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 Geometry and spatial reasoning form the foundations of learning in mathematics. However, 

geometry is a subject often ignored by curriculum writers and teachers until high school, leading 

to students lacking in critical skills in geometric reasoning. As the United States moves into a new 

curriculum epoch, heralding the commencement of the national common core standards (CCS), 

one could question if CCS in geometry align with the essential understandings children need to 

be successful geometric thinkers. This paper begins with an examination of the essential 

understandings of geometric reasoning leading to an interpretation and critique of the 

elementary geometry CCS. Finally, the instructional implications are discussed, considering the 

common core progression through what we know about how children learn geometry. 

Keywords: geometry, geometry education, mathematics education 

INTRODUCTION 

School geometry is comprised of an interconnected network of concepts, ways of reasoning, and axiomatic 

representational systems; these are used to mathematize spatial objects, relationships and transformations. 

Primarily, geometric reasoning consists of the creation and use of ‘conceptual systems’ adopted to investigate 

shape and space (Alghadari & Noor, 2021; Battista, 2001a, 2001b, 2002). For example, property-based 

conceptual systems can be used to analyze and define various types of triangles, by measuring the angles 

and lengths of the sides. A significant proportion of geometric thought involves spatial reasoning, and 

academics (vis., Battista, 2007; Clements, 1998; Lehrer et al., 1998) advocate for spatial reasoning to be 

considered alongside geometric conceptual systems in the study of geometry. Spatial reasoning refers to the 

set of cognitive processes involved in constructing and manipulating spatial objects, images, relationships, 

and transformations (Clements & Battista, 1992). These processes provide mental images for geometric 

reasoning and critical tools for geometric analysis (Battista, 2007). Therefore, throughout this paper, spatial 

reasoning will be discussed alongside geometry. 

Geometry and spatial reasoning form the foundations of learning in mathematics and other academic 

subjects (Clements, 2004). Although geometry is important, it is often ignored by curriculum writers and 

teachers until high school (Clements, 2004; Lehrer et al., 1998). Due to this delayed progression, empirical 

evidence shows that a large majority of children in the United States have insufficient understanding of 
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geometric concepts, and lack skills in geometric reasoning, and problem solving abilities (Beaton et al., 1996; 

Carpenter et al., 1980; Mullis et al., 1997, 1998). In addition, the instructional delay could result in crucial 

windows of opportunity being missed. For example, researchers (viz., Clements et al., 1999; Gagatsis & 

Patronis, 1990) found concurring evidence that children begin to form shape concepts in the preschool years, 

which can stabilize as early as age six. 

While it is important to consider early instruction, curriculum developers and educators need to also be 

cognizant of constraints in the students’ cognitive abilities due to biological maturation. In other words, 

children should not be asked to accomplish tasks that are beyond their cognitive abilities for that age. With 

these considerations, effective instruction should provide children with the appropriate opportunities to learn 

the ‘essential understandings’ in geometry, while progressing through these understandings in a 

developmental trajectory designed to supply the building blocks for further instruction. The term essential 

understanding is a neologism, defined by Karp et al. (2011) as the specific interconnected ideas of a larger 

mathematical concept. Other similar terms have been used in mathematics, for example Watt et al. (2002) 

referred to ‘big ideas’ as concepts that underlie understanding and mastering a strand of mathematics, and 

Wiggins and McTighe (2005) described ‘enduring understandings’ as the important understandings students 

need to retain to make meaning of the subject. These terms all refer to the critical transitions in students’ 

development as they come to understand geometry.  

Pierre van Hiele and Dina van Hiele-Geldof used empirical evidence to formulate the van Hiele model (van 

Hiele, 1984a, 1984b; van Hiele-Geldof, 1984), that describes how students’ geometric reasoning develops. 

While researchers (e.g., Battista, 2007; Clements et al., 2001; Gutiérrez, 1992; Gutiérrez et al., 1991; Johnson-

Gentile et al., 1994) have made revisions and elaborations to the model, research generally indicates that the 

van Hiele model is accurate (Battista, 2007; Burger & Shaughnessy, 1986; Clements & Battista, 1992; Fuys et 

al., 1988). Models such as these can be used by curriculum developers and teachers to ensure students gain 

the essential understandings needed in geometry. Unfortunately, Clements and Battista (1992) lament that 

the elementary geometry curriculum is impoverished, “the curricula consist of a hodgepodge of unrelated 

concepts with no systematic progression to higher levels of thought” (p. 422). As the United States moves into 

a new curriculum epoch, heralding the commencement of the national common core standards (CCS), one 

could question if CCS in geometry align with the essential understandings children need to be successful 

geometric thinkers and problems solvers.  

This paper contains three sections. The first section begins with an explication of the essential 

understandings of geometric reasoning detailed within the van Hiele model. Then, several other research-

based frameworks are described that contrast, or revise and elaborate on the van Hiele model, in order to 

create a refined picture of the essential understandings in geometry. These findings are then summarized 

into a list of four essential understandings with sub-components to highlight the finer essential 

understandings for each concept. The second section interprets and critiques the elementary geometry CCS, 

comparing the standards against the list of essential understandings in section one. Finally, the third section 

outlines instructional implications considering the common core progression through what we know about 

how children learn.  

THE ESSENTIAL UNDERSTANDINGS 

The van Hiele Levels of Geometric Thinking 

Dutch educators, Pierre van Hiele and Dina van Hiele-Geldof, designed the van Hiele model (van Hiele, 

1984a, 1984b; van Hiele-Geldof, 1984) to highlight students’ development through five levels of geometric 

thought; beginning with a gestalt-like unanalyzed visuals, to a highly sophisticated complex level of thinking. 

