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Abstract: Different satellite images may consist of variable numbers of channels which have different
resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images
have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution
in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have
1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal
temporal remote sensing image fusion. The proposed model takes both low- and high-resolution
remote sensing images at t1 together with low-resolution images at a future time t2 from the same
location as inputs and fuses them to generate high-resolution images for the same location at t2. We
propose an arithmetic operation applied to the low-resolution images at the two time points in feature
space to take care of temporal changes. We evaluated the proposed model on three modality pairs for
multimodal temporal image fusion, including downsampled WorldView-2/original WorldView-2,
Landsat-8/Sentinel-2, and Sentinel-2/NAIP. Experimental results show that our model outperforms
traditional algorithms and recent deep learning-based models by large margins in most scenarios,
achieving sharp fused images while appropriately addressing temporal changes.

Keywords: remote sensing; deep learning; image fusion; generative adversarial network (GAN);
super-resolution; neural networks; U-Net; HRNet

1. Introduction

Remote sensing imaging systems have become effective tools for vegetation moni-
toring [1–4], land cover detection [5], and human–nature interaction [6]. The availability
of high temporal and spatial resolution remote sensed images plays a critical role in the
success of these systems [7,8]. Obtaining high resolutions in both spatial and temporal
domains by current satellite platforms remains difficult due to technical and budget lim-
itations [9]. Different commercial remote sensing imagery providers produce different
resolutions with various revisit frequencies and costs. For example, a single satellite usually
has a low revisit frequency for the same area, and different satellites asynchronously sample
the same area. WorldView-2 (WV-2) satellite and National Agriculture Imagery Program
(NAIP) aerial images have very high spatial resolution but with very high prices (WV-2)
and long revisit times (NAIP). Landsat and Sentinel-2 satellite images are free of charge
and have medium spatial resolutions (10–60 m/pixel) [10].

One possible solution is to fuse multitemporal spatially coarse images with multi-
temporal high-resolution images to achieve adequate resolutions in both temporal and
spatial domains [11]. The fusion algorithm integrates high spatial, low temporal (HSLT)
resolution images with low spatial, high temporal (LSHT) images. Through fusion, high-
temporal-resolution images at medium spatial scale with a nominal revisit interval of few
days can be achieved. Although significant advances have been achieved in recent years,
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the development of algorithms that can obtain sharp fused images and carry temporal
changes in the image series remains a challenging task [12].

In this paper, we propose a deep learning model that takes full advantage of available
temporal and spatial information using fusion to enhance spatial and temporal resolutions
of remote sensing images, as shown in Figure 1. We propose an arithmetic fusion module to
transform temporal changes in image series into high-resolution fused images. For the time
stamps shown in Figure 1 from t1 to tn, different resolution images from different systems
may be available. Our ultimate goal is to produce a set of high-resolution images that can
achieve a dense sampling of the Earth for continuous monitoring and change detection.
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We focused only on RGB fusion in this paper for two reasons. First, there are ap-
plications where only high-resolution RGB images are available. Some images taken by
aircraft/drones, such as the National Agriculture Imagery Program (NAIP) aerial images,
are color images. Some high-resolution images such as Worldview only have RGB bands
available for purchase. In addition, Google Maps uses RGB images from Maxar. The second
reason is that some monitoring applications can be performed using RGB images only.

Our main contributions are:

1. We propose a deep learning model that performs arithmetic operations in feature
space to fuse multimodal temporal remote sensing images. The arithmetic operation
can effectively carry temporal changes and obtain high-resolution fused images,
making it suitable for change detection applications.

2. We successfully applied the proposed model to fuse historical satellite image pairs,
including Sentinel-2 satellite images (10 m spatial resolution), NAIP aerial images
(1 m spatial resolution), Landsat-8 images (30 m spatial resolution), and Sentinel-2
images, to reconstruct high-resolution images. To the best of our knowledge, this is
the first attempt to bridge the 10× resolution gap in remote sensing images.

3. We contribute a benchmark dataset that contains 45 pairs of low-resolution and
high-resolution images collected by the LandSat-8 and Sentinel-2 satellites.

The paper is organized as follows. Section 2 reviews related work. Section 3 describes
our proposed model. Section 4 introduces our experimental setups and datasets. Section 5
presents experimental results and discussions, and Section 6 concludes this paper.
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2. Related Work

Traditional multi-temporal fusion algorithms for remote sensing images can be grouped
into three categories:(1) filter-based, (2) unmixing-based, and (3) learning-based methods.
In recent years, deep learning and geo-statistics have been shown to provide superb results.

In filter-based methods, image pixels in the fused image are calculated by selecting and
weighting similar neighboring pixels from input images. The most popular classic spatial
and temporal adaptive reflectance fusion model (STARFM) builds a simple approximating
relationship between HSLT and LSHT pixels and searches similar neighboring pixels, based
on spectral, temporal, and location distance to generate the fused image [13]. STARFM
was improved by Zhu et al. [14] by assigning different coefficients for homogeneous and
heterogeneous pixels. Shen et al. [15] performed further development by considering
sensor observation differences. Filter-based methods require paired fine and coarse images
from same day for training, which is not always possible in practice.

Zurita-Milla et al. [16] introduced an unmixing-based fusion method where the syn-
thetic images are generated using the spatial information of Landsat/TM data and the
spectral information of medium-resolution imaging spectrometer (MERIS) data. This
method was later improved by the same research group [17]. The unmixing-based meth-
ods outperformed filter-based methods. However, the methods assume that there are no
significant changes between the images to be fused, which is unrealistic in most cases.

Learning-based methods such as sparse representation learning were proposed in
recent years [18,19], where a dictionary was first learned from different image modalities
and a fused image was then generated by selecting and weighting elements in the learned
dictionary. In those algorithms, feature extraction, dictionary learning, sparse coding,
and image reconstruction were carried out separately, which ultimately increased the
complexity of the algorithms. In addition, changes between different images were not well
addressed.

Recently, area-to-point regression Kriging (ATPRK) based on geo-statistics was first
introduced by Wang et al. for image fusion [20]. Later on, they applied ATPRK to fuse
Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Imager (MSI) data
and achieved better performances than STARFM [21], and it can address temporal changes.
However, ATPRK is computationally expensive, and fused images are usually not sharp.

In the past few years, deep learning has made numerous contributions in computer
vision [22], natural language processing [23,24], speech recognition [25,26], and remote
sensing [27,28]. For example, Dong et al. developed a convolutional neural network (CNN)
for image super-resolution [29]. Motivated by the CNN model, Song et al. [30] applied
CNN to fuse MODIS and Landsat images. Li et al. improved the model by introducing
the sensor bias-driven fusion method [31]. Shao et al. developed an extended super-
resolution CNN (ESRCNN) model to blend Landsat-8 OLI and Sentinel-2 MSI data [12].
Chen et al. proposed a generative adversarial network (GAN) for feature level image
fusion for Landsat/Sentinel-2 images [32] during their overlapping period. Their model
achieved better results than those by non-deep learning methods. Zhang et al. developed
a GAN-based remote sensing image spatio-temporal fusion method (STFGAN) using a
feature-level fusion strategy to fuse Landsat and MODIS images. The model consisted of
a two-stage end-to-end GAN framework. In the first stage, it enhanced the resolution of
MODIS images and then fused features from MODIS and Landsat images to generate high
resolution images.

