a catastrophic impact (LS5) if failure occurred in the infant mortality period 
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and likelihood was evaluated as near certainty (LL5), which is the high ranked failure mode 

considered for mission SeaLion.  

 Since the PCBs are manufactured manually without the use of robotics, human error must 

be taken into consideration. If improper tracing throughout the board or a mistake is made during 

configuration, components and operating modes will not function as designed. The severity was 

listed as catastrophic impact (LS5) and the likelihood was listed as likely (LL3) because of 

potential human error. Conducting a MVI on the PCB and soldered joints using the inspection 

instructions provided in Appendix C and conducting a TVCT on the PCB assembly will greatly 

mitigate the risk of failure due to human error. Also, conducting an electrical continuity check on 

all components is recommended before and after vibration testing. 

Electrical Power System Board Design 

 Even though mission SeaLion will be in a vacuum while on-orbit, very small levels of 

heat transfer will occur from other electrical components operating on-board and it should not be 

completely neglected [61]. Poor thermal designs of circuits can cause components to fail due to 

thermal shutdown [44]. The severity was listed as having moderate impact (LS3) and likelihood 

was listed as unlikely (LL3).  

 Mitigation strategies include minimizing cuts in the PCBs copper planes will allow 

thermal heat to disperse laterally throughout the board, which will maximize the thermal 

dissipation [44]. The lowest thermal resistance to distribute heat is through the copper planes of 

the PCB, so cutting through the planes will increase the thermal resistance [44]. To disperse the 

thermal heat vertically throughout the PCB to other layers, thermal vias should be used and an 

example is shown in Figure 13 [44].  
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Figure 13: Heat Transfer Paths from the IC to the PCB [44] 

 

Using thermal pads for the voltage regulator and other ICs will assist with transferring the heat 

from the IC into the PCB through conduction. Vias should also be utilized in the thermal pad’s 

PCB footprint to maximize conduction vertically to the other layers on the PCB [44]. A 

recommended via pattern example is shown in Figure 14 [44]. 

 

 

Figure 14: Via Pattern with Thermal Pad Package PCB Footprint [44] 

 

 In high operating temperature scenarios, components on the EPS Board may begin to 

operate above their rated junction temperature and reach thermal shutdown. Failure could occur 

as a result from poor PCB component layout in the circuit design [44]. When operating 

temperatures are near the upper limit for a component, component efficiency could be impacted. 

While conducting the TVCT on the EPS Board, monitor the temperature at multiple locations on 

the PCB with the use of thermocouples to ensure operating temperatures do not reach the 
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junction temperature for components. The severity and likelihood were evaluated the same for 

the following failure mode.  

 Poor placement of components can result in over-stressing of components. When no 

input decoupling capacitors are near the input voltage and ground terminals of the converter, 

addition stress is induced onto the converter and potentially to other components in the circuit 

[44]. The preliminary design of the EPS Board did not have an input capacitor to the converter; 

hence failure was evaluated as having major impact (LS4) for severity, with a likelihood of likely 

(LL3) due to the in-house PCB design. Adding an additional input capacitor to the converter 

would assist with regulating voltage in the circuit. FMECA for the EPS Board is shown in Table 

12. 

 

Table 12: EPS Board FMECA 

 

 

3.3 Interface Board 

 The Interface Board was design to host multiple mission SeaLion components and 

payloads. This section is based off the current known knowledge of the Interface Board due to 

the final design being held up by a few components. The IMU, sun sensors, GPS receiver, and all 

three experimental payloads will have electrical connectors soldered onto the Interface Board. 

The IMU will include an accelerometer, gyroscope, and magnetometer that is used for attitude 
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determination. The NanoDock DMC-3 dock will interface to the Interface Board using the 

PC/104 form factor. The NanoDock will host the OBC, UHF radio and S-Band radio hardware 

[6]. 

 Attitude Determination System (ADS) will involve orbit propagation and attitude 

determination using COTS components. The on-board GPS will determine mission SeaLion’s 

precise orbital position and motion. The GPS information will be sent to the OBC and used for 

determining the orbit propagation, which will be executed to estimate when mission SeaLion will 

be approaching the Virginia ground station. The orbit propagation data will be downlinked to the 

ground station and used for attitude determination [6].  

 If the orbit propagation algorithm on the OBC is incorrect, then estimates for when 

mission SeaLion will be approaching the ground station will be compromised. The GPS could 

also experience failure from environmental space conditions. Failure of the GPS would prevent 

the ground station personnel from knowing mission SeaLion's exact position. The last recorded 

position would then be used to estimate mission SeaLion's future positions [62].The severity was 

evaluated as having a catastrophic impact (LS5) and likelihood was evaluated as near certainty 

(LL4) for both failure modes. 

 Attitude determination will be accomplished by using six sun sensors, IMU, and 

magnetometer, which is a part of the OBC. Data from the three components will be downlink to 

the ground station to execute computations [6]. All three components could experience failure 

from environmental space conditions, which would impact mission SeaLion’s attitude 

determination [1]. If the OBC fails, then mission SeaLion will be compromised. Thus, the 

severity was evaluated as having a catastrophic impact (LS5). 

 Failure of the IMU or sun sensors would impact the attitude determination, but 

determination could still be accomplished if one of the two fails. The sun sensors could 

experience saturation due to failure to filter, resulting in insufficient sun vector measurements 

[1]. In the unique scenario where both components fail on-orbit, then attitude determination 

would be compromised [62]. The severity was listed as moderate impact (LS3) for both the IMU 

and sun sensors. The likelihood was evaluated as unlikely (LL2) since the IMU, sun sensors, and 

OBC are all COTS component with space flight history. The FMECA for ADS is shown in Table 

13. 
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Table 13: ADS FMECA 

  

 

 Vibrations from the launch poses the greatest concern to the Interface Board. Majority of 

the content in this section regarding the electrical connectors and soldered joints were discussed 

in Section 3.2 Electrical Power System. Potential failure could occur if continuity is lost at the 

electrical connector. Potential failure could also occur if the solder joints fail from fatigue or if 

improper soldering techniques were used, resulting in the component detaching from the 

Interface Board [58, 59]. Both cases were evaluate as having the same severity and likelihood of 

failure, but mitigation strategies will differ for the two cases. 

