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               ABSTRACT 

EXPLORING THE EFFECTS OF TASK PRIORITY ON ATTENTION ALLOCATION AND 

TRUST TOWARDS IMPERFECT AUTOMATION: A FLIGHT SIMULATOR STUDY 

 

Tetsuya Sato 

Old Dominion University, 2020 

Director: Dr. Yusuke Yamani 

The present study examined the effect of task priority and task load on attention 

allocation and automation trust in a multitasking flight simulator platform. Previous research 

demonstrated that, participants made less fixations and reported lower levels of trust towards the 

automation in the secondary monitoring under higher load on the primary tracking task (e.g., 

Karpinsky et al., 2018). The results suggested that participants perceived behaviors of the 

automated system less accurately due to less attention allocated to monitoring of the system, 

leading to decreased trust towards it. One potential explanation of the effect is that participants 

might have prioritized the tracking task due to the elevated task load over monitoring of the 

automation. The current study employed a 2 x 2 mixed design with task difficulty (low vs. high 

difficulty) and task priority (equal vs. tracking priority). Participants performed the central 

tracking task, the system monitoring task, and the fuel management task where the system 

monitoring was assisted by an imperfect automated system. Participants were instructed to either 

prioritize the central tracking task over the other two tasks or maximize performance for all 

tasks. Additionally, participants received feedback on their tracking performance reflecting an 

anchor of their baseline performance. The data indicated that participants rated lower 

performance-based trust in a multitasking environment when all tasks were equally prioritized, 

supporting the notion that task priority modulates the effect of task load.  
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CHAPTER I 

INTRODUCTION 

Many professional tasks demand multitasking including both manually performing tasks 

and monitoring automation such as operating an aircraft (e.g., Billings, 1997), a robotic arm in 

space teleoperation (e.g., Li et al., 2014) and an air traffic control system (e.g., Loft et al,, 2016). 

Unfortunately, multitasking environments demand operators to allocate their limited attentional 

resources effectively to perform the tasks while monitoring automation (e.g., Wickens et al., 

2015). Attentional resources are often conceptualized as a limited amount of mental energy that 

is supplied to support operator’s mental activity (Kahneman, 1973; Wickens et al., 2015). 

According to Wickens et al.’s (2015) general human information-processing (HIP) model, based 

on the allocation policy and the task demand, attentional resources are allocated to support 

information-processing stages including sensory processing, perception, response selection, and 

response execution (Gopher, 1993; Kahneman, 1973; Wickens et al., 2015; Yamani & Horrey, 

2018).  

 According to HIP model, the amount of attentional resources supplied is determined by 

the mental workload imposed by the operator (Wickens et al., 2015). Mental workload can be 

defined as “the cost incurred by a human operator to achieve a particular level of performance” 

(Hart & Staveland, 1988, pp. 140). Mental workload is associated with the task demand while 

attention is associated with the amount of mental energy supplied. Depending on the amount of 

attentional resources supplied and the amount of mental workload, task performance can vary 

systematically (Kahneman, 1973; Wickens et al., 2015). For example, when the available 

attentional resources exceed the task demand, operators will perform the task successfully. 

Alternatively, when the task demand exceeds the attentional resource supply, operators will 
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perform the task poorly. Unfortunately, in a multitasking environment, overall task demand can 

exceed the operator’s attentional resource limit, degrading operator performance. Delegating 

tasks to automated systems is one way to alleviate resource demands in multitasking workspace.  

Automation 

Automation is defined as a system which performs functions that were previously 

performed, or those cannot be performed, by human operators (Bainbridge, 1983; Parasuraman 

et al., 2000). Automation can benefit operators by enhancing task performance (Parasuraman et 

al., 1996). However, unfortunately, automation can also alter human behaviors in a 

counterproductive way (Parasuraman & Riley, 1997). For example, according to the National 

Transportation Safety Board (2013), while approaching the runway at San Francisco 

International Airport, the pilot operating Asiana Airlines Flight 214 collided with the seawall. 

The report stated that the pilot descended the aircraft by changing the thrust of the aircraft that 

gives the forward force of the aircraft, causing the autothrotttle to lose control of the aircraft’s 

airspeed. The pilot failed to recognize the decrease in the airspeed mainly because the pilot 

misunderstood the function of the autothrotttle, that it would manage the airspeed while landing. 

Additionally, according to National Transportation Safety Board (2017), a pilot operating Ravn 

Connect Flight 3153 collided with the terrain in Alaska. The report stated that the pilot 

disengaged the Terrain Awareness and Warning System (TAWS) resulting in a fatal terrain 

collision. These two examples highlight that trained pilots can inappropriately understand or use 

even highly reliable automated systems, contributing to catastrophic accidents.  

Parasuraman and colleagues (2000) offer a design guideline for automated systems that 

support the human information-processing stages at varying levels of automation depending on a 

given task demand. According to Parasuraman et al. (2000), automation can support the different 
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stages of human information processing with the functions of automation including information 

acquisition, information analysis, decision selection, and action implementation. The information 

acquisition function supports the human’s sensory processing allowing detection of target 

stimuli. The information analysis function supports the human’s cognitive and perceptual 

processing by organizing, extrapolating, and integrating input data. The decision and action 

selection function support the human’s decision making by providing augmented or limited 

decision selection. Finally, the action implementation function supports execution of the selected 

action for the operator.  

Sheridan and Verplank (1978) described the levels of automation specifically at decision 

and action selection/implementation stage (see Figure 1). At lower levels of the continuum, 

operator selects a decision and executes the selected decision, and at higher levels of the 

continuum, the automation executes autonomously in replace of the operators. 
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HIGH 10. The computer decides everything, acts autonomously, ignoring the human 

 9. Informs the human only if it, the computer, decides to 

 8. Informs the human only if asked, or 

 7. Executes automatically, then necessarily informs the human, and 

 6. Allows the human a restricted time to veto before automatic execution, or 

 5. Executes that suggestion if the human approves, or 

 4. Suggest one alternative 

 3. Narrows the selection down to a few, or 

 2. The computer offers a complete set of decison/action alternatives, or 

LOW 1. The computer offers no assistance: human must take all decisions and actions 

 

Figure 1. Levels of automation of decision and action selection (Sheridan & Verplank, 1978). 

 

Modern professional environments often involve some levels of automation to enhance 

overall task performance and efficiency. However, implementing automation has changed the 

operators’ role from actively operating the systems to passively monitoring the system’s 

performance (Bainbridge, 1983), a task that humans perform poorly (e.g., Mackworth, 1948; 

Molloy & Parasuraman, 1996; Warm, Parasuraman, & Matthews, 2008). To detect system 

malfunction accurately, alerted-monitor systems have been used to present the state of the 

automation and to direct the operator’s attention to system malfunction (Bainbridge, 1983). The 

alerted-monitor system consists of an automated alerting subsystem which provides automated 

decisions about the system’s state (Sorkin & Woods, 1985). An alerted-monitor system can 
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consist of, for example, an operator performing the system monitoring task and the signaling 

system detecting engine malfunction that alerts the operator.  

When the alerted-monitor system alerts for system malfunction, the operators respond to 

the alerted-monitor system by analyzing input data and the decisions made by the system. 

However, due to inherent noise in incoming data, the alerted-monitor system can produce 

signaling system errors (i.e., false alarms and miss events) depending on the sensor threshold 

setting (Getty, Swets, Pickett, & Gonthier, 1995). Particularly, a conservative criterion (i.e., when 

the system requires more sensory evidence to detect system malfunction) for detecting signals 

would produce higher miss rates while a liberal criterion (i.e., when the system requires less 

sensory evidence to detect system malfunction) would produce higher false alarm rates. False 

alarms occur when the alerted-monitor system detects system malfunction given that the system 

is functioning properly. Miss events occur when the alerted-monitor system fails to detect system 

malfunction. These signaling system errors could cause the operators to delay their response 

(Breznitz, 1984; Getty et al., 1995; Sorkin, 1988), increase workload (Dixon & Wickens, 2006), 

and alter automation use strategies (Lee & See, 2004).  

Human-automation Trust 

An important factor that can influence human-automation interaction is human-

automation trust (Bliss & Dunn, 2000; Chancey et al., 2017; Meyer, 2001; Rice, 2009). Human-

automation trust can be defined as “an attitude that an agent will help achieve an individual’s 

goals in a situation characterized by uncertainty and vulnerability” (Lee & See, 2004, pp. 51). 

Human-automation trust is critical for successful human-automation interaction due to the 

increasing complexity and uncertainty induced by the automation (Lee & See, 2004).  
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Human-automation trust research originated from research on interpersonal trust, and 

theories of interpersonal trust have been applied to the context of human-automation interaction 

(Muir, 1994; Muir & Moray, 1996). Muir (1994) developed a theoretical model of trust in 

automation by integrating Barber’s (1983) definition of trust and a model of trust dynamics in 

interpersonal relations (Rempel et al., 1985). In Barber’s (1983) definition, trust develops based 

on three dimensions including: 1) the expectation that the natural and moral law is constant (i.e., 

persistence), 2) the expectation that the other person possesses the competency for role 

performance (i.e., technical competence), and 3) the expectation that the other person has the 

moral obligation to fulfill their duty (i.e., fiduciary responsibility). In the model of trust dynamics 

(Rempel et al., 1985), interpersonal trust changes through a series of different dimensions. 

Initially, interpersonal trust is determined by the extent to which a person’s behavior can be 

anticipated (i.e., predictability). As the relationship progresses, interpersonal trust is based on the 

personal quality of dependability, that is the extent to which a person can be counted on. In a 

matured relationship, interpersonal trust involves the certainty of a person’s behavior in the 

future (i.e., faith).  