Although deep learning-based models achieved excellent resolution enhancement in
image fusion, handling temporal changes in image series remains a challenging task for
most of the deep models. In change detection or monitoring applications, those changes
are the most important attributes to focus on. While the ATPRK model can account for
temporal changes, the model’s fusion results usually have inferior resolutions than those
produced by deep models. In this paper, we propose a simple yet effective arithmetic fusion
approach that can not only achieve resolution enhancement but also captures temporal
changes. We evaluated our fusion models on four datasets, including Landsat-8, Sentinel-2,
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NAIP, and WV-2, for fusion. Experimental results show that temporal changes in these
datasets can be accurately captured by our proposed model in the fused high-resolution
images, potentially facilitating subsequent change detection tasks.

3. Methodology
3.1. Proposed Model

Figure 2 shows the diagram of the proposed approach. We feed low- and high-
resolution images collected at t1 and low-resolution images at t2 as inputs. We then perform
arithmetic operations to approximate a high-resolution image at t2. Mathematically, the
fusion is described in Equation (1) as follows:

Ht2= F ((Ht1 −Lt1)+Lt2) (1)

where F( . . . ) is the deep network trained to generate high-resolution image (Ht2) at t2.
Ht1 − Lt1 is the detailed part of the image at t1, and Lt2 is the coarse part of the image
at t2. The changes in the details over the time are unknown. A deep network is trained
to generate high-resolution images, along with changes at t2 by fusing detail part of the
images at t1 with the coarse part of the image at t2. These arithmetic fusion operations are
performed in the feature space of the deep learning model. Equation (1) shows arithmetic
operations in feature space. At convolutional layers in the deep model, we subtract
features extracted from low-resolution image at t1 from the features extracted from high-
resolution image at t1, and add those features extracted from low-resolution image at
t2. During training, we provide the model low- and high-resolution image pairs from t1
and t2. The features resulting from the arithmetic operations are then used to reconstruct
high-resolution images at t2.
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Our research goal is to combine low- and high-resolution images at t1 with low-
resolution images at t2 to predict high-resolution images at t2. If there are changes from
t1 to t2 that are captured in the low-resolution images at t2, the arithmetic operations will
add these changes to high-resolution images at t1 to produce high-resolution images at t2.
Low-resolution images have contours for the changes but less details. We use the arithmetic
operation to carry the contours from low-resolution images at t1 and t2 and add details
from high-resolution images at t1 to reconstruct high-resolution images at t2. In this study,
we utilized the popular U-Net [33] and the recent HRNet [34] architectures as backbones
for the deep learning model, which are described in the following.

3.1.1. U-Net Architecture

Figure 3 shows the U-Net architecture backbone for image fusion. First, we use a
shared U-Net structure to encode the three input images. The encoder structure has five
convolutional layers, and each convolutional layer is followed by a batch normalization
layer and a ReLu activation layer. At each convolutional layer in the feature space, we
perform arithmetic operations to enhance low resolution features at t2 and also to capture
the changes over time. Then, outputs of the encoder are fed into the decoder to produce
a high-resolution image at t2. Skip connections are utilized to copy the features from the
encoder to the decoder at the same level as the convolutional layers. During training,
histograms of all images are matched to the same reference image (low-resolution image at
t2 in our study).
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back into the feature maps to reconstruct the high-resolution image at t2.

3.1.2. HRNet Architecture

In the U-Net architecture, image feature maps are downsampled through polling to
lower resolution in the encoder and upsampled in the decoder to match the input image size.
High-resolution information is not kept in this downsampling and upsampling process;
instead, high-resolution information is copied to the decoder through the skip connections.
On the contrary, the HRNet architecture maintains all level resolution channels throughout
the whole process during learning such that detailed information is better preserved in the
reconstructed images. HRNet is now becoming the mainstream in many computer vision
applications [34].

Figure 4 shows our proposed HRNet architecture. The model has five convolutional
layers. Each layer is followed by a normalization layer and the ReLu activation function.
It has three resolution stages, including high-, medium- and low-resolution, as shown in
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Figure 4. The high-resolution stage carries high-frequency information, which is crucial for
sharper image generation, and the low-resolution stages account for large-scale contents
in the images. The images in our experiments do not contain many large-scale changes
between the two time points. As a consequence, arithmetic operations at lower-resolution
stages may not provide much improvement. As the high-resolution stage carries high
frequency information, we perform the same feature level arithmetic operations as those
in the U-Net architecture in each convolutional layer at the high-resolution stage. We
also conducted experiments by applying the arithmetic operations at all resolution stages.
Nevertheless, only a marginal performance improvement was obtained with a significant
increase in model complexity. Therefore, we chose this relatively simple structure. A similar
histogram matching process is applied to all the images before training.
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3.2. Loss Functions

To train the proposed fusion models, we used the popular mean-square error (MSE),
and the well-recognized metric named high-frequency error norm normalized (HFENN) [35]
as the cost function. The MSE metric is defined as:

MSE =
1

WHC ∑W
i=1 ∑H

j=1 ∑C
k=1(Ii,j,k − Îi,j,k
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where I and Î denote the true and predicted high-resolution image at t2, respectively; and
W, H, and C represent width, height, and number of channels in the images, respectively.
The HFENN cost function is defined as:

HFENN =

∣∣∣∣LoG(I)− LoG
(

Î
)∣∣∣∣∣∣∣∣LoG

(
Î
)∣∣∣∣ (3)

where LoG denotes the Laplacian of the Gaussian operator, which captures high-frequency
information in the fused images [36]. The total cost function used in our study is then
defined as the combination of the two.

L = MSE + 10 × HFENN (4)

We put a larger weight (10–based on experiments) on HFENN such that the model can
focus on high frequency details. The total loss function L not only tells of the pixel-wise
difference between two images in general, but also puts more emphasis on high-frequency
component differences between the two images.

3.3. Performance Metrics

We used five performance metrics to evaluate different models in our study, including
peak signal to noise ratio (PSNR), structural similarity (SSIM), spectral angle mapper (SAM),
relative dimensionless global error (ERGAS), and root-mean square error (RMSE) [36,37].
These metrics are defined as follows:

PSNR = 10 log
(

R2

MSE

)
(5)

where R is the maximum range of input image data type. A higher PSNR value indicates a
better image quality for the reconstructed high-resolution image.

SSIM =

(
2µ1µ2+L1

) (
2ΦI Î + L2

)(
µ2

I + µ2
Î
+ L1

)(
Φ2

I + Φ2
Î
+ L2

) (6)

where µ1 and µ̂ represent mean pixel values of ground truth and its predicted image, ΦI Î
denotes covariance between ground truth and the predicted image, and L1 and L2 are
predefined constants. A higher value of SSIM also indicates better image quality.