 The PC/104 form factor is used to communicate and power the Interface Board to the 

NanoDock by a multi-pin stack-through connector [31]. If continuity is lost, power will not be 

supplied to the OBC and telecommunication with the ground station would be compromised. 

Thus, severity was evaluated as having a catastrophic impact (LS5). The DeCS payload will 

receive 5-VDC from the Interface Board through an electrical connector to thermally cut the tie 

down cable in the burn wire mechanism. If continuity is lost, then the burn wire mechanism will 

not receive power causing failure. The severity was listed as moderate impact (LS3), due to other 

mission objective still being achievable.  

 If the IMU 20 pin connector loses continuity, then no IMU data is captured. However, 

attitude determination could still be estimated using the sun sensors. Loss of continuity of the sun 

sensors will result in the Sun vector not being captured for attitude determination. The data 

captured from the magnetometer could be used to replace the sun vector data but would not be as 
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accurate. The severity for the IMU and sun sensors were listed as having a moderate impact 

(LS3) due to utilizing the other components data for accomplishing the intended functions. 

 Failure of continuity for the GPS will compromise the precise orbit determination but 

again, the last recorded position would then be used to estimate mission SeaLion's future 

positions. The severity was listed as having a major impact (LS4). Loss of continuity of the IP 

and Ms-S, then payload data will not be capture. The severity for both payloads was listed as 

moderate impact (LS3) and likelihood was listed as likely (LL3) for all failure modes involving 

vibration. Table 14 show the FEMCA for the soldered joints on the Interface Board.  

 

Table 14: Interface Board Electrical Connectors & Soldered Joints FMECA 
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3.4 Deployable Composite Structure Payload 

 The main components of the 1U volume DeCS payload are the burn wire mechanism, 

spool piece, four doors, and four composite booms. Strain gauges are configured on each of the 

four booms for validating the booms dynamics and verifying DeCS deployment [6, 10]. The 

primary function of the DeCS payload is to capture boom dynamics using strain gauges, which 

will provide data in the SeaLion downlink packet. A FBD was created for the deployment of the 

DeCS payload to display the sequence of events and is shown in Figure 15.  

 

 

Figure 15: DeCS Deployment FBD 

 

An FTA on the deployment of the DeCS payload was developed to assist in identifying failure 

modes and is shown in Figure 16. 
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Figure 16: DeCS Deployment FTA 

 

Burn Wire Mechanism  

 Since the DeCS payload was custom-built, an extensive evaluation of the payload was 

executed, and mitigation strategies were made. As previously discussed, the EPS Board will 

supply power to the Interface Board, which will have an electrical connector for the DeCS 

payload to receive power and communication. If current is not supplied to the burn-wire 

mechanism, the deployment of the payload will not occur. This could occur if the battery pack 
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power supply failed, which has been previous discussed in Section 3.2.1 Non-Rechargeable 

Battery. 

 The burn wire mechanism will have a resistor that will increase in temperature when the 

current is supplied. The resistor is in contact with a tie-down cable, which will be thermally cut 

and will release Door 1 on the payload while on-orbit [10]. Insufficient or unsteady current 

supply to the burn wire mechanism could cause failure. Insufficient current supply will cause the 

resistor to not reach the required temperature for the tie-down cable to thermally cut. An un-

steady current supply could cause the tie-down cable to partially cut. Conducting a functionality 

test on the burn wire mechanism and designing the mechanism with a tight current supply 

tolerance, will assist with mitigating a potential failure from occurring on-orbit.  

 Vibrations from the launch can cause the mechanical latch that is connected to the burn 

wire mechanism to loosen and potentially disconnect from the mounted position. The failure 

modes involving the power supply and vibrations were evaluated as having a likelihood of likely 

(LL3). All failure modes involving the DeCS payload were evaluated as having a severity of 

moderate impact (LS3), due to other mission objective still being achievable. 

 When the tie-down cable cuts, payload Door 1 through Door 4 will extend in a 

consecutive order [10]. If the cable does not cut, payload Door 1 will not extend, and deployment 

will be compromised. The likelihood was evaluated with a high likelihood (LL4) for Door 1 

failing to extend. Mitigation strategies include conducting a MVI on the components, vibration 

testing and verifying deployment at sea level conditions. 

Composite Boom 

 The composite booms were manufactured in-house and multiple molds of the boom were 

formed. Since the booms are wound around the spool piece, the material had to be extremely 

thin, but rigid. A manufactured composite boom is shown in Figure 17 [10]. Failure could occur 

if the composite booms fracture from dynamic forces while on-orbit. Each boom will have strain 

gauges for redundancy and not having sufficient data from all the booms may make it 

challenging to determine if the deployment was successful or not. To fully understand the 

potential structural degradation that the composite boom may experience, characterization testing 

is required [10]. Conducting a finite element analysis (FEA) and executing a bend test using 
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cylinders will assist with verifying the integrity of the booms. Buckling, torsional, and vibration 

testing will also add to the mitigation efforts.  

 

 

Figure 17: Composite Boom After Manufacturing 

 

Mechanical Piece Parts  

 Assuming the tie-down cable cuts and payload Door 1 extends, mechanical binding of the 

remaining payload doors could fail to extend. Since the payload doors have hinges, mechanical 

binding could be experienced due to the thermal cycles that will be experienced on-orbit. If all 

four payload doors do not extend, then the payloads center spool piece will not un-wind to 

deploy the composite booms.  

 If the four payload doors fail to extend, then the deployment of the composite booms will 

be compromised. A ratchet and pawl locking mechanism was implemented into the design to 

hold the spool piece in place, until it is released for deployment. The locking mechanism and 

composite booms are also subject to mechanical binding due to the space environment 

previously described involving thermal cycling. Figure 18 shows a CAD model of the spool 

piece in the center of the 1U volume, along with the locking mechanism [10]. 
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Figure 18: DeCS Spool Piece with Locking Mechanism 

 

 DeCS payload assembly will experience failure if the composite booms do not extend. 