While later articles (e.g., van Hiele, 1999) provide tacit references to the importance of age and biological 

maturation, the emphasis of the van Hiele model is placed on the purpose of effective instruction to facilitate 

progression throughout the levels. 

The van Hiele’s theorized that learning was a discontinuous process, with jumps in the learning curve that 

reveal the five discrete levels. The levels are sequential and hierarchical descriptions of how the student would 

demonstrate thinking at each level. In order to move through the levels, students need to become proficient 
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in a significant portion of the lower level, before they can advance to a higher level (Hoffer, 1981). From 

observations of students’ thinking, van Hiele (1984a) noticed that knowledge intrinsic at one level appears in 

an extrinsic way at the next. For example, while a child may be using particular properties to determine the 

name of a shape, the actual thinking at that level may not be cognizant of those features. In addition, language 

is different between the levels.  

Each level has its own linguistic symbols and its own system of relations connecting these symbols. 

A relation that is ‘correct’ at one level can reveal itself to be incorrect at another. Think, for example, 

of a relation between a square and a rectangle. Two people who reason at different levels cannot 

understand each other. Neither can manage to follow the thought process of the other (van Hiele, 

1984b, p. 246). 

van Hiele was keen to point out that rote learning can make a student appear knowledgeable about the 

concepts; but memorization of facts does not signify understanding, and students must not skip any levels. 

This belief concurs with the underpinning philosophy of essential understandings, that each critical 

understanding defines the way a student thinks about geometry within a developmental process, and if a 

component of that process is missed, the child will lack a crucial skill, which may hinder future learning.  

The way in which the van Hiele levels are numbered has varied (Clements & Battista, 1992). For the 

purpose of this paper, the levels are listed as one through five. The terms visualization, analysis, abstraction, 

deduction, and rigor describe the cognitive levels that the students’ progress through from level one to level 

five (de Villiers, 1987; Hoffer, 1981; Teppo, 1991).  

Level 1: Visualization  

Students at this initial level identify, name, compare, and operate on shapes, and other geometric 

configurations according to their appearance. Figures are seen as visual gestalts in that individual attributes, 

such as angle measurements, are not explicitly recognized; instead the figures are considered as a collection 

of a whole. Perception guides the students’ reasoning, and visual prototypes are typically used to name a 

figure. For example, a student may say that a figure is a rectangle because it looks like a door (Clements, 

1998).  

Level 2: Analysis  

Students at this level have progressed from gestalt perceptions, to analyzing figures according to their 

attributes, and are able to identify the relationships among the attributes to discover rules for how figures 

are named. For instance, a student may think of an equilateral triangle as a figure with three equal sides; 

therefore, the student has learned that the term “equilateral triangle” refers to a specific collection of 

properties.  

Level 3: Abstraction 

Students can provide abstract definitions and informal arguments. They can distinguish between the 

necessity and sufficiency of a set of properties for a concept, while also logically ordering those properties. It 

becomes clear, for example, why a square can also be a rectangle. Although the students are showing a 

method of logical organization, they do not know that it is a method by which geometric truths are 

established. 

Level 4: Deduction 

Students are able to formally reason and identify interrelationships within the axiomatic system through 

logically interpreting geometric statements, such as definitions, theorems, and axioms. 

Level 5: Rigor 

Students can reason by formally manipulating geometric statements such as definitions, theorems, and 

axioms, and through indirect proof and proof by contrapositives.  
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As movement through the levels relies on effective instruction, adults may still think at a level one or two 

if they did not receive instruction to support further progression in geometric thinking. That said, even with 

effective instruction, elementary students typically do not progress beyond the second or third level.  

Piaget & Inhelder’s Studies on Spatial Conceptions 

While the van Hiele’s emphasized instruction, Piaget and Inhelder (1967) studied children’s development 

of space and geometry through the lens of genetic epistemology. Piaget’s (1955b) early studies brought him 

to the conclusion that children construct perceptual space by infancy. Piaget and Inhelder (1967) furthered this 

research as they conducted a series of experiments in regard to children’s conceptions of space in geometry; 

what Piaget and Inhelder (1967) termed representational space. Specifically, they studied children’s haptic 

recognition, drawing, and spatial perceptions. This body of research led to the topological primacy thesis. 

The topological primacy thesis refers to Piaget and Inhelder’s (1967) claim that a young child’s intrinsic 

geometry is initially topological, and then later projective and Euclidean (Darke, 1982). Similar to the van Hiele 

model, Piaget and Inhelder (1967) posited that there is a definite order in developmental progression that 

must be observed. Children are first able to learn about topological relations such as enclosure, 

connectedness, and continuity, then this is followed by the ability to learn projective (rectilinearly) and 

Euclidean (parallelism, angularity, and distance) relationships. Although, in regard to angularity, significant 

portions of Piaget’s other studies identify children as young as six or seven developing a tacit knowledge of 

angle, developing to extrinsic knowledge around the age of nine (Olson, 1970). Lehrer et al. (1998) also found 

that children’s knowledge of angles grows significantly during the elementary years. 

Piaget and Inhelder’s (1967) initial research concerned children’s haptic recognition of shapes (that is, the 

perception of shapes by tactile stimulus, and the following visual identification). They found that preschool 

children could discriminate between open and closed features (topological), older children could identify the 

difference between straight or curved sides (rectilinearly) and identify shapes such as squares and diamonds 

(Euclidean). The haptic studies also led Piaget and Inhelder (1967) to the conclusion that representational 

space is not developed through a perceptual reading of the spatial environment, but by active manipulation. 

The act of touching resulted in tactile perception; when these actions are regulated by the child, relationships 

are built, providing an accurate representation of the shape (Clements & Battista, 1992; Piaget & Inhelder, 

1967). 

