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ABSTRACT 
 

EFFECTS OF TRANSPARENCY AND HAZE ON TRUST AND PERFORMANCE 
DURING A FULL MOTION VIDEO ANALYSIS TASK 

 
Sarah C. Leibner 

Old Dominion University, 2020 
Director: Dr. James P. Bliss 

  

 Automation is pervasive across all task domains, but its adoption poses unique challenges 

within the intelligence, surveillance, and reconnaissance (ISR) domain. When users are unable to 

establish optimal levels of trust in the automation, task accuracy, speed, and automation usage 

suffer (Chung & Wark, 2016). Degraded visual environments (DVEs) are a particular problem in 

ISR; however, their specific effects on trust and task performance are still open to investigation 

(Narayanaswami, Gandhe, & Mehra, 2010). Research suggests that transparency of automation 

is necessary for users to accurately calibrate trust levels (Lyons et al., 2017). Chen et al. (2014) 

proposed three levels of transparency, with varying amounts of information provided to the user 

at each level. Transparency may reduce the negative effects of DVEs on trust and performance, 

but the optimal level of transparency has not been established (Nicolau & McKnight, 2006). The 

current study investigated the effects of varying levels of transparency and image haze on task 

performance and user trust in automation. A new model predicting trust from attention was also 

proposed. A secondary aim was to investigate the usefulness of task shedding and accuracy as 

measures of trust. A group of 48 undergraduates attempted to identify explosive emplacement 

activity within a series of full motion video (FMV) clips, aided by an automated analyst. The 

experimental setup was intended to replicate Level 5 automation (Sheridan & Verplank, 1978). 

Reliability of the automated analyst was primed to participants as 78% historical accuracy. For 

each clip, participants could shed their decision to an automated analyst. Higher transparency of 



 

automation predicted significantly higher accuracy, whereas hazy visual stimuli predicted 

significantly lower accuracy and 2.24 times greater likelihood of task shedding. Trust 

significantly predicted accuracy, but not task shedding. Participants were fastest in the medium 

transparency condition. The proposed model of attention was not supported; however, 

participants’ scanning behavior differed significantly between hazy and zero haze conditions. 

The study was limited by task complexity due to efforts to replicate real-world conditions, 

leading to confusion on the part of some participants. Results suggested that transparency of 

automation is critical, and should include purpose, process, performance, reason, algorithm, and 

environment information.  Additional research is needed to explain task shedding behavior and 

to investigate the relationship between degrade visual environments, transparency of automation, 

and trust in automation.
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CHAPTER I 

INTRODUCTION 
 

 

Military operations rely increasingly on intelligence, surveillance, and reconnaissance 

(ISR).  Operations in degraded visual environments (DVEs) are particularly dependent on ISR 

assets that offer the capability to “see” through fog, dust, or darkness.  Advances in technological 

capabilities have led to an unprecedented increase in the amount of information available from 

ISR assets.  This information increase far outpaces the number of available human analysts 

(McDermott et al., 2015; Yarovinskiy, 2017).  Full motion video (FMV) is motion imagery 

transmitted at 31-60 Hz (Plott, McDermott, & Barnes, 2017), similar to television frame rates.  

FMV is a key real-time ISR asset, but also one of the most data- and time-intensive, making it 

difficult for field systems to transmit at high quality and for humans to comprehensively analyze 

trends.  Solutions include reducing the amount of data transmitted from the sensor and 

automating target identification and tracking (Kreitmair & Coman, 2014; Poostchi, 2017).  As 

automated FMV analysis increases in sophistication, human analysts’ ability to work with these 

and other automated ISR systems becomes increasingly important.        

Currently, FMV analysts must monitor continuously streaming, near-real-time video 

steams to identify anomalous objects or activities (Cordova et al., 2013).  This task involves 

building a detailed picture of the pattern of life of an area, so that suspicious activity can be 

differentiated from benign activity.  Other common tasks include identifying and tracking 

specific targets, monitoring targeted areas for activity, providing overwatch for patrols, and 

coordinating fire support for ground troops.  These tasks vary from simple and repetitive to high-
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speed, dynamic, and complex.  In degraded visual environments, FMV can provide critical 

information for operations, but the analytic burden on human analysts increases dramatically.   

Transparency of automation is key to improving user performance (Chen et al., 2014; 

Itoh, 2010).  Because automation should ideally reduce the analyst’s task load, systems must be 

able to adjust the amount of information provided in real time to enable optimal performance.  

Transparency affects use of automation both directly and indirectly through trust (Nilsson, Laere, 

Susi, & Ziemke, 2012).  In turn, appropriate trust in automation improves situation awareness 

and decision making (Endsley, 1996; Nilsson, Laere, Susi, & Ziemke, 2012).      

Automated FMV Analysis 

 Automation of FMV analysis could reduce the perceptual and cognitive burden of FMV 

exploitation, particularly over widely dispersed areas or times or in DVEs.  Other potential 

benefits include increasing the amount of FMV that can be exploited, improving the rate at 

which actionable intelligence is produced, and facilitating the use of FMV in multi-source 

intelligence (Thissell et al., 2015).  Success of these goals can be assessed by considering four 

activities: instance recognition, category recognition, activity recognition, and target tracking 

(Cordova et al., 2013).  Cordova et al. define instance and category recognition, respectively, as 

object recognition and identification (e.g., a T-54/55 Main Battle Tank), and determining 

whether an object belongs to a general category (a tank).  Activity recognition seeks to identify 

specific human actions (e.g., Improvised Explosive Device emplacement activity), whereas 

tracking follows the movement of an object through a sequence of images (e.g., tracking a 

suspicious vehicle).  These functions rely on computer vision algorithms, and current 

implementations must exchange accuracy for ease of implementation and computing efficiency, 

due to the limitations of available platforms.   
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Figure 1 
  
Advanced Video Activity Analytics Interface 

Note. Adapted from Schweitzer, K. M., Ries, A. J., McDermott, P. L., Plott, B. M., Wilson, E. 
A., & Morrow, G. P. (2018). Human Factors Evaluation of Advanced Video Activity Analytics 
(AVAA) Functionality (No. ARL-TR-8301). US Army Research Laboratory, San Antonio. 

 

 

Advanced Video Activity Analytics (AVAA) is a system currently under development by 

the Army Research Laboratory.  Figure 1 depicts the AVAA user interface.  It is anticipated to 

become the Army’s FMV exploitation system of record (McDermott et al., 2015).  AVAA has 

the capability to detect, classify, track, and annotate persons, vehicles, and objects, and to filter 

video segments according to the Video National Imagery Interpretation Rating Scale (V-NIIRS) 

rating or by annotations on the video (Table 1 lists the VNIIRS rating scale with examples of 

each rating). The V-NIIRS scale is commonly used by military and government agencies to rate 

the quality of motion imagery.  Each frame in a video has its own rating, so a video will have a 

range of V-NIIRS ratings.   
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Table 1 

*Note:  GRD = Ground Resolved Distance.  Adapted from Plott, B. M., McDermott, P. L., & 
Barnes, M. (2017). Advanced Video Activity Analytics (AVAA): Human Performance Model 
Report (No. ARL-TR-8255). US Army Research Laboratory Aberdeen Proving Ground United 
States. 

 

 

The AVAA system is currently in Phase II of development, so no accuracy data are yet 

available, although user testing has occurred.  A study of the V-NIIRS filtering function found 

Video National Imagery Interpretation Scale 
V-NIIRS rating Identifiable targets 

0 Interpretability of the imagery is precluded by obscuration, 
degradation, or very poor resolution.  

1 
[> 9.0 m (GRD*)] 

Detect a medium-sized port facility and/or distinguish between 
taxi-ways and runways at a large airfield.  

2 
[4.5‒9.0 m GRD] 

Detect large static radars.  
Detect large buildings (e.g., hospitals, factories).  

3 
[2.5‒4.5 m GRD] 

Detect the presence / absence of support vehicles at a mobile 
missile base.  
Detect trains or strings of standard rolling stock on railroad 
tracks (not individual cars).  

4 
[1.2‒2.5 m GRD] 

Detect the presence of large individual radar antennas. Identify 
individual tracks, rail pairs, control towers.  

5 
[0.75‒1.2 m GRD] 

Identify radar as vehicle-mounted or trailer-mounted.  
Distinguish between SS-25 mobile missile TEL and Missile 
Support Vans in a known support base, when not covered by 
camouflage.  

6 
[0.40‒0.75 m GRD] 

Distinguish between models of small/medium helicopters. 
Identify the spare tire on a medium-sized truck.  

7 
[0.20‒0.40 m GRD] 

Identify ports, ladders, vents on electronics vans.  
Detect the mount for antitank guided missiles (e.g., SAGGER 
on BMP-1).  

8 
[0.10‒0.20 m GRD] 

Identify a handheld small-arms munition (e.g., SA-7/14, 
REDEYE, STINGER). Identify windshield wipers on a vehicle.  

9 
[ < 0.10 m GRD] 

Identify vehicle registration numbers on trucks. Identify screws 
and bolts on missile components.  
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that analysts viewed 30% less video than when filtering was unavailable, and located 40% more 

targets of interest (McDermott et al., 2015).  Discrete event simulation modeling based on these 

results suggested that AVAA could reduce historical video analysis time by 70%; that is, 

reviewing FMV feed later for non-time-critical tasks.  However, real-time analyses, that is, 

viewing current FMV feed for time-critical tasks, were not significantly faster when using 

AVAA (Plott et al., 2017).  A follow-on investigation comparing conditions with and without the 

automated annotation function found no significant difference for measures of task completion 

time or accuracy (Schweitzer et al., 2018). This suggests that task type and time availability 

affect the ability of automated systems to improve the performance of human analysts.  

Although participants in Schweitzer et al.’s experiment were able to change automated 

annotation status from the default of “suggestion” to “reject” or “agree”, the authors did not 

collect data that reflected users’ level of agreement with the automation.  Additionally, the 

automated annotations were restricted to yellow borders around an object of interest; the 

automation’s reasoning process was not communicated. Poostchi, Palaniappan, and Seetharaman 

(2017) developed a computer vision algorithm that accurately detects and tracks objects.  Color, 

intensity, gradient, and edge features are used in conjunction with background filters and path 

prediction.  Poostchi et al. compared performance results from FMV testing with 61 

contemporary object tracking algorithms. The new algorithm ranked 11 out of 62, losing the 

target 1.3 times on average.  The best object recognition and tracking algorithms tested using the 

2016 Visual Object Tracking Challenge dataset lost targets about .8 times per video sequence on 

average. As an example of the complexity of the tracking task, parallax of tall buildings can 

induce apparent motion (wobble) in FMV, resulting in motion detection false positives. 
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Poostchi’s context-aware algorithm was able to reduce false positives to 16% by filtering out 

buildings.   

Yarovinskiy (2017) discussed contemporary algorithms designed to automatically detect 

suspicious activity within human crowd footage.  Traditionally, suspicious activity has been 

identifiable only after an analyst acquires knowledge of the region’s pattern of life from hours of 

monitoring an area (Kuwertz, Sander, Pfirrmann, & Dyck, 2017).  Automated detection can  

reduce analysts’ cognitive workload levels by identifying video segments containing anomalous 

behavior.  Automated detection algorithms are either supervised or unsupervised by human 

operators.  Supervised algorithms detect anomalies based on preloaded rules, whereas 

unsupervised algorithms detect anomalies based on statistical analysis of detected activities.  

Eight contemporary algorithms achieved 75-90% accuracy while analyzing camera footage of a 

pedestrian walkway at the University of California, San Diego (Yarovinskiy, 2017).  