Muir (1994) conceptualized human-automation trust based on the models proposed by 

Barber (1983) and Rempel et al. (1985). Muir’s (1994) model assumes that the dynamics of 

human-automation trust operate in the same way as the dynamics of interpersonal trust. Thus, 

when operators have less experience with automation, human-automation trust is mainly 

controlled by the predictability of the automation’s behavior, followed by dependability and then 

ultimately faith. Also, human-automation trust is based on three different expectations including 

persistence, technical competence, and fiduciary responsibility. In the context of human-

automation interaction, persistence refers to the extent that the natural and moral law stays 
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constant, technical competence refers to the capability that the automation can execute role 

performance, and fiduciary responsibility refers to the automation’s moral obligation to fulfill the 

operator’s duty. Muir’s (1994) model predicts the basis of an operator’s trust toward automation 

at varying degrees of experience with automation.  

Muir and Moray (1996) tested Muir’s (1994) model by conducting two experiments in a 

supervisory control task. Their task required the participant to maximize the pasteurizer’s output 

by controlling the pump subsystem and the heating subsystem. In both experiments, the pump 

subsystem was semiautomated allowing the participants to change the pump rate using manual 

control or automatic control. The results supported Muir’s (1994) model that the expectation of 

technical competence and fiduciary responsibility contributed to human-automation trust. Also, 

both experiments demonstrated that the three dimensions (i.e., predictability, dependability, and 

faith) influenced the dynamics of human-automation trust. However, the findings indicated that 

human-automation trust evolved through the three dimensions in the opposite order from that 

predicted by Muir’s (1994) model. This suggests that the basis of interpersonal trust influenced 

human-automation trust, but the basis of human-automation trust developed in the opposite order 

as Rempel et al.’s (1985) model of interpersonal trust (i.e., faith, dependability, and 

predictability, respectively).  

Basis of trust. According to Lee and Moray (1992), human-automation trust is controlled 

by three separate dimensions including performance (i.e., “what the automation is doing”), 

process (i.e., “how the automation is performing”), and purpose (i.e., “why the automation was 

developed”). The performance dimension of trust depends on the capability of the automation to 

achieve the operator’s goal. When the operator believes that the automation has the capability to 

accomplish the operator’s task, performance-based trust develops. The performance-based trust 
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can explain Barber’s (1983) competence dimension of trust and Rempel et al.’s (1985) 

predictability dimension of trust. The process dimension of trust develops when the operator 

believes that the automation’s algorithm is capable of performing a task. The process-based trust 

can explain Barber’s (1983) persistence dimension of trust and Rempel et al.’s (1985) 

dependability dimension of trust. The purpose dimension of trust depends on the correspondence 

between the designer’s intent and the operator’s understanding of the intention. Thus, purpose-

based trust develops when the operators accurately understand the designer’s intention of 

developing the automation. The purpose-based trust relates to Barber’s (1983) fiduciary 

responsibility dimensions of trust and Rempel et al.’s (1985) faith dimension of trust.  

Automation trust in multitasking workspace. Though ideal automation reduces the 

operator’s mental workload, unfortunately, operators do not necessarily use automation 

appropriately under high workload conditions. Several studies have examined automation trust in 

multitasking environment (Bailey & Scerbo, 2007; Karpinsky et al., 2018; Sato et al., 2019). For 

example, Karpinsky and colleagues (2018) used the MATB paradigm to examine the effects of 

task load on human-automation trust. Participants were asked to perform a flight simulation task 

involving the tracking task and the system monitoring task with the assistance of an imperfect 

signaling system at the reliability of 70%. Workload was manipulated by changing moment-to-

moment deviations of the moving circular target from the designated route in the tracking task. 

Results demonstrated lower levels of trust towards the signaling system under high workload 

conditions. Further examination of trust was conducted by analyzing the three dimensions of 

trust proposed by Lee and Moray (1992) and showed that increasing task load led to lower levels 

of performance- and process-based trust, suggesting that trust towards automation failed to 

develop potentially due to the misperception of the system’s behavior.  
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Although Karpinsky et al. (2018) demonstrated lower levels of trust toward the 

automation, there was contrasting evidence on automation trust in multitasking workplace 

(Bailey & Scerbo, 2007). For example, Bailey and Scerbo (2007) examined the automation trust 

when performing three different monitoring tasks (i.e., gauge monitoring task, automation mode 

monitoring task, and digital readout monitoring task) with an assistance of a high (i.e., 98% in 

Experiment 1 and 99.7% in Experiment 2) or low reliable automation (i.e., 87% in both 

experiments). Results demonstrated higher levels of trust and poor monitoring performance when 

operators utilize highly reliable automation for performing monitoring tasks that demand more 

attentional resources. Although both studies examined different factors that influence human 

automation trust, the decreased ratings of subjective trust in Karpinsky et al.’s (2018) study could 

have been accounted by an operator’s allocation of attentional resources.  

Attentional Resource Allocation 

Previous research on human performance in multitasking workspace indicates that 

operators reduce their attention allocation toward a task monitored by a reliable automated 

system (Karpinsky et al., 2018; Sato et al., 2019). Importantly, when the operators allocated less 

attention to monitor the automated system’s performance due to increased task demand, they also 

reported less subjective trust on the performance- and process-dimension of trust, demonstrating 

that attention is an important factor that influences human-automation trust. It is speculated that 

the operator’s subjective trust decreased due to the operator’s failure to switch tasks known as 

attentional tunneling.   

 Attentional tunneling is defined as the allocation of attentional resources to a particular 

task for more than the required time, given that the operator acknowledges the cost of switching 

to other tasks (Wickens & Alexander, 2009). This phenomenon is presumed to affect 
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multitasking performance. In Karpinsky et al.’s (2018) study, operators took less time to scan the 

system monitoring display when the central tracking task required more frequent manual input. 

Thus, operators could have made fewer saccades from the central tracking display indicating a 

failure to switch to the system monitoring display and vice versa. Several flight-simulated studies 

have examined the causes of attentional tunneling (Fadden et al., 2001, Fischer et al., 1980; 

Wickens & Long, 1995). For example, Fischer et al. (1980) examined the pilot’s ability to detect 

unexpected information presented on the outside environment or on the heads-up display (HUD) 

during an approach. The study examined the deviation of the aircraft from the pathway and the 

pilot’s average response time (RT) for detecting an obstruction on runway. Results demonstrated 

longer RT for detecting obstruction on the outside environment when using HUD than heads-

down display. Furthermore, few pilots were not able to detect obstruction when using HUD. 

Fischer et al. (1980) reasoned that the symbol on the HUD inhibits the pilots from looking 

outside the environment since the symbols make immediate changes that can be easily perceived 

by the pilot. Similar studies examined the attentional tunneling by employing a low-fidelity 

(Wickens & Long, 1995) and high-fidelity flight simulator (Fadden et al., 2001).  

In applied environments, eye movements are often used as a measure of overt attention. 

Though the location of a fixation and that of attention can be decoupled (e.g., Posner et al., 

1980), monitoring behavior of a set of dynamic areas of interest is well explained by models of 

supervisory control that assumes the coupling of focal vision and attention. More specifically, 

due to the restricted range of focal vision within the fovea strongly associated with attention, the 

eye can be considered a single-server queue. That is, objects in a visual scene await to be 

serviced in a queue, and eye movements are considered a way to service this queue (e.g., Moray, 

1986; Senders, 1964). In the current context, percent dwell time in each areas of interest (AOIs) 
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is used as a measure of attentional resources (e.g., Salvucci & Taatgen, 2008). For example, 

Karpinsky and colleagues (2018) examined the participant’s eye movements in the MATB 

paradigm involving the central tracking task and the system monitoring task. Their results 

demonstrated that the operators attended less to the system monitoring task assisted by an 

automated system when the tracking task demanded more frequent input.  

 Theoretical and computational modeling approaches lend support for the control of 

attention allocation in dynamic multitasking visual environments. The Strategic Task Overload 

Management (STOM) model (Wickens et al., 2013) predicts the operator’s likelihood of 

switching away from the ongoing task in a multitasking environment with partial assistance of 

the automation. The model involves top-down and bottom-up factors that influence the 

participant’s attention allocation which offers theoretical frameworks for the current study.  

More specifically, the STOM (Wickens et al., 2013) describes the operator’s task 

switching behavior of attending from an ongoing task (OT) to an alternative task (AT) in a 

multitasking environment. According to the model, attention switches from an OT to an AT when 

an AT has higher “attractiveness.” The attractiveness of an AT is determined by the extent to 

which a task can direct an operator’s attention to itself (i.e., salience), the value of a task (i.e., 

priority), the extent to which a task is engaged (i.e., task interest), and the amount of effort 

required by the task (i.e., task difficulty; Wickens et al., 2013). In Wickens and colleagues’ 

(2016) study, priority was shown to have minimal influence on the attractiveness of the task. 

Thus, the model was revised as follows: 

  Attractiveness = I + S + D 

where I refers to task interest, S denotes salience, and D represents task difficulty. Once the 

attention switches to the AT, the AT then becomes the OT. A validation study (Wickens et al., 
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2016) of the new model provided better prediction for task attractiveness. The model accounted 

for 95% of variance when priority was excluded from the model.  

Current Study 

It remains unclear why the central tracking demand reduced their attention towards the 

imperfect automation and automation trust in Karpinsky et al.’s (2018) study. One possibility is 

that the participants might have increased their task priority to the central tracking task in the 

high load condition where the tracking task required frequent and repetitive manual correction of 

the path of the aircraft. Further, attentional tunneling impaired their perception of behaviors of 

the signaling system. Although Wickens et al. (2016) demonstrated minimal influence of task 

priority, a large effect was observed in previous research (Gopher et al., 1982). Manipulation of 

task priority in Wickens et al. (2016) might have failed potentially due to the absence of the 

baseline performance. In Gopher et al.’s (1982) study, for example, participants received 

continuous feedback on their tracking performance during the practice session reflecting their 

baseline performance. As a result, participants were able to prioritize the tracking task at a level 

of 30%, 50%, and 70%. Conversely, Wickens et al. (2016) verbally instructed the participants to 

prioritize the tracking task or equally prioritize all task without an anchor reflecting their baseline 

performance. Thus, it is expected that following Gopher et al.’s (1982) procedure could allow 

successful manipulation of task priority in the current experiment. 