SAM =
1
N ∑N

i=1 arccos
∑C

j=1

(
I j
i Î j

i

)
√

∑C
j=1( Î j

i )
2
√

∑C
k=1
(

Ik
i
)2

(7)

where N indicates the total number of pixels in the fused image and C is the number of
bands in the image. The SAM metric is used to measure spectral distortion of an image. A
small value indicates better image quality.

RMSE =

√
(

1
HWC ∑H

i=1 ∑W
j=1 ∑C

k=1(Ii,j,k − Îi,j,k )

)
(8)

ERGAS =
100 ∗ l

h

√
1
C ∑C

i=1
RMSE(I)2

1
µi

(9)

where h and l denote spatial resolutions of high- and low-resolution images, respectively.
RMSE is used to calculate global radiometric difference between ground truth and the fused
image. ERGAS is used to evaluate the quality of a fused image based on the normalized
average error of each band in the processed image. Smaller values of RMSE and ERGAS
represent better image quality.
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4. Experimental Setup
4.1. Datasets

We utilized WV-2, Sentinel-2, Landsat-8, and NAIP images to evaluate the proposed
fusion model. Details of these imagery systems and data for both training and testing are
listed in Tables 1 and 2. For WV-2 images, the study area covered the Millerovo airport,
which is located in Russia; and the images contain airplanes, buildings, vegetation, etc. We
collect cloud-free images at two time points (04/2014 and 07/2015) with image resolution
of 0.46 m for training.

Table 1. Specifications of datasets used in the study.

Systems Modality Bands Resolution Revisit Frequency Charge

Landsat-8 Satellite 8 30 m 16 days Free

Sentinel-2 Satellite 12 10 m 10 days Free

NAIP Aerial 4 1 m 3 years Variable

WV-2 Satellite 8 0.46 m Less than 4 days Expensive

Table 2. Details of training and testing data.

Experiments Type Dimension No. of Images

WV-2
(Experiment 1) Training 1024 × 1024 × 3 1

WV-2
(Experiment 1) Testing 200 × 300 × 3–700 × 800 × 3 20

Landsat-8 & Sentinel-2
(Experiment 2) Training 406 × 766 × 3 1

Landsat-8 & Sentinel-2
(Experiment 2) Testing 200 × 200 × 3–300 × 300 × 3 20

Sentinel-2 and NAIP
(Experiment 3) Training 1500 × 1500 × 3 1

Sentinel-2 and NAIP
(Experiment 3) Testing 100 × 200 × 3–500 × 800 × 3 20

Landsat-8 & Sentinel-2
(Experiment 4) Testing 100 × 200 × 3–400 × 600 × 3 45

For NAIP, Sentinel-2 and Landsat-8 images, we choose Norfolk, VA, as our study area
due to the rapid urban development over time in this region. Figure 5 shows some training
image pairs used in this study. Image resolutions of NAIP, Sentinel-2, and Landsat-8 images
are 1, 10, and 30 m, respectively.

For evaluation, we chose 20 smaller images with different dimensions in the adjacent
area for each of the experiments. The time difference between the two time points was
about two years. Significant temporal changes can be observed between the image pairs.
In addition, we collected 45 testing images from Palm Jumeirah, Dubai, for testing the
ability to generalize. This dataset consisted of low-resolution Landsat-8 images and paired
high-resolution Sentinel-2 images. The time difference between the two time points was
about four years, and significant temporal changes were present between image pairs.
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and WV-2 (0.46 m). Large red boxes display zoomed-in regions in the corresponding small boxes.
Significant temporal changes can be observed. For example, in (e), the buildings are under construc-
tion and incomplete, whereas in (g), the buildings are completed. Image contrast was enhanced for
better display.

4.2. Preprocessing

Different satellite images contain different numbers of channels. In this study, we only
considered RGB channels. As we apply arithmetic operations to different images collected
at different times, these images need to be registered. We utilized the projection distortion
based on the control points method provided by Matlab R2020a (MathWorks Inc., Natick,
MA, USA) for registration. We also performed data normalization and histogram matching
for consistent performances.
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4.3. Experiments
4.3.1. Experiment 1

We used the WV-2 dataset collected at the two time points for image fusion. We
downsampled the images by averaging pixels with different factors (2×; 4×; 6×; 10×) to
simulate low-resolution images at both time points, making the low- and high-resolution
images at the same time point perfectly registered. We expect better performances than
other experiments where the images registration was not perfect. This experiment tested
the upper limit on the number of times the high-resolution images can be downsampled
while still achieving good fused high-resolution images.

4.3.2. Experiment 2

Landsat-8 images have a resolution of 30 m, and Sentinel-2 images have a resolution
of 10 m. The images collected from Norfolk, VA, are of around two years apart. We fused
Landsat-8 and Sentinel-2 images at t1 with Landsat-8 images at t2 to generate Sentinel-2
images at t2. There is a factor of 3× difference in resolutions between the two image
datasets, and we expected good performances, though the registration is not perfect.

4.3.3. Experiment 3

Sentinel-2 images have a resolution of 10 m, and NAIP images have a resolution of
1 m. The images collected from Norfolk, VA, are of around two years apart. We fused
Sentinel-2 images and NAIP images at t1 with Sentinel-2 images at t2 to generate NAIP
images at t2. This was the most challenging task in our study due to a resolution difference
of 10× between the two different modalities. We tested the proposed fusion model on this
dataset with an imperfect registration.

4.3.4. Experiment 4

To evaluate generalization capability of the proposed models, we applied models
trained with data collected in Norfolk, VA, USA, to data collected in Palm Jumeirah in Dubai
without fine-tuning. Palm Jumeirah has been experiencing rapid growth of urbanization
over the past few years. The time gap between the image pairs we collected is about 4 years,
and significant temporal changes are present in the image pairs. Low-resolution images
captured by Landsat-8 have 30 m resolution, and the high-resolution images were from
Sentinel-2 with a resolution of 10 m.

4.3.5. Experiment 5: Statistical Tests

We performed two statistical (parametric and non-parametric) tests to show if per-
formance differences between the proposed model (best) and the best baseline model are
significant. Parametric tests are performed when the data size is large and the data are
normally distributed, whereas non-parametric tests are conducted if data size is small and
the data do not assume a normal distribution [38]. For parametric test, we applied the
two-sample t-test, and for non-parametric test, we performed the Wilcoxon rank sum test.
Both tests assume the involved samples are independent [39].

4.4. Competing Methods and Abbreviations

Our proposed model can combine different backbones and loss functions, resulting in
four methods: “U-Net + MSE” (UMSE), “U-Net + MSE + HFENN” (UMSEh), “HRNet +
MSE” (HMSE), and “HRNet + MSE + HFENN” (HMSEh). We also compared our model to
the ATPRK method [19]; and the deep models ESRCNN [12], GAN [32], and STFGAN [40].
For the implementations of ESRCNN, GAN, and STFGAN, we followed the same settings
utilized in the original papers and combined all temporal images to form inputs (similar to
our proposed models) for fair comparisons.
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5. Results and Discussion
5.1. Hyperparameter Determination

In all of the five experiments, we set input image patch dimensions to 32 × 32 × 3,
convolutional kernel size to 3 × 3, batch size to 32, and number of training epochs to 35.
We included five convolutional layers in both the U-Net and HRNet backbones, where each
convolutional layer was followed by a batch normalization layer and the ReLu activation.
We fixed the dropout rate to 0.1 for all dropout layers and used the Adam optimizer
during training with default learning rates. All models were trained on a high-performance
computing cluster (GPU, 128 GB RAM, 16 cores). The model was implemented using the
Keras platform [41].