Finally, another approach to automated FMV analysis reduces transmission of video from 

an unmanned aerial system (UAS) by selecting regions of interest based on content.  This 

approach has the additional advantage of reducing transmission-related quality loss.  The main 

disadvantage is that any footage that may contain unidentified regions of interest will be 

unavailable.  Kölsch and Zaborowski (2014) developed an algorithm that achieved 77.2% 

accuracy identifying vehicles at Camp Roberts, California, with 0.2 false positives on average 

per image.  However, only still imagery was used.  

FMV video feed is available to analysts on several technological platforms, including 

stationary computer terminals, displays in mobile tactical ground stations, and even smartphones 

(Gilmore, 2016; Madden et al., 2014; see Figure 2 for an example of a mobile FMV application 

interface).  Mobile FMV analysis exacerbates the challenges of limited bandwidth and  
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Figure 1  

Mobile FMV System 

 

Note. Adapted from Madden, D., Choe, T., Deng, H., Gunda, K., Gupta, H., Ramanathan, N., … 
Hakeem, A. (2014). Mobile ISR: Intelligent ISR management and exploitation for the 
expeditionary warfighter. In 2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 
1–11. Retrieved from https://doi.org/10.1109/AIPR 

 

 

resolution, necessitating advanced approaches discussed above such as automated region of 

interest selection and prioritization (Kreitmair & Coman, 2014).  Other challenges include 

narrow fields of view (FOVs), degraded visual environments (DVEs), and problematic 

environments with excessive clutter, terrain, shadows, and motion (Olson, Gaudiosi, Beard, & 

Gueler, 208; Parker, 2015; Poostchi, 2017). Operators must be aware of these limitations to make 

informed decisions about automation usage. 
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Levels of Automation 

 Automation has been defined as full or partial replacement of a function previously 

carried out by the human operator (Parasuraman, Sheridan, & Wickens, 2000).  Although 

researchers have developed numerous automation models, Sheridan and Verplank’s Ten Levels 

of Automation (1978) remains the most commonly cited model.  The scale ranges from low (1: 

no computer assistance) automation to high (10: human-out-of-the-loop system) automation 

(Sheridan & Verplank, 1978; Table 2).  Automation handles mundane or repetitive tasks, freeing 

humans to engage in more critical work.  It also sorts and integrates large quantities of 

information and manages information visualization (Cordova et al., 2013; Parasuraman & Riley, 

1997).  However, the capabilities of computer vision still trail human abilities in object and 

 

 

Table 2 

Levels of Automation 

LOW  
 1. The computer offers no assistance: Human must take all decisions 

and actions 
2. The computer offers a complete set of decision/action alternatives, 

or 
3. Narrows the selection down to a few, or 
4. Suggests one alternative;  
5. Executes that suggestion if the human approves, or 
6. Allows the human a restricted time to veto before automatic 

execution, or 
7. Executes automatically, then necessarily informs the human, and  
8. Informs the human only if asked, or 
9. Informs the human only if it, the computer decides to 
10. The computer decides everything and acts autonomously, ignoring 

the human 
HIGH  

Note. Adapted from Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of 
undersea teleoperators. Cambridge, MA: Massachusetts Inst Of Tech Man-Machine Systems 
Lab. 
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activity recognition (Khosla, Uhlenbrock, & Chen, 2017).  Therefore, automation reliability is 

imperfect, which in turn may impact user trust and performance. 

Reliability 

Decision-making research approaches such as decision ecology and Bayesian inference 

have been applied to predict users’ behavior when interacting with unreliable automation.  

Decision ecology considers factors in the decision environment, such as the source, value, 

reliability, context, and cost of accessing information to aid choice making.  Bayesian inference 

principles suggest that a rational agent assesses the current probability of an event based on the 

prior probability, updated with the outcome of each new trial.  These models agree with previous 

studies that automation will result in reduced performance when reliability falls below 70%, at 

least when the reliability level is consistent (Acharya et al., 2018; Wang, Zhang, & Yang, 2018; 

Wickens & Dixon, 2007).  Automated video analysis systems currently achieve between 70% 

and 91% object recognition accuracy, with even higher object detection rates (Gaszczak, 

Breckon, & Han, 2011; Kölsch & Zaborowski, 2014; Muncaster et al., 2015; Poostchi, 2017; 

Yarovinskiy, 2017), and are well above the 70% threshold on average (M = .82, SD = .06).  

Although Mishler et al. (2017) suggest that feedback may result in better reliability estimates 

than priming (providing users an estimate of system reliability prior to use), priming reliability 

reduces session time as well as the possibility that environmental factors such as DVEs may 

affect reliability estimates (Schaefer et al., 2016).   

Human-Automation Trust 

 Trust of automation impacts SA, decision making, complacency, and detection of 

deception (Biros, Daly, & Gunsch, 2004; Chung & Wark, 2016; Parasuraman & Riley, 1997).  
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Overtrust is the most common cause of misuse and disuse of automation (Lee, 2008).  This leads 

to complacency, lack of attention, and overreliance on heuristic decision making.  Overtrust also 

compounds the effects of errors in automation (Rovira, McGarry, & Parasuraman, 2007; 

Wickens et al., 2007).  Though lower trust can improve performance by increasing operator 

attention, trust that is excessively low can result in automation disuse and decreased task 

performance.  Therefore, levels of trust calibrated to an automated system’s reliability are 

necessary for optimal performance (Chen & Terrence, 2009).  Low trust is often referred to as 

distrust; however, some argue that distrust is negative trust (regarding a system as harmful or 

nefarious), distinct from negation of trust (uncertainty about the trustworthiness of the system; 

Dimoka, 2010; Itoh, 2010; Marsh & Dibben, 2005).  Mistrust is defined as misplaced trust.  

Mistrust can occur when a user either trusts unreliable automation, or distrusts reliable 

automation (Muir, 1994).  Both distrusting and mistrusting automation lead to disuse, which 

often manifests as missed signals or slower reactions (Parasuraman & Riley, 1997).  Current self-

report instruments, however, do not distinguish between the subtypes of trust.   

The current study taps into negation of trust, because the primary effect of degraded 

visual environments (DVEs) and inadequate transparency is increased uncertainty about the 

accuracy of the automation.  Accuracy, speed, and workload are all critical components of 

performance (Wickens, Hollands, Banbury, & Parasuraman, 2015).  Misses are especially 

problematic in FMV analysis, because a missed target could result in casualties.  Additionally, 

speed can be critical when missions occur in real time (Cordova et al., 2013).  Other factors that 

affect trust include automation reliability, as previously discussed, and information quality (i.e., 

DVEs) and transparency of automation, which are the variables of interest in this study (Bailey 

& Scerbo, 2007; Chen et al., 2018; Parasuraman, Mouloua, & Molloy, 1997).  
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Situation Awareness and Decision Making 

 The purpose of ISR is to enhance situation awareness (SA) and decision making (Cook, 

Angus, & Adams, 2004).  Any discussion of automation or design, therefore, must consider 

potential impacts on these outcomes.  SA includes perceiving and understanding elements in the 

environment, conceptualizing their interaction, and predicting the status of such elements in the 

future (Endsley, 1995).  These are also critical elements of transparency of automation, as 

discussed later.  SA affects performance and decision making by enhancing attention, perception, 

and memory (Sohn & Doane, 2004).  Decision making results from intuitive processes that 

match current challenges with previously successful strategies, as well as deliberate processes 

that analyze challenges according to set rules (Klein, 2008).  Automation has the potential to 

improve these processes, but when poorly implemented, decision quality is reduced. 

Poorly implemented automation reduces SA by inducing operator complacency, fostering 

passive interactions with the system, and limiting task process feedback to the operator (Endsley, 

1996; Nilsson, Laere, Susi, & Ziemke, 2012; Ruff et al., 2004).  Complacency occurs when 

humans over-trust automation.  They reduce their attention to automated tasks, and therefore are 

unaware of errors made by the automated system.  Complacent operators show reduced 

comprehension of information and poor manual operating skills (Parasuraman et al., 2000).  

When automated tasks provide minimal feedback, operators lose the ability to determine 

information source, reliability, and analytic rules.  Both reliable and unreliable automation can 

negatively impact SA when attention is reallocated to other tasks (Onnasch, Wickens, Li, & 

Manzey, 2014).   

Overreliance on automation negatively affects decision making when the automation 

recommends decisions (manifested within Levels 5-10 of Sheridan & Verplanck’s model; Rovira 
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et al., 2007).  Heuristic decision making may be troublesome if false alarms and misses are 

treated equally.  In ISR, false alarms are preferable to misses because the implications for misses 

are greater (Cordova et al., 2013).  When imperfect automation necessitates additional human 

decision-making, performance may suffer.  Decision making may be even worse when 

automation that is considered to be reliable behaves in an unreliable manner (Endsley & Kaber, 

1999).  To mitigate these effects, most researchers recommend that operators be kept in the loop 

(Endsley, 1996; Onnasch et al., 2014).  Current FMV analysis systems represent automation 

Level 5, executing an automated suggestion only when the operator approves (Sheridan & 

Verplank, 1978).  Therefore, operators should be kept in the loop and potential decrements due 

to over-reliance on automation must be mitigated. 

Degraded Visual Environments  

 Degraded visual environments (DVEs) are of particular concern to military operators; 

enemy forces often gain an advantage during low-visibility conditions (Knights & Mello, 2017).  

Within FMV, DVEs can arise from variable atmospheric conditions, illumination, transmission 

errors, resolution, noise, background motion, clutter, or overloaded or weak networks (Harguess, 

Shafer, & Marez, 2017; Hollock, 2017; Kölsch & Zaborowski, 2014; Kreitmair & Coman, 2014; 

Parker, 2015).  Atmospheric conditions can be corrected by post-processing algorithms (Zhang, 

Li, Qi, Leow, & Ng, 2006); however, the most reliable corrective approaches are too slow for 

real-time FMV applications, whereas faster approaches are unable to achieve high image quality 

(Kumari & Sahoo, 2016).  Currently deployed aerial ISR platforms must still fly lower and 

slower in foggy conditions to collect sufficient quality video (Menthe, Hura, & Rhodes, 2014).  

Illumination, clutter, and camouflage issues are often addressed by overlaying electro-optical and 

thermal feed visualizations (Gaszczak et al., 2011; Parker, 2015), but not all FMV sensors have 
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this capability (Myhr et al., 2018).  Reducing bandwidth demands by identifying regions of 

interest to transmit, rather than transmitting the full video, can reduce transmission errors and 

degradation; however, this approach risks omitting important areas of interest (Kölsch & 

Zaborowski, 2014).  Resolution is often exchanged for bandwidth. The average military FMV 

resolution is 480x720 pixels, which is adequate for object recognition at around 90%, but results 

in very small fields of view (Ross & Coman, 2014).  Therefore, context is often lacking.  The 

implication for automated video analysis users is that FMV will either be degraded or lack 

context, making it difficult to analyze, and that automated analysis systems will be unreliable.   