Verification of deployment will be determined from the strain gauge data that will downlinked 

be to the ground station. To ensure that the complex payload deployment mechanism works as 

designed, a MVI of each component after manufactured and rigorous testing will be executed, 

which is detailed in Section 4.3 Deployable Composite Structure Payload Test Plan. 

 Once the full deployment occurs on-orbit, the booms could experience failure due to 

thermal damage while on-orbit. The structural integrity of the booms, along with the strain 

gauges that are attached to the booms and its associated wires could be subject to thermal 

damage. Implementing thermal protection using a reflective coating or another means for 

protection is needed for mitigation. The likelihood for the previously described failure modes 

were listed as near certainty (LL5) because the DeCS payload was completely manufactured in-

house and has no space flight history. Table 15 shows the FEMCA for the DeCS deployment. 
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Table 15: DeCS Deployment FMECA 

 

 

Strain Gauge 

 A strain gauge is a type of electrical sensor that is designed to convert an induced force, 

tension, pressure, etc., into an electrical output signal where a measurement can be made [63]. 

The primary function of a strain gauge is to measure the applied force or strain on an object. An 

object’s internal resisting force is defined as stress, whereas displacement and deformation of an 

object is defined by strain [63]. Strain involves compressive and tensile forces, which is 

distinguished by a positive and negative sign [63].  

 Strain gauges can measure dynamic forces and will be configured on each of the four 

booms for validating the boom’s dynamics. The strain gauges will also be used for verifying the 
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deployment of the DeCS by capturing data and displaying the data in the time domain [Time 

(ms) vs. Voltage (mV)], which will represent the strain gauge signature. The following 

considerations should be made when selecting a strain gauge for a desired application [63]: 

1. Gauge length 

2. Number of gauges in gauge pattern 

3. Arrangement of gauges in gauge 

4. Grid resistance 

5. Strain-Sensitive alloy 

6. Carrier materials  

7. Gauge width 

8. Solder tab type 

9. Configuration of solder tab 

10. Availability  

 Improper strain gauge selection can lead to the strain measurements being interpreted 

incorrectly. If an improper strain gauge is selected for mission SeaLion, potential failures 

involving over-strain and temperature could occur. If the operational environment of the strain 

gauge is outside its operating limits, insufficient data will be recorded [64]. The severity was 

listed as having moderate impact (LS3) for improper selection and all preceding failure modes 

involving the strain gauges were listed with the same severity. The likelihood was listed as likely 

(LL4) due to the lack of experience regarding selecting the proper strain gauge for mission 

SeaLion. Consulting with experts in the industry is highly recommended when selecting strain 

gauges. 

 Debonding of strain gauge occurs when the strain gauge does not adhere to a surface 

fully and detaches. Debonding will occur if improper installation was performed, which will 

produce problems with the signal. Figure 19 shows an example of tension and compression in the 

time domain for when a strain gauge is fully bonded to a surface properly [64].  
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Figure 19: Symmetric Signal Detection [64] 

 

 When debonding occurs, the signal gradually decreases in amplitude until the signal 

terminates and the waveform becomes non-symmetric in the time domain. Depending on what 

region of the strain gauge is debonding, false indications could be given. Full elongation of the 

surface could be measured by the strain gauge while in tension. Partial elongation of the surface 

could be measured by the strain gauge during compression. Hence, the strain gauge grid is being 

pulled tight against the specimen’s surface while in tension and the grid is loose to the surface 

while in compression. The described case for debonding of the strain gauge is illustrated in 

Figure 20 [64]. 

 

 

Figure 20: Non-Symmetric Signal Detection [64] 
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Mitigation efforts involve cleaning the surface with 99% isopropyl alcohol prior to installation to 

ensure that the surface conditions are clean and follow the installation directions provided by the 

manufacture. 

 Wire lead termination failure occurs when the wire lead is almost to the point of complete 

detachment from the solder bead on the strain gauge. Failure could be caused from vibrations 

from the launch, improper soldering techniques during assembly, or if the strain gauge wires got 

snagged when the composite booms deploy. Figure 21 shows an example in the time domain for 

when lead termination is occurring on the strain gauge. The figure shows a normal signal for 

tension, but the signal for compression appears to be decreasing in amplitude due to weak signal 

[64]. Conducting a MVI on the strain gauges before and after vibration testing will assist with 

mitigating the chance of failure. 

 

 

Figure 21: Strain Gauge Signal for Lead Termination [64] 

 

 Operating outside the strain gauge’s temperature limits can result with insufficient data, 

which may show outliers in the data when compared to the signature recorded from testing [64]. 

It should be noted that when analyzing strain gauge data, it takes years of experience to 

understand what the signal is reporting, and expert knowledge will be needed when mission 

SeaLion is on-orbit. Implementing thermal protection on the composite booms will protect the 
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strain gauges from potential thermal failure. The likelihood was listed as likely (LL3) for 

debonding, wire termination, and thermal failure. 

 Over-straining of the strain gauge occurs when excessive loading exceeds the 

component’s designed operating limits. The strain gauge will not measure accurately if excessive 

dynamics occurs due to fatigue [64]. If the composite boom elongates beyond the strain gauge’s 

capability, the gauge could be potentially damaged and stop functioning. When evaluating the 

strain gauge data in the time domain, peak-to-peak will steadily increase with time as the 

composite boom may start to experience fatigue, which may lead to fracture. The likelihood was 

listed as highly likely (LL4). Conducting vibration testing on the composite boom, with the strain 

gauges attached will mitigate the risk of failure. 

 Radiation damage could impact the performance of the strain gauges or cause failure 

[64]. Radiation has been previously mentioned regarding the effects it can have with random bit-

flipping of data. The likelihood was listed as likely (LL3) but implementing radiation protection 

will help protect the data from radiation. Computations of the strain gauge data will be executed 

prior to being sent to the OBC. Programming errors could occur within the code, and the data 

could give false indications to the analyst when reviewing the data. The likelihood was listed as 

near certain (LL5) due to potential errors in the software. Conducting software testing for 

multiple scenarios will ensure that the coding is satisfactory. 