The present study aimed to replicate Karpinsky et al. (2018) and examined the effect of 

task priority on attention allocation on automation trust towards imperfect signaling system with 

a reliability of 70% in the MATB paradigm. Participants were asked to perform three concurrent 

tasks, the fuel management task, the system monitoring task, and the central tracking task. The 

system monitoring task was assisted by the automated signaling system. For the central tracking 
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task, participants performed the task with low and high difficulty. Participants were instructed to 

prioritize either the central tracking task over the other two tasks (tracking priority condition) or 

maximize performance for all tasks (equal priority condition).  

It was hypothesized that the present study would demonstrate the main effect of task load 

based on Karpinsky et al.’s (2018). More specifically, I hypothesized that:  

1. Participants would fixate less frequently towards the system monitoring task in the 

high tracking difficulty condition (i.e., high task load) than the low tracking difficulty 

condition (i.e., low task load).  

2. Participants would report higher levels of workload in the high tracking difficulty 

condition than the low tracking difficulty condition.  

3. Participants would make more errors in the system monitoring task and show longer 

RT towards the automated signaling system in the high tracking difficulty condition 

than the low tracking difficulty condition.  

4. Participants would present poor control of the circular moving target (i.e., poor 

tracking performance) in the high tracking difficulty condition than the low tracking 

difficulty condition.  

5. Participants would report lower levels of trust towards the automated signaling 

system in the high tracking difficulty condition than the low tracking difficulty 

condition, on the performance and process dimensions but not on the purpose 

dimension.  

Based on previous work (Gopher et al., 1982), the current study would yield the main 

effect of task priority. Specifically, I hypothesized that:  
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6. Participants would fixate less frequently towards the system monitoring task when the 

central tracking task was prioritized over all other tasks (i.e., tracking priority 

condition) than when all tasks are equally prioritized (i.e., equal priority condition).  

7. Participants would make more errors in the system monitoring task and show longer 

RT towards the automated signaling system when central tracking task was prioritized 

over all tasks than when all tasks are equally prioritized.  

8. Participants would present poor control of the circular moving target when all tasks 

are equally prioritized than when the central tracking task was prioritized over all 

other tasks. 

Finally, if task priority is a factor that influenced attention allocation and automation trust 

in Karpinsky et al. (2018), then the equal priority instruction should eliminate the effect of task 

load on attention allocation and automation trust. Specifically, I hypothesized that: 

9. The effect of the tracking task on the four variables in Hypotheses 1-5 would be 

present in the tracking priority condition but eliminated in the equal priority 

condition. 
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CHAPTER II 

METHODS 

Participants 

Based on Karpinsky et al. (2018), 40 participants (27 females, mean age = 21.54 years, 

SD = 8.62) were recruited from Old Dominion University (ODU). All participants were screened 

for normal or corrected-to-normal vision and normal color perception using the Ishihara Color 

Blindness test (Ishihara, 2014). Participants received course credits via the ODU SONA system 

for their participation.  

Apparatus 

Stimuli were presented on a Samsung T24C550 23.6” LED monitor (1920 x 1080) with a 

frame rate of 75 Hz. Windows 7 (Dell OptiPlex 9020) was used to run the MATB-II (Santiago-

Espada, Myer, Latorella, & Comstock, 2011) which is a computer-based flight simulation 

program that assesses flight performance. Participant’s eye movements were recorded using the 

Eyelink II (SR Research, Mississauga, Ontario, Canada) with a sampling rate of 250 Hz. 

Participants fixed their head on the chin rest placed approximately 80 cm away from the monitor. 

The experiment was conducted in a quiet room with dim light. Figure 2 present a model of the 

experimental setting.  
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Figure 2. A model of the experimental setting.  

 

Flight Simulation Task 

The current experiment involves the use of an automated signaling system in a flight 

simulation task, known as the Multi-Attribute Task Battery-II (MATB-II; Santiago-Espada et al., 

2011). In the MATB-II, the signaling system incorporates information acquisition, information 

analysis, and decision selection supports but not action implementation. Operators are asked to 

monitor four gauges that represent performance of four engines of a simulated aircraft and the 

automated signaling system alerts when the engine malfunctions. The signaling system uses the 

information acquisition function to help operators detect the malfunction by acquiring input data 

from the aircraft’s engine. After receiving input data, the signaling system uses the information 

analysis function to organize input data to project the state of the aircraft’s engine. Then, the 
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signaling system uses the decision and action selection function to recommend a decision for the 

operators to execute, but the signaling system does not have an action implementation function 

because operators must manually acknowledge and correct gauges following each alert. The 

MATB-II consisted of four different tasks including the central tracking task, the system 

monitoring task, communication task, and the fuel management task. Participants in the equal 

and tracking priority condition performed the central tracking task, the system monitoring task, 

and the fuel management task. Figure 3 presents the flight-simulation task. 

 

 

Figure 3. Sample display of MATB-II task. System monitoring (top left), central tracking task 

(top center), and fuel management task (bottom center). 

 

Tracking task. Participants were required to control the moving circular target within the 

dotted square using a joystick whenever the moving circular target deviated from the tracking 

display (top center of Figure 5). The moving circular target represented the direction of the 
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aircraft while the dotted square represented the designated route. The deviation of the moving 

circular target from the dotted square was controlled by setting the frequency of the force 

function. The frequency of the force function between the two experimental trials differed since 

the difficulty of the central tracking task was manipulated as a within-subjects factor. For the 

high task load condition, the frequency was set to 0.12 Hz while the frequency for the low task 

load condition was set to 0.06 Hz. However, in the practice session, the frequency for the central 

tracking task was set to 0.09 Hz. The root mean squared (RMSE) deviation between the moving 

circular target and the dotted square was calculated by sampling the input in X and Y dimensions 

at 20 Hz. For each block, the mean of RMSE was calculated to assess the performance for the 

central tracking task.  

System monitoring task. In the system monitoring task (top left of Figure 5), 

participants were asked to monitor the four vertical gauges, which represented the state of the 

aircraft’s four engines, and corrected the vertical fluctuating pointer when the pointer hit either 

the upper or lower extremity. The alarm box, located above the gauges, served to notify 

participants by presenting two different states of the engines. The green box indicated that the 

engine is in “normal” state. The green box illuminated until one of the pointers within each 

gauge hit the extremity of the gauge. The red box indicated that one of the engines is in 

“warning” state. The red box illuminated when one of the pointers within each gauge hit either 

extremities of the gauge. Each block consisted of 28 hit (Hit) events and 12 false alarm (FA) 

events which occurred in random intervals so that the reliability was 70%. Miss events were 

excluded from this study since performance and trust did not differ between FA events and Miss 

events (see Karpinsky et al., 2018). Hit events occurred when the signaling system correctly 

detected engine malfunction while FA events occurred when the signaling system detected 
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engine malfunction even though the engine was functioning normally. In a Hit event, one of the 

fluctuating pointers hit the upper or lower extremity of the gauge which turned the green box off 

and turned the red box on. This indicated a change in the engine’s state from a “normal” state to 

a “warning” state. In this case, participants were instructed to respond to the signaling system by 

using the mouse to click the red box and the green box. Also, participants were required to reset 

the fluctuating pointer by using the mouse to click the corresponding gauge which was labeled 

F1 to F4. In a FA event, the green box was turned off and the red box was turned on even though 

the fluctuating pointers did not hit the upper or lower extremity of the gauge. In this case, the 

participants only responded to the signaling system. Participants were not required to reset the 

fluctuating pointer since none of the pointers hit the extremity of the gauge. Participant’s data 

were excluded from the analysis when the error rate is above 50%. 

Fuel management task. The fuel management task (bottom center of Figure 5) required 

participants to maintain fuel in Tanks A and Tanks B, located adjacent to letters A and B, 

respectively. In each block, the fuel in Tanks A depleted at a rate of 1,000 units per minute while 

Tanks B depleted at a rate of 500 units per minute. When one of the tanks consumed below a 

volume of 2,500 units, participants were instructed to transfer fuel from lower supply tanks, 

located adjacent to letters C to F, by activating one of the pumps, labeled with numbers 1 to 8. 

An arrow was placed next to each number indicating the direction of the pump flow. The pumps 

could be activated by using the mouse to click the number of the corresponding pumps on the 

computer screen. The pump flow rate for all pumps was set to 900 units per minute. The task 

included a pump failure event in which one of the pumps failed to activate for 10s. In this case, 

participants were required to compensate by activating other pumps. Each block consisted of 8 

pump failure events which occurred in random intervals. The status of the pump was denoted by 
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the pump’s color. A green numbered box indicated that the pump was activating. A white 

numbered box indicated that the pump was deactivated. A red numbered box indicated that the 

pump was experiencing pump failure.  

Procedures 

Participants completed an informed consent and a demographics form, followed by 

screening for color perception and visual acuity. Then, participants were randomly assigned to 

either the equal or tracking priority condition. Following the procedure of Gopher et al. (1982), 

participants in the tracking priority condition received an instruction asking them to prioritize the 

central tracking task at a priority level of 70%, meaning that they were encouraged to perform a 

level better than the lowest 70% of their own baseline level performance. On the other hand, 

participants in the equal priority condition received an instruction asking them to prioritize the 

central tracking task at a priority level of 30%. Participants in both conditions were instructed to 

perform the flight-simulation task with a single hand. In the practice session, participants 

performed each flight-simulation task separately for a total of nine minutes (i.e., three minutes 

for each task) and all flight-simulation task for 3 minutes simultaneously. After the practice 

session, participants received a value representing their baseline performance distribution based 

on their own performance during the practice session for the central tracking task and a target 

value for the experimental session through a computer screen. The participant’s baseline 

performance distribution was determined by calculating the average RMSE. The target value for 

participants in the equal priority condition was calculated by adding the average RMSE by one 

standard deviation. On the other hand, the target value for participants in tracking priority 

condition was calculated by subtracting the average RMSE by on standard deviation.  
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Prior to the experimental session, the eye tracker was calibrated using the standard 9-dot 

calibration system. In the experimental session, participants completed two 20-minute 

experimental blocks which were counterbalanced to reduce the impact of potential order effects. 