5.2. Results and Analysis
5.2.1. Results of Experiment 1 and Analysis

Table 3 shows performance metrics by different models with which we downsampled
the high-resolution WV-2 images as perfectly registered low-resolution images for fusion.
We tested four down-sampling factors, including 2×, 4×, 6×, and 10×, and compared the
proposed models with ATPRK, ESRCNN, and GANs (GAN, STFGAN). The ATPRK model
showed consistently poor performances for all cases. ESRCNN produced competitive
results for the 2× case and achieved the best SAM of 2.48. However, for most of the
other cases, the proposed model with the U-Net and HRNet backbone model achieved
better results.

Table 3. Results of Experiment 1. ATPRK, ESRCNN, and GANs are competing methods. All others
are the proposed model with different backbones or different loss functions. Results are averages for
20 testing images and shown in the format of “mean (std)”. Best results are shown in bold.

Methods
Scale-10×

PSNR SSIM SAM RMSE ERGAS

ARPRK 17.85 (5.75) 0.48 (0.12) 2.51 (0.40) 34.27 (11.49) 26.18 (3.45)

ESRCNN 39.43 (3.49) 0.95 (0.01) 2.70 (0.77) 2.91 (1.01) 12.56 (2.88)

GAN 36.87 (2.41) 0.92 (0.01) 4.01 (1.39) 3.76 (0.77) 14.26 (2.14)

STFGAN 36.51 (1.69) 0.93 (0.01) 4.17 (1.28) 3.96 (1.18) 14.97 (3.72)

UMSE 40.30 (2.91) 0.96 (0.01) 2.47 (0.55) 2.58 (0.77) 10.52 (2.22)

UMSEh 40.05 (2.65) 0.96 (0.01) 2.71 (0.98) 2.64 (0.74) 10.66 (2.25)

HMSE 38.80 (2.47) 0.94 (0.01) 2.94 (0.68) 3.03 (0.78) 14.77 (2.49)

HMSEh 39.50 (2.77) 0.95 (0.01) 2.74 (0.64) 2.82 (0.80) 12.89 (2.30)

Methods
Scale-6×

PSNR SSIM SAM RMSE ERGAS

ARPRK 19.32 (2.93) 0.54 (0.13) 2.31 (1.01) 29.26 (11.43) 24.69 (4.02)

ESRCNN 40.93 (2.67) 0.95 (0.01) 4.97 (1.07) 2.38 (0.64) 10.29 (1.83)

GAN 39.34 (1.85) 0.93 (0.01) 5.83 (1.27) 2.80 (0.56) 12.43 (1.90)

STFGAN 40.54 (2.53) 0.95 (0.01) 4.17 (0.92) 2.50 (0.88) 10.43 (2.94)

UMSE 40.65 (2.05) 0.95 (0.01) 5.16 (1.15) 2.42 (0.53) 10.24 (1.61)

UMSEh 40.72 (2.62) 0.95 (0.01) 4.87 (1.08) 2.43 (0.64) 11.44 (1.76)

HMSE 40.97 (2.17) 0.95 (0.01) 4.87 (1.15) 2.35 (0.55) 9.92 (1.72)

HMSEh 41.14 (2.47) 0.95 (0.01) 4.99 (1.10) 2.33 (0.59) 9.98 (1.70)
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Table 3. Cont.

Methods
Scale-4×

PSNR SSIM SAM RMSE ERGAS

ARPRK 20.43 (2.92) 0.58 (0.14) 5.37 (1.06) 26.32 (11.14) 23.24 (4.61)

ESRCNN 41.63 (2.56) 0.95 (0.01) 4.76 (0.99) 2.19 (0.59) 9.51 (2.19)

GAN 39.73 (1.08) 0.94 (0.01) 5.67 (1.28) 2.64 (0.34) 11.43 (2.01

STFGAN 39.63 (5.35) 0.94 (0.06) 4.45 (1.41) 3.32 (3.08) 13.29 (10.01)

UMSE 41.87 (2.32) 0.95 (0.01) 5.02 (1.21) 2.12 (0.55) 10.31 (2.36)

UMSEh 42.16 (2.54) 0.96 (0.01) 4.76 (1.14) 2.06 (0.57) 9.02 (2.04)

HMSE 41.82 (2.38) 0.96 (0.01) 4.91 (1.16) 2.13 (0.55) 9.70 (2.09)

HMSEh 40.32 (1.66) 0.95 (0.01) 4.91 (1.07) 2.49 (0.45) 13.04 (2.84)

Methods
Scale-2×

PSNR SSIM SAM RMSE ERGAS

ARPRK 22.98 (3.42) 0.68 (0.17) 2.48 (0.90) 19.71 (9.99) 20.95 (6.19)

ESRCNN 42.19 (2.53) 0.97 (0.01) 3.32 (0.71) 2.06 (0.58) 9.31 (2.22)

GAN 39.90 (3.82) 0.96 (0.01) 4.33 (0.58) 2.62 (1.11) 13.33 (3.58)

STFGAN 38.81 (4.34) 0.96 (0.02) 4.53 (1.55) 3.24 (4.94) 14.62 (4.81)

UMSE 42.19 (2.53) 0.97 (0.01) 3.32 (0.71) 2.02 (0.58) 9.31 (2.22)

UMSEh 42.16 (2.19) 0.97 (0.01) 3.29 (0.58) 2.05 (0.53) 8.71 (2.38)

HMSE 41.41 (1.76) 0.97 (0.01) 3.77 (1.05) 2.21 (0.46) 10.95 (3.42)

HMSEh 42.40 (2.54) 0.98 (0.01) 3.72 (1.00) 2.01 (0.58) 9.20 (2.39)

If images are perfectly registered (Experiment 1), our proposed models can handle
up to 12× spatial resolution differences (PSNR of UMSE reached 40.30 dB at 10× down-
sampling) and carry temporal changes to the fused high-resolution images. The U-Net
backbone outperforms the HRNet backbone in most of all the metrics for 10× and 4×. For
6× and 2×, the HRNet backbone outperforms the U-Net backbone (Table 3). However,
we shows (in Section 5.2.8) that the HRNet backbone retained more details in the fused
image, making it much sharper. These performance metrics may not be ideal to capture
high-frequency details [42] in images, and better matrices are desired. Our proposed model
shows the potential to fuse different remote image modalities in practice. The competing
method, ARPRK, failed to generate a sharp image, and ESRCNN failed to capture temporal
changes. Neither of them achieved a sharp image with proper temporal changes at the
same time. The GAN model produced sharp images in Experiment 1 but quantitatively
did not perform well (GAN, STFGAN) and failed the fusion task in Experiment 3, unlike
our proposed models.