 Atmospheric haze is a type of DVE that negatively affects the sharpness, contrast, and 

brightness of images (Guevara et al., 2017; Kahraman & De Charette, 2017).  Haze consisting of 

1-10 μm aerosol particles scatters ambient light and reduces visibility.  Haze particles take the 

form of smoke, fog, humidity and air pollutants (Kahraman & De Charette, 2017).  Haze varies 

greatly across geographic environments; for example, the visual range on an average day in the 

eastern U.S. is 17 km, while the visual range on an average day in the western U.S. is 155 km 

(Molenar, Malm, & Johnson, 1994).  Even in the absence of visible fog, haze can noticeably blur 

imagery taken at optical path distances of over 1.5 km (Kopeika et al., 1998).  Because UAVs 

collect FMV from altitudes of 500 m (smaller crafts, night-time) to 5.8 km (larger crafts, 

daytime), haze represents a common source of degradation (Menthe et al., 2014).  Haze is 

measured by calculating a scattering coefficient; a coefficient of 10 mm-1 corresponds to 

approximately 50 km visibility on average, whereas 50 mm-1 corresponds to approximately 6 km 

visibility (National Research Council, 1993).  For example, a one-year collection of scatter 

values around Kanpur, India found values ranging from 58 to 584 mm-1 (Ram et al., 2016).   
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Current solutions are unable to address all types of DVE.  Degradation of FMV, 

therefore, presents a challenge to automated video analysis implementation.  For example, image 

distortion has been found to reduce trust in automated target recognition (MacMillan, Entin, & 

Serfaty, 1994).  Analyst performance is lowered in the presence of reduced resolution and 

brightness, even when automated target recognition aids are utilized (Narayanaswami, Gandhe, 

& Mehra, 2010).  In these circumstances, analysts may not rely fully on the automated aid.  

Perceived information quality predicts trust as well as perceived risk (Nicolaou & McKnight, 

2006), which in turn may influence decision making.  When analysts can filter FMV by quality, 

they view 55% less video feed (Plott et al., 2017), which may have implications for missing 

targets of interest.  Although Hancock et al.'s (2011) meta-analysis of trust in automation 

research suggested that environmental factors are only moderately associated with trust, physical 

environment was not included in their analysis, and the interaction between trust and visual 

degradation was not considered.  Visual degradation and transparency may interact to affect trust 

(Nicolaou & McKnight, 2006; Yeh & Wickens, 2001).  The purpose of the current study was to 

examine the effects of haze degradation on analyst trust and performance using sharpness and 

contrast variations.  

Transparency of Automation 

Information transparency is critical for establishing appropriate levels of trust in 

automation (Chen et al., 2014; Itoh, 2010; Lyons, 2013).  Generally, greater transparency leads 

to quicker calibration of trust in automation (Chen et al., 2014; Lyons, 2013; Yang, Unhelkar, Li, 

& Shah, 2017), although some studies found increases in latency and workload (Chen et al., 

2014).  Two convergent models of transparency have been proposed.  Lyons (2013) defined 

transparency as a system’s capacity for relaying information that the human operator needs to 
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know about the automated (robotic) system, such as system capabilities, processes, and 

limitations, and any information that the automated system needs to know about a human, such 

as the human’s goals or task criteria.  Transparency of the human is important to human-robot 

teaming; for example, Lyons suggested that a robot could recommend increasing its level of 

autonomy if it were aware that the human was overloaded.  However, level of automation does 

not typically vary within an automated video analysis system, nor are such systems currently 

constructed according to a human-robot teaming model. Therefore, this component of 

transparency is not clearly related to the current problem of interest.  Lyons recommended 

providing the user with an intentional model (intent or purpose of the automation), a task model 

(progress, capabilities, and errors), an analytical model (analytical principles followed by the 

automation), and an environmental model (current conditions and any automation limitations due 

to environment).   

Chen et al. (2014) proposed a model similar to Lyons’ but added the component of 

projection to future state.  Chen et al.’s Situation Awareness-based Agent Transparency model 

describes the components of transparency within Endsley’s Situation Awareness framework.  

Purpose, process, and performance support Level 1 transparency; reasoning process and 

environment support Level 2 transparency; and projection to future states supports Level 3 

transparency.  There are few differences in transparency recommendations from these two 

models, but Lyons’ model focuses on aspects of human-robot teaming that are less relevant to 

automated video analysis, so the current paper will rely on Chen et al.’s (2014) model to inform 

variations in level of transparency. 

As Lyons’ (2013) and Chen’s (2014) models suggest, the content that defines 

transparency varies across tasks and environments.  Manipulations of transparency in research 
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have included automation reliability (Yang et al., 2017), location, resources, goals, predicted 

outcomes, reasoning (e.g., primary reason for a decision, such as rerouting a convoy due to 

traffic), time of last information (Chen et al., 2018), weather, equipment status, and menu options 

for additional information (Lyons et al., 2017).  Transparency literature stresses that reliability 

must be communicated to the user (Chen et al., 2014; Itoh, 2010; Lyons et al., 2017).  However, 

perceptions of reliability may be reduced by degraded images (Yeh & Wickens, 2001), or trust 

may increase if degraded imagery is perceived as difficult to analyze (Schaefer, Chen, Szalma, & 

Hancock, 2016).  Transparency has also been found to mitigate the effects of perceived 

information quality on perceived risk and trust (Nicolau & McKnight, 2006).  These findings 

have differing implications for the use of transparency in automation.  Too much transparency 

information confuses users, whereas too little reduces trust; but in the presence of degraded 

visual conditions, the optimal transparency level may be different.  Therefore, research suggests 

that it is important to explore these two constructs (transparency and haze) together.  

Convergent Measures 

 Synthesizing subjective, performance-based, and physiological measures is desirable due 

to the increased levels of detail and of validity that can be achieved (Neupane, Saxena, & 

Hirshfield, 2017; Wierwille & Eggemeier, 1993).  Decision speed, frequency of task shedding, 

and eye-tracking fixations have effectively reflected trust, but the results of these studies demand 

replication.  The proposed study will add to previous literature, cross validating these different 

measurements with each other and with Madsen and Gregor’s (2000) self-report measure of trust 

in automation. 

Performance in the context of an ISR task means quickly and accurately identifying 

suspicious activity, as well as freeing operator resources to focus on other tasks such as 
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communication and reporting.  However, decision time is sometimes neglected in automation 

research.  As well as a desired outcome of automation, decision speed is affected by automation 

reliability, task criticality, and task complexity (Rovira et al., 2007).  For example, decision 

speed was not significantly different when using the AVAA system (Plott et al., 2017), 

suggesting that any decision support provided may have been nullified by reliability concerns or 

increased complexity.  Although shorter decision times might be expected to reflect heuristic 

decision-making, Getty, Swets, Pickett, and Gonthier (1995) found that participants’ decision-

making strategies reflected sensitivity to the system’s overall accuracy and false alarm rates.  

Unreliable automation resulted in slower decision times when there was no risk associated with 

delay, but a benefit for accuracy, suggesting increased analysis due to lower trust.  These results 

suggest that, after controlling for task complexity and operator engagement, decision speed is a 

promising behavioral measure of trust in automation.    

Trust of automation often translates to usage (Parasuraman & Riley, 1997; Schaefer et al., 

2016).  Usage takes the form of reliance (allocating attention to other tasks when automation is 

not signaling), and compliance (switching attention to an automated alarm) (Dixon et al., 2007).   

Adaptive task allocation to the machine (Parasuraman & Hancock, 2001) is another type of 

usage that occurs when operator reliance on automation varies with workload.  However, 

research suggests that user trust interacts with workload to predict task shedding, so this is also a 

behavioral measure of trust (Bliss, Harden, & Dischinger, 2013).   

Optimal use of automation involves appropriate allocation of attention (Parasuraman & 

Manzey, 2010).  Attention can also be an acceptable proxy for trust.  For example, attention to 

automated signals and attention to other tasks when the automated system is not signaling 

indicate optimal trust in automation, whereas reduced attention to the automation may indicate 
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over-trust (Dixon et al., 2007).  Conversely, paying more attention than necessary to the 

automation may indicate distrust.  Eye movement is an acceptable measure of attention 

(Parasuraman & Manzey, 2010), and eye tracking behaviors (e.g., scanning frequency, gaze 

dispersion) have been used successfully as a convergent measure of trust in automation 

(Karpinsky, Chancey, Palmer, & Yamani, 2018; Louw & Merat, 2017).  For example, Karpinsky 

et al. measured participants’ allocation of visual attention in terms of percent dwell time and 

found that higher workload led to lower trust which in turn led to lower percent dwell time on the 

automated system display.  Similarly, Metzger and Parasuraman (2005) found that complacent 

operators made significantly fewer fixations on an automated radar display.   In a DVE driving 

task, Louw and Merat (2017) found that degraded conditions resulted in greater attention to the 

road compared to high visibility and manual conditions, suggesting reduced trust in automation; 

however, attention switching to alerts was not affected.  Overall, performance was best in the 

degraded visibility condition, likely due to increased attention.  Taken as a whole, past research 

findings suggest a complex relationship among task, task environment, trust, and visual attention.   

Current Study 

 The current research involved an investigation of  the effects of haze and automation 

transparency on users’ trust in automation and performance on an FMV analysis task.  

Researchers have studied the effects of transparency on trust (Chen & Terrence, 2009; Itoh, 

2010; Lyons, 2013; Wright et al., 2017), but perceptual conditions in such experiments have 

usually been ideal (MacMillan et al., 1994; Narayanaswami et al., 2010).  It is important to 

consider these together due to the prevalence of degraded conditions and their impact on 

transparency-mediated trust (Yeh & Wickens, 2001).  The current research investigated 

performance (accuracy and decision time), as well as behavioral (task shedding and gaze 
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dispersion) and qualitative (well-established self-report surveys) measures of trust, as a function 

of information transparency and scene degradation.   

The experimental task consisted of visually searching for improvised explosive device 

emplacement activity within short FMV clips, half of which had reduced contrast and brightness 

(haze).  The task environment simulated an automated analyst’s recommendation in the top left 

corner of each FMV clip.  Participants were asked to decide whether to agree or disagree with 

the automated feature, request more information, or delegate decision making to the automated 

system.  Reliability was fixed, but the amount of information available about the automated 

analyst varied.  This study used a combination of traditional and novel approaches to collect 

convergent measurement data reflecting participants’ trust in automation.  The expectation was 

that findings could be integrated  with current theory regarding the effects of degraded visual 

environments and transparency as well as the appropriateness of using decision speed and task 

shedding as indices of trust in automation. 

Hypotheses 

H1:  During a convoy route-planning task, Wright et al. (2017) found that providing an 

automated agent’s reason for recommending a route change resulted in fewer incorrect 

agreements.  Wright et al. manipulated three levels of transparency while asking participants to 

accept or reject automated route-change recommendations.  Participants displayed complacent 

behavior in the non-transparent condition but appeared to be overwhelmed by the amount of 

information in the highest transparency condition, suggesting the importance of determining the 

optimal transparency level.  Therefore, it was expected that higher transparency would predict 

higher proportions of participants accuracy measured in terms of proportion of correct 
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agreements/disagreements with the automated system’s recommendations.  However, accuracy 

in the highest transparency condition was expected to be reduced. 

H2:  Low trust has been associated with longer decision times (Chen & Terrence, 2009), 

whereas image distortion has been found to reduce trust in automated systems (Macmillan et al., 

1994).  Therefore, it was expected that (H2a) haze level would positively correlate with decision 

times for agreement with the automated system’s recommendation and that (H2b) haze would 

negatively correlate with trust measured by Human Computer Trust Scale (HCTS) score 

(Madsen & Gregor, 2000).   

H3:  Task shedding has been found to increase under conditions of greater task 

complexity and uncertainty (Bliss et al., 2013; Parasuraman & Hancock, 2001), such as can 

result from poor imagery quality (Hooey et al., 2018).  Therefore, it was expected that 

transparency and degradation would interact to predict task shedding, measured as number of 

choices to delegate the task to the automation.  For the main effects, low transparency and high 

degradation were expected to predict higher levels of task shedding. 