After each block, participants completed Chancey et al.’s (2017) trust questionnaire, Jian et al.’s 

(2000) trust questionnaire, and the NASA-TLX (Hart & Staveland, 1988). Credits were given for 

participation. The present study was approved by Institutional Review Board (IRB) at ODU. 

Dependent Variables 

Subjective workload. The NASA-TLX (Hart & Staveland, 1988) was used to measure 

subjective workload. Participant’s subjective workload of the task was measured based on the 

ratings of each subscale of workload including mental demand, physical demand, temporal 

demand, performance, effort, and frustration. The NASA-TLX consists of 6 items on a 21-point 

gradient scale ranging from very low to very high. Thus, the overall minimum score that a 

participant can rate is 6 while the overall maximum score that a participant can rate is 126. 

Previous studies have demonstrated test/retest reliability (Hart & Staveland, 1988), convergent 

validity (Rubio et al., 2004), and concurrent validity (Rubio et al., 2004).  

Trust. Chancey et al.’s (2017) and Jian et al’s (2000) trust questionnaires were used after 

each experimental trial. Chancey et al.’s (2017) questionnaire comprised of 13 items on a 12-

point Likert scale ranging from (1) not descriptive to (12) very descriptive. Thus, the overall 

minimum score that a participant can score is 13 while the overall maximum score is 156. The 

items are divided into three subsets (i.e., performance, process, and purpose). Note that Chancey 

et al.’s (2017) trust questionnaire was developed based on Madsen and Gregor’s (2000) Human-

Computer Trust Questionnaire based on the three-dimensional theory of human-automation trust 

(Lee & Moray, 1992). Chancey et al.’s (2017) demonstrated high Cronbach’s alpha for overall 
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trust rating (α = .97), performance-based rating (α = .96), process-based rating (α = .91), and 

purpose-based rating (α = .93) indicating internal consistency. In a recent study, a multi-level 

confirmatory factor analysis of Chancey et al.’s (2017) questionnaire has shown to have a three-

dimension structure (Yamani et al., in preparation). 

Jian et al’s (2000) trust questionnaire is comprised of 12 items on a 7-point Likert scale 

ranging from (1) not at all to (7) extremely. The minimum score is 12 while the maximum score 

is 84. Safar and Turner (2005) has shown a high Cronbach’s alpha in Jian et al.’s (2000) 

questionnaire (α = .93) 

Attention allocation. Percentage dwell time (PDT) for each AOI were calculated by 

examining the proportion of time that the participants fixated on a particular AOI.  

MATB-II performance. Tracking performance was examined by calculating the mean of 

RMSE for each block. System monitoring performance was examined by calculating the error 

rates and reaction times (RTs) for each experimental trial for both Hit and FA events. Error rates 

are defined as the proportion of events that the participant responded incorrectly. RTs are defined 

as the time it takes for the participants to respond correctly after the onset of an event.  

Design  

The present study employed a 2 x 2 mixed design with task priority as a between-subjects 

factor and task load as a within-subjects factor. The dependent variables were subjective 

workload, subjective trust, attention allocation, tracking performance, system monitoring 

performance, and fuel management performance.  

Statistical Analysis 

The present study used a 2 x 2 mixed Bayesian analysis followed by Bayesian t-tests. The 

measures of evidence for Bayesian analysis is Bayes factors, the likelihood ratios reporting the 
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degree to which obtained data favor one of two statistical models against the other. Bayesian 

analysis circumvents some critical issues with the null-hypotheses significance tests (NHSTs). 

Unlike p-values in the NHSTs, Bayes factors can provide evidence for or against the effect of 

interest (Jeffreys, 1961). For instance, a Bayes factor favoring a model without an effect of 

interest over a model with the effect indicates evidence against the presence of the effect. 

However, non-significance in the NHSTs does not indicate the absence of an effect of interest. 

Bayes factor provides a measure of the strength of an effect of interest (Wetzel et al., 2011). For 

example, a Bayes factor of 3, which is taken as a substantial evidence, indicates that it is 3 times 

more likely that the supported statistical model generated the observed effect than the 

unsupported model. The default Bayesian tests (Rouder & Morey, 2012) were used in the current 

study. Bayes factor values greater than 1 indicate evidence in favor of an intervention effect and 

against the null, while values less than 1 indicate evidence in favor of the null and against the 

intervention effect. Following Rouder and Morey (2012), B10 denotes these values. Lastly, the 

Bayes factors were interpreted against the descriptive terms suggested by Jeffrey (1961; Figure 

4).   
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B10 Interpretation 

>100 Decisive evidence for H1 

30-100 Very strong evidence for H1 

10-30 Strong evidence for H1 

3-10 Substantial evidence for H1 

1-3 Not worth more than a bare mention 

1/3-1 Not worth more than a bare mention 

1/10-1/3 Substantial evidence for H0 

1/30-1/10 Strong evidence for H0 

1/100-1/30 Very strong evidence for H0 

<1/100 Decisive evidence for H0 

  

Figure 4. Descriptive terms for each range of Bayes factor (Jeffrey, 1961). 
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CHAPTER III 

RESULTS 

The present study employed a 2 x 2 mixed Bayesian analysis of variance (ANOVA) with 

Task Load (High vs. Low) as a within-subject factor and Task Priority (Equal vs. Tracking) as a 

between-subject factor. As a manipulation check, a Bayesian paired samples t-test was employed 

to compare the participant’s tracking performance with the participant-specific target value for 

the central tracking task for each block. Prior to the planned analyses, a 2 x 2 mixed Bayesian 

ANOVA including Order as an additional between-subject factor to explore the order effect, and 

the results indicate no evidence for the presence of the order effect for any of the dependent 

variables.  

Six participants were excluded from the current analysis. Of these, two were excluded 

because the system monitoring performance was below the inclusion criteria (i.e., 50%), three 

were excluded because of technical issues with the eye tracker, and one withdrew from the study 

because the participant felt sick during the experimental block.  

Manipulation Check  

Equal priority condition. Data gave no evidence that the participants in the equal 

priority condition performed above the target value under high task load condition, suggesting 

that participants were able to perform at the priority level of 30% in high task load condition 

[t(16) = -1.88, B10 = 1.04, d = 0.55]. However, data gave decisive evidence that the participants 

performed below the target value under low task load condition, suggesting that participants 

performed at a priority level more than 30% in low task load condition [t(16) = 6.78, B10 = 4.60 x 

103, d = 1.77].  
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Tracking priority condition. Data gave decisive evidence that the participants in the 

tracking priority condition performed above the target value under the high task load condition, 

suggesting that participants performed at the priority level less than 70% in high task load 

condition [t(16) = -7.90 B10 = 2.62 x 104, d = 2.04]. Data gave substantial evidence that the 

participants in the tracking priority condition performed below the target value under the low 

task load condition, suggesting that participants performed at the priority level more than 70% in 

low task load condition [t(16) = 3.18 B10 = 8.43, d = 0.66]. 

Subjective Workload 

Data indicated strong evidence for the main effect of task load on subjective workload, 

suggesting a successful manipulation of tracking difficulty [M = 77.00 vs. 66.00 for the high task 

load condition and the low task load condition, respectively; F(1, 32) = 20.70, B10 = 376.00, η2
G 

= 0.10]. However, data gave no substantial evidence for the main effect of task priority [F < 1, 

B10 = 1/2.80] and the interaction effect [F < 1, B10 = 1/2.19].  

Chancey et al.’s (2017) Trust Scale 

The three dimensions of trust in Chancey et al.’s (2017) questionnaire were examined 

separately. Figures 5, 6, and 7 present mean ratings for performance-, process-, and purpose-

based trust, respectively. 

Performance-based trust. Participants reported substantially lower levels of 

performance-based trust in the high task load condition than the low task load condition [M = 

44.18 vs. 41.62; F(1, 32) = 6.50, B10 = 3.24, η2
G = 0.01], replicating the result of Karpinsky et al. 

(2018). Additionally, task priority substantially modulated the main effect of task load [F(1, 32) 

= 6.50, B10 = 3.46, η2
G = 0.01]. Follow up t-tests indicated strong evidence that participants rated 

higher performance-based trust under low task load conditions when all tasks were equally 
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prioritized [M = 45.53 vs. 40.41; t(16) = -3.56, B10 = 16.64, d = 0.39]. However, data gave 

substantial evidence that performance-based trust rated under high and low task load conditions 

did not vary in the tracking priority condition [t(16)  = 0 , B10 = 1/4.00]. The main effect of task 

priority was not reliable [F < 1, B10 = 1/1.67]. 

 

 

Figure 5. Mean performance-based trust ratings. Error bars represent 95% between-participant 

confidence intervals.  

 

Process-based trust. Data strongly showed that the high task load condition reduced 

process-based trust compared to the low task load condition [M =44.18 vs  47.97; F(1, 32) = 

11.58, B10 = 22.86, η2
G = 0.03]. However, data did not give substantial evidence for the main 

effect of task priority [F < 1, B10 = 1/1.40] and the interaction effect [F < 1, B10 = 1/2.61]. 



                                                                            28 

 

 

Figure 6. Mean process-based trust ratings. Error bars represent 95% between-participant 

confidence intervals.   

 

Purpose-based trust. Data indicate no substantial evidence for the main effect of task 

load [M = 26.44 vs. 25.09 for the low task load condition and the high task load condition, 

respectively; F(1, 32) = 3.92, B10 = 1.22, η2
G = 0.01], the main effect of task priority [F < 1, B10 = 

1/1.59, η2
G = 0.02], and the interaction effect [F(1, 32) = 4.27, B10 = 1.62, η2

G = 0.01].  
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Figure 7. Mean purpose-based trust ratings. Error bars represent 95% between-participant 

confidence intervals.  

 

Jian et al.’s (2000) Trust Scale 

Data on Jian et al.’s (2000) trust questionnaire did not indicate substantial evidence for 

the main effect of task load [F(1, 32) = 3.05, B10 = 1/1.10, η2
G = 0.01],  the main effect of task 

priority [F < 1, B10 = 1/2.02], and the interaction effect [F(1, 32) = 1.13, B10 = 1/1.95, η2
G < 1].  