5.2.2. Results of Experiment 2 and Analysis

Table 4 shows results of fusing Landsat-8 images to generate high-resolution Sentinel-2
images; the resolution difference was 3×. The proposed models achieved better results (all
other cases) than the competing methods (ATPRK, ESRCNN, and GANs) in terms of all the
five metrics. The model with the U-Net backbone and the high frequency loss (UMSEh)
outperformed the HRNet-backbone model in all metrics except SAM.
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Table 4. Results of Experiment 2 (Landsat-8 and Sentinel fusion) and Experiment 3 (Sentinel and
NAIP fusion). Results are averages of 20 testing images. Bold value indicates the best performance
metric of a certain model.

Methods
Experiment 2

PSNR SSIM SAM RMSE ERGAS

ARPRK 23.40 (1.86) 0.70 (0.07) 6.81 (1.23) 18.87 (4.00) 19.57 (1.65)

ESRCNN 27.34 (1.99) 0.80 (0.04) 5.91 (1.05) 10.15 (2.61) 15.83 (2.27)

GAN 28.05 (1.74) 0.82 (0.03) 5.89 (1.03) 9.36 (2.02) 14.10 (0.89)

STFGAN 28.28 (1.69) 0.81 (0.04) 5.90 (0.59) 9.09 (1.88) 14.02(0.88)

UMSE 29.11 (1.95) 0.83 (0.04) 5.50 (0.79) 9.12 (1.98) 13.57 (1.02)

UMSEh 29.55 (1.84) 0.85 (0.03) 5.95 (0.95) 7.80 (1.74) 12.84 (0.89)

HMSE 28.64 (1.87) 0.82 (0.04) 5.39 (0.85) 8.87 (2.06) 13.95 (1.20)

HMSEh 28.57 (1.91) 0.82 (0.04) 5.57 (0.64) 9.41 (2.10) 13.76 (1.25)

Methods
Experiment 3

PSNR SSIM SAM RMSE ERGAS

ARPRK 10.07 (3.90) 0.22 (0.12) 15.33 (6.63) 84.81 (36.33) 20.19 (7.85)

ESRCNN 9.16 (1.68) 0.14 (0.04) 7.30 (2.54) 96.25 (19.80) 27.97 (9.20)

GAN 10.72 (4.03) 0.30 (0.11) 5.55 (0.80) 83.93 (37.27) 17.79 (8.07)

STFGAN 10.45 (2.70) 0.30 (0.09) 6.83 (1.13) 80.05 (24.91) 12.35 (3.86)

UMSE 10.98 (2.52) 0.22 (0.09) 6.72 (2.17) 79.68 (27.92) 14.51 (5.53)

UMSEh 12.37 (3.80) 0.33 (0.11) 5.95 (1.23) 70.63 (35.97) 10.62 (7.79)

HMSE 11.72 (3.42) 0.30 (0.10) 5.54 (0.92) 75.72 (33.64) 13.90 (7.07)

HMSEh 11.45 (2.99) 0.23 (0.10) 4.67 (0.65) 78.62 (31.08) 20.76 (6.21)

The resolution difference between Sentinel-2 and Landsat-8 is 3× (10 m vs. 30 m),
and the fusion results visually look good. However, the best PSNR dropped to 29.55 dB
(by UMSEh), as compared to the best case at 4× in Experiment 1 (42.16 dB by UMSEh),
partially because the image registration was imperfect. However, the temporal changes
were captured nearly perfectly (described in Section 5.2.7), The fused images ideally will
have a 10 m spatial resolution and are suitable for large object detection, including that of
boats, buildings, etc. Since both of the modalities are free of charge, they have potential for
practical nonessential applications.

5.2.3. Results of Experiment 3 and Analysis

Image fusion results from Sentinel-2 to NAIP are listed in Table 4, where the resolution
difference is 10× and image registration of the two modalities differs (satellite and aerial)
and is imperfect. The proposed method with U-Net as a backbone and MSE + HFENN as
loss functions (UMSEh) won by four out of the five performance metrics. Both GAN models
did not perform well. Surprisingly, the ATPRK model performed better than ESRCNN. In
summary, from Table 4, it is clear that the proposed model achieved the best overall results.

NAIP provides very-high-resolution (1 m) time-series images; it is designed for agri-
culture application monitoring. One limitation is that NAIP is not free of charge. As shown
in Table 4, the PSNR of the fused images from free Sentinel-2 images can reach 12.37 dB by
UMSEh. However, they are still not clear and need further investigation if the fused images
are to be used for agriculture monitoring applications. As compared to Experiment 2, the
resolution difference in Experiment 3 was 10×, along with the two different modalities
(Sentinel-2: satellite, NAIP: aerial), so that it is not surprising that the PSNR performance
metrics dropped significantly.
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5.2.4. Results of Experiment 4 and Analysis

Table 5 shows transfer learning performances of the proposed models trained with
data collected in Norfolk, VA, and applied to data collected in Palm Jumeirah. The objective
of the fusion was to generate high-resolution Sentinel images from low-resolution Landsat-
8 images for two-time points with temporal changes. Our proposed models achieved
the best performances in all five metrics as compared to ATPRK, ESRCNN, and GANs.
In particular, the U-Net backbone with high-frequency loss (UMSEh) achieved the best
PSNR, SSIM, and RMSE. The HRNet bone with regular loss obtained the best SAM and
ERGAS. Figure 6 shows some of the fused images in the Palm Jumeirah area. Quantitatively,
STFGAN is similar to GAN; GAN performed slightly better. We only show the results
by GAN for all the experiments to save space. Visual inspection shows that GAN and
U-NET backboned models performed well. The color contrast in images produced by other
computing methods (ESCNN, HMSE, HMSEh) does not match that in the ground truth
image (H2).

Table 5. Results of Experiment 4 (transfer learning). All models were trained with images collected
from Norfolk, VA, and tested on images collected from Palm Jumeirah, Dubai. Results are averages
of 45 testing images. Bold value indicates best performing value of a certain model.

Methods PSNR SSIM SAM RMSE ERGAS

ARPRK 9.88 (1.37) 0.14 (0.03) 5.35 (1.63) 82.71 (12.96) 30.69 (1.47)

ESRCNN 13.73 (0.75) 0.31 (0.02) 2.26 (0.50) 52.62 (4.41) 27.68 (0.51)

GAN 13.74 (0.73) 0.32 (0.02) 2.45 (0.57) 52.56 (4.28) 27.66 (0.50)

STFGAN 14.08 (0.93) 0.31 (0.04) 2.87 (1.25) 50.66 (5.19) 27.73 (0.69)

UMSE 14.13 (0.63) 0.33 (0.02) 2.68 (0.41) 50.24 (3.54) 27.44 (0.54)

UMSEh 14.50 (0.71) 0.34 (0.02) 2.55 (0.46) 48.16 (3.82) 27.44 (0.53)

HMSE 14.17 (0.64) 0.33 (0.03) 2.23 (0.55) 49.99 (3.57) 27.42 (0.57)

HMSEh 14.23 (0.63) 0.33 (0.02) 2.76 (0.48) 49.63 (3.55) 27.38 (0.55)
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5.2.5. Results of Statistical Tests

We performed statistical tests between the proposed model UMSEh and GAN. UMSEh
achieved the overall best results, and GAN was the best baseline model for all of our
experiments, as shown in Table 6. For Experiment 1, we report the statistical test for the
4× resolution case. Table 6 shows that UMSEh is statistically better than GAN in terms of
all cases, except for Experiment 3.