H4:  Degraded environmental conditions have been shown to result in lower gaze 

dispersion in a driving task, with attention focused on the primary region of interest (ROI; Louw 

& Merat, 2017), whereas bandwidth (amount of information found in a given ROI) has been 

shown to be a strong predictor of scanning behavior (Horrey, Wickens, & Consalus, 2006; 

Wickens et al., 2003).  Therefore, it was anticipated that greater degradation would be positively 

related to fixations on the high-bandwidth ROI; that is, the region of interest within the display 

that provides the highest amount of task-relevant information.   

H4a: Reduced attention to the automation may indicate over-trust, whereas 

greater than optimal attention may indicate distrust (Dixon et al., 2007).  Therefore, 
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attention to the primary ROI was expected to negatively relate to self-reported trust level 

(dependent variable), and vice versa.   

H4b: Distribution of attention to the identified ROIs was expected to differ 

significantly from the predicted optimal proportion only when trust was very high or very 

low.  
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CHAPTER 2 

METHOD 

 

 

Design 

 The current study employed a 2 (haze: 0, +30% light scattered) x 3 (transparency: low, 

medium, high) within-group design.  The experimental task consisted of an information 

screening task that required participants to analyze 18 10-second FMV clips with the aid of an 

automated analyst (Figure 3).  The automated analyst textually noted the presence or absence of 

suspected improvised explosive device (IED) activity within the FMV clips, and the participants’ 

task was to choose whether to “agree” that there was IED activity present; “disagree” with the 

automated analyst; ask for additional information by choosing the “More” button; or “delegate” 

the decision to the automated system. 

Independent variables  

The first independent variable was imagery degradation (within groups), which was set at 

either zero or high haze (+30% light scattering).  Atmospheric haze is measured by the scattering 

coefficient of incident light.  Due to the difficulty involved in computing the scattering 

coefficient of an image, the current study simulated haze using sharpness and contrast settings 

derived from previous research (Liu et al., 2017).  To simulate a 30% increase in light scattering, 

image saturation was reduced by 100% and brightness was increased by 35%.  Half of the FMV 

clips were zero haze (control) and half were high haze.  Zero and high haze clips were randomly 

presented throughout the experiment; the order was determined using Excel’s random number 

generator function.  
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Figure 3  

Task Environment Interface, Transparency Level 2, Zero Degradation 

  

 

 

The second independent variable was transparency (within groups), which was 

manipulated incrementally (additional levels added on to the first).  Low transparency included 

providing information about the system’s purpose (identify IED emplacement activity), process 

(the current range of the UAV whose feed the system is analyzing), and performance 

(automation reliability) information, equating to Level 1 of Chen et al.’s (2014) Situation 

Awareness-based Agent Transparency model (see Table 3).  Medium transparency included  
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Table 3 

Transparency Levels 

Level Information Displayed 

1 Purpose: Identify IED emplacements along a route 

Performance: Reliability  

Reason: Limits of sensor-reduced confidence in haze 

Process: Current range of UAV 

 

2 Purpose: Identify IED emplacements along a route 

Performance: Reliability  

Reason: Limits of sensor-reduced confidence in haze 

Process: Current range of UAV 

Reasoning: Computer vision algorithm used to identify activity 

Environment: Current weather with limits of UAV/Sensor 

 

3 Purpose: Identify IED emplacements along a route 

Performance: Reliability  

Reason: Limits of sensor-reduced confidence in haze 

Process: Current range of UAV 

Reasoning: Computer vision algorithm used to identify activity 

Environment: Current weather with limits of UAV/Sensor  

Future states: Weather forecast with limits of UAV due to wind, cloud ceiling  
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information about the system’s reasoning process (object recognition algorithm) and 

environment (current weather and its limiting effects on the UAV), in addition to Level 1 

information.  High transparency included projections to future states (weather forecast and 

weather effects on the UAV), in addition to Levels 1 and 2 information.   

Dependent variables   

Dependent measures included the accuracy of participants’ agree/disagree choices, their 

overall decision speed in seconds, frequency of task shedding, and attention (pattern of gaze 

fixations on the stimulus).  Each dependent variable is fully described below.  

Accuracy.  Accuracy was reflected by a combination of two measures derived from 

signal detection theory, hits and correct rejections. This measure reflects the a-b Signal Detection 

Theory model approach to measuring accuracy (Bustamante, 2014). Accuracy was defined as the 

participants’ combined proportion of hits (correct agreements with the automated analyst) and 

correct rejections (correct disagreements).  Because the automated analyst was 78% accurate 

overall, with a 6% miss, and a 16% false alarm rate, a highly accurate user would be expected to 

accept 78% of automated annotations and reject 22% in a manner that matched the system’s 

accuracy rate.   

Decision Speed.  Decision time was measured by the number of seconds between 

stimulus onset and participant choice.  The automated analyst’s recommendation appeared 

concurrently with the stimulus onset.  This time was recorded during eye tracking by Tobii 

Studio version 3.2.     
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Task shedding. Task shedding was measured by the proportion of “delegate” decisions 

the participants made within each condition.  Participants were informed that they could choose 

to delegate any analysis decision, and that the automation was highly reliable but not perfect.   

Participants did not receive feedback about the outcomes of their delegate choices, to 

avoid the “first failure effect.”  That effect occurs when participants are first alerted that the 

automation is in error, as trust is reduced and then slowly recovers (Parasuraman & Manzey, 

2010).  The first failure effect could have obscured the effects of varying haze and transparency, 

which were the focus of this study.  Additionally, some research suggests that primed reliability 

may result in more appropriate trust levels compared to feedback (Koo et al., 2014; Schaefer et 

al., 2016).    

Attention. Gaze dispersion was measured by the percentage of fixations on the high-

bandwidth region of interest (ROI 1, Figure 4), using a Tobii X2-60 portable eye tracking device.  

Although raw eye-tracking metrics can be analyzed to reveal interesting patterns, fixation data 

should be compared to optimal scanning levels to assess trust.  Optimal scanning behavior 

suggests well-calibrated trust.  However, optimal scanning frequency is extremely difficult to 

calculate in many applied tasks (Parasuraman & Manzey, 2010).  Instead, most researchers use 

Wickens et al.’s (2003) adaptation of the Saliency, Expectancy, Effort, and Value (SEEV) model 

(see Figure 5a).  This model attempts to describe visual attention as a function of the physical 

ability of a display area to capture attention (salience), user’s expectation of gaining information 

from a visual area (expectancy), physical or time cost of accessing information (effort), and 

relevance of a visual region to the task (value).  It could be argued that Johnson, Duda, Sheridan, 

and Oman's (2017) model (Figure 5b) is closer to a prescriptive model of optimal scanning, 

because uncertainty is a component of sampling theorems, but it does not predict users’ 
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Figure 4 
 
Regions of Interest (ROIs) for gaze data.  ROI 1 is the high-bandwidth ROI 

    
Figure 5 

Models of Attention 

a)  

 

b)         

c)                               𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝐴𝑂𝐼 =  ∑ ൣ(𝐵𝑊 𝑥 𝑅௫௬ 𝑥 𝑉) + 2𝑈൧
௧௦ୀଵ  

Note. (a) Model of optimal attention adapted from Wickens et al. (2003).  AOI = area of interest, 

BW = bandwidth, Rxy = relevance to task, and V = value of task (priority).  (b) Model of optimal 

attention adapted from Johnson et al. (2017).  V = value of task (priority), U = uncertainty, and E 

= effort.  (c) Proposed model of optimal attention, adapted from Wickens et al. (2003), Johnson 

et al. (2017), and Horrey et al. (2006). 

𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝐴𝑂𝐼 =   ൣ𝐵𝑊 𝑥 𝑅𝑥𝑦  𝑥 𝑉൧

𝑛

𝑡𝑎𝑠𝑘 =1

  

𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝐴𝑂𝐼 =   [𝑉 + 2𝑈 − 𝐸 ]

𝑛

𝑡𝑎𝑠𝑘 =1
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behaviors well, especially under high workload conditions (Parasuraman & Manzey, 2010; 

Senders, 1983).  However, Horrey et al. (2006) were able to account for 97% of variance in 

scanning behavior using only bandwidth and value, so the importance of bandwidth to optimal 

scanning is clear.  A high bandwidth area of interest is an area in which relevant information 

appears more frequently compared to other areas.  Similarly, Wickens et al. (2003) were able to 

explain over 90% of variance in gaze fixations by loading only bandwidth, relevance, and value 

into their model.  Thus, an optimal scanning model should include bandwidth, relevance, value 

(highly explanatory variables) and uncertainty (prescriptive variables), at a minimum.  For each 

stimulus, the optimal scanning frequency was calculated according to the proposed visual 

attention model in Figure 5(c).       

Participants 

The number of participants needed was determined through a review of relevant literature 

and an a priori power analysis conducted using PASS 16.0.1.  Because several different factors 

were being measured, the highest effect size, which was medium, was used.  For eye tracking 

model fit, a Χ2 power analysis indicated that 46 participants should be required to achieve a 

power of .80 and an effect size of ω = 0.50.  The current research proposes six hypotheses, 

which Tseng and Shao (2012) found would not greatly affect the sample size needed to maintain 

good familywise power.  A significant hypothesis testing threshold of p = .05 was used for all 

tests; to balance the risks of making a Type I and Type II error.   

Participants were 48 undergraduate students (35 female) from Old Dominion University, 

recruited using the Sona Research Participation System. The average age of the participants was 

20.8 years (SD = 4.97), and 8% of the sample reported current or prior military service. 

Participants reported playing video games 2.5 hours per week on average (SD = 3.7) and using a 
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computer 18.6 hours per week on average (SD = 13.9).  Participants received 1 research credit 

for participation.  The study took approximately 30 minutes per participant to complete.  The 

study was approved by Old Dominion University’s Institutional Review Board and signed 

informed consent forms were obtained from each participant prior to participation (Appendix A).     

Materials 

 Information screening task   

The FMV task interface (Figure 3) was created using PowerPoint, YouTube Movie 

Maker video editor, and Tobii Pro Studio (version 3.2).  Real military FMV videos were 

downloaded from military.com and clipped into eighteen 10-second segments.  Half of the clips 

were degraded by reducing saturation by 100% and increasing brightness by 35%.  This created a 

haze effect over the imagery according to the noise modeling equation Mn = ρ(1 - B) + (1 – ρ)S, 

where Mn is inversely proportional to the amount of haze effect (Liu et al., 2017).  In this 

equation, B represents brightness, S represents saturation, and ρ was set to .85, based on Liu et 

al.’s analysis of an image with approximately the desired amount of haze.  Each clip indicated 

whether the automated analyst had detected activity via a red highlighted YES or green 

highlighted NO in the upper left corner.  Fourteen of the videos showed IED emplacement 

activity and indicated that the automation detected the activity (hits), three videos did not show 

emplacement activity but indicated that the automation detected the activity (false alarm), and 

one video showed emplacement activity but indicated that the automation did not detect the 

activity (miss).  Participants were shown the 10-second FMV clips and instructed to look for IED 

emplacement activity with the assistance of the automated analyst.  If there was no apparent IED 

emplacement but the automated analyst indicated there was, the participant should “disagree” 

with the automation.  If there was IED emplacement activity, the participant should “agree” with 
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the automation.  The participants’ choices, including “delegate” and “more information” choices, 

were visually captured on experiment screen recordings by the Tobii Studio software.  The time 

in seconds required to make a choice was also recorded by Tobii Studio.  Participants were told 

that selecting “more information” would alert the system to search for more information, but it 

would not be available during the experiment.  This option was provided so that participants did 

not feel forced to make a choice.  If no choice was made within 10 seconds, the next stimulus 

was presented and no decision time data was recorded.  