 The strain gauge wire leads could get snagged when the composite booms deploy, 

and the electrical signal could be compromised. The likelihood was listed as near certain 

(LL5) due to the complexity and number of moving parts that make up the DeCS payload. 

Mitigation strategies involve TVCT and functionality testing, which has previously been 

described. Table 16 shows the DeCS strain gauge FEMCA. and additional figures of the 

DeCS payload are shown in Appendix D. 
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Table 16: DeCS Strain Gauge FMECA 

 

 

3.5 Structure 

 ODU designed and manufactured mission SeaLion’s main structure in-house. The 

primary function of the structure is to safely hold all of mission SeaLion’s components, while 

maintaining structural integrity during launch and on-orbit. The structure was manufactured with 

a tolerance of 0.1 mm using Aluminum 6061 based on the material properties and the mass 

constraint that was required. A design decision was made to transform the original 3U structure 

into a 2U and 1U, in which the structures are mounted together. The 2U structure will support all 

of mission SeaLion’s components and the 1U structure will support the DeCS payload, which is 

shown below in Figure 22 [65]. Additional figures of mission SeaLion’s structure are shown in 

Appendix F. 
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Figure 22: 2U Structure (left) & 1U Structure (right) 

 

 The main structure is made of four separate parts that is assembled using fasteners. The 

four structures are as follows: top plate, bottom plate, columns, and connecting rod. The structure 

was designed with mounting pads to accommodate all components with, again, the use of 

fasteners. Due to mass constraints, multiple revisions of the design were made to shave off mass 

while still maintaining structural integrity [65]. Potential failure modes involve assembly of 

structure, fasteners, alignment, and structural integrity.  

 If improper care of the structural parts is taken during assembly, the material could be 

contaminated from foreign substances. The material may have foreign residue or lubricants from 

manufacturing. The most common contaminations are residues from human hands when 

handling materials. All materials will experience outgassing while on-orbit and contamination of 

structural parts will increase the level of outgassing on-orbit. Clean all materials using 99% 

isopropyl alcohol, while wearing latex gloves when assembling is an absolute must. 

 Assembling the structure and components together using very small fasteners is very 

meticulous. Human error during assembly could cause a failure during mission SeaLion. Having 

two team members work together while assembling mission SeaLion will prevent one individual 

making a mistake by themself. The severity was evaluated as having a catastrophic impact (LS5) 

and likelihood was evaluated as likely (LL3) for both assembly failure modes.  

 The fasteners that will be used to assemble mission SeaLion will consist of very small 

screws, nuts, and washers. The fasteners could fail if improper torque is applied, where 

vibrations from the launch could cause separation. A specified torque value prior to assembly 
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will be required. Installation of the fasteners could cross-thread if inexperienced team members 

are executing the assembly, which could cause the fasteners to pull-out during launch. Since a 

3U CubeSat is relatively small regarding size and components are tightly configured, proper 

alignment is crucial. If alignment is slightly off and a team member forces a fastener into place, 

additional stresses will be applied to the fasteners and mounting pads. Having tight but 

achievable tolerance will help mitigate potential failures regarding alignment. The severity was 

evaluated as having a major impact (LS4), while likelihood was evaluated as likely (LL3) for the 

described fasteners and alignment failure modes.  

 As previously mentioned, multiple revisions of mission SeaLion’s structure were made to 

shave off mass, but structural integrity could potentially be more prone to failure. Vibrations 

from the launch can cause fatigue to mission SeaLion’s structure, which could lead to the 

structure failing. The structure could experience deformation or collapse due to the high vacuum 

space environment. Deformation will cause strain to be induced on the structural fasteners. The 

structure may withstand low levels of deformation, but the internal components may fracture and 

cause failure. The likelihood was evaluated as near certain (LL5) for both the vibration and 

deformation failure modes. The structure could collapse, which would cause a catastrophic 

failure. The severity for the structural integrity failure modes were evaluated as having a 

catastrophic impact (LS5) The likelihood of the structure collapsing was evaluated as unlikely 

(LL2). Mitigating strategies involve conducting a FEA and vibration testing. Table 17 shows the 

FMECA for the structure. 
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Table 17: Structure FMECA 

 

 

3.6 Mission SeaLion Deployment and Start-Up 

 The FMECA for mission SeaLion deployment and start-up was executed with the 

assumptions that the pre-launch requirements were met from the launch provider. The standards 

that must be met satisfactorily include: the CSD Data Sheet [8], CDS Rev. 13, and 3U CubeSat 

Acceptance Checklist [4]. Once all requirements are verified to be satisfactory, the SeaLion 

CubeSat will be loaded inside the CSD and the remove before flight (RBF) pin will be extracted 

through the access port. The EPS electrical schematic in Appendix A and the associated EPS 

component list in Appendix B will assist to further understand this section. A FBD was created 

to display the sequence of events involving deployment and start-up of mission SeaLion and is 

shown in Figure 23. 
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Figure 23: SeaLion Deployment and Start-Up FBD 

 

An FTA for the deployment and start-up of mission SeaLion was developed to assist in 

identifying failure modes and is shown in Figure 24. 
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Figure 24: Deployment and Start-Up FTA 

 

 The RBF pin prevents SeaLion CubeSat from receiving power and the EPS will not 

receive power until the pin is removed [8, 66]. If the RBF pin fails due to mechanical binding, 

SeaLion CubeSat will not power on. If the RBF pin cannot be removed, the SeaLion CubeSat 

will be removed from the dispenser and appropriate actions will be taken. The severity of failure 

was evaluated as having a moderate impact (LS3). The likelihood of failure was evaluated as 

likely (LL3) due to the RBF pin being built in-house while following the requirements in CDS 

Rev. 13 [4].  

 When the RBF pin is extracted, three single pull double throw (SPDT) switches will 

close the circuit and are configured in accordance with the CSD Data Sheet [8]. The SPDT 

switch will only have one input, however, will have two outputs in which it can act like an on-off 
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switch depending on the circuit configuration [43]. If an individual SPDT switch “sticks” due to 

mechanical failure in the linkage, the circuit will remain open, and the EPS will never receive 

power. This failure occurs when there is high resistance in the switch, due to surface corrosion 

[43]. In the scenario where the SPDT switches do not close, the severity was evaluated as having 

a catastrophic impact (LS5) to mission SeaLion.  