As Piaget and Inhelder (1967) studied children’s perspective taking, they posit the difference between 

topological and projective or Euclidean perspectives, involve the relationship between the figures and the 

subject. Topological perspectives consider the figure in isolation, projective involves perspectives between the 

figure and the subject, and Euclidean, refers to perspectives between figures. Battista (2007), Clements (1998), 

and Piaget and Inhelder (1967) describe perspective taking as a critical developmental step in geometry. As 

students develop projective and Euclidean perspectives, they are able to move beyond their own perspective 

to the perspectives of others. For example, with the development of projective space, around the age of seven, 

students can construct straight lines by putting themselves as one of two points to be linked by a straight line. 

As students gain the perspective of Euclidean space, during middle childhood, concepts such as angularity 

and parallelism are developed. In later years, Clements (1998, 2004) theorized extensively on extending 

students’ spatial perspective taking to include maps and navigation. Clements (1998) explicated the need for 

students to master environmental directions (e.g., up, down, left, and right) as well as global directions (north, 

south, east, west) to develop perspective and directional skills that will later lead to more complex coordinate 

frameworks. 

Clements et al. (2004) and Piaget and Inhelder (1967) emphasized the importance for students to develop 

the ability to compose shapes, and that drawing is an act of representation that provides a window into 

students’ geometric understandings. The evidence gathered from drawing experiments continued the 

topological primacy thesis. Piaget and Inhelder (1967) postulate that children under the age of four 

demonstrate topological features, with aimless scribbles, which are followed by squares and triangles that 

cannot be distinguished from circles. This drew them to the conclusion that the children do not have the 

cognitive ability to see the difference between curved and straight sides. Piaget and Inhelder (1967) provide 

further evidence to indicate that the results could not be attributed to the students’ lack of fine motor skills. 

As children reach the age of four, they begin to provide a progressive differentiation of Euclidean shapes and 
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are able to draw a square and a triangle. At seven years of age, students are effectively able to copy Euclidean 

shapes such as the rhombus. 

Researchers, who replicated Piaget and Inhelder’s (1967) study, have generally confirmed the findings 

(Laurendeau & Pinard, 1970; Lovell, 1959; Page, 1959; Peel, 1959). However, it appears that Piaget and 

Inhelder’s (1967) thesis has had far less effect on classroom instruction than that of the van Hiele model (Pegg 

& Davey, 1998). Nonetheless, both works remain the most extensive early sources of information regarding 

children’s perceptions of space in geometry, and trajectories of change (Lehrer et al., 1998, p. 137).  

Revisions & Elaborations to the van Hiele Model 

In recent years, Clements et al. (2004) followed a similar avenue of study to that of Piaget and Inhelder’s 

(1967) use of drawings as representations of geometric understandings. Clements et al. (2004) used the 

research findings to extend the van Hiele model. The van Hiele theorized that students’ knowledge of shapes 

begins with generic visual perceptions, leading to attribute recognition and hierarchical classifications. The 

work of Clements and Sarama (2007), Clements et al. (2001, 2004), Sarama and Clements (2004), and Sarama 

et al. (1996) found that composition and decomposition processes were also fundamental components in 

children’s development; that students must gain the skills to recognize figures, but also the ability to 

manipulate shapes and their properties. Therefore, Clements et al. (2001) created a research-based learning 

trajectory to elucidate the competencies at each level. The trajectory spans ages four to eight years and 

consists of seven levels of thinking.  

Pre-composers 

Children manipulate shapes as individuals but are unable to combine them to compose a large shape.  

Piece assemblers 

Children at this level are similar to pre-composers, but they can concatenate shapes to form a picture. In 

free-form picture tasks, children can choose shapes to fulfill particular pictorial purposes. Simple frames can 

be filled using a trial and error technique (Mansfield & Scott, 1990; Sales, 1994), but children have limited 

ability to use flips or turns. The first two levels are similar to the van Hiele model in that children see gestalt-

like shapes, not individual properties.  

Picture makers 

Children can concatenate shapes to form a picture in which several shapes play a single role, although 

students are using a trial and error approach, and do not anticipate creation of new geometric shapes. Names 

of shapes are chosen using a gestalt configuration, or from one attribute. Children at this level do not 

understand angle as a qualitative entity. Rotating and flipping are used typically through trial and error. 

Shape composers  

Children combine shapes to make new shapes or fill puzzles. Shapes are chosen using angles as well as 

side lengths. Rotation and flipping are used intentionally to select and place shapes (Sarama et al., 1996). 

Imagery and systematicity begins to develop onwards from this level.  

Substitution composers 

Children deliberately form composite units of shapes (Clements et al., 1997), and recognize and use 

substitution relationships among these shapes.  

Shape composite iterators 

Children construct and operate on composite units intentionally. They can continue a pattern of shapes 

that lead to a “good covering”, but without coordination of units (Clements et al., 1997).  

Shape composers with superordinate units 

Children can build and apply (iterate and otherwise operate on) units of units of units. The levels have 

been summarized from Clements et al. (2004, p. 276-278). 
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Within Clements et al.’s (2001) composition and decomposition trajectory, motions and transformations 

were included. While learning to conduct motions and transformations, students are developing additional 

skills that are necessary in order to gain a holistic operational view of geometric properties; students who 

have not been given opportunities to develop these skills will struggle in future geometrical tasks (Battista & 

Clements, 1988; Gutiérrez et al., 1991). Jamie and Gutiérrez (1989), Johnson-Gentile et al. (1994), and Lewellen 

(1992) also made additions to the van Hiele model to incorporate motions and transformations, describing 

these skills as part of the essential understandings students need to have. Slides appear to be the first form 

of motion students are able to master at first grade; this is followed by flips and turns (Perham, 1978). 