Attention Allocation 

PDT on all three MATB displays were examined separately. Figures 8 and 9 present 

fixation maps of a representative participant in tracking priority condition for the high and low 

task load, respectively. Figures 10 and 11 present fixation maps of a representative participant in 

equal priority condition for the high and low task load, respectively. The fixation map 

collectively represents the participant’s fixation. Within the MATB display, the red region 

indicates frequently fixated region while the green region indicates less frequently fixated region. 
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Figures 12, 13 and 14 present PDT on the central tracking display, the system monitoring 

display, and the fuel management display, respectively.  

 

 

Figure 8. Fixation map of a representative participant in tracking priority condition under high 

task load condition. 

 

 

Figure 9. Fixation map of a representative participant in tracking priority condition under low 

task load condition.  
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Figure 10. Fixation map of a representative participant in equal priority condition under high 

task load condition.  

 

 

Figure 11. Fixation map of a representative participant in equal priority condition under low task 

load condition.  

 

PDT on tracking display. Data gave decisive evidence that participants fixated more 

frequently on the tracking display when the central tracking task demanded more manual 
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corrections [M = 0.46 vs. 0.32 for the high task load condition and the low task load condition, 

respectively; F(1, 32) = 45.16, B10 = 6.85 x 104, η2
G = 0.16]. Furthermore, participants fixated 

decisively more on the tracking display when the central tracking task was prioritized than 

underprioritized [M = 0.51 vs. 0.27; F(1, 32) = 22.85, B10 = 466.52, η2
G = 0.38]. There was no 

evidence for the presence or absence of the interaction effect [F(1, 32) = 1.93, B10 = 1/1.42, η2
G 

= 0.01].  

 

 

Figure 12. Mean PDT on the central tracking display. Error bars represent 95% between-

participant confidence intervals.  

 

PDT on system monitoring display. Data strongly evinced that the high task load 

condition reduced fixations within the system monitoring display compared to the low task load 

condition [M = 0.13 vs. 0.11; F(1, 32) = 11.05, B10 = 15.22, η2
G = 0.04]. Additionally, 

participants fixated substantially more on the system monitoring display when the central 
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tracking task was less prioritized [M = 0.14 vs. 0.10 for equal priority condition and tracking 

priority condition, respectively; F(1, 32) = 7.94, B10 = 5.45, η2
G = 0.18]. Again, no interaction 

effect was substantial [F< 1, B10 = 1/2.96].  

 

 

Figure 13. Mean PDT on the system monitoring display. Error bars represent 95% between-

participant confidence intervals.  

 

PDT on fuel management display. Data indicated decisive evidence that participants 

fixated more on the fuel management display when the central tracking task required more 

corrective input [M = 0.45 vs. 0.36 for the high task load condition and low task load condition, 

respectively; F(1, 32) = 34.52, B10 = 7.30 x 103, η2
G = 0.09]. Data showed very strong evidence 

that participants fixated less on the fuel management display when the central tracking task was 

more prioritized [M = 0.31 vs. 0.50 for the tracking priority condition and equal priority 
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condition respectively; F(1, 32) = 15.89, B10 = 53.37, η2
G = 0.31]. The interaction effect was not 

substantial [F < 1, B10 = 1/2.43].  

 

 

Figure 14. Mean PDT on the fuel management display. Error bars represent 95% between-

participant confidence intervals.  

 

Tracking Performance  

The participants’ tracking performance measured on RMSE was decisively lower in the 

high task load condition than the low task load condition [M = 45.14 vs. 24.99; F(1, 32) = 

230.11, B10 = 2.90 x 1014, η2
G = 0.53], suggesting greater deviation of the cursor from the target 

when the central tracking task required more corrective input. Furthermore, tracking 

performance declined when the tracking task was less prioritized [M = 41.28 vs. 28.84 for the 

equal priority condition and tracking priority condition, respectively; F(1, 32) = 16.16, B10 = 
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71.06, η2
G = 0.30]. Data gave no substantial evidence for or against the interaction effect [F(1, 

32) = 2.88, B10 = 1/1.12, η2
G = 0.01].  

System Monitoring Performance.  

FA events. Figure 15 presents mean response time to FA events. For the response times, 

data provided very strong evidence that participants responded faster to FA events in the low task 

load condition than the high task load condition [M = 3.09 vs. 3.62 seconds; F(1, 32) = 16.23, 

B10 = 63.52, η2
G = 0.06] and when lower priority was placed in the tracking task [M = 2.48 vs. 

4.24 seconds for the equal priority and the tracking priority condition, respectively; F(1, 32) = 

23.02, B10 = 430.06, η2
G = 0.39]. There was anecdotal evidence for the interaction effect [F(1, 

32) = 5.46, B10 = 2.18, η2
G = 0.02]. 

For the error rates, data gave substantial evidence against the main effect of task load [F 

< 1, B10 = 1/3.37], and only anecdotal evidence against the main effect of task priority [F(1, 32) 

= 2.96, B10 = 1/1.05, η2
G = 0.05], and the interaction effect [F < 1, B10 = 1/2.94]. 
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Figure 15. Mean response time to FA events. Error bars represent 95% between-participant 

confidence intervals.  

 

Hit events. Figure 16 and 17 presents mean response time and mean error rate for Hit 

events, respectively. The participants responded to Hit events decisively faster in the low task 

load condition than the high task load condition [M = 2.83 vs. 3.34 seconds; F(1, 32) = 36.35, 

B10 = 8.97 x 103, η2
G = 0.11]. High task priority to the central tracking task however decisively 

slowed their responses than the equal priority condition [M = 2.42 vs. 3.75 seconds; F(1, 32) = 

31.10, B10 = 3.04 x 103, η2
G = 0.46]. Data did not provide substantial evidence for the interaction 

effect [F(1, 32) = 3.72, B10 = 1.17, η2
G = 0.01]. 
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Figure 16. Mean response time to Hit events. Error bars represent 95% between-participant 

confidence intervals.  

 

For the error rates, the participants committed substantially more errors in the high task 

load condition than the low task load condition [M = 0.09 vs. 0.06; F(1, 32) = 6.87, B10 = 3.46, 

η2
G = 0.03]. Moreover, error rates in the Hit events were substantially higher in the tracking 

priority condition than the equal priority condition [M = 0.11 vs. 0.03; F(1, 32) = 9.70, B10 = 

7.40, η2
G = 0.19]. Data did not produce substantial evidence for the interaction effect [F(1, 32) = 

4.85, B10 = 1.94, η2
G = 0.02]. Thus, data did not give evidence for the speed-accuracy tradeoffs.  



                                                                            38 

 

 

Figure 17. Mean error rate during Hit events. Error bars represent 95% between-participant 

confidence intervals.  

 

Fuel Management Performance  

Figure 18 presents mean fuel for both tanks between task priority conditions. Data 

provided substantial evidence against the effect of task load for Tank A [F < 1, B10 = 1/4.05] and 

Tank B [F < 1, B10 = 1/3.34], indicating that the participants maintained similar amounts of fuel 

regardless of the task load imposed by the central tracking task. Data indicated inconclusive 

evidence for the main effect of task priority on the amount of fuel in Tank A [M = 2510,94 vs. 

2438.80 units; F(1, 32) = 3.14, B10 = 1.16, η2
G < 0.01] and Tank B [F(1, 32) = 1.05, B10 = 1/1.37, 

η2
G = 0.03]. Finally, data indicated substantial evidence against the interaction effect on the 

amount of fuel in Tank A [F < 1, B10 = 1/3.23] while anecdotal evidence against the interaction 

effect in Tank B  [F < 1, B10 =  1/2.28]. 
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Figure 18. Mean fuel in Tanks A and Tanks B. Error bars represent 95% between-participant 

confidence intervals.  
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CHAPTER IV 

DISCUSSION 

The present study examined whether task priority and task load influence attention 

allocation and automation trust in a simulated multitasking environment. Using the paradigm 

used in Karpinsky et al. (2018), participants performed the central tasking task, the system 

monitoring task with an assistance of an imperfect signaling system, and the resource 

management task, and their task priority (tracking priority vs. equal priority) and task load (high 

vs. low on the central tracking task) were manipulated. Though previous works failed to show 

the effect of task priority on multitasking performance, I aimed to manipulate task priority using 

the procedure used by Gopher et al. (1982). The purpose of the current study was to replicate the 

findings of Karpinsky et al. (1982), and examine whether the adverse effects of task load on 

automation trust was due to task priority placed on the central tracking task.  

Comparing with Past Research 

Karpinsky et al. (2018) demonstrated that, under higher task load condition, participants 

1) scanned the system monitoring task less frequently, 2) rated higher subjective workload, 3) 

performed the central tracking task more poorly, 4) responded more slowly and made more 

errors on the system monitoring task, and 5) rated lower levels of performance- and process-

based trust. They interpreted the results that participants in the high task load condition 

misperceived the behaviors of the signaling system due to less frequent information sampling 

strategies, leading to reduced levels of trust, when compared to the low task load condition, 

regardless of the reliability level of the signaling system.  

 The current study generally replicates the findings of Karpinsky et al. (2018). First, 

participants scanned the system monitoring display less frequently and the central tracking task 
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more frequently in the high task load condition than the low task load condition, supporting 

Hypothesis 1. Second, participants rated higher subjective workload in the high task load 

condition than the low task load condition, supporting Hypothesis 2. Third, participants 

performed the central tracking task more poorly in the high task load condition than the low task 

load condition, supporting Hypothesis 3. Fourth, participants responded slower to the system 

monitoring task during FA and Hit events in the high task load condition than the low task load 

condition. Additionally, participants demonstrated poor system monitoring performance during 

Hit events in the high task load condition than the low task load condition, supporting 

Hypothesis 4. The present study found measurable differences in system monitoring performance 

between the high and low task load conditions perhaps due to the presence of the fuel 

management task which was absent in Karpinsky et al. (2018). That is, reserve attentional 

resources were presumably allocated to the fuel management task, increasing difficulty for the 

system monitoring task. Fifth, participants rated lower levels of performance-based and process-

based trust in the high task load condition than the low task load condition, supporting 

Hypothesis 5. As expected, the participant’s subjective workload ratings, MATB performance, 

and trust ratings were consistent with Karpinsky et al.’s (2018) study, indicating successful 

replication of Karpinsky et al.’s (2018) findings.  