Table 6. Statistical tests between UMSEh (best overall) and GAN (best competing model) for all
experiments, where h = 1 indicates the difference is significant at the 95% significance interval.
Experiment 1 is for the 4× resolution case.

Metrics

Experiment 1 Experiment 2

Two Sampled t-Test Wilcoxon Rank Sum Test Two Sampled t-Test Wilcoxon Rank Sum Test

p-Value h p-Value h p-Value h p-Value h

PSNR 4.0 × 10−4 1 1.50 × 10−3 1 7.1 × 10−3 1 7.1 × 10−3 1

SSIM 1.0 × 10−4 1 1.79 × 10−4 1 1.7 × 10−2 1 1.7 × 10−2 1

SAM 2.2 × 10−2 1 1.03 × 10−3 1 9.1 × 10−1 0 9.1 × 10−1 0

RMSE 4.0 × 10−4 1 1.50 × 10−3 1 7.8 × 10−3 1 7.8 × 10−3 1

ERGAS 6.0 × 10−4 1 6.86 × 10−4 1 1.0 × 10−4 1 1.0 × 10−4 1

Experiment 3 Experiment 4

Metrics
Two Sampled t-Test Wilcoxon Rank Sum Test Two Sampled t-Test Wilcoxon Rank Sum Test

p-Value h p-Value h p-Value h p-Value h

PSNR 2.60 × 10−1 0 1.13 × 10−1 0 3.42 × 10−6 1 1.18 × 10−6 1

SSIM 4.10 × 10−1 0 3.89 × 10−1 0 2.48 × 10−5 1 6.69 × 10−6 1

SAM 4.80 × 10−1 0 6.29 × 10−1 0 3.82 × 10−1 0 2.24 × 10−2 1

RMSE 3.40 × 10−1 0 1.13 × 10−1 0 1.58 × 10−6 1 1.18 × 10−6 1

ERGAS 1.06 × 10−1 0 6.50 × 10−2 1 1.56 × 10−4 1 1.82 × 10−5 1

5.2.6. Visual Inspection

Figure 7 shows a fused testing image resulting from each of the experiments. The
images fused by the ATRPK model (fifth column) are blurry, and the color contrast of some
images does not match that of the ground truth (fourth column). The ESRCNN model
generated images containing more details than these by ATPRK. The GAN model produced
sharp outputs with visible details in Experiment 1 (Figure 7a), but performed the worst
in Experiment 3 (Figure 7c). The proposed model produced much better results. Images
generated by the HRNet-backbone model (HMSEh) are the sharpest by visual inspection.



Remote Sens. 2022, 14, 6160 16 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

Images generated by the HRNet-backbone model (HMSEh) are the sharpest by visual in-
spection. 

 
(a) Results of Experiment 1.  

 
(b) Results of Experiment 2.  

 
(c) Results of Experiment 3.  

Figure 7. Visual inspection of images fused by different models.  Figure 7 (a) shows the results of 
the Experiment 1 where low- and high-resolution image pairs were downsampled by the 6× WV-2 
image and its original version. Figure 7 (b) shows the results of Experiment 2 where low- and high-
resolution image pairs are Landsat-8 and Sentinel-2 images. Figure 7 (c) shows the results of Exper-
inet 3 where Low- and high-resolution image pairs are Sentinel-2 and NAIP images. For each of the 
experiment results, the first row shows input images and fused results by different models. “Low-𝑡ଵ”, “High-𝑡ଵ”, and “Low-𝑡ଶ” are inputs images. “Ground truth” is the high-resolution image at t2. 
The second row shows the zoomed-in region in the red box above. Results of the proposed model 
are from the best combination of backbone and loss function in each of the experiments. Image con-
trast was enhanced for better display. 

 

Figure 7. Visual inspection of images fused by different models. (a) shows the results of the Experi-
ment 1 where low- and high-resolution image pairs were downsampled by the 6× WV-2 image and
its original version. (b) shows the results of Experiment 2 where low- and high-resolution image
pairs are Landsat-8 and Sentinel-2 images. (c) shows the results of Experinet 3 where Low- and
high-resolution image pairs are Sentinel-2 and NAIP images. For each of the experiment results,
the first row shows input images and fused results by different models. “Low-t1”, “High-t1 ”, and
“Low-t2 ” are inputs images. “Ground truth” is the high-resolution image at t2. The second row
shows the zoomed-in region in the red box above. Results of the proposed model are from the best
combination of backbone and loss function in each of the experiments. Image contrast was enhanced
for better display.

5.2.7. Images with Temporal Changes

Figure 8 shows image fusion results when temporal changes are present in the
Landsat-8 and Sentinel-2 dataset. The region is located inside the Norfolk port in Vir-
ginia, where a fleet was present at t1, and the fleet left at t2 when the image was collected.
The contour of the fleet is still visible in the image fused by the ESRCNN model (Figure 8c).
Our proposed method with different loss functions and backbones (Figure 8e–f) clearly
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reflected the change. The ATPRK and GAN algorithms also successfully captured the
temporal changes in the fused image.
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can better keep these high-frequency details as compared to the U-Net backbone (Figure 
9a, UMSEh), producing sharper details. 

Figure 8. Image fusion results with temporal changes. From left to right, the first row (a–c) shows the
ground-truth image, ATPRK, and ESRCNN; and the second row (d–f) shows GAN, UMSE, and HMSE,
respectively. In the ground truth image, the zoomed-in regions at t1 and t2 show changes captured by
the Sentinel-2 satellite image where a cargo ship docked in the Norfolk port at t1 and left at t2. The
ESRCNN failed to reflect the change in the fused image. ATPRK, GAN, and our models successfully
captured this change in the fused images. UMSE: “U-Net + MSE”. HMSE: “HRNet + MSE”.

5.2.8. Images with High-Frequency Details

Figure 9 shows one fused image from Experiment 1 of 6× with high-frequency details
inside the red square. It can be observed that the HRNet backbone (Figure 9b, HMSEh) can
better keep these high-frequency details as compared to the U-Net backbone (Figure 9a,
UMSEh), producing sharper details.
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5.2.9. Upper Limit of the Downsampling Factor

We performed experiments on the WorldView-2 dataset to investigate the extent that
an image may be downsampled while still achieving good fused images, given that the
image registration is perfect. We continued to downsample the image with factors of 12×
and 16× and applied the proposed model for image fusion. Figure 10b–d show the fused
images with factors 10×, 12×, and 16×, respectively. It can be observed that the fused
image with the factor of 16× is blurry, and we conclude that the upper limit may be 12×,
which is our proposed limit.
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Figure 10. Image registration effect. With imperfect registration in Experiment 3, the resolution
difference of 10× between Sentinel2 and NAIP images is much more difficult to bridge (image in
(a) is blurry). With the perfect registration in Experiment 1, even larger resolution differences resulted
in much sharper fused images (b–d).