However, the level of difficulty can be dependent on direction of flips and turns (Schultz & Austin, 1983), and 

orientation clues provided (Rosser et al., 1984). Further studies indicate that second grade students are able 

to perform mental rotation of imagery (Perham, 1978; Rosser et al., 1988). While children often use rotational 

symmetry in work with pattern blocks (Sarama et al., 1996), many concepts of symmetry are not fully 

established until 12 years of age (Genkins, 1975). 

Gutiérrez (1992) proffered a four-level visualization developmental trajectory to extend the van Hiele 

model. Visualization in his thesis refers to the way students perceive and move figures. In addition, Gutiérrez 

(1992) postulated that three dimensional shapes should also be included to the van Hiele model, these are 

referred to within each of the four levels.  

Level 1. Students make comparisons of solids based on a holistic perception of the shapes of the solids 

or from some elements (e.g., faces, edges, and vertices), but pay no attention to properties such 

as angle sizes, parallelism, edge lengths etc. Students are not able to visualize solids, or the 

positions of solids that they cannot see, and students manipulate solids through a trial-and-error 

approach.  

Level 2. Students use observation as the main basis for explanations. They compare solids based on a 

holistic perception of the solid, or properties of the solid. Students can visualize simple 

movements of solids between two concrete positions.  

Level 3. Students make comparisons by mathematically analyzing their properties and visualize 

movements from non-visible positions.  

Level 4. Students at this level have high visualization abilities. Students’ reasoning is based on the 

mathematical structure of the solids or their properties, including those not seen, but formally 

deduced. 

Summary of the Essential Understandings 

Since the late 1950s, and the initial composition of the van Hiele model and the topological primacy thesis, 

there have been a number of empirical and theoretical additions that have created a more refined outline of 

the essential understandings students need in geometry. Similar to the initial theories, each new component 

typically includes some form of developmental trajectory that describes the basic, to the more advanced 

essential understandings in geometry and spatial reasoning. Each small step is a building block for future 

learning, tied to effective instruction and/or biological maturation.  

The main components of the van Hiele model, the topological primacy thesis, and the further empirical 

and theoretical additions mentioned in this section, were compiled and four essential understandings 

emerged for the elementary years.  

These four essential understandings each have multiple parts, but focus on a particular concept, or related 

concepts. The concept/s are shape attributes; spatial orientation (the ability for students to understand and 

operate on objects in space in relation to students’ own positionality; Clements & Battista, 1992) and spatial 

perspectives; composition and decomposition of geometric figures; and motions, transformations, and 

reflections of geometric figures. These four essential understandings are listed below in full. Following each 

is a list of the names highlighting the main proponents, then a summary of the smaller building block 

understandings for each concept, listed in a quasi-developmental sequence.  

1. Recognize that two- and three-dimensional shapes have particular attributes that categorize the shape and 

can also be used to compare against other shapes.  
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van Hiele (van Hiele, 1957/1984a, 1957/1984b; van Hiele-Geldof, 1957/1984), and Piaget and Inhelder 

(1967). 

• Develop visual prototypes of shapes and corresponding names  

• Analyze and name shapes according to attributes and relationships among those attributes. 

• Compare shapes based on holistic perceptions. 

• Compare shapes by analyzing their properties. 

• Understand that shapes can look different within the same category (e.g., different types of triangles). 

• Provide informal logical arguments to place shapes in particular categories. 

2. Recognize how to apply mapping and directional skills and understand that different spatial perspectives 

can be utilized. 

Clements (1998, 2004), Gutiérrez et al. (1991), and Piaget and Inhelder (1967). 

• Use and create simple maps to provide a mental representation of the environment. 

• Develop environmental (e.g., right, left, up, down) and global directions (left, right, east, west). 

• Identify direct and indirect routes to a given location. 

• Take the perspective of an abstract frame of reference (such as the perspective of a toy on a map, 

rather than self-perspective), and compare perspectives. 

• Draw figures from various perspectives (such as a line from self to another point, then from two other 

points not related to self). 

• Use a coordinate grid to interpret values 

3. Recognize how spatial visualization and knowledge of shape properties can be used to compose and 

decompose figures. 

Clements and Sarama (2007), Clements et al. (2001, 2004), Piaget and Inhelder (1967), Sarama and 

Clements (2004), and Sarama et al. (1996). 

• Copy shapes from a visual cue (Shapes will increase in complexity). 

• Copy shapes from memory (Shapes will increase in complexity). 

• Use shapes to make a free-form picture (initially, picture may only be recognizable to the student). 

• Use knowledge of the properties of shapes to fill a picture tray. 

• Understand and use shapes to create other shapes. 

• Rotate and flip to select and place shapes.  

4. Recognize that motions, transformations, and symmetry can be applied to figures, and know how to conduct 

such actions. 

Battista and Clements (1988), Clements et al. (2001), Gutiérrez et al. (1991), Jamie and Gutiérrez (1989), 

Johnson-Gentile et al. (1994), Lewellen (1992), and NCTM (2006).  

• Name, model, draw, describe, and compare 2D and 3D figures  

• Recognize and use slides on figures (with and without orientation clues). 

• Recognize and use flips and turns on figures (with and without orientation clues). 

• Use slides, flips, and turns in various directions. 

• Perform mental slides, flips, and turns. 

• Identify lines of symmetry. 

A relationship can be inferred between van Hiele’s theory, Piaget and Inhelder’s (1967) theory of cognitive 

development, and the previously outlined four essential understandings in geometry. Figure 1 depicts an 

individual engaging in a specific level of van Hiele’s theory (Kamalodeen et. al., 2021) based on their grade 

level, age, and cognitive development level.  