 Secondary task   

A secondary monitoring task was provided side-by-side with the information screening 

task. The monitoring task consisted of eighteen 10-second simulated drone footage clips of a 

military convoy traveling through a Middle Eastern city.  The videos were created using Virtual 

Reality Rehab’s Fused Augmented Reality User Interface version 1.4.6 system, with permission.  

Participants were told that they needed to monitor the convoy as well as search for IED 

emplacement activity in the FMV feed. 

Eye tracking   

A Tobii X2-60 portable eye tracking device was used to collect gaze data.  This device 

was mounted beneath the monitor and had a sampling rate of 60 Hz with an accuracy of .2 

degrees of visual angle.  No chin rest was used to emulate real-world viewing conditions.  The 

Tobii allows 44cm x 32cm of head movement.  Fixations were extracted from the raw gaze data 

using the recommended Tobii Pro I-VT filter.  This filter classifies fixations as gaze samples 

with a velocity below 30° per second.  An unweighted moving average filter is used to reduce 

noise.  This filter has been found to be one of the most accurate for categorizing fixations and 

eliminating noise (Hild, Voit, Kühnle, & Beyerer, 2018; McChesney & Bond, 2017).  
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Measures 

Demographics Questionnaire   

Each participant completed a questionnaire indicating his or her age, biological sex, 

military service, visual deficiencies, average hours per week spent gaming, and average hours 

per week of computer use (Appendix B). 

Online Trust Questionnaire   

Participants completed a six-question trust survey (Madsen & Gregor, 2000; Appendix C) 

after each stimulus presentation for each unique combination of IVs; a total of six surveys.  The 

trust questionnaire included five items relating to trust and one item relating to confidence in 

their decision.  This questionnaire was derived from Madsen and Gregor’s Human-Computer 

Trust Scale, a 25-item questionnaire based on five trust-related constructs: perceived reliability, 

perceived technical competence, perceived understandability, faith, and personal attachment.  

The current study chose the highest-loading item (Madsen & Gregor, 2000) with good 

discriminant validity from each of these five constructs.  From perceived reliability, the item “I 

can rely on the system to function properly” was chosen.  From perceived technical competence, 

the item “The system has sound knowledge about [the key identification features of IED 

emplacers]” was chosen.  From perceived understandability, the item “Although I may not know 

exactly how the system works, I know how to use it to perform well” was used.  From faith, the 

item “Even if I have no reason to expect the system will be able to identify IED emplacement 

activity, I still feel certain that it will” was used.  From personal attachment, the item “I feel a 

sense of attachment to using the system” was chosen.  The items were scored on a 10-point 

Likert scale (0 = does not describe participant, 12 = very descriptive of participant).  The full-

length instrument was validated by Dolgov and Kaltenbach (2017) using principal components 

analyses and demonstrated high reliability (Cronbach’s alpha = .94) and high inter-rater 
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reliability (Cronbach’s kappa = .83).  The abbreviated instrument was analyzed following data 

collection (n = 282), and demonstrated high internal reliability, Cronbach’s alpha = .88. The 

confidence item that was added to Madsen and Gregor’s subconstructs appeared to contribute to 

the reliability of the instrument, since reliability analyses showed that removal of the item would 

lower Cronbach’s alpha from .88 to .87.      

Offline Experience Questionnaire   

At the end of the study, participants completed a post-task opinion questionnaire to 

provide impressions of the task (Appendix D; derived from Long, 2019).  The questionnaire 

gathered participants’ impressions of their performance, comfortability with the experiment, 

motivation, and enjoyment.  Participants’ average ratings of task difficulty, confidence, and 

adequacy of task training were calculated, and comments were examined for common themes. 

Procedure 

After arriving at the laboratory, participants read and signed an Informed Consent Form 

(Appendix A) specifying the risks and benefits of participating in the study and completed the 

Demographics Questionnaire (Appendix B).  Participants then proceeded through eye tracking 

calibration.  The Tobii system automatically calibrates while participants track a large red dot 

moving across the screen.  After calibration, participants read on-screen instructions explaining 

the nature of the task, including reliability information.  They were then shown an example FMV 

clip, with a summary of the instructions.  Following this, they completed a familiarization trial 

with a sample task created for training.  The investigator explained the task while participants 

viewed the familiarization trial and ensured that participants felt comfortable with the task before 

proceeding.   
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Participants played the role of an ISR analyst tasked with identifying possible IED 

placement activity in preparation for a presence patrol.  Participants were informed in the initial 

instructions that the automated system used in the task identifies probable IED emplacement 

activity along future convoy routes and indicates whether it has identified IED emplacement 

activity (see Appendix E).  The instructions described IED emplacement activity as small groups 

stopping in or near a road, digging and/or unloading objects on the road, and then hastily 

departing.  Participants were instructed to ensure that no IED emplacements are missed, and that 

missed emplacements could result in friendly and civilian casualties.  Participants were told that 

they could delegate their analysis to the automation, but that the automation was not perfect. 

Reliability of the automation was described as able to detect objects 95% of the time, and to 

correctly classify activity 78% of the time.  Participants were instructed to respond to each 

stimulus by clicking on an option (“agree”, “disagree”, “more information”, or “delegate”). The 

reliability level of the current study was based on the average reliability of several current 

automated video analysis systems (Table 4).  Correct and incorrect trials were randomly 

interspersed.  The automated system was designed to be high in false alarms and low in misses, 

with a 16% false alarm rate and a 6% miss rate. Some findings suggest that false alarm-prone 

automation reduces trust more than miss-prone automation (Chen & Terrence, 2009; Dixon et 

al., 2007), which could constitute a conflict for ISR, where false alarms are preferable to misses.  

However, differences were found at only the 60% reliability level, which is well below that of 

the current research design.  Therefore, the reliability level of the current study was not expected 

to significantly influence participants’ trust levels.     

After the participants indicated that they were comfortable with the task, they began the 

experiment.  Each task stimulus was present for approximately 10 seconds, after which the 
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Table 4 
  
Reliability Levels of Several Automated Video Analysis Systems 

Author Year System 
Reliability 

(%) 
Poostchi 2017 Spatial Pyramid Context-Aware Tracking 84 
Sabokrou et al 2018 Fully Convolutional Neural Network 89 
Gunduz, Ongun, Temizel, & 
Temizel 2016 Density Aware Anomaly Detection 85 
Li, Mahadevan, & 
Vasconcelos 2014 Anomaly Detection and Localization 65 
Lu, Shi, & Jia 2013 Spatial Abnormality Detection 82 
Reddy, Sanderson, & Lovell 2011 Cell-based Anomaly Detection 68 
Roshtkhari & Levine 2013 Spatio-Temporal Compositions 91 

Xiao, Zhang, & Zha 2015 
Sparse Semi-nonnegative Matrix 
Factorization 84 

Kolsch & Zaborowski 2014 Small Unmanned Aircraft Vehicle Detection 64 
Gaszczak, Breckon, & Han 2011 Real-time People and Vehicle Detection 70 
Muncaster, Collins, & 
Waltman 2015 VideoPlus-Aware 82 
Average     78.5 

 

 

participant chose to either agree or disagree with the automated analyst, request more 

information, or delegate the choice to the automation.  If the participant chose to request more 

information, the investigator reminded them that the information would not be immediately 

available.  If the participant did not choose within the 10 seconds, the next stimulus or 

questionnaire was presented.  If this happened, participants were reminded to make a choice as 

soon as they felt confident to do so.  Following each unique stimulus presentation, participants 

responded to the 6-question online trust questionnaire (Appendix C).  Participants had unlimited 

time to complete the questionnaire.  Upon completing the experiment, participants completed the 

offline experience questionnaire (Appendix D).  They were then debriefed concerning the 

purpose of the experiment and thanked for participating.  
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CHAPTER 3 

RESULTS 

 

 

Data Cleaning 

 Accuracy, decision time, and task shedding data were analyzed using the IBM Statistical 

Package for the Social Sciences (SPSS) Version 26 software. Descriptive statistics for all the 

dependent variables are listed Table 5.  Outliers were identified using box plots. Accuracy only 

had one outlier, whose accuracy was less than 20%; task shedding had six outliers, who 

delegated more than 15% of the time; and decision time had zero outliers. None of the outliers  

 

 

Table 5 

Descriptive Statistics for Dependent Variables 

Variable N M Median Mode Min Max Range SD 

Accuracy 48 .73 .72 .67 .4 1 0-1 .14 

Decision 
Time 

864 6.26 6.1 10 .11 10.53 0-10 2.66 

Task 
Shedding 

48 .04 0 0 0 .22 0-1 .07 

Attention 
ROI1 

864 .29 .25 .33 .03 1 0-1 .20 

Trust 283 7.17 7 7 1.5 11.83 1-12 2.11 

Note: Range indicates the possible, rather than the actual, range of values 
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were extreme outliers, defined as data points more than 3 standard deviations from the mean. 

Since the outliers were not extreme, and clearly reflected individual differences in performance, 

these were retained for further analyses.   

Normality of decision time, trust scores, and attention (fixation data) was tested using the 

Shapiro-Wilk test (Maxwell & Delaney, 2004).  Trust and attention were significantly non-

normal (p < .05).  Because ANOVA is robust to deviations from normality, it was used to test 

hypotheses involving those two dependent variables.  Skewness and kurtosis were also tested.  

Only attention was significantly skewed (> +2).  Levene’s test for homogeneity of variance was 

also significant for attention, so the Greenhouse-Geisser adjustment was reported when using 

ANOVA to compare attention across transparency levels.  Gaze fixation data for each ROI was 

extracted using Tobii Pro Studio 3.2.  The recommended Tobii Pro I-VT fixation filter was used 

to distinguish between fixations and noise.   

Data Coding  

The accuracy of participants’ choices to agree or disagree with the automated system’s 

 

 

Table 6 

Participant-Automation Accuracy Matrix 

Note: 1 = accurate, 0 = inaccurate.  Overall accuracy = sum (participant choices/correct choices).   

Accuracy Hit FA Miss 
Correct 

Rejection 

Agree 1 0 0 1 

Disagree 0 1 1 0 

More 
Information 

N/A N/A N/A 
N/A 

Delegate N/A N/A N/A N/A 
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recommendations was coded in a binary fashion for each trial, as depicted in Table 6.  These 

categories correspond to the four possible decision states according to signal detection theory  

(Dixon et al., 2007).  Task shedding was coded as the proportion of “delegate” choices within 

each condition. For eye tracking data, fixation counts on ROI 1 were extracted from the raw gaze 

data using the Tobii Studio I-VT and calculated as a percentage of the overall fixation count.   

Accuracy 

To investigate differences in the proportion of accurate decisions across transparency 

levels, a repeated measure analysis of variance (ANOVA) was conducted. Sphericity was 

violated, Χ2 = 9.19, p = .01, so the Greenhouse-Geisser correction for degrees of freedom was 

used.  Participants were significantly less accurate (M = .58, SD = .49) in the low-transparency 

condition compared to the medium (M = .82, SD = .39) and high (M = .79, SD = .40) 

transparency conditions, F(1.91, 374.75) =  17.94, partial η2 = .08, p < .001 (Table 7).  There was 

no significant difference between the medium and high levels, p > .05.  These results supported 

Hypothesis 1 (Figure 6).  

Haze also significantly affected accuracy in the expected direction, with higher accuracy 

in the zero-haze condition (M = .80, SD = .40) than in the hazy condition (M = .67, SD =.47),  

 

 

Table 7 
 
Repeated Measures ANOVA results for accuracy as a function of transparency 
Predictor Sum of 

Squares 
df Mean 

Square 
F p Partial η2 

Transparency 6.77 1.91 3.54 17.94 .000*** .08 
Error 73.90 374.75 .20    

***p < .001 
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Figure 6  

Proportion of Participants’ Accurate Agree/Disagree Choices Across Transparency Levels   

 
Note. Error bars represent standard error. 
 