Influence of Task Priority 

The current study also aimed to extend Karpinsky et al. (2018) by manipulating task 

priority in addition to task load. We employed the technique used by Gopher et al.’s (1982) study 

that successfully manipulated task priority. Later studies, however, failed to manipulate task 

priority (Gutzwiller et al., 2014; Wickens et al., 2016), thus questioning the importance of task 

priority in multitasking performance in the literature. The absence of the participant’s baseline 
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performance may be one reason why more recent works (Gutzwiller et al., 2014; Wickens et al., 

2016) failed to find the effect of task priority on multitasking performance. That is, in Gopher et 

al.’s (1982) study, participants obtained their own baseline performance by receiving continuous 

feedback on their tracking performance during the training session. Participants were then 

instructed to prioritize the tracking task at a priority level of 30%, 50% and 70% of their own 

baseline performance. Conversely, Gutzwiller et al. (2014) and Wickens et al. (2016) did not 

provide feedback about the participant’s baseline performance for the tracking task prior to the 

experimental session. Instead, participants were asked to either prioritize the central tracking task 

or equally prioritize all tasks without providing the participant’s baseline performance as an 

anchor. Additionally, the level of target priority was not explicitly specified in their studies 

potentially resulting in failed manipulation of task priority.  

Using Gopher et al.’s (1982) procedure, participants were instructed to perform the 

central tracking task at a priority level of either 30% or 70%. Results indicated that participants 

can equally prioritize all tasks in the high task load condition. Interestingly, participants failed to 

prioritize the central tracking for more than 70%. Furthermore, in the low task load condition, 

participants in both priority conditions prioritized the central tracking task more than their target 

value. Taken together, participants adhered to the instruction when equally prioritizing all tasks 

in the high task load condition. While participants overprioritized the tracking task in the low 

load condition and underprioritized in the high load condition, one may wonder whether 

participants allocated their attention to the system monitoring and the system monitoring tasks 

appropriately. Indeed, driving research demonstrated increased fixations on a task with high 

priority, suggesting that task priority can modulate eye movement behavior (Sullivan et al., 
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2012). Because the current priority manipulation is solely based on the tracking task 

performance, we do not have a direct way to answer this question.  

Previous works (Gopher et al., 1982; Gutzwiller et al., 2014; Wickens et al., 2016) 

provided contrasting evidence on the effect of task priority. The current study demonstrated the 

main effect of task priority on attention allocation, system monitoring performance, and system 

monitoring task. Three points can summarize the results regarding the task priority manipulation. 

First, participants fixated the system monitoring display more frequently in the equal priority 

condition than the tracking priority condition, supporting Hypothesis 6. Second, participants 

responded more slowly to Hit and FA events in the tracking priority condition, compared to the 

equal priority condition, supporting Hypothesis 7. Additionally, participants committed more 

errors during Hit events in the equal priority condition than the tracking priority condition. Third, 

participants performed the central tracking task more poorly in the equal priority condition than 

the tracking priority condition, supporting Hypothesis 8.  

The present study examined the effects of task priority and task load on subjective trust 

towards the automated system, measured by two separate questionnaires, Jian et al. (2000) and 

Chancey et al.’s (2017) trust questionnaires. Although reliable evidence was not observed in Jian 

et al.’s (2000) trust questionnaire, Chancey et al.’s (2017) trust questionnaire revealed notable 

findings on the effect of task priority. Note that Jian et al.’s (2000) trust questionnaire is 

empirically driven while Chancey et al.’s (2017) trust questionnaire was theory-driven, and this 

difference may have caused divergent findings in response to the task priority manipulation. 

Results showed the interaction effect between task load and task priority on performance-based 

trust, whereby participants rated lower performance-based trust in the high task load condition 

than the low load condition when all tasks were equally prioritized, but this effect was eliminated 
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when the tracking task was prioritized. This data pattern is opposite of that predicted by 

Hypothesis 9. Our tentative interpretation of the result is that participants allocated attention to 

the tracking task more, and thereby rated their automation trust higher, in the high load condition 

than the low load condition in the equal priority condition because their attention resources were 

more mobile. However, when the priority level is set before the experimental session began, then 

attention resources were less mobile, and the load manipulation became less effective.  

The present study offers implications for understanding the relationship between 

automation trust and attention allocation. Specifically, participants rated lower levels of trust 

towards the automation when more attention was allocated to the central tracking task. It is 

possible that participants rated lower levels of trust due to the failure to create a mental model of 

the automation. Within the HIP model (Wickens et al., 2015), forming an accurate mental model 

of the automation requires operators to supply sufficient attentional resources to perceive and 

monitor behaviors of the automated system and maintain the information in working memory. 

However, operators can fail to form a mental model of the automated system when attentional 

resources are depleted due to high task load. The current results suggest that both task load and 

task priority can influence attention allocation strategies, influencing an information uptake for 

forming an accurate mental model of the automated system.  

In Lee and Moray’s (1992) framework, trust is based on three informational sources 

including the performance, process, and purpose. However, later study suggested that novices 

trust automation based on its performance and process, but not the purpose (Karpinsky et al., 

2018). Indeed, task load affected performance-based and process-based trust. The present study 

demonstrated lower trust ratings of performance- and process-based trust under the high task 

load condition than the low task load condition, suggesting that operators more occupied with the 
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tracking task developed performance-based trust less. Yet, task priority modulated the effect of 

task load on performance-based trust, but not the process-based trust nor the purpose-based trust. 

Based on these findings, equally prioritizing all the tasks likely caused the participants to analyze 

the automated signaling system’s behavior explicitly (e.g., performance-based trust), rather than 

analyzing the automated signaling system’s algorithm (e.g., process-based trust) or intention for 

developing the automated signaling system (e.g., purpose-based trust).  

Practical Implications  

The present study demonstrated that high task priority can eliminate the effect of task 

load on the operator’s trust rating and increase attention towards the prioritized task. Practically, 

the present findings provide insight into designing of training programs involving the use of 

automation in multitasking environment. Trust has been a critical factor to affect automation use 

(Parasuraman & Riley, 1997), especially in attention demanding environments where operators 

exhibit lower ratings of automation trust even though the reliability of the automation remained 

constant (Karpinsky et al., 2018; Sato et al., 2019). Task priority can be implemented to the 

training program to control an operator’s trust ratings in multitasking environment to encourage 

appropriate automation use and discourage automation misuse, disuse, and abuse (Parasuraman 

& Riley, 1997). Training involving task priority has shown dual-task performance benefit for 

younger and older adults when prioritizing one of the tasks compared to equally prioritizing all 

tasks (e.g., variable priority training; Kramer et al., 1995). One caveat of the current results is 

that many of the effect sizes are relatively small and could be of less practical significance. 

Further research should measure sizes of the effects explored in this study with a larger sample 

size and more applied environments.  
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Limitations and Future Study 

Several limitations exist in the present study. First, it is unclear whether the current 

findings can be generalized to experts who have more knowledge than novices. Their expert 

knowledge may guide trust calibration not solely based on the perception of behaviors of the 

automation, but process and purpose dimension of automation trust already established from 

their prior interactions with the automation. Expert operators may also possess an established 

mental model of the automated system, which could facilitate the trust development process. 

Future research should examine whether the current findings generalize to expert pilots. 

Second, and related to the first point above, it is unclear how Lee and Moray’s (1992) 

trust dimensions develop over time. Previous research on the dynamics of automation trust 

demonstrated that trust evolved from faith, dependability, and predictability (Muir & Moray, 

1996). Although trust dynamics has been examined, none examined the dynamics of Lee and 

Moray’s (1992) trust dimensions chronologically. The present study showed that the 

experimental manipulations affected mainly performance-based trust. However, the trust 

questionnaires were administered at the end of each experimental block, reflecting an operator’s 

trust levels only at that time. It is possible that the process- and the purpose-based trust initially 

increased but decreased towards the end of the experiment. Future research should trace how the 

three basis of trust develops over time by administering Chancey et al.’s (2017) trust 

questionnaire at different time points during their interaction with the automated system in the 

MATB program.  

Third, the attractiveness of each task was unknown since the present study did not ask the 

participants to rate their perceived saliency, interest, difficulty, and task priority attributes of the 

STOM. For the post-hoc analysis, we used the STOM parameter values reported in Wickens et 
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al. (2016) to analyze the current eye movement data. Future research could collect subjective 

ratings of the four STOM parameters to compare the model prediction and observed data.  

Fourth, the present study did not manipulate risk. Previous studies found risk as an 

important factor that influences human-automation trust (Chancey et al., 2017; Sato et al., 2019). 

For example, in Sato et al.’s (2019) study, participants concurrently performed the central 

tracking task and the system monitoring task where their perceived risk was manipulated. Results 

indicated that perceived risk magnified the effect of task load, elevating performance- and 

process-based trust in attention demanding environment. Even though risk is an important factor 

for trust development, the present study did not consider perceived risk, lowering the ecological 

validity of the study. Future research should examine how the interaction between perceived risk 

and task priority influences automation trust.  

Fifth, the AOI for each MATB task varied in its size. It is possible that participants made 

less fixation on the system monitoring display due to the smaller size of the AOI than the others. 

Future research should consider equating the sizes of the AOIs for the MATB tasks to test this 

possibility.  