In recent years, academics and organizations have created similar collective lists. Watt et al. (2002) studied 

the growth and development of students’ thinking about big ideas in K-5 geometry, and included other topics 
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in mathematics, science, and the arts. They identified six areas: units, patterns and repetition; transformation 

of shapes; symmetries; composition and decomposition of shapes; similarity and scale; measurement and 

dimensionality; and three-dimensional/two-dimensional visualization. Interestingly, recognition of shape 

attributes and nomenclature were omitted, but it adds other mathematical concepts, such as patterns and 

repetition, typically within the operation and algebraic thinking strand, and measurement, from the 

measurement and data strand of mathematics. No additional geometric concepts were added beyond those 

identified. 

National Council of Teachers of Mathematics (NCTM) highlighted four main areas of geometry; listing, 

properties of shapes, location and spatial relationships, transformations and symmetry, and visualization 

(NCTM, 2000). In addition, NCTM (2006) developed a set of curriculum focal points, described as core structures 

and indispensable elements for each grade level. Kindergarten, describing shapes and space; grade 1, 

composing and decomposing geometric shapes; grade 3, describing and analyzing properties of two-

dimensional shapes; and grade 5, describing three-dimensional shapes and analyzing their properties. This 

list is similar to the research findings in this section; however, the initial four areas highlighted by NCTM (2000) 

are not clearly reflected in the indispensable elements for each grade level, with a lack of emphasis on 

transformations and symmetry. 

Most recently, National Center and State Collaborative developed the learning progressions framework 

for K-12 mathematics (Hess, 2010, 2011). In these documents, the enduring understandings in geometry are 

described as “visualizations, spatial reasoning, and properties of two- and three-dimensional figures can be 

used to analyze, represent, and model geometric concepts and relationships” (Hess, 2011, p. 25). For each 

enduring understanding, there is a description of what skills students would be able to demonstrate, as well 

as progress indicators that describe specific skills for each elementary grade. Although there is a good 

similarity to the essential understandings developed in this section, the learning progressions framework 

omits a significant component, which is any form of motion transfer on two-dimensional shapes. Therefore, 

as the next section interprets and critiques CCS, this will be conducted based on the earlier list of essential 

understandings developed in this section, categorized as: shape attributes; spatial orientation and spatial 

perspectives; composition and decomposition of geometric figures; and movements, transformations, and 

reflections of geometric figures. 

REVIEW OF COMMON CORE STANDARDS 

Authors of CCS clearly describe their methodological priorities in the design of the standards. “By focusing 

on the identification of significant and recognizable clusters of concepts and connections in students’ thinking 

that represent key steps forward, trajectories offer a stronger basis for describing the interim goals that 

students should meet …” (Daro et al., 2011, p. 12). In order to identify both the essential understandings and 

 

Figure 1. An individual engaging in a specific level of van Hiele’s theory (adapted from van Hiele, 1999) 
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the developmental trajectory, the authors delineate the evidence based approach they used; studying 

empirical evidence through three lenses, cognitive development, instructional practice, and coherence of 

ideas (CCSSO/NGA, 2010a; Corcoran et al., 2009; Daro et al., 2011). However, Daro et al. (2011) pointed out 

that the lens of cognitive development played a substantial role in the formation of the elementary standards. 

This section of the paper analyses the consistency of those research-based claims, as CCS in geometry are 

compared to the essential understandings explicated in the first portion of this paper. 

1. Recognize that two- and three-dimensional shapes have particular attributes that categorize the shape and 

can also be used to compare against other shapes.  

This understanding appears to underpin many of the other essential understandings. For example, in 

order to construct, deconstruct, and apply transitions, students must have a good understanding of shape 

attributes in order to apply these other skills. The elementary CCS incorporate this concept throughout K-5 

standards, and it is also included within the overarching standard for each grade level. CCS trajectory seems 

well aligned to the research. Kindergarten children begin by naming shapes based on their gestalt 

appearances and begin to use non-formal language to analyze and compare shapes based on shape 

attributes. This trajectory follows the van Hiele model as the children are expected to have gained some 

familiarity with shapes during the prekindergarten years, to move from level one to level two during the 

kindergarten year.  

The trajectory of the van Hiele model is also evident throughout grades one to five, as the students move 

within level two, and then onwards towards level three in grade five. First grade requires students to 

distinguish between defining attributes and non-defining attributes. At second grade they are expected to 

develop their knowledge of attributes to more complex shapes. Third and fifth-grade students are challenged 

to reach two significant milestones from the van Hiele model; they are required to develop the understanding 

that shared attributes define a large category in third grade, and to classify figures in a hierarchy in fifth grade. 

One author of CCS openly criticized this fifth-grade standard, describing it as “astoundingly trivial” (Milgram, 

2010, p. 9). Milgram (2010) may have missed the point, that following CCS alignment to the van Hiele model, 

students would be moving to level three in which students logically organize shapes by their attributes into a 

logical hierarchy. This is a difficult concept for students as they may understand that there are many types of 

quadrilaterals, but they have to name shapes (e.g., squares) by working through a logical hierarchical process. 

The standards could have been worded a little clearer or provided further examples to avoid further 

misinterpretation. 

 CCS also included three dimensional shapes; a component added to the van Hiele model by Gutiérrez 

(1992) and Gutiérrez et al. (1991). CCS developmental trajectory is congruent with the thesis of Gutiérrez et 

al. (1991) and introduces three dimensional shapes in kindergarten and throughout van Hiele level two and 

three. It appears that shape attributes have been significantly addressed in CCS, and the developmental 

trajectory corresponds with the research. However, there are other components in CCS that may not be as 

clearly aligned. The fourth-grade standards require students to draw and to identify angles and parallel lines 

in two-dimensional shapes.  