 

although with a small effect size, Cohen’s d = .30, t(294) = 3.51, p = .001 (Figure 7).  

Decision Speed 

A paired samples t-test was conducted comparing decision time in seconds of 

participants’ choices across the no haze and hazy conditions (Figure 8). There was no significant 

difference in decision times between no haze (M = 6.23, SD = 2.74) and hazy (M = 6.29, SD = 

2.59) conditions, t(431) = -.368, Cohen’s d = .02, p = .713.  Decision time and trust were also not 

significantly correlated, r(282) = -.048, p = .212.  Therefore, Hypothesis 2 was not supported. A 

limitation of this test was a probable ceiling effect  due to the 10 second limit on participants’ 

choices, as 15% of all stimuli presented timed out before the participants made a choice.   

In these cases, the decision time was recorded as 10 seconds.  Although pilot testing of 10  
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Figure 7 
  
Participants’ Average Accuracy Across Haze Levels 

 
Note. Error bars represent standard error. 
 
 
Figure 8  
 
Decision Time in Seconds of Participants’ Choices Across Haze Levels 

 
Note.  Error bars represent standard error. 
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subjects suggested that the 10-second time limit was acceptable, some later participants struggled 

with the task.  Additionally, missing data was unequally distributed across conditions. 

Participants missed (failed to respond within 10 seconds) 12% more stimuli in the hazy condition 

than in the zero-haze condition, and 41% more in the low transparency than in the medium 

transparency conditions. Re-comparing decision times and trust without these two conditions still 

failed to achieve significance but changed the sign of the correlation from negative to positive, 

r(141) = .04, p = .642; and the data still showed a strong ceiling effect. 

A repeated measures ANOVA was also conducted to compare decision times across 

transparency levels (Figure 9). Mauchly’s w was not violated, χ2(2, n = 282) = 3.76. Decision  

 

 

Figure 9  
 
Decision Time in Seconds of Participants’ Choices Across Transparency Levels 

 
Note.  Error bars represent standard error. 
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Table 8 

Repeated measures ANOVA results for decision time as a function of transparency 

Predictor Sum of 
Squares 

df Mean 
Square 

F p Partial η2 

Transparency 141.00 2 70.49 12.46 .000*** .04 
Error 3181.13 562 5.67    

***p < .001 

 

 

times were significantly lower (faster) in the medium transparency condition (M = 5.71, SD = 

2.75) compared to the low (M = 6.69, SD = 2.66) and high (M = 6.37, SD = 2.49) transparency 

conditions, F(2, 562) = 12.46, partial η2 = .042, p < .001 (Table 8). 

Task Shedding 

A 2x3 repeated-measures ANOVA was conducted to investigate the effects of 

transparency and haze on task shedding (as a proportion of each participant’s choices).  The 

interaction of haze and transparency to predict task shedding was not significant, F(2, 74.21) = 

.33, partial η2 = .007, p = .673 (Table 9).  The main effect of haze was significant, F(1, 46) =  

 

 

Table 9 

Repeated measures ANOVA results for task shedding as a function of haze and transparency 

Predictor Sum of 
Squares 

df Mean 
Square 

F p Partial η2 

Haze .07 1 .07 4.55 .038* .09 
Transparency .04 2 .02 1.73 .183 .04 
Haze x 
Transparency 

.01 1.61 .01 .33 .673 .01 

Error 1.51 74.21 .02    
*p < .05 



                                                                                                                                                                        51 
 

Figure 10  
 
Proportion of Task Shedding (Participants’ Delegate Choices) Across Haze Levels 

 
Note.  Error bars represent standard error. 
 

 

4.55, partial η2 = .09, p = .038.  Participants were significantly more likely to task shed in the 

hazy (M = .06, SE = .015) than in the non-hazy (M = .03, SE = .009) condition (Figure 10).  The 

effect of transparency was not significant, F(2, 92) = 1.73, partial η2 = .036, p = .183.  Although 

participants were more likely to task shed in the high transparency (M = .06, SE = .014) than in 

the low transparency (M = .04, SE = .014) condition, this effect did not reach significance 

(Figure 11).  Therefore, Hypothesis 3 was only partly supported.  A limitation of this result was 

the low overall proportion of delegate choices, resulting in a high standard error relative to task 

shedding proportion.    
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Figure 11  
 
Proportion of Participants’ Delegate Choices Across Transparency Levels 

 
Note.  Error bars represent standard error. 
 

 

Attention 

To test Hypothesis 4, the scanning behavior in terms of proportion of fixation duration 

(also called percent dwell time) within each ROI was compared to the optimal scanning behavior 

predicted by the SEEV-derived equation in Figure 5c (presented below), and to self-reported 

trust scores.  To determine the optimal scanning proportion, model parameters were rank- 

ordered across conditions by ROI (Table 10; see Fig. 3 for ROIs).  The parameters were assigned 

scores between one and five, following Wickens et al.’s (2003) methodology.  For example, ROI 

1 provides the most task-relevant information, but imagery degradation reduces information 

available.  Therefore, the highest parameter value was assigned to ROI 1 when degradation was 
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Figure 5c   
 
Visual Attention Model, repeated from Fig. 5     

𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝐴𝑂𝐼 =   ൣ(𝐵𝑊 𝑥 𝑅௫௬ 𝑥 𝑉) + 2𝑈൧



௧௦ୀ

 

 

Table 10 

Visual Attention Model Parameter Values 

  Bandwidth Relevance Value Uncertainty 
Haze None Hazy None Hazy None Hazy None Hazy 

ROI 1 5 4 5 4 5 4 4 5 
ROI 2 3 3 3 2 3 3 3 3 
ROI 3 2 2 4 3 2 2 2 2 
ROI 4 1 1 2 1 1 1 1 1 

Note. DVE = Degraded Visual Environment; low= low haze, high = high haze. 
 

 

low.  The FMV feed had the highest uncertainty compared to the other sources of information 

provided, and degradation also increased uncertainty.  Therefore, the highest uncertainty value 

was assigned to ROI 1 when degradation was high.  These scores, expressed as a proportion of 

the sum of all parameter values, represented optimal scanning behavior as percent of fixation 

durations.  

Two predicted values were generated from each of the three models, the proportion of 

attention that should be paid to ROI 1 in the hazy condition and in the no haze condition. The 

difference between optimal scanning behavior, derived from the proposed visual attention model, 

and observed scanning behavior was calculated as the absolute value of the predicted proportion 

of fixation duration on ROI1 subtracted from the observed proportion of fixation duration on 

ROI1.  This difference was also calculated using the predicted values from Wickens’ and 
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Johnson’s mathematical models. To test whether the proposed model approximated optimal 

attention, predicted-observed attention differences were regressed onto accuracy. Neither the 

proposed model, χ2(1, n  = 872) = .17, p = .680, Wickens’ model, χ2(1, n  = 872) = .234, p = 

.629, nor Johnson’s model, χ2(1, n  = 872) = .01, p = .918, were significant.  

Bivariate correlations were conducted to determine whether trust correlated with 

observed attention allocation to ROI1, and whether trust varied predictably with the difference 

between the predicted, optimal and the observed proportion of attention to ROI1.  Attention was 

measured as the proportion of time (in seconds) that gaze fixations were directed to ROI1.  To 

correlate attention with trust, gaze data was extracted from the six stimuli preceding the six 

HCTS trust questionnaires. This data was significantly, negatively skewed, so the data was 

transformed by exponentiating attention, reducing skew to an acceptable .06.  Trust did not 

significantly correlate with observed attention, r(264) = -.007, p = .913.  Correlations were also 

performed between the difference in predicted-observed attention and trust for each of the three 

models of attention. None of the models were able to significantly predict trust from the 

difference in predicted and observed scanning behavior, although the proposed model had a 

slightly higher r value (r[264] = .05) than Wickens’ (r[264] = .04) or Johnson’s (r[264] = .02) 

models.   

A Chi-square test was performed to compare observed and expected proportions of 

attention by region of interest. The observed distribution of attention differed significantly from 

equal, χ2(1, n  = 48) = 24.24 (i.e., participants paid more attention to ROI1 than to the other 

regions of interest). Neither the proposed model nor Wickens’ model adequately predicted 

attention; predicted attention from the proposed model (χ2(1, n  = 48) = 29.45) and Wickens’ 

model (χ2(1, n  = 48) = 74.27) significantly differed from observed attention. Predicted values 
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from Johnson’s model did not differ significantly from observed attention, χ2(1, n  = 48) = 4.25, 

p < .05. Although these results suggest that Johnson’s model of attention adequately describes 

scanning behavior, the question of a good prescriptive model of attention remains open.    

A one-way, repeated measures ANOVA was conducted to compare observed attention in 

seconds to ROI1 (after square root transformation to reduce skew and kurtosis) across visual 

conditions (no haze, hazy).  Participants paid significantly more attention to ROI1 in the hazy (M 

= 3.09 seconds, SD = 1.03) than in the no haze condition (M = 2.94, SD = .90), F(1, 377) = 6.09, 

partial η2 = .016,  p = .014 (Table 11; Figure 12).  Therefore, Hypothesis 4, which predicted that 

participants would pay more attention to the most task-relevant area in the degraded condition, 

was supported, albeit with a low effect size.  However, the ten-second limit applied to this 

experiment should be considered when considering the effect size. 

Trust 

 Validation of trust measures 

Because task shedding and accuracy were both dichotomous and trust was not normally 

distributed, binary logistic regression was used to test whether trust predicted task shedding or 

accuracy (Table 12). The logistic regression model with trust predicting task shedding was not  

 

 

Table 11 

Repeated measures ANOVA results for attention as a function of haze  

Predictor Sum of 
Squares 

df Mean 
Square 

F p Partial η2 

Haze 4.52 1 4.52 6.09 .014 .016 

Error 279.86 377 .74    
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Figure 12 
  
Average Fixation Duration in Seconds on ROI 1 Across Haze Levels 

 
Note. Error bars represent standard error. 
 

Table 12 

Logistic regression results predicting task shedding and accuracy from trust 

DV B SE Wald p Exp(B) 
Task 
Shedding 

-.23 .19 1.43 .231 .80 

Accuracy .19 .09 4.80 .028* 1.21 
*p < .05 

 

 

significant, χ2(1, n = 282) = 1.49, Cohen’s d = .15, p = .222.  The logistic regression model with 

trust predicting accuracy was significant, χ2(1, n  = 220) = 4.99, Cohen’s d = .30, p = .025. Trust 

explained 4% (Nagelkerke R2) of the variance in accuracy, and 82.7% of cases were correctly 
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Figure 13. Probability of choosing accurately as a function of trust score. 

 

 

classified. For each one-point increase in trust score, the odds of making an accurate decision 

increased by a factor of 1.21 (Figure 13). The low explanatory power of the model, however, 

suggests that other, unexplored factors contributed significantly to accuracy. These results 

suggest that neither accuracy nor task shedding are good indirect measures of trust, but that 

optimal levels of trust likely improve task accuracy. 

Effects of degraded visual environment and transparency on trust 

Issues with the Tobii software used to present the experiment resulted in an unequal 

distribution of trust questionnaires across conditions. Five of the six questionnaires were 

presented following a zero-haze stimulus, two following a low transparency stimulus, three 
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Table 13 

Mixed effects model results for trust as a function of haze and transparency 

Predictor df Num df Denom F p 

Haze 1 235.06 .004 .949 
Transparency 2 223.56 .64 .529 

 

 

following a medium-transparency stimulus, and only one following a high-transparency 

stimulus. Therefore, a mixed effects model, which is more robust to unequal sample sizes, was 

conducted to determine the effects of haze and transparency on trust.  Neither haze, F(1, 278) = 

.002, p = .966, nor transparency, F(1, 278) = 1.43, p = .242, significantly predicted trust (Table 

13). However, due to the severe imbalance of data across conditions, these results be flawed.   