Finally, the participants could have used their peripheral vision. In a professional 

environment where multiple tasks are separated apart, such as gauges and electronic displays 

within an aircraft cockpit, operators make head movements to direct attention to different tasks 

that are spatially apart. The present study does not capture this behavior because the participants 

are required to fixate their head on the chin rest restricting head movement and were able to 

attend to different tasks by using eye movements. Future research should could a head-mounted 

eye tracker with multiple displayed spatially apart to examine the effect of information access 

cost (e.g., Wickens et al., 2015) on attention allocation and automation trust.  
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CHAPTER V 

CONCLUSION 

 The present study asked participants to perform the MATB paradigm (i.e., central 

tracking task, system monitoring task, and fuel management task) with varying levels of task 

load (i.e., low and high) and task priority (i.e., equal priority and tracking priority). Participant 

were either instructed to perform the central tracking task at a priority level of either 30% (i.e., 

equal priority) or 70% (i.e., tracking priority). Results demonstrated that participants equally 

prioritizing all tasks rated lower levels of performance-based trust under high task load 

condition, consistent with Karpinsky et al. (2018). The present study also showed that the effect 

of task load in the equal priority condition can be eliminated by setting high priority on the 

tracking task, suggesting that task priority is one factor that modulates attention allocation and 

automation trust. The current findings might offer guidelines for devising a training program that 

can control an operator’s trust towards the automation in multitasking environment. By altering 

the priority of each task, operators can control their trust towards automated systems, which may 

ultimately allow them to avoiding inappropriate use of automation such as misusing unreliable 

automation and disusing reliable automation. 



                                                                            49 

 

REFERENCES 

Bailey, N.R., & Scerbo, M.W. (2007). Automation-induced complacency for monitoring highly 

reliable systems: the role of task complexity, system experience, and operator trust.  

Theoretical Issues in Ergonomics Science, 8, 321–348.  

Bainbridge, L. (1983). Ironies of automation. Automatica, 19, 775–779. 

Barber, B. (1983). The logic and limits of trust (Vol. 96). New Brunswick, NJ: Rutgers 

University Press. 

Billings, C.E., (1997). Aviation automation: The search for a human centered approach.  

Mahwah, NJ: Erlbaum. 

Bliss, J.P., & Dunn, M.C. (2000). Behavioral implications of alarm mistrust as a function of task  

workload. Ergonomics, 43, 1283–1300. 

Breznitz, S. (1984). Cry wolf: The psychology of false alarms. Hillsdale, NJ: Erlbaum.  

Chancey, E.T., Bliss, J.P., Yamani, Y., & Handley, H.A.H. (2017). Trust and the compliance  

reliance paradigm: the effects of risk, error bias, and reliability on trust and dependence. 

Human Factors, 57, 947–958. 

Dixon, S. R., & Wickens, C. D. (2006). Automation reliability in unmanned aerial vehicle  

control: a reliance-compliance model of automation dependence in high workload. 

Human Factors, 48, 474-486. 

Fadden, S., Ververs, P. M., & Wickens, C. D. (2001). Pathway HUDs: are they viable? Human  

Factors, 43, 173-193. 

Fischer, E., Haines, R. F., & Price, T. A. (1980). Cognitive issues in head-up displays (NASA  

Tech, Paper 1711). Moffett Field, CA: National Aeronautics and Space Administration, 

Ames Research Center. 



                                                                            50 

 

Getty, D. J., Swets, J. A., Pickett, R. M., & Gonthier, D. (1995). System operator response to  

warnings of danger: A laboratory investigation of the effects of the predictive value of a 

warning on human response time. Journal of experimental psychology: applied, 1, 19. 

Gopher, D. (1993). The skill of attention control: Acquisition and execution of attention  

strategies. In D. E. Meyer & S. Kornblum (Eds), Attention & performance XIV (299-

322). Cambridge, MA: MIT Press. 

Gopher, D., Brickner, M., & Navon, D. (1982). Different difficulty manipulations interact  

differently with task emphasis: Evidence for multiple resources. Journal of Experimental 

Psychology: Human Perception and Performance, 8, 146. 

Gutzwiller, R. S., Wickens, C. D., & Clegg, B. A. (2014, September). Workload overload  

modeling: An experiment with MATB II to inform a computational model of task 

management. In Proceedings of the Human Factors and Ergonomics Society Annual 

Meeting (Vol. 58, No. 1, pp. 849-853). Sage CA: Los Angeles, CA: SAGE Publications. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results  

of empirical and theoretical research. Advances in Psychology, 52, 139-183. 

Ishihara, S. (2014). Ishihara’s tests for colour deficiency. Tokyo: Kanehara Trading Inc.  

Jeffreys, H. (1961). Theory of probability (3rd ed.). New York, NY: Oxford University Press. 

Jian, J., Bisantz, A.M., & Drury, C.G. (2000). Foundations for an empirically determined scale of  

trust in automated systems. International Journal of Cognitive Ergonomics, 4, 53–71. 

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall. 

Karpinsky, N. D., Chancey, E. T., Palmer, D. B., & Yamani, Y. (2018). Automation trust and  

attention allocation in multitasking workspace. Applied ergonomics, 70, 194-201. 

Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual task  



                                                                            51 

 

settings: a comparison of young and old adults. Journal of experimental psychology: 

Applied, 1, 50. 

Lee, J.D, & Moray, N. (1992). Trust, control strategies and allocation of function in human  

machine systems. Ergonomics, 35, 1243-1270. 

Lee, J.D., & See, K.A. (2004). Trust in automation: designing for appropriate reliance.  

Human Factors, 46, 50–80. 

Li, H., Wickens, C.D., Sarter, N., & Sebok, A. (2014). Stages and levels of automation in support  

of space teleoperations. Human Factors, 56, 1050–1061. 

Loft, S., Chapman, M., & Smith, R.E. (2016). Reducing prospective memory error and costs in  

simulated air traffic control: external aids, extending practice, and removing perceived 

memory requirements. Journal of Experimental Psychology: Applied, 22, 272–284. 

Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual search. Quarterly  

Journal of Experimental Psychology, 1, 6-21. 

Madsen, M., & Gregor, S. (2000, December). Measuring human-computer trust. In 11th  

australasian conference on information systems (Vol. 53, pp. 6-8). 

Meyer, J. (2001). Effects of warning validity and proximity on responses to warnings. Human  

factors, 43, 563-572. 

Molloy, R., & Parasuraman, R. (1996). Monitoring an automated system for a single failure:  

Vigilance and task complexity effects. Human Factors, 38, 311-322. 

Moray, N. (1986). Monitoring behavior and supervisory control. In K. Boff, L. Kaufman, and  

Thomas (Eds.), Handbook of perception and human performance (pp. 40/1-40/51). New 

York: Wiley.  

Muir, B. M. (1994). Trust in automation: Part I. Theoretical issues in the study of trust and  



                                                                            52 

 

human intervention in automated systems. Ergonomics, 37, 1905-1922. 

Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and  

human intervention in a process control simulation. Ergonomics, 39, 429-460. 

National Transportation Safety Board. (2013). Decent Below Visual Glidepath and Impact with  

Seawall Asiana Airlines Flight 214 Boeing 777-200ER, HL7742 San Francisco, 

California July 6, 2013 (Rep. NTSB-AAR1401). Washington, DC: Author.  

National Transportation Safety Board (2017). Collisions with Terrain Hageland Aviation  

Services, Inc. dba Ravn Connect Flight 3153 Cessna 208B, N208SD, Togiak, Alaska 

October 2, 2016 (Rep. NTSB-AAR1802). Washington, DC: Author. 

Parasuraman, R., Mouloua, M., Molloy, R., & Hilburn, B. (1996). Monitoring of automated  

systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance: 

Theory and applications (pp. 91-115). Mahwah, NJ: Erlbaum.  

Parasuraman, R., & Riley, V. (1997). Humans and automation: use, misuse, disuse, abuse.  

Human Factors, 39, 230-253. 

Parasuraman, R., Sheridan, T.B., & Wickens, C.D. (2000). A model for types and levels of  

human interaction with automation. IEEE Transactions on Systems, Man and 

Cybernetics, Part A: Systems and Humans, 30, 286–297.  

Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of  

signals. Journal of experimental psychology: General, 109, 160. 

Rempel, J. K., Holmes, J. G., & Zanna, M. P. (1985). Trust in close relationships. Journal of  

personality and social psychology, 49, 95. 

Rice, S. (2009). Examining single- and multiple-process theories of trust in automation. The  

Journal of General Psychology, 136, 303-322.  



                                                                            53 

 

Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection in  

regression. Multivariate Behavioral Research, 47, 877-903. 

Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental  

workload: A comparison of SWAT, NASA‐TLX, and workload profile methods. 

Applied Psychology, 53, 61-86. 

Safar, J. A., & Turner, C. W. (2005, September). Validation of a two factor structure for system  

trust. In Proceedings of the Human Factors and Ergonomics Society Annual 

Meeting (Vol. 49, No. 3, pp. 497-501). Sage CA: Los Angeles, CA: SAGE Publications. 

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent  

multitasking. Psychological review, 115, 101. 

Santiago-Espada, Y., Myer, R.R., Latorella, K.A., & Comstock, J.R. (2011). The Multi-attribute  

Task Battery II (MATB-II) Software for Human Performance and Workload Research: a 

User's Guide (NASA/TM-2011–217164). National Aeronautics and Space 

Administration, Langley Research Center, Hampton, VA.  

Sato, T., Yamani, Y., Liechty, M., & Chancey, E. T. (2019). Automation trust increases under  

high workload multitasking scenarios involving risk. Cognition, Technology & Work, 1-9. 

Senders, J. W. (1964). The human operator as a monitor and controller of multidegree of freedom  

systems. IEEE Transactions on Human Factors in Electronics, 2-5. 

Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of undersea  

teleoperators. Massachusetts Inst of Tech Cambridge Man-Machine Systems Lab. 

Sorkin, R. D. (1988). Why are people turning off our alarms? The Journal of the Acoustical  

Society of America, 84, 1107-1108. 

Sorkin, R. D., & Woods, D. D. (1985). Systems with human monitors: a signal detection  



                                                                            54 

 

analysis. Human Computer Interaction. 1, 49-75. 

Sullivan, B. T., Johnson, L., Rothkopf, C. A., Ballard, D., & Hayhoe, M. (2012). The role of  

uncertainty and reward on eye movements in a virtual driving task. Journal of vision, 12, 

19-19. 

Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and  

is stressful. Human Factors, 50, 433-441. 

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011).  

Statistical evidence in experimental psychology: An empirical comparison using 855 t 

tests. Perspectives on Psychological Science, 6, 291-298. 