Piaget and Inhelder (1967) categorized angles and parallel lines as Euclidean concepts developing during 

middle childhood (middle to early high school). Clements (2004) described angles as a difficult concept for 

elementary students to grasp; but in accordance with other research findings (e.g., Lehrer et al., 1998; Olson, 

1970), concluded students develop concepts of angle earlier than Piaget and Inhelder (1967) suggested, and 

the long learning process should begin in the elementary years. Battista (2007) and Clements (2004) 

highlighted students’ difficulties with parallelism, and Clements (2004) was unsure if curricula and teaching 

approaches would be able to facilitate lasting learning outcomes in the elementary grades.  

2. Recognize how to apply mapping and directional skills and understand that different spatial perspectives 

can be utilized. 

Researchers, such as Clements (1998, 2004), Gutiérrez et al. (1991), and Piaget and Inhelder (1967), clearly 

emphasized the importance of this particular essential understanding in students’ development. In addition, 

NCTM (2000, 2006) included location and spatial relationships as one of four core components in elementary 

geometry. CCS are somewhat aligned to the research with the inclusion of this concept and a similar 

trajectory; unfortunately, this is only consistent with the extreme poles of the elementary trajectory. The first 
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standard in kindergarten requires the development of environmental directions, such as left, right, above, in 

front of, and next to, which was a component specifically described within Clements’ (1998, 2004) framework. 

However, the next time this understanding is developed is in the fifth grade, as students have to graph and 

interpret values in a coordinate system. Many of the vital intermediate concepts are omitted from CCS. 

Students are not predisposed to make and use coordinates for themselves (Clements, 2004). “Like so many 

processes in geometry, both the coordination process and the formation of frames of reference depend 

critically on creating appropriate mental models” (Battista, 2007, p. 891). Clements (1998, 2004) proffered the 

use of maps and navigation to develop mental models; to have students mathematize the directionality they 

have developed during preschool years. CCS begin with environmental directions, but the developmental 

sequence should continue with physical map building, using cutout shapes, models etc.; mental map building; 

global directions; recognition of features from various viewpoints; and understanding and use of map 

symbolization (Clements, 1998, 2004). In addition, mapping skills can be used to develop perspective, which 

is another essential understanding unrepresented within CCS. In order to facilitate development from 

topological, to the projective and Euclidean perspective described by Piaget and Inhelder (1967), the standards 

should have included the development of perspective taking from abstract frames of reference. For instance, 

matching views of the same structure from different perspectives (Downs & Liben, 1988) and providing 

directions to destinations from different starting locations (Clements, 1998, 2004). 

3. Recognize how spatial visualization and knowledge of shape properties can be used to compose and 

decompose figures. 

This particular essential understanding is covered substantially within CCS and is well aligned to the 

research. The developmental progression within CCS matches the composition and decomposition trajectory 

designed by Clements et al. (2001). Kindergarten standards match the piece assembler and picture maker level, 

grade one develops concepts described in the shape composer and substitution composer level. In grade two, 

the standards are concordant with the shape composite iterators and shape composers with superordinate units. 

CCS also includes the composition and decomposition of shapes in grades three and four. Students work with 

various different types of quadrilaterals in third grade and various new figures in the fourth grade. Although 

the model of Clements et al. (2001) does not go above the age of eight, it is reasonable to assume that the 

essential understandings gained from composing and decomposing shapes in the lower grades would also 

be beneficial to those in the higher grades, as students are challenged with new shapes and figures. 

Continuation could also facilitate students’ development towards, or within the Euclidean drawing stage, 

described by Piaget and Inhelder (1967). Concomitantly, CCS also correspond to the van Hiele model, in that 

it positions the model of Clements et al. (2001) at a place on the trajectory, where students will have acquired 

prerequisite essential understandings to support the composition and decomposition of figures.  

In an interesting move, CCS requires students in grades one, two, and three to decompose shapes using 

fractions. This is somewhat similar to the decompose activities described in a study by Sarama and Clements 

(2006), as the students decomposed shapes and new shapes developed; but the decomposition in this case 

specifically involves fractions. Although fractions are not typically included in geometry curricula, fractions are 

a decomposition process. Underpinning conceptual understandings of shapes and shape attributes will have 

prepared students with the skills to tackle this new concept, before moving on to further studies within the 

fraction strand of CCS. 

4. Recognize that motions, transformations, and symmetry can be applied to plane figures, and know how to 

conduct such actions. 

NCTM (2000) and Watt et al. (2002) included transformations and symmetry within a list of the core 

essential understandings in elementary geometry. Jamie and Gutiérrez (1989), Johnson-Gentile et al. (1994), 

and Lewellen (1992), also added this to the van Hiele levels as a core component. Yet only symmetry is 

included within CCS, and transformations have been omitted. Symmetry is included within the fourth-grade 

standards, and students are required to recognize a line of symmetry, identify line-symmetric figures, and 

draw lines of symmetry. The authors of CCS posited that the fourth-grade symmetry component builds on 

the analysis of shape attributes, and composition and decomposition activities in grades one and two (CCSSO/

NGA, 2010a). This is congruent with the argument for the introduction of symmetry in NCTM fourth grade 

curriculum focal points (NCTM, 2006), and corresponds to the empirical findings of Genkins’ (1975), that 
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concepts of symmetry are not established until the final elementary years. Therefore, it appears that 

symmetry is correctly included and placed within CCS, in concordance with the research. Unfortunately, the 

omission of transformations is not. 