Participant feedback 

Participants’ ratings of task confusion, perceived performance, task understandability, 

and motivation to perform the task were neutral (scored 3, on a 5-point Likert-type scale, on 

average).  However, a frequency-based content analysis of participants’ comments revealed a 

strong emphasis on confusion, particularly at the beginning of the experiment.  Participants 

reported that task familiarization time was inadequate (M = 2.5, SD = 1.13).  Participants also 

reported high effort on the task (M = 4.4, SD = .53) on average.  Other themes that emerged from 

the comments were that the videos did not provide sufficient time to decide, and that several 

participants struggled with the degraded imagery. 

 Task confusion and difficulty with the short stimulus time was not evident during the 

pilot testing of the experiment, which was conducted with 10 participants.  After these issues 
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began to emerge, the experiment was adapted with the addition of an untimed example task and 

an additional experimenter script explaining the task and task interface components.  
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CHAPTER 4 

DISCUSSION 

 

 

Haze and Transparency 

 The current study investigated the effects of degraded visual environments 

(operationalized as haze) and transparency of automation on task accuracy, speed, and trust in 

automation. These variables were investigating using an FMV analysis task with a simulated 

automated analyst with a medium level of automation (Level 5; Sheridan & Verplanck, 1978), 

which offered participants a choice and executed the user’s decision. The results reinforced 

previous findings (e.g. Lyons et al., 2014), suggesting that when the user has too little 

information about how the automation is operating, task accuracy is negatively affected. 

However, the highest transparency condition reduced participants’ speed but not their accuracy, 

suggesting that the type of information and how it is presented may be more important than the 

amount of information presented. The middle level of transparency may have improved 

situational awareness compared to low transparency, and reduced cognitive load compared to 

high transparency. As the amount of information increases, situation awareness increases, 

facilitating decision-making (Chen et al., 2014).  However, the cognitive load also increases, 

reducing task speed (Wright et al., 2017). At the optimal level of information, the opposing 

effects of situation awareness and cognitive load may intersect to predict the highest level of 

efficiency.  

   As expected, degraded imagery negatively impacts participants’ accuracy (but not 

decision speed).  However, unlike MacMillan et al.’s (1994) findings, this reduction in task 
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accuracy did not coincide with reduced trust in automation under degraded conditions. 

Additional research is needed to confirm whether there is a relationship between degraded visual 

conditions and trust.  If degraded visual conditions do not affect trust, then negative performance 

impacts could potentially be mitigated by designing automation to optimize trust levels. In fact, 

neither the haze nor the transparency of automation conditions were found to predict trust; trust 

did not significantly vary across conditions. Since performance and trust did not vary together 

across conditions, the expected mechanism of haze and transparency impacting performance by 

affecting trust could not be confirmed. Instead, since trust explained 4% of the variance in 

accuracy without differing significantly across conditions, trust appeared to moderate the effects 

of haze and transparency. It is also possible that the transparency information, in turn, moderated 

the effect of haze on decision speed. Trust in automation has been previously placed in role of a 

causal variable, explaining user performance degradations via complacency, reduced situation 

awareness, and heuristic decision making (e.g., Wickens et al., 2007). There was no evidence of 

complacency in the current study, perhaps because the task was sufficiently complex, interesting, 

and brief that participants remained engaged throughout. If the experiment had been longer and 

less complex, direct effects of trust on performance via complacency would probably have 

emerged. The results did at least suggest that priming reliability was effective in calibrating 

users’ trust levels. 

Measuring Trust 

The measure of trust used averaged items intended to tap into each of five subconstructs 

of trust: personal attachment, faith, understandability, technical competence, and reliability; and 

one additional item tapping into the overall definition of human-computer trust (the user’s 

confidence in their decisions while using automation).  Post-hoc analyses of the abbreviated  
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Figure 14  
 
Average Scores on Sub-Constructs of Trust 

Note. Error bars represent standard error. 

 

 

Human-Computer Trust Scale revealed significant differences among many of these sub-

constructs, Greenhouse-Geisser F(3.32, 4,528.52) = 56.09, partial η2 = .17, p < .001. For 

example, personal attachment and confidence were significantly higher, while reliability scored 

significantly lower (Figure 14).  Future research should consider the role of these different sub-

constructs in predicting performance and optimal usage of automation.  Additionally, the 

limitations of the current study should be kept in mind when interpreting this result. Unequal 

sample sizes across conditions and the relatively small number of trials may have affected the 

haze and transparency analyses. 
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Since workload should be higher in the hazy condition, participants were expected to rely 

more on the automation if their level of trust was appropriately calibrated (e.g., Bliss, Harden, & 

Dischinger, 2013). As expected, participants were much (2.24 times) more likely to task shed in 

the hazy condition compared to the no-haze condition; however, trust did not significantly 

predict task shedding. Despite the lack of an apparent effect due to trust, haze explained little of 

the variance in task shedding. Transparency of automation was also expected to affect task 

shedding, via its effect on trust. Since trust did not vary significantly across transparency levels, 

it is unsurprising that transparency did not significantly predict task shedding. Some participants 

may not have chosen to task shed because they had little trouble identifying IED emplacement 

activity in the videos; however, some (6.25%) of participants commented that degradation in the 

videos made it difficult to see what was going on. Future research should explore what other 

factors contribute to participants’ motivation to task shed during automation-assisted tasks. Since 

few participants chose to task shed in any condition, experiments better designed to elicit task 

shedding may clarify the relationship between haze, transparency, task shedding, and 

performance. For example, despite a greater tendency to task shed in the hazy condition, 

participants’ accuracy suffered significantly. 

Task shedding and decision time also were not supported as good measures of trust. 

Neither task shedding nor decision time correlated significantly with trust. Decision time was 

expected to correlate with trust since perceived reliability of automation affects both users’ trust 

and decision-making strategies (e.g., Rovira et al., 2007). The lack of a relationship may have 

been due to priming reliability, so that reliability was not perceived to vary; or may have been 

masked by the effects of task complexity. The lack of a linear relationship between task shedding 

and trust differs from previous findings and is difficult to explain. One reason for this result 
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could have been the relatively few samples in which participants chose to delegate (4.5% of all 

choices). Additionally, missing data was unequally distributed across conditions. Participants 

missed (failed to respond within 10 seconds) more of the degraded than non-degraded stimuli, 

and more of the zero-transparency stimuli compared to medium or high transparency levels. This 

coincides with the results for accuracy, supporting the hypothesis that participants found 

degraded visuals and lack of information more challenging. It is possible, however, that this 

imbalance affected some analyses. Additionally, the experiment may have been too short to 

allow participants to establish stable trust levels, despite priming reliability.  For example, Yang 

et al. (2017) found that participants’ trust levels did not stabilize until they had completed 40-80 

trials.  In the current study, participants completed just 18 trials.  

Attention 

 One purpose of this study was to validate a predictive model of attention derived from 

Horrey et al.'s (2006), Johnson et al.'s (2017), and Wickens et al.'s (2003) models.  The proposed 

model adopted bandwidth, relevancy, and value from Wickens’ model and value and uncertainty 

from Johnson’s model, because they were the highest-loading components.  Neither the proposed 

model nor Wickens’ nor Johnson’s models were supported, either in terms of predicting accuracy 

based on participants’ deviation in scanning behavior from optimal, or terms of predicting trust. 

Johnson’s model proved to be a significant predictor of participants’ actual scanning behavior. 

However, additional research is needed to determine a good prescriptive model of attention 

capable of predicting trust and performance. 

Though non-significant, observed attention did appear to depart more from optimal at 

higher and lower levels of trust.  This aligns with the attention model of trust, which predicts 

higher levels of task-relevant attention at lower levels of trust and lower levels of attention at 
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higher levels of trust (Parasuraman & Manzey, 2010).  Additional research is merited to 

determine the relative efficacy of this model of attention in predicting scanning behavior under 

different conditions. 

The expected relationship between trust and attention allocation was not found. Previous 

research (Louw & Merat, 2017) suggested a mediated path from degradation to attention via 

trust. The current results partially supported this model, as attention to ROI 1 was significantly 

higher in the hazy condition. However, trust did not significantly correlate with observed 

attention. Considering that trust also did not vary significantly across haze or transparency 

conditions, it seems likely that some aspect of this experiment resulted in a lack of variance in 

trust.   

Implications 

The findings suggest that fast-paced, complex, and interesting tasks such as FMV 

analysis may be less vulnerable to the negative effects of mistrust and negation of trust in 

automation. However, there is a need to establish design criteria that will facilitate task shedding. 

There is limited research on this specific construct, so many of the factors that may affect task 

shedding behavior have not been identified. Additionally, there appears to be a complex 

relationship between transparency, degraded visual environments, and trust, which merits 

additional research.  

The current results suggest that optimal levels of transparency may not be dependent on 

the task or environment. These results also support Chen’s (2014) model of transparency; 

specifically, Chen’s proposed Level 2 transparency resulted in the best task performance and 

efficiency. Therefore, transparency information should include purpose, process, performance, 
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reason, algorithm, and environment information. Chen’s recommendation to adapt transparency 

information to the greatest task relevancy possible seemed to be effective.  

Accuracy was the most supported measure of trust, whereas it was unclear whether 

decision speed may reflect trust levels. These are also areas that would benefit from additional 

research, especially where trust measures are compared along sub-constructs. For example, 

perceived reliability likely measures situational trust, personal attachment may reflect 

dispositional trust, and confidence may reflect state trust (Balliet & van Lange, 2013). These 

different facets of trust are influenced by different factors and may have a differential effect on 

performance.  

Limitations 

Because 15% of all stimuli disappeared before the participant made a choice, an artificial 

ceiling was imposed on the decision time data. Those missing stimuli were replaced with 10 

seconds for analysis purposes, but participants may have taken longer if given the opportunity. 

This possibility was supported by participant feedback, with frequent (10.4% of participants) 

comments that the amount of time provided was insufficient. For example, one participant 

comment that they felt “rushed”, and another wrote “countdown timer” in the comment section. 

Although the investigator tried to stress accuracy and time equally, some participants were more 

concerned with time, which may have stressed them more. Other participants seemed less 

concerned with time, with the result that they missed many stimuli.  Since this issue did not 

become apparent until late in data collection, however, the time frame could not be adjusted. 

However, future research should provide more liberal time limits for complex tasks. 

Participants often (23%) reported being confused, especially at the beginning of the 

experiment. This issue emerged soon after pilot testing and was partially rectified by the addition 
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of an untimed trial and a task walk-through by the investigator. Even with this additional 

measure, some participants continued to be confused by the task, despite indicating that they 

were comfortable with the explanation.  One participant reported, “This was a little confusing. 

Honestly I wasn’t sure which side of the screen to focus on.” Another commented, “I felt like I 

understood the instructions but once I started I felt as though I didn’t know what I was doing.” 

Participants who reported being confused did not appear to differ significantly on relevant 

demographic factors from those who did not report being confused.   

Participants were mostly (73%) women, which may have affected both performance and 

trust results. For example, gaming experience has been connected with performance in 

automated tasks such as UAV control (Lin et al., 2016). In the current sample, women reported 

one hour per week of gameplay on average, while men reported 6.65 hours per week on average. 

Sex may also influence trust in automation. For example, Nomura (2016) found that women have 

more negative attitudes towards automation than men do, on average. 