 Selecting a SPDT switch that have gold or nickel contacts will still conduct to the base 

material if potential surface corrosion is of high concern [43]. Under all environmental 

conditions, the most reliable metal-to-metal contact is gold plated material [37]. Solid nickel 

contact material will also provide excellent corrosion resistance [37]. Since the RBF pin is 

extracted prior to launch on ground, a visual inspection, a continuity check using a volt-

ohmmeter and functionality testing, can be conducted prior to launch on the RBF pin and SPDT 

switches, preventing failure from occurring.  

 Northrop Grumman’s Antares rocket and the CSD could experience failure, but no effort 

was exhausted into evaluating potential failures for both, due to the design and testing being out 

of ODU CubeSat team’s capabilities. After successfully extracting the RBF pin, the CSD will be 

loaded onto the launch vehicle. Once Antares launches and reaches an altitude of roughly 180 

km, the CSD will deploy from the vehicle after stage 2. The CSD door will open, and the 

mechanical separation spring will extend.  

 A single plunger style separation switch is mounted on the exterior corner of mission 

SeaLion. Once mission SeaLion deploys from the CSD, the plunger on the separation switch will 

extend, which closes the circuit, hence sending an input signal to the SPDT switches. If the 

plunger on the separation switch does not extend, then the circuit will remain open which would 

result in a catastrophic impact (LS5) to the mission. The likelihood of failure was evaluated to be 

likely (LL3) for both the SPDT and separation switch failure. Mitigation strategies involve 

conducting an MVI, vibration testing and verifying the functionality of the plunger extending on 

switch after testing. Adding an additional separation switch in parallel for redundancy would 

increase the reliability. However, doing so may be compromised due to overall mass constraints 

implanted by the launch provider.  

 The separation switch will have a wire feeding to a connector on the EPS, which could 

short circuit due to the insulation on the wire breaking down from high temperatures. The 
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severity was listed as catastrophic impact (LS5) and a likelihood of unlikely (LL2). 

Implementing thermal shielding on all wires on-board with high temperature polyimide tape will 

add extra protection and will mitigate the wires from short circuiting.  

 Once the circuit closes, the EPS will be powered-on, in which power will be distributed 

to the Command and Data Handling (CDH) and a dwell time of 45 minutes will take place. After 

the dwell time is complete, the four UHF antennas will deploy. The UHF has an omni-directional 

antenna and will be used to communicate with the ODU ground station in Norfolk, VA [31]. The 

UHF was designed with the same burn wire mechanism that is used for the DeCS deployment, 

which was detailed in Section 3.4 Deployable Composite Structure Payload.  

 The burn wire mechanism could fail from launch vibrations and the tie-down cable could 

fail to thermally cut, preventing the UHF antennas from deploying due to insufficient current 

supply. Mechanical binding of the UHF antenna deployer could also prevent deployment. 

Conducting a thermal soak, cryogenic soak in the TVAC and verifying deployment between 

soaks outside of chamber will mitigate potential failure. The severity of the three UHF antenna 

failure modes was listed as a major impact (LS4) and a likelihood of failure was listed as likely 

(LL3) The failure modes associated with deployment and start-up operations are shown in Table 

18. 
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Table 18: Deployment and Start-Up Operations FMECA 

 

 

3.7 Outgassing 

 Components that operate in high-vacuum environments are subjected to outgassing and 

total mass loss (TML). Outgassing occurs when trapped gases are released spontaneously within 

a solid or liquid while in a vacuum [67]. Outgassing also occurs during overheating scenarios 

when the lithium-ion battery system starts to burn, and toxic gasses develop [35]. Researchers at 

NASA LaRC use a thermally controlled quartz crystal microbalance (TQCM) to estimate the 

amount of outgassed matter from a test specimen at different temperatures [68]. Changes in the 

quartz crystal resonant frequency is measured by the TQCM which is a type of sensor that can 

determine the amount and rate of a mass that is depositing onto the sensing crystals surface [69]. 

By adding an additional reference crystal and thermal control, outgassing of a test specimen in a 

vacuum can be monitored using a TQCM [69]. 

 The desorption of surface contaminates occurs when enough energy is achieved, reaching 

the molecules activation energy [68]. The molecules are now excited and move away from the 

reference crystal where they are absorbed to the sensing crystal on the TQCM [68]. The delta 
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frequency of the sensing crystal and the reference crystal can be quantified by the absorption of 

molecular mass, which can be used to estimate the effects of outgassing [68]. The concern in 

contamination control is not strictly on just how much mass is being outgassed, but also the 

amount of the outgasses’ mass will condensate onto a sensitive surface [70]. 

 Collected volatile condensable material (CVCM) is the quantity of matter that has been 

outgassed from a test specimen and condensed onto a collector, while at a specific temperature 

for a specific duration of time [71]. CVCM is expressed as a percentage of the initial specimen 

mass and is calculated using the difference in mass of the collector plate before and after the test, 

which is the condensate mass [71].  

 ODU does not have the resources to estimate outgassing from a TVAC testing, but 

spacecraft materials can be searched in NASA’s database and a materials identification usage list 

(MIUL), and estimates can be executed [68, 72]. Additional efforts can be executed to mitigate 

the amount of outgassing by performing a bake-out testing on each component. Bake-out testing 

is executed at high temperatures, typically in a TVAC which aims to remove impurities from the 

test specimens. Parameters used are just below vacuum chamber limits (95%), but special 

caution should be taken to ensure that the components are not exceeding their operational limits 

[73]. 

 Another method that is commonly used for determining if high levels of outgassing is 

occurring can be executed by closely monitoring the vacuum levels during a test. If the vacuum 

level changes drastically due to loss of vacuum, then there is an indication that the test specimen 

just experienced a high level of outgassing. This indication can be correlated to outgassing only 

if the test engineer has properly cleaned the inside of the TVAC and is confident that there are no 

active leaks present. An example that would indicate if high levels of outgassing were occurring 

is when the vacuum level is at the low 6’s (1𝑥10ିହ) and jumps to the mid 5’s (1𝑥10ିହ) 

instantaneously. The pressure profile will jump vertically and then will resemble an exponential 

curve function, as the vacuum pump tries to regain its set-point [73]. 