6. Discussion

For environmental monitoring or land surface change detection, a remote sensing
imaging system that can densely sample a particular region with high spatial resolution is
desired. The proposed model is an attempt to fuse multiple satellite image modalities to
generate high resolution in both temporal and spatial domains.
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Our proposed methods are simple yet fast (less than 2 min) and effective at capturing
temporal changes. We unitized arithmetic operations in feature space to achieve this goal.
In the encoder parts of U-Net and HRNet, we subtracted features of low-resolution images
from features of high-resolution images at t1 and added features of low-resolution images at
t2. These low-resolution features represent contours, and high-resolution features represent
both contours and detail texture information in the images. We utilized these arithmetic
operations to explicitly reflect low-resolution temporal contour changes. Though high-
resolution information was not provided at the input, we assumed that high-resolution
texture information would be correlated with shapes of contours and could be learned from
similar texture patches in training data so that the changed contours at t2 can be correctly
filled with details. We expect direct deep learning models such as ESRCNN will eventually
learn the arithmetic relationship between the three inputs and output and correctly reflect
temporal changes, if more data are provided. The explicit arithmetic feature operations
guided the training and made the learning much easier, which will be further investigated
in our future work.

In general, our proposed models are capable of accurately capturing temporal changes
while enhancing spatial resolution. These results were confirmed by both the performance
metrics and visual inspection. ATRPK can also capture such changes, but the generated
images are blurry, and image contrast sometimes does not match that of ground truth.
ESRCNN can preserve image contrast, but the fused images cannot update temporal
changes. GANs can catch temporal changes, but they also have the image contrast mismatch
issue, and this failed in Experiment 3. It is worth noting that our models heavily depend
on image registration. Perfect registration can tolerate a spatial resolution difference of up
to 12× during fusion (Figure 10).

Though the proposed U-Net backbone quantitatively outperformed the HRNet back-
bone in many cases, the metrics we used for performance evaluation are based on MSE
regression-based techniques, which compare features on pixel basis and penalize any syn-
thetic high-frequency detail that is not perfectly aligned with the ground-truth image [42].

Visually, the HRNet backbone generated sharper images, and the details in the gen-
erated images are much sharper than those in the U-Net generated images, because the
HRNet backbone models maintain high resolution throughout the whole learning process,
and can capture high-frequency components better than U-Net. Images fused by the AT-
PRK model are usually blurry. ESRCNN and GANs were also outperformed by the U-Net
and HRNet backbone models in most cases.

7. Conclusions and Future Research

We proposed an arithmetic deep image fusing method, ArithFusion, for multimodal
temporal remote sensing image fusion. We applied it to Landsat-8, WorldView-2, Sentinel2,
and NAIP satellite image pairs in this study. ArithFusion with both the U-Net and HRNet
backbones achieved better results as compared to the traditional method (ATPRK) and
the deep models (ESRCNN, GAN, STFGAN). While HRNet obtained similar performance
metrics to U-Net, the images fused by HRNet are much sharper. GANs, ESRCNN, and
ATPRK either cannot catch temporal changes, or the fused images are blurry. ArithFusion
successfully tackled these two challenges, making it a suitable candidate tool for fusing
multimodal temporal remote sensing images to be leveraged by other applications.

In this paper, we focused only on RGB fusion because there are many applications for
which such images are sufficient. For example, references [43,44] and references therein
include some applications that only use RGB images.

Although we focused on cloud and shadow-free RGB image fusion in this paper, the
proposed methodology, in principle, is applicable to multispectral images. It should be
noted that multispectral fusion between different satellite images requires the wavelengths
of bands to be compatible. For instance, Sentinel-2 and Landsat-8 have somewhat dif-
ferent bandwidths and radiometric conditions at different bands. To fuse those bands
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with different bandwidths and to cover all sky conditions for image fusion, some special
considerations need to be taken into account, which will be a future research direction.

Author Contributions: Conceptualization M.R.U.H. and J.L.; methodology, M.R.U.H. and J.L.; soft-
ware, M.R.U.H. and J.L.; data curation, M.R.U.H., J.L., C.K. and K.K.; writing—original draft prepara-
tion, M.R.U.H. and J.L.; writing—review and editing, J.W. and C.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Our source code and data can be found from the following link:
https://github.com/reshadshuvo123/Image-fusion.

Acknowledgments: We sincerely thank Adam Stavola for his careful proofreading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring

phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [CrossRef]
2. Amoros-Lopez, J.; G’omez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion

of landsat/tm and envisat/meris for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [CrossRef]
3. Liao, C.; Wang, J.; Dong, T.; Shang, J.; Liu, J.; Song, Y. Using spatio-temporal fusion of landsat-8 and modis data to derive

phenology, biomass and yield estimates for corn and soybean. Sci. Total Environ. 2019, 650, 1707–1721. [CrossRef] [PubMed]
4. Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bedard, F. Crop yield forecasting on the Canadian prairies by remotely

sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218, 74–84. [CrossRef]
5. Yang, X.; Lo, C. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia

metropolitan area. Int. J. Remote Sens. 2002, 23, 1775–1798. [CrossRef]
6. Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of vegetation phenology to urbanization in the conterminous united

states. Glob. Chang. Biol. 2017, 23, 2818–2830. [CrossRef]
7. Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series

synthetic Landsat data through data blending with modis using a spatial and temporal adaptive reflectance fusion model. Remote
Sens. Environ. 2009, 113, 1988–1999. [CrossRef]

8. Ranson, K.; Kovacs, K.; Sun, G.; Kharuk, V. Disturbance recognition in the boreal forest using radar and landsat-7. Can. J. Remote
Sens. 2003, 29, 271–285. [CrossRef]

9. Buying Satellite Imagery: Pricing Information for High Resolution Satellite Imagery. Available online: http://landinfo.com/
satellite-imagery-pricing/ (accessed on 5 February 2021).