Other limitations include the number of trials, which may have been too few to establish 

stable trust levels for participants, and unequal sample sizes for the trust measure across 

conditions. 

Conclusion  

There is a dearth of empirical studies examining the effects of degraded visual 

environments within automation, especially in the ISR field.  Although Macmillan et al. (1994) 

explored this construct early on, they and Narayanaswami et al. (2010) considered only 

transmission factors, such as image distortion, brightness, and resolution, rather than 

environmental factors such as haze, and they did not include an investigation of transparency.  

The current research suggests that both imagery degradation and amount of transparency of 
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automation significantly affect accuracy and task shedding behavior, whereas transparency also 

significantly affects decision speed, and haze significantly affects attention.  However, additional 

research is needed concerning the relationship between visual degradation, transparency of 

automation, and trust in automation. 

Automation within the ISR field is growing in ubiquity and sophistication; however, it is 

still vulnerable to failures, necessitating a role for human monitoring and intervention (Atwood, 

2015; Cardillo, 2016, 2017).  An important prerequisite for appropriate use of automation is 

well-calibrated trust, a concern that will continue as technology moves toward full autonomy.  

Meanwhile, many in the military community resist automated ISR, largely due to distrust 

engendered by the small fields of view of modern UAVs (Patrick, 2015).  Understanding how to 

mitigate these effects is essential.  Future researchers and user interface designers should 

carefully consider design criteria to facilitate task shedding and, therefore, proper use of 

automation as well as more accurate data collection.  The current findings suggest that an 

optimal level of automation transparency is critical to user trust and performance, and should 

include purpose, process, performance, reason, algorithm, and environment information.  The 

content of these categories will vary for different tasks but should be as relevant as possible. 

While the current study focused on negation of trust as a holistic construct, future researchers 

should seek to refine their analyses, targeting the constituent elements of trust. 
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APPENDIX A 
INFORMED CONSENT DOCUMENT 

OLD DOMINION UNIVERSITY 
 

 

PROJECT TITLE: Effects of Transparency and Degraded Visual Environments on Trust and 
Performance during a Full Motion Video Analysis Task 

INTRODUCTION 
The purpose of this form is to give you information that may affect your decision whether to say 
YES or NO to participation in this research, and to record the consent of those who say YES.  
 
RESEARCHERS 
James P. Bliss, Ph.D., Old Dominion University, Psychology Department, Responsible Project 
Investigator 
Sarah C. Leibner, B.S., Old Dominion University, Psychology Department, Graduate Student 
 
DESCRIPTION OF RESEARCH STUDY 
In this experiment, you will complete a Background Information Form. Following this, you will 
be asked to perform a practice session to familiarize yourself with the information system. After 
training, you will be asked to evaluate intelligence information from full motion video, deciding 
whether and how to decide about the information provided. You will have the option to offload 
decision making tasks to an automated system. Periodically during this session, you will complete 
questionnaires evaluating your trust. Additionally, an eye tracking system will be used to evaluate 
where you are looking throughout the experiment.  After the experimental sessions, you will 
complete an Opinion Questionnaire to indicate your strategy for responding. You will then be 
debriefed and dismissed. 
 
You will receive 1 SONA credit for participating in this study.   

If you say YES, then your participation will last for approximately 35 minutes in MGB 326. 
Approximately 46 subjects will be participating in this study. 
 
EXCLUSIONARY CRITERIA 
To be eligible for this study, you must be at least 18 years of age or older and must not have 
participated in the study “Investigation of Alternative Real-Time Measures of Human-Automation 
Trust”. 
 
RISKS AND BENEFITS 
RISKS:  If you decide to participate in this study, then you may face a risk of eyestrain from using 
a computer, but it will be no more than from playing a video game. The researcher tried to reduce 
these risks by minimizing the amount of time in the study to sixty minutes.  As with any research, 
there is some possibility that you may be subject to risks that have not yet been identified. 
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BENEFITS:  There are no known benefits from this study.  Others may benefit by experiencing 
higher-quality technology systems. 
 

COSTS AND PAYMENTS 
The main payment to you for participating in this study is the extra credit or course credit points 
that you will earn for your class. Although researchers are unable to give you payment for 
participating in this study, if you decide to participate in this study, you will receive 1.5 Psychology 
Department research credit, which may be applied to course requirements or extra credit in your 
Psychology course. Equivalent credits may be obtained in other ways. You do not have to 
participate in this study, or any Psychology Department study, in order to obtain this credit.   
 

NEW INFORMATION 
If the researchers find new information during this study that would reasonably change your 
decision about participating, then they will give it to you. 
 

CONFIDENTIALITY 
The researchers will take reasonable steps to keep your private information, such as 
questionnaires, confidential. The researchers will store the information in a locked filing cabinet 
for five years, after which the data will be destroyed. The results of this study may be used in 
reports, presentations, and publications, but the researcher will not identify you. 
 
WITHDRAWAL PRIVILEGE 
It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and walk 
away or withdraw from the study -- at any time. Your decision will not affect your relationship 
with Old Dominion University, or otherwise cause a loss of benefits to which you might 
otherwise be entitled.  The researchers reserve the right to withdraw your participation in this 
study, at any time, if they observe potential problems with your continued participation. 

COMPENSATION FOR ILLNESS AND INJURY:  
If you agree to participate, then your consent in this document does not waive any of your legal 
rights.  However, in the event of harm, injury, or illness arising from this study, neither Old 
Dominion University nor the researchers can give you any money, insurance coverage, free 
medical care, or any other compensation for such injury.  In the event that you suffer injury as a 
result of participation in any research project, you may contact Dr. James P. Bliss at 757-683-4051, 
Dr. Tancy Vandecar-Burdin (ODU IRB Chair) at 757-683-3802, or the ODU Office of Research, 
757-683-3460.  
 

 
VOLUNTARY CONSENT 
By signing this form, you are saying several things.  You are saying that you have read this form 
or have had it read to you, that you are satisfied that you understand this form, the research study, 
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and its risks and benefits.  The researchers should have answered any questions you may have had 
about the research.  If you have any questions later on, please contact the researcher at the number 
above.  
 

If at any time you feel pressured to participate, or if you have any questions about your rights or 
this form, then you should call Dr. Tancy Vandecar-Burdin, the current IRB chair, at 757-683-
3802, or the Old Dominion University Office of Research, at 757-683-3460. 

 

And importantly, by signing below, you are telling the researcher YES, that you agree to participate 
in this study.  The researcher should give you a copy of this form for your records. 

 

 

 

 

 

Participant’s Printed Name & Signature                                                    

 

 

 

Date 

 

 

 

Investigator’s Printed Name & Signature  

 

 

 

Date 
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APPENDIX B 
DEMOGRAPHICS QUESTIONNAIRE 

 
 

Participant #_____  Date:__________  Time:__________ 
 
The purpose of this questionnaire is to collect background information for participants in this 
experiment. This information will be used strictly for this experiment and for research purposes 
only.  Please complete or circle each item to the best of your knowledge.  
 
1.  Age _________       
 
2.  Male 

Female 
3.  Are you a current or former member of the Armed Services? ________ 
 
 0=No 
 1=Yes 
4.  Have you ever been diagnosed as color blind or color deficient? ________ 
 
 0 = No 
 1 = Yes 
 
6.  Have you ever been diagnosed as being nearsighted (myopic)? _______ 
 
 0=No 
 1=Yes 
 
7.  Have you ever been diagnosed as being farsighted (hyperopic)?_______ 
 

0=No 
1=Yes 

 
8.  If you answered yes to either #6 or #7, do you have correction with you (i.e. glasses, contact 
lenses, etc.)? _______ 
  
 0=No 
 1=Yes 
 
9. How many hours per week do you play video/simulation games? _______ 
  
 
10. How many hours per week do you use a computer (work and recreation combined)?______  
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APPENDIX C 
ONLINE TRUST QUESTIONNAIRE 

 
Human-Computer Trust Scale - Madsen and Gregor (2000) 

 
 

 
Part. #: _______   Group:  ________  Session:  ________  Date:______  Time:_______ 
 
Below is a list of statements for evaluating trust between people and automated systems. Please 
circle the number that best describes your feeling or your impression of the automated video 
analysis aid you used during the task.  
 
 
1. I can rely on the system to function properly. 
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
 
2. The system has sound knowledge about the key identification features of IED emplacers. 
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
 
3. Although I may not know exactly how the system works, I know how to use it to perform 

well.  
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
 
4. Even if I have no reason to expect the system will be able to identify IED emplacement 

activity, I still feel certain that it will. 
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
 
5. I feel a sense of attachment to using the system. 
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
 
6. I am confident in the decisions that I made. 
 
Not descriptive: 1     2     3     4     5     6     7     8     9     10     11     12 : Very Descriptive 
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APPENDIX D 
OFFLINE EXPERIENCE QUESTIONNAIRE 

 
 

Participant No.__________  Date:____________   

     

Please answer the following questions about yourself by circling the most appropriate 
response. The information you provide will be kept completely confidential and will not be 
linked backed to you in any way. 

 

Please circle only one answer per question.  

1. This experiment was time consuming. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

2. This experiment was confusing. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

3. I did not feel like I had a good grasp on the instructions for this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

4. I feel like I performed well on this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

5. I feel like I performed poorly on this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

6. This experiment was easy to understand 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

7. This experiment was enjoyable. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

8. I did not enjoy this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

9. I am glad that I participated in this experiment 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

10. I felt engaged in the tasks for this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 
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11. I felt like I received adequate time to train and get comfortable with the experimental task 
before beginning the actual experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

12. I felt like I did not receive adequate time to train and get comfortable with the experimental 
task before beginning the actual experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

13. I felt motivated to perform to the best of my ability in this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

14. I did not care how well I performed in this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

15. I tried my best to perform well on this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

16. I did not try my best to perform well on this experiment. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

17. Overall, I would recommend this experiment to other students. 

Disagree strongly Disagree Neutral Agree  Agree Strongly 

18. Did you have a strategy for responding to the experimental task?  

 Yes  No 

 If yes, please describe 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

 

19. Do you have any other thought, feelings, or comments about the experiment?  

_________________________________________________________________________ 

_________________________________________________________________________ 

_________________________________________________________________________ 
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APPENDIX E 

PARTICIPANT INSTRUCTION VIGNETTE 

 

You have received intelligence reporting indicating heightened bomb-making activity in 

your area of responsibility.  Your task is to analyze Full Motion Video feed, looking for potential 

Improvised Explosive Device (IED) emplacement activity in preparation for a U.S. military 

presence patrol in the area.  IED emplacement activity consists of small groups stopping in or 

near a road, digging and/or unloading objects on the road, and then hastily departing.  You will 

analyze short FMV clips with the aid of an automated analyst designed to identify probable IED 

emplacements along convoy routes.  The automated analyst is able to detect objects such as 

people and vehicles 95% of the time and can correctly classify IED emplacement activity 78% of 

the time.  The automated analyst will indicate whether it has identified IED emplacement 

activity.  Your task is to choose whether to agree or disagree that there is IED emplacement 

activity present.  You may also choose to request additional information or to delegate decision-

making to the automated system.  Keep in mind that the automated system is 78% reliable.  You 

must ensure that no IED emplacements are missed.  Missed IED emplacements could result in 

friendly and civilian casualties. 

While you are analyzing the FMV feed, you must also monitor a U.S. military convoy.  

The convoy feed will be on the right side of the screen.  You will have 10 seconds to analyze 

the activity.  If you do not choose within this time, you will be presented with the next 

video. 

You will have an opportunity to familiarize yourself with this task.  When you are 

comfortable with the task, let the researcher know that you are ready to proceed.    
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