 TML is the total amount of material that is outgassed from a specimen, while at a specific 

temperature and pressure for a specific duration of time [70]. The conventional wisdom defines 

pass/ fail criteria for most spacecraft materials to be less than or equal to 0.1% CVCM and less 

than or equal to 1.0% for TML, which is specified in ASTM E595-07 [71]. The calculation for 
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TML involves the mass of the test specimen before and after TVAC testing and is expressed as a 

percentage of the initial specimen mass [70]. Equation 2 is used for calculating TML [71]. 

Equation 2: %𝐓𝐌𝐋 = (
𝐋

𝐒𝐈
) × 𝟏𝟎𝟎 

where: 

𝑀𝑎𝑠𝑠 𝑙𝑜𝑠𝑠: 𝐿 = 𝑆ூ − 𝑆ி 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑎𝑙𝑜𝑛𝑒: 𝑆ூ = (𝑆ூ + 𝐵ூ) − 𝐵ூ 

𝐹𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑎𝑙𝑜𝑛𝑒: 𝑆ி = (𝑆ி + 𝐵ூ) − 𝐵ூ 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛: 𝑆ூ (𝑔) 

𝐵𝑜𝑎𝑡: 𝐵ூ (𝑔) 

 The main concern regarding high levels of outgassing involves potential condensation on 

electrical components and damage to optics while on-orbit. The effects of outgassing could 

impact the performance of components, or the release of toxic gasses could cause an explosion. 

Therefore, extensive efforts should be made to mitigate potential failures from outgassing [35, 

67]. Mitigation strategies involve measuring the mass of the boat, initial specimen, and final 

specimen mass, which is used for calculating TML using Equation 2 [71]. Additional efforts 

involve monitoring outgassing levels by closely watching the vacuum level when conducting the 

TVCT [71, 74].  

 The material compositions of components regarding outgassing can be searched on 

NASA’s database and used for evaluation [72]. Selecting a material that has a low level of 

outgassing is desired for all material that will be on-orbit. Supply chain issues became a major 

constraint in 2022 due to several manufactures have long-lead times up to 6 months. Thus, 

mission SeaLion did not have many options for selecting batteries and other COTS components. 

3.8 Thermal Vacuum Chamber Set-Up 

 ODU received a TVAC that was manufactured by TotelTemp Technologies Inc. during 

the preliminary design phase of mission SeaLion [75]. It took several months to get the chamber 

set-up and configured with a coolant supply of liquid nitrogen (LN2). At first, the team did not 

know what was needed regarding LN2 fitting, LN2 dewar, LN2 supply configuration, safety 

equipment, valves, chamber cleaning supplies, etc.  
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 When the LN2 dewar was delivered, the team was not prepared regarding the scope of 

work that would be required to configure the supply to the TVAC. LN2 will vent off roughly 2% 

of its volume per day [73].  Meaning if testing is not ready to be started and the dewar sits, a 230 

L dewar will completely vent off between 4-6 weeks, depending on lab temperature. The LN2 

dewar that ODU used came with a relief valve that was set to 230 PSI from the gas supplier. 

Whenever the dewar was moved around in the lab, the relief valve would lift unexpectedly, and 

would exhaust for several minute. Even when no TVAC operations are in progress and the 

supply valve on the dewar is shut, an oxygen sensor should always be turned on when personnel 

are in the lab for safety. The oxygen sensor should either be placed close to the dewar or attached 

to personnel.  

 It is important to use the correct fitting when configuring a cryogenic supply line from 

the LN2 dewar to a TVAC. To avoid potential leaks during operations, Army Navy (AN) 

stainless-steel fittings were recommended and were used for ODU’s TVAC. Avoid using copper 

fitting unless there are no other option because the fittings have a history for leaking when being 

used with cryogenics [73]. A pressure regulator was also configured between the LN2 dewar and 

supply line to the TVAC to reduce the supply pressure.  

 A relief valve should have been configured downstream of the regulator and set to 90% 

of the maximum TVAC operating pressure but was not implemented into the system. Assembly 

of the supply line, pressure regulator, and several AN fitting was executed with the use of thread 

seal tape. Caution should be taken if grease is used on the fitting due to potential contamination 

and outgassing.  
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4.  RESULTS 

 

 The failure modes that were previously described were meticulously grouped together to 

avoid duplication. Mitigation strategies either suggested a design change or conducting an MVI 

and execution of multiple test methods on the components. Ideally, failure modes with the 

highest CN would be mitigated first. At the time of writing, mission SeaLion had not received 

any COTS components and custom components were still being developed. 

4.1 Design Changes Implemented 

Battery Pack  

 Potential voltage reversal of the batteries was evaluated as being a high-risk and a 

mitigation strategy was recommended for adding diodes to prevent the voltage from reversing 

[37]. A redesign of the battery configuration was made with two blocking diodes and eight 

bypass diodes, which is show in Figure 25. The two diodes shown at the top of the figure below 

are blocking diodes and the diodes between the battery cells are bypass diodes [31]. Table 19 

shows the FMECA for the mitigated battery failure mode. 

 

 

Figure 25: Redesign of Battery Configuration with Diodes 
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Table 19: Mitigated-Battery FMECA 

 

 

Electrical Connectors  

 The original design of the separation switch connector, electrical battery connector, and 

PC/104 multi-pin interface stack-through connector only had two pins in reference to power and 

ground. One out of three mitigation strategies involved adding additional pins for redundancy, 

which was implemented into the design [43]. Doing so greatly reduced the risk of failure for 

power supply and distribution throughout mission SeaLion. Table 20 shows the FMECA for the 

mitigated failure modes for electrical connectors on the EPS Board. 