Shape transformations first appear in CCS in eighth grade and continue into high school. The authors of 

CCS claim that the K-12 progression of geometry standards leads toward an understanding of plane geometry 

from rigid transformations (CCSSO/NGA, 2010a). This has been highly criticized as an experimental move, 

unsubstantiated by research (Milgram, 2010; Milgram & Stotsky, 2010; Stotsky & Wurman, 2010). While the 

high school CCS cover complex transformations, research identifies transformation concept acquisition 

during the elementary years. Empirical evidence indicates that students master slides in first grade, and then 

flips and turns (Perham, 1978). Clements et al. (2001) showed a similar progression of transformations within 

the composer/decomposer framework, as students developed the ability to purposefully apply 

transformations as early as third grade. In addition, Battista (2008) theorized that transformations support 

students’ developing understanding of shape attributes. 

In order to match the findings of the research, students should formally begin learning transformations 

(e.g., translations and rotations) in the fourth or fifth grade. The early composition/decomposition activities, 

that are included in CCS, can support students’ initial development of transformations, which could progress 

to a more formal understanding in the final elementary grades. 

To summarize, the authors of CCS made the claim that the geometry standards are consistent with the 

research in regards to the essential understandings required by elementary students, and the developmental 

sequence of those understandings. From the interpretation and critique of CCS within this section, it would 

seem that the majority of the standards are consistent with the research. Although, there are essential 

components not fully addressed or missing, such as spatial orientation and perspectives, and shape 

transformations. 

HOW STUDENTS LEARN GEOMETRY 

While the argument has been made that the elementary CCS for geometry may not fully reflect the 

research, curriculum trajectories do play a vital role in helping all parties connect goals, curriculum 

components, teaching strategies and assessments (Clements et al., 2004). It enables teachers to learn about 

geometry, consider how students think about and learn geometry, and visualize potential developmental 

paths (Ball & Cohen, 1999). Nevertheless, as teachers use CCS, they must also consider how to develop 

effective pedagogies, activities, and tasks, to facilitate student acquisition of the essential understandings, and 

to support further progression. This section outlines instructional implications considering the Common Core 

progression through what we know about how children learn. To begin the overarching constructivist 

pedagogy is described, and then followed by tasks and activities identified within the research to support and 

enhance students’ learning in geometry. 

Constructivism and Assessment 

In addition to the van Hiele model, which delineates the levels of geometric thinking, van Hiele (1984b), 

furthered the work of van Hiele-Geldof (1984), to develop a five-phase sequence of activities to assist progress 

through the levels. Instruction begins with the inquiry phase, as the students use materials to explore and 

discover mathematical structures. The second phase involves direct orientation; the characteristic shape 

structures appear gradually to the students during these activities. Next, during the explication phase, the 

teacher introduces relevant terminology. During free orientation, students are presented with tasks that can 

be solved in multiple ways. In the final phase, integration, students are given opportunities to consolidate their 

knowledge and ideas into a coherent network that can be applied to other situations. For the framework to 

be effectively used, the students may need to cycle through some of the phases multiple times during one 

particular topic (Mason, 1998). Pierre van Hiele’s phases of instruction are similar to the constructivist 

approach, as the knowledge in the mind of the student is developed and altered by experiences and 

interaction with mathematical phenomena (Piaget, 1955a, 1971) and people (Vygotsky, 1978). The 

constructivist methodology is necessary to ensure that students gain mastery of the concepts, rather than 

memorized facts (Battista & Clements, 1995; Piaget, 1971; Soto-Johnson et al., 2009).  
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 For growth to occur, it is crucial that the instruction matches the student’s level of ability (Crowley, 1987). 

Piaget (1971) and van Hiele (1999) postulated that it is better to give no education at all, than give education 

at the wrong time. Teachers must remain cognizant that while CCS provide a developmental trajectory within 

the grades, students may not have reached the level of understanding to match their biological age or may 

even be working beyond that level. Furthermore, each standard has multiple parts of which students may 

have gained some components, and not others. Therefore, continuous assessment is required to determine 

what the student does, or does not understand, and any misconceptions he/she may have (Crowley, 1987).  

Discussion, Reflection, & Language Development 

Social interaction and reflective thinking are crucial components if students are to construct meaning and 

deep understanding of the concepts (Richardson, 1999; Van de Walle & Lovin, 2006). Vygotsky (1978), a keen 

advocate for social constructivism, believed that learning in isolation would not lead to cognitive development. 

He described social interaction as a way in which students can develop understanding, through internalization 

of the ideas they receive through conversations with others. As students become active in the conversations, 

they must also reflect on their own understanding of that particular concept (Chaplin et al., 2009; Clements, 

1998). Vygotsky’s (1978) zone of proximal development suggests that the geometric ideas developing within 

the student will interact with the information gained from the conversations, thus expanding the student’s 

conceptual potential.  

However, as students work in groups, the dynamic interrelationship of ideas or mathematical language 

can clash and be unheard, which will hinder, rather than aid development (Nyikos & Hashimoto, 1997; van 

Hiele, 1984b). Therefore, discussions need to be well planned and purposeful. Van de Walle and Lovin (2006) 

developed a set of suggestions for effective discussions, including, encourage questions, active participation, 

turn-taking, and reflective responses. In addition, Hiebert et al. (1997) and Richardson (1999) proffer that 

students should be given time to reflect on the ideas of others and understand that it is okay to make mistakes 

as the ideas can be discussed and corrected. Conversations are multifaceted as they allow students to clarify 

the meaning of geometric terms, such as sides, faces, and vertices (Clements, 1998); encourage shape 

descriptions and precise language; and provide opportunities for teachers and students to model the use of 

reasoning within hierarchical categorizations of shape (Clements, 2004). 