10. Fu, P.; Weng, Q. Consistent land surface temperature data generation from irregularly spaced Landsat imagery. Remote Sens.
Environ. 2016, 184, 175–187. [CrossRef]

11. Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy,
principles, applications, and future directions. Remote Sens. 2018, 10, 527. [CrossRef]

12. Shao, Z.; Cai, J.; Fu, P.; Hu, L.; Liu, T. Deep learning-based fusion of landsat-8 and sentinel-2 images for a harmonized surface
reflectance product. Remote Sens. Environ. 2019, 235, 111425. [CrossRef]

13. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and modis surface reflectance: Predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

14. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

15. Shen, H.; Wu, P.; Liu, Y.; Ai, T.; Wang, Y.; Liu, X. A spatial and temporal reflectance fusion model considering sensor observation
differences. Int. J. Remote Sens. 2013, 34, 4367–4383. [CrossRef]

16. Zurita-Milla, R.; Clevers, J.G.; Schaepman, M.E. Unmixing-based Landsat tm and meris fr data fusion. IEEE Geosci. Remote Sens.
Lett. 2008, 5, 453–457. [CrossRef]

17. Zurita-Milla, R.; Kaiser, G.; Clevers, J.; Schneider, W.; Schaepman, M.E. Downscaling time series of meris full resolution data to
monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113, 1874–1885. [CrossRef]

18. Huang, B.; Song, H. Spatiotemporal reflectance fusion via sparse representation. IEEE Trans. Geosci. Remote Sens. 2012, 50,
3707–3716. [CrossRef]

19. Song, H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 2012,
51, 1883–1896. [CrossRef]

20. Wang, Q.; Shi, W.; Atkinson, P.M.; Zhao, Y. Downscaling modis images with area-to-point regression kriging. Remote Sens. Environ.
2015, 166, 191–204. [CrossRef]

21. Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 oli and sentinel2
msi data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [CrossRef]

https://github.com/reshadshuvo123/Image-fusion
http://doi.org/10.1016/j.agrformet.2011.07.003
http://doi.org/10.1016/j.jag.2012.12.004
http://doi.org/10.1016/j.scitotenv.2018.09.308
http://www.ncbi.nlm.nih.gov/pubmed/30273730
http://doi.org/10.1016/j.agrformet.2015.11.003
http://doi.org/10.1080/01431160110075802
http://doi.org/10.1111/gcb.13562
http://doi.org/10.1016/j.rse.2009.05.011
http://doi.org/10.5589/m02-096
http://landinfo.com/satellite-imagery-pricing/
http://landinfo.com/satellite-imagery-pricing/
http://doi.org/10.1016/j.rse.2016.06.019
http://doi.org/10.3390/rs10040527
http://doi.org/10.1016/j.rse.2019.111425
http://doi.org/10.1016/j.rse.2010.05.032
http://doi.org/10.1080/01431161.2013.777488
http://doi.org/10.1109/LGRS.2008.919685
http://doi.org/10.1016/j.rse.2009.04.011
http://doi.org/10.1109/TGRS.2012.2186638
http://doi.org/10.1109/TGRS.2012.2213095
http://doi.org/10.1016/j.rse.2015.06.003
http://doi.org/10.1109/TGRS.2017.2683444


Remote Sens. 2022, 14, 6160 21 of 21

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

23. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

24. Yang, L.; Zhang, M.; Li, C.; Bendersky, M.; Najork, M. Beyond 512 tokens: Siamese multi-depth transformer-based hierarchical
encoder for long-form document matching. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, Online, 19–23 October 2020; pp. 1725–1734.

25. Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567.

26. Graves, A.; Mohamed, A.-r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

27. Petersson, H.; Gustafsson, D.; Bergstrom, D. Hyperspectral image analysis using deep learning—A review. In Proceedings of the
2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December
2016; pp. 1–6.

28. Zhu, X.X.; Tuid, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive
review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

29. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2015, 38, 295–307. [CrossRef] [PubMed]

30. Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal satellite image fusion using deep convolutional neural networks.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [CrossRef]

31. Li, Y.; Li, J.; He, L.; Chen, J.; Plaza, A. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural
networks. Sci. China Inf. Sci. 2020, 63, 1–16. [CrossRef] [PubMed]

32. Chen, B.; Li, J.; Jin, Y. Deep learning for feature-level data fusion: Higher resolution reconstruction of historical Landsat archive.
Remote Sens. 2021, 13, 167. [CrossRef]

33. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

34. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Xiao, B. Deep high-resolution representation learning for visual
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef]

35. Sun, L.; Fan, Z.; Ding, X.; Huang, Y.; Paisley, J. Region-of-interest undersampled mri reconstruction: A deep convolutional neural
network approach. Magn. Reson. Imaging 2019, 63, 185–192. [CrossRef]

36. Han, Y.; Du, H.; Lam, F.; Mei, W.; Fang, L. Image reconstruction using analysis model prior. Comput. Math. Methods Med. 2016,
2016, 7571934. [CrossRef] [PubMed]

37. Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison
among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2565–2586. [CrossRef]

38. Vickers, A.J. Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data.
BMC Med. Res. Methodol. 2005, 5, 1–12. [CrossRef] [PubMed]

39. Xu, M.; Fralick, D.; Zheng, J.Z.; Wang, B.; Tu, X.M.; Feng, C. The differences and similarities between two-sample t-test and paired
t-test. Shanghai Arch. Psychiatry 2017, 29, 184.

40. Zhang, H.; Song, Y.; Han, C.; Zhang, L. Remote sensing image spatiotemporal fusion using a generative adversarial network.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 4273–4286. [CrossRef]

41. Keras. Available online: https://keras.io/ (accessed on 7 February 2020).
42. Chitwan, S.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. arXiv 2021,

arXiv:2104.07636.
43. Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote Sens 2020, 12, 1333. [CrossRef]
44. Ayhan, B.; Kwan, C.; Larkin, J.; Kwan, L.; Skarlatos, D.; Vlachos, M. Deep learning model for accurate vegetation classification

using RGB image only. In Proceedings of the SPIE 11398, Geospatial Informatics X, Online, 27 April–8 May 2020.

http://doi.org/10.1145/3065386
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
http://doi.org/10.1109/JSTARS.2018.2797894
http://doi.org/10.1007/s11427-019-9817-6
http://www.ncbi.nlm.nih.gov/pubmed/31564034
http://doi.org/10.3390/rs13020167
http://doi.org/10.1109/TPAMI.2020.2983686
http://doi.org/10.1016/j.mri.2019.07.010
http://doi.org/10.1155/2016/7571934
http://www.ncbi.nlm.nih.gov/pubmed/27379171
http://doi.org/10.1109/TGRS.2014.2361734
http://doi.org/10.1186/1471-2288-5-35
http://www.ncbi.nlm.nih.gov/pubmed/16269081
http://doi.org/10.1109/TGRS.2020.3010530
https://keras.io/
http://doi.org/10.3390/rs12081333

	ArithFusion: An Arithmetic Deep Model for Temporal Remote Sensing Image Fusion
	Original Publication Citation

	Introduction 
	Related Work 
	Methodology 
	Proposed Model 
	U-Net Architecture 
	HRNet Architecture 

	Loss Functions 
	Performance Metrics 

	Experimental Setup 
	Datasets 
	Preprocessing 
	Experiments 
	Experiment 1 
	Experiment 2 
	Experiment 3 
	Experiment 4 
	Experiment 5: Statistical Tests 

	Competing Methods and Abbreviations 

	Results and Discussion 
	Hyperparameter Determination 
	Results and Analysis 
	Results of Experiment 1 and Analysis 
	Results of Experiment 2 and Analysis 
	Results of Experiment 3 and Analysis 
	Results of Experiment 4 and Analysis 
	Results of Statistical Tests 
	Visual Inspection 
	Images with Temporal Changes 
	Images with High-Frequency Details 
	Upper Limit of the Downsampling Factor 


	Discussion 
	Conclusions and Future Research 
	References