 

Table 20: Mitigated-Electrical Connectors FMECA 

 

 

Soldered Joints 

 Additional mitigation strategies for soldered joints on-board mission SeaLion involve the 

solder alloy used during manufacturing. To avoid potential thermal damage to the PCB during 
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manufacturing, 63/37 Sn-Pb (tin-lead) solder was recommended for use due to the alloy’s 

eutectic temperature [59]. Eutectic alloys have a single melting and freezing point temperature, 

which means that the two phases are in equilibrium. The eutectic temperature for Sn-Pb is 183 

°C, which is determined by the point on the Phase Diagram called the eutectic point. The eutectic 

temperature for Sn-Pb has a lower melting point when compared to pure tin (232 °C) and lead 

(327 °C). The phase diagram for tin and lead is shown in Figure 26 [76]. Instructions were given 

to the manufacture to use 63/37 Sn-Pb solder, which reduced the risk of thermal damage to the 

EPS Board and Interface Board. Table 21 and Table 22 below shows the FMECA for the 

mitigated failure modes of soldered joints. 

 

 

Figure 26: Sn-Pb Phase Diagram [76] 
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Table 21: Mitigated-EPS Board Soldered Joints FMECA 
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Table 22: Mitigated-Interface Board Soldered Joints FMECA 

 

 

Electrical Power System Board 

 Mitigation strategies were made to the preliminary design of the EPS Board regarding 

manufacturing of the EPS Board that had not been considered. Requests were made to the 

manufacture to minimize cuts in the PCBs copper plans and to use vias with thermal pad’s PCB 

footprint. This will assist with transferring heat generated from the voltage regulators and the 

other ICs [44]. Another design change was implemented to the EPS Board in which an addition 

input capacitor was added to each of the voltage regulators [44]. Implementation of the design 

changes improved the EPS Board and lowers risk of failure. 
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Table 23: Mitigated-EPS Board FMECA 

 

 

Deployable Composite Structure Payload 

 The composite structure boom for the DeCS payload has gone through partial 

characterization testing to understand the potential structural degradation. A FEA and bending 

testing have been conducted to verify the integrity of the boom which is shown in Figure 27. 

Additional testing is still in progress and will be required to mitigate failure to the lowest risk. 

 

 

 

Figure 27: Composite Boom Bending Test 

 

Mitigation efforts have been executed to reduce the risk of thermal damage to the composite 

booms and strain gauges. Thermal protection was accomplished with the use of a low-cost, 
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passively thermal management by utilizing the Yoshimura folding pattern sleeve on the 

composite booms show in Figure 28 below.  

 

 

Figure 28: Composite Boom Origami Thermal Shielding 

 

Table 24: Mitigated-DeCS Deployment FMECA 

 

 

4.2 Thermal Vacuum Chamber Test Plan 

 A TVAC test plan overview was made to show key steps needed to ensure that proper 

execution occurs. Proper handling of test specimens and cleaning of chamber is important to 

avoid outgassing. Determining test level for components can be guided using MIL-STD1540 and 

LSP-REQ-317.01 [4]. Figure 29 below shows a general test plan that can be used for testing any 

component using the TVAC. 
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Figure 29: TVAC Test Plan 

 

4.3 Deployable Composite Structure Payload Test Plan 

 A test plan was written with a few additional steps since the DeCS payload has several 

3D printed sub-component parts. Moisture will be present in the pores of the 3D printed material 

and a thermal soak is required to extract any moister that may exist [73]. Strain gauge data will 

be recorded for each payload deployment verification and will be used to generate a signature. 

Capturing the strain gauge signature during testing is extremely important and will be used for 

understanding what an acceptable profile of data looks like.  

 The vacuum level will take longer for the TVAC to achieve the set point due to moister 

being extracted out of the 3D printed material during the first thermal soak. The TVAC will 

reach a stagnation point that can be monitored by watching the pressure profile on the TVAC’s 

controller display. The vacuum level will eventually reach the desired level, but at a slower rate. 

The parameter for the first thermal soak was recommended by a vacuum chamber testing 

laboratory researcher at NASA LaRC [73]. Figure 30 shows a block diagram for testing the 

DeCS payload. 
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Figure 30: DeCS Payload Test Plan 

 

4.4 Software Test Plan 

 Software testing will be executed to ensure that the coded script achieves the intended 

output(s). Mission SeaLion’s software will first be tested at the component level to ensure that 

every individual script of code works as intended. Upon completion of component testing, the 

software script will be integrated into a larger script and tested again to ensure the intended 

outputs are still being achieved [77].  

 Currently ODU’s CubeSat team is preparing to test the orbit propagation software. 

During initial start-up, the first recorded GPS coordinates will be sent to the OBC. Time will be 

captured using the real time clock (RTC) from the OBC. The combination of the GPS 

coordinates and time from the RTC will be used as mission SeaLion’s initial conditions. 

Simulations of GPS and time data will be used as inputs to the on-board propagation software. 

The orbit propagation algorithm will then compute estimates. The data is expected to convert the 

input and output two-line element (TLE) data. Each mission mode will have converted TLE data 

when downlinked to the ground station. 
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 Verifications of the outputs the simulation will be expanded to simulate a full orbit and 

verify that the propagation is updating accordingly. Once the software is proven to work as 

designed, it will be integrated to the OBC and tested with real inputs. Integration testing will be 

conducted for all sensors and timers on-board. Fault injection testing will also be conducted at 

any point where it is determined to be appropriate to ensure a robust software script has been 

written. This type of testing involves introducing faults or errors to the scripted code to see how 

the software responds. If any errors are discovered, the scripted code will be modified and tested 

again [77]. 
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5.  CONCLUSION 

 

5.1 Lessons Learned 

 There are several lessons learned from the extensive time spent on this missions’ efforts. 

ODU’s CubeSat team was compiled with a group of diverse students at different levels in their 

academic careers. Nearly every team member had no experience with working with satellites or 

had experience working as a professional in the engineering industry, which created a large 

learning curve. A valuable lesson was learned to ask experts for help if resources are available 

because one might be surprised on how willing professionals are to assist.  