Real-World Connections 

Another way to support language development is through real-world experiences (Clements, 2004). There 

are a number of connections to the real-world within CCS. For example, the overarching standard for fifth 

grade requires students to work with “coordinate planes to solve real-world and mathematical problems” 

(CCSSO/NGA, 2010a, p. 34). Real-world contexts provide a solid base for building understandings (Clements 

& Sarama, 2009), and enhances students’ ability to think and reason mathematically outside the classroom 

(Lehrer & Chazan, 1998). Researcher findings indicate that students using real-world contexts found 

geometric concepts easier to understand, more logical, interesting, and familiar to the students (Duatepe-

Paksu, 2009). Real-world connections should be used to take advantage of these benefits. However, teachers 

should not try to use a theme (e.g., connections to the real-world), if the connection is not obvious, or if it does 

not enhance the students’ understanding of that particular mathematical concept (Richardson, 2002).  

Manipulatives 

Manipulatives can provide a connection or representation of the real-world. Physical and virtual 

manipulatives are crucial in developing geometric and spatial thinking (Battista & Clements, 1996; Clements 

& McMillen, 1996; Piaget & Inhelder, 1967), and aid the student in making the connection from the tangible 

object to its abstraction (Kamina & Iyer, 2009). Physical manipulatives include objects such as blocks, 

geometric-solid models, and geoboards. Dynamic geometry environments, logo-based environments, and 

other similar computer programs provide virtual manipulatives, which are digital representations of physical 

objects that can be manipulated by mouse or touch screen.  

Many geometry programs can provide additional features beyond their physical counterparts, including 

options to change the size and shape of the manipulatives; a drag feature, which modifies the shape 

corresponding with the geometrical properties; tools to allow the student to decompose the shape; and a 
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record feature, to allow playback of actions carried out on the shape. Research findings indicate that use of 

manipulatives help students connect with real-world knowledge; increase memory and understanding 

(McNeil & Jarvin, 2007); assist students in creating definitions, and conjectures (Fuys et al., 1998), and support 

students in identifying shape attributes (van Hiele, 1984b). Nevertheless, while there are positive advantages 

to the use of virtual or physical manipulatives, studies conducted by Fennema (1972) and Resnick and 

Omanson (1987) found a lack of skill transfer and disconnect between the manipulatives to paper and pencil 

computations. From empirical evidence, such as this, researchers (viz., Martin et al., 2007; Sarama & Clements, 

2009; Uttal et al., 2009) posit that instruction should be carefully organized to begin with manipulatives, 

ensuring that students are reflecting on their actions, and then move beyond the use of manipulatives while 

ensuring transfer.  

Visual Prototypes 

Concept learning and analysis play a prominent role in the development of geometric thinking, and an 

influential component of this process is the categorization of shapes (Battista, 2009). This process is crucial in 

the early elementary years as students develop prototypes (Clements, 1998, 2004), which are mental images, 

or examples of the visual appearance of particular shapes (Smith, 1995). Cultural influences, such as books, 

teaching supplies and toys engender prototype development (Clements, 1998). Therefore, teachers must 

remain cognizant of the visual images students are exposed to during play and instruction. 

Students should not be continually exposed to shapes in rigid ways but experience many different visual 

examples of a particular shape; non-examples should also be displayed and discussed to draw attention to 

critical attributes (Clements, 1998, 2004). Also, teaching should not primarily focus on shape prototypes, as 

this can be detrimental to hierarchical thinking (Clements, 2004). Dynamic geometry environments, logo-

based turtle geometry, and other similar computer programs allow students to view many different types of 

figures that go beyond the typical prototypes (Clements & Battista, 1992). In addition, as students have the 

opportunity to create and manipulate these computer-based representations, this process enables students 

to perceive the figures as geometric entities, and not just visual objects (Zbiek et al., 2007). 

CONCLUSIONS 

It is clear that geometry and spatial reasoning is important. It provides a means by which students can 

explore, interpret, and reflect on the physical environment. Since the early studies (Piaget & Inhelder, 1967; 

van Hiele, 1984a; van Hiele-Geldof, 1984), further research has led to numerous other theories and 

frameworks, each highlighting the essential understandings students need to gain within the elementary 

years. An aggregate list of the various frameworks led to the identification of four major essential 

understandings, shape attributes; spatial orientation and spatial perspectives; composition and decomposition of 

geometric figures; and motions, transformations, and reflections of geometric figures. The list also includes sub-

components and a quasi-developmental sequence. 

While research-based frameworks can be used by curriculum developers and teachers, geometry curricula 

have been described as having no systematic progression, full of unrelated concepts, and lacking in spatial 

reasoning (Clements & Battista, 1992). As CCS were compared to the essential understandings identified in 

section one, it appears that there has been a significant improvement to the geometry curriculum with CCS 

showing a high similarity to the research. The majority of the standards correlate to the essential 

understandings and are typically ordered in congruence with the identified trajectory. In addition, spatial 

visualization, which is the ability to understand and perform imagined movements of objects in two-

dimensional and three-dimensional space (Clements & Battista, 1992; Gutiérrez, 1992), has been included 

within the skills students develop to compose and decompose shapes. However, CCS is still lacking another 

component of spatial visualization as shape movements and transformations have not been included in the 

elementary CCSs. Spatial orientation was also sadly lacking from CCS, which could have been incorporated 

into the standards with the inclusion of cartographic type activities suggested by Clements (1998, 2004).  

The teaching of geometry in the elementary curriculum is led by CCS. Understanding these frameworks 

and the research is crucial for selecting and creating instructional tasks. Evidence supports a constructivist 

approach for the teaching and learning of geometry, incorporating discussion, reflection, real-world 
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connections, and manipulatives. It is the role of the teachers to effectively match the activity to the 

understanding they are expecting the students to gain. The authors of CCS declare that the standards will be 

held to an “ongoing state-led developmental process that can support continuous improvement of the 

standards” (CCSSO/NGA, 2010b). While CCS have a strong connection to the research, it will be interesting to 

see if future revisions incorporate additional spatial reasoning components to further align the standards to 

the research findings. 
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