 ODU’s CubeSat team had issues with simple communication. Several design changes 

were made to systems by lead engineers and unintentionally, information was not always 

translated with other team members. As a result, excessive re-work was conducted to adjust for 

modifications that impacted the FMECA and other adjacent systems. Time constraints are 

always one of the leading restrictions for university lead CubeSat missions and valuable time and 

effort was spent modifying other system designs instead of progressing forward. Lastly, to 

execute a complex objective like mission SeaLion, a team must be built with members who are 

committed to achieving their highest level of ability. 

5.2 Conclusion  

 A FMECA was conducted for mission SeaLion to mitigate potential failures from 

occurring on-orbit, which has never been executed before in ODU’s CubeSat program. Mission 

SeaLion was ODU’s second CubeSat in the universities history and the CubeSat program is still 

a relatively new and developing program that will adjust and fine-tune itself with more missions. 

The FMECA was executed on ODU’s custom-built components which included the Interface 

Board, EPS Board, and DeCS payload.  

 The Interface Board consisted of interfacing mission SeaLion components’ and executing 

data communications with the on-board computer. The EPS is responsible for monitoring, 

regulating, and distributing power to all the systems on-board. The DeCS was designed with 

multiple 3D printed mechanical components, along with strain gauges that will be used to collect 

data on-orbit. The FTA was utilized for driving down to root causes and identifying failure 
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modes. FBD were generated to display system operations and contributed to identify the 

downstream effects created from failures when they occur.  

 The CA was then executed, which ranked the failure modes based on established criteria 

that was tailored specifically for mission SeaLion and ODU’s CubeSat experience. A qualitative 

approach was used for establishing the criteria and a numbering scale was applied accordingly. 

Extensive mitigation plans were made which included utilizing ODU’s new TVAC. Since no 

components had been delivered to ODU at the time of writing, component testing was not 

executed. The FMECA was re-executed for the component failure modes that were re-designed. 

Thus, reducing the criticality of the failure from occurring during mission SeaLion.  

 Since the SeaLion CubeSat components had not been received during the spring of 2022, 

mitigation strategies involving re-design had only been pursued at this time. The design changes 

that were implemented included additional diodes added to the battery pack configuration, 

additional electrical pins for redundancy, and additional input decoupling capacitors were added 

to both 3.3-VDC and 5-VDC converters on the EPS Board. Requests were also instructed to the 

manufacturer to utilize 63/37 Sn-Pb solder, minimize cuts in the PCB’s copper planes and to 

implement vias with thermal pads for both the PCB’s footprint during construction. 

Implementing these design changes significantly reduced the CN of each associated failure 

modes. Thus, increasing the reliability of the SeaLion CubeSat as preparations are being 

executed for having a successful mission in March 2023. 

5.3 Future Work 

 Extensive efforts were conducted on setting up ODU’s new TVAC and tests were 

planned to mitigate potential failure modes, which is waiting for execution once components are 

received from manufactures. Utilizing the TVAC for understanding how components and 

materials respond in a space simulated environment should be a top priority for future ODU 

CubeSat teams. Efforts on understanding electrical components, 3D printed materials, and 

outgassing, are a few suggestions moving forward. When tests are being conducted, collection of 

data should be captured to fully understand what period components are operating within the 

Bathtub Curve, in reference to the infant mortality or normal operating life period previously 

shown in Figure 12.   
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 The FMECA that was executed for mission SeaLion should be used as a foundation for 

future ODU CubeSat missions and will contribute to having a successful 2023 mission. 

Expanding and improving on this work should be continued for future CubeSat missions. 

Execution of challenging objectives may not always go as planned and teams will experience 

failures, but each time failure occurs, knowledge is obtained and can be utilized to prevent future 

failures from occurring.   
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A. EPS ELECTRICAL SCHEMATIC  
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B. EPS COMPONENT LIST 
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C. SOLDERED JOINT AND PCB INSPECTION  

 

When the EPS Board and Interface Board are received from the manufacturer, extensive 

inspection shall be conducted on both the soldered joints and PCB. Soldering components 

manually present a potential risk of voids, blistering, separation of component, burned insulation 

or thermal damage to the PCB from excessive thermal input [78, 79]. Thermal damage is a high 

risk for causing failures on the printing traces throughout the PCB [59]. Thermal damage will 

look like a radius of a circle around the soldered bead and the PCB may show signs of slight 

discoloration [59]. 

First, ensure that the PCB was manufactured to the correct dimensions and that the correct 

electrical components are present [79]. CubeSats have extremely tight fits and alignment must be 

perfect or issues may arise during assembly.  

Conduct a MVI using a 10x magnification glass to ensure the quality of the soldered beads are 

satisfactory and that the components are properly fused to the PCB [59]. Have multiple team 

members conduct the MVI independently to increase the chances of finding defects if 

discrepancies exist, since human error is inevitable [59].  

Closely look for the following when conducting the MVI: 

 Soldered bead should have fusion to both material members 

 Soldered bead is not concave 

 Soldered bead does not show any signs of a roll on the joint ‘toes’ 

 Solder bead is smooth without indications of voids or cracks [59] 

 No excessive solder material outside of the soldered joint area 

 No indications of thermal damage to the PCB 

 No signs of PCB defects which include pinholes, pits, dents, scratches, and defects on the 

printing traces [79] 

After the MVI is satisfactory, conduct an electrical continuity check using a volt-ohmmeter to 

ensure that all electrical components have sufficient continuity.  
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D. DECS PAYLOAD COMPONENT AND ASSEMBLY 

 

 

Figure D. 1: Ratchet and Paw Locking Mechanism 

 

 

Figure D. 2: Spool Piece 

 



91 
 

 

Figure D. 3: DeCS Payload Mount (left) & 1U DeCS Payload (right) 

 

 

Figure D. 4: Testing of Composite Boom 
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E. MISSION SEALION ASSEMBLY 

 

 

Figure E. 1: Mission SeaLion Fully Deployed 

 

Figure E. 2: Mission SeaLion Constituents  
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F. MISSION SEALION STRUCTURE 

 

 

Figure F. 1: Mission SeaLion Structure Assembly Structure 

 

 

Figure F. 2: Exploded View of the 2U Structure 
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G. POWER BUDGET AND BALANCE 
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H. MISSION SEALION COMPONENT LIST 
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