Wickens, C. D., & Alexander, A. L. (2009). Attentional tunneling and task management in  

synthetic vision displays. The International Journal of Aviation Psychology, 19, 182-199. 

Wickens, C. D., Gutzwiller, R. S., Vieane, A., Clegg, B. A., Sebok, A., & Janes, J. (2016). Time  

sharing between robotics and process control: Validating a model of attention switching. 

Human factors, 58, 322-343. 

Wickens, C.D., Hollands, J.G., Banbury, S., & Parasuraman, R. (2015). Engineering Psychology  

and Human Performance, Psychology Press.  

Wickens, C. D., & Long, J. (1995). Object versus space-based models of visual attention:  

Implications for the design of head-up displays. Journal of Experimental Psychology: 

Applied, 1, 179. 

Wickens, C. D., Santamaria, A., & Sebok, A. (2013, September). A computational model of task  

overload management and task switching. In Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting (Vol. 57, No. 1, pp. 763-767). Sage CA: Los 

Angeles, CA: SAGE Publications. 



                                                                            55 

 

Yamani, Y., & Horrey, W. J. (2018). A theoretical model of human-automation interaction  

grounded in resource allocation policy during automated driving. International Journal of 

Human Factors and Ergonomics, 5, 225-239. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                            56 

 

APPENDIX A 

INFORMED CONSENT DOCUMENT 

PROJECT TITLE: Examining relationships between visual attention and automation trust  

using eye tracking technique 

 

INTRODUCTION 

The purposes of this form are to give you information that may affect your decision whether to 

say YES or NO to participation in this research, and to record the consent of those who say YES. 

This research project, Examining relationships between visual attention and automation trust 

using eye tracking technique, will be conducted in Applied Cognitive Performance Laboratory 

(MGB 325B) at Old Dominion University.  

 

RESEARCHERS 

Yusuke Yamani, Ph.D., Assistant Professor, College of Sciences, Department of Psychology, 

Principal Investigator 

Tetsuya Sato, Graduate Student, College of Sciences, Department of Psychology 

 

DESCRIPTION OF RESEARCH STUDY 

This research is designed to investigate the ability to perform three concurrent tasks that simulate 

the control of an aircraft while one of the tasks will be controlled by an automated system with 

various reliability. We will record both your eye movements and responses during the session. 

The task will take approximately 2 hours to complete.  

 

EXCLUSIONARY CRITERIA 

All participants in this research study must be at least 18 years of age with normal or corrected-

to-normal visual acuity and normal color perception.  

 

RISKS AND BENEFITS 

RISKS:  There may be minimal risk such as eyestrain. The researchers will take all precautions 

to minimize any of these potential risks.  

 

Eye movements will be monitored by a device that reflects infrared light off the lens and the 

cornea of the eye. The lens, cornea, and other parts of the eye absorb a small amount of energy 

from the infrared light, but the energy is less than 1% of the Maximum Permissible Exposure 

level as certified by the American Standards Institute (ANSI Z 136.1-1973). This is about as 

much energy you get on a bright sunny day. 

 

BENEFITS:  You may not benefit directly from the present study. However, your participation in 

the study will serve to enhance our understanding of the mechanisms that underlie visual 

attention. 

 

COSTS AND PAYMENTS 

The researchers want your decision about participating in this study to be absolutely voluntary.  

The main benefit to you for participating in this study is the extra credit or course credit points 
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that you will earn for your class.  Although they are unable to give you payment for participating 

in this study, if you decide to participate in this study, you will receive 2.5 Psychology 

Department research credit, which may be applied to course requirements or extra credit in 

certain Psychology courses. Equivalent credits may be obtained in other ways. You do not have 

to participate in this study, or any Psychology Department study, to obtain this credit. 

 

CONFIDENTIALITY 

The researchers will take reasonable steps to keep private information confidential. The 

researchers will keep any record of your participation in locked storage in the psychology 

department. Furthermore, individual participants results will not be distributed in any form. The 

results of the study aggregated across participants will be published in professional journals 

and/or book chapters.    

 

WITHDRAWAL PRIVILEGE 

It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and walk 

away or withdraw from the study    at any time. Your decision will not affect your relationship 

with Old Dominion University, or otherwise cause a loss of benefits to which you might 

otherwise be entitled.  

 

COMPENSATION FOR ILLNESS AND INJURY 

If you say YES, then your consent in this document does not waive any of your legal rights.  

However, in the event of illness arising from this study, neither Old Dominion University nor the 

researchers are able to give you any money, insurance coverage, free medical care, or any other 

compensation for such injury.  In the event that you suffer injury as a result of participation in 

any research project, you may contact Dr. Yusuke Yamani at 757-683-4457 or Dr. Tancy 

Vandecar-Burdin the current IRB chair at 757-683 3802 (or at tvandeca@odu.edu) at Old 

Dominion University, or the Old Dominion University Office of Research at 757-683-3460 who 

will be glad to review the matter with you. 

 

VOLUNTARY CONSENT 

By verbally agreeing to this form, you are saying several things.  You are saying that you have 

read this form or have had it read to you, that you are satisfied that you understand this form, the 

research study, and its risks and benefits.  The researchers should have answered any questions 

you may have had about the research.  If you have any questions later on, then the researchers 

should be able to answer them: 

 

If at any time you feel pressured to participate, or if you have any questions about your rights or 

this form, then you should call Dr. Vandecar-Burdin, the current IRB chair, at 757 683 3802, or 

the Old Dominion University Office of Research, at 757 683 3460. 

 

And importantly, by verbally agreeing, you are telling the researcher that you DO agree to 

participate in this study.   
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APPENDIX B 

DEMONGRAPHICS FORM 

Demographic Information Sheet 

Applied Cognitive Performance Laboratory 

Name: 

________________________________ 

Date of Birth: ______________ Age: _____ 

Health: 1  2  3  4  5  
          Poor → Excellent (circle one) 

Gender: ☐Male    ☐Female 

Race: ______________________________ 

Native Language: ____________________    Second Language: ______________________ 

Please Circle True/False for the following.  

Do you wear Glasses/Contacts on a regular basis?     True      False 

Have you been diagnosed with any neuropsychological dysfunction? True      False 

          If so, are you currently taking any medication for this?    True      False 

How many years of education have you completed (Please record a number)? _____ 

Please note: grade school through high school is usually 12 years in the US, if needed,  

Add on how many years of college you have completed. 

Contact information  

*Home Phone number :      (         )                               *Cellular :       (        )                            . 

*Email: ____________________________________________________________________ 

*Address: __________________________________________________________________ 

*If you are interested in receiving information about future experiments, please include address 

and please answer below. Your address, phone number and email will not be used for any other 

purpose.  

Can we contact you to participate in additional paid experiment?     Yes     No 

Where did you hear about us? ____________________________________ 

Signature of Participant: ________________________________________ 

Name (please print):                                                                                        .     

 

Office use:                     ACP ID: _________ 

Near Vision: _______ Far: ______ Color: _____ 
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APPENDIX C 

NASA-TASK LOAD INDEX (TLX) WORKLOAD QUESTIONNAIRE 

(Hart & Staveland, 1998) 

NASA Task Load Index 

Hart and Staveland’s NASA Task Load Index (TLX) method assesses workload on five 7-point scales. 

Increments of high, medium, and low estimates for each point result in 21 gradations on the scales. 

 

Name Task Date 

 
Mental Demand                                                                                   How mentally demanding was the task? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 

Physical Demand                                                                               How physically demanding was the task? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 

Temporal Demand                                                                  How hurried or rushed was the pace of the task? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 

Performance                                      How successful were you in accomplishing what you were asked to do? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 

Effort                                             How hard did you have to work to accomplish your level of performance? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 

Frustration                                            How insecure, discouraged, irritated, stressed, and annoyed were you? 

|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      | 

Very Low                                                                                                                                  Very High 
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APPENDIX D 

TRUST QUESTIONNAIRE (Chancey et al., 2017) 

Part. #: ________________  Group: ___________________  Session: ___________________ 

Below is a list of statements for evaluating trust between people and automated systems. 

Please circle the number that best describes your feeling or your impression of the 

automated aid you used during the task. 

 

1. Even when the automated aid gives me unusual advice, I am certain that the aid’s advice will 

help me to perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

2. For me to perform well, I can rely on the automated aid to function properly 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

3. It is easy to follow what the automated aid does to help me perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

4. The automated aid’s advice reliably helps me perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

5. The automated aid’s advice consistently helps me perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

6. I understand how the automated aid will help me perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

7. Even if I have no reason to expect that the automated aid will function properly, I still feel 

certain that it will help me to perform well.  

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 
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8. Although I may not know exactly how the automated aid works, I know how to use it to 

perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

9. To help me perform well, I believe advice from the automated aid even when I don’t know 

for certain that it is correct.  

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

10. To help me perform well, I recognize what I should do to get the advice I need from the 

automated aid the next time I use it.  

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

11. I will be able to perform well the next time I use the automated aid because I understand how 

it behaves. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

12. The automated aid always provides the advice I require to help me perform well. 

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 

 

 

13. The automated aid adequately analyzes the system consistently, to help me perform well.  

 

Not Descriptive:    1    2    3    4    5    6    7    8    9    10    11    12    :Very Descriptive 
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APPENDIX E 

TRUST QUESTIONNAIRE (Jian et al., 2000) 

Checklist for Trust between People and Automation 

Below is a list of statement for evaluating trust between people and automation. There are 

several scales for you to rate intensity of your feeling of trust, or your impression of the system 

while operating a machine. Please mark an “x” on each line at the point which best describes 

your feeling or your impression.  

(Note: not at all = 1: extremely = 7) 

 

1. The system is deceptive 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

2. The system behaves in an underhanded manner 

  

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

3. I am suspicious of the system’s intent, action, or outputs 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

4. I am wary of the system 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

5. The system’s actions will have a harmful or injurious outcome 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

6. I am confident in the system 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

7. The system provides security 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   
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8. The system has integrity 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

9. The system is dependable 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

10. The system is reliable 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

11. I can trust the system 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   

 

12. I am familiar with the system 

 

|                |                 |                |                |                |                |                | 

              1               2               3               4              5                6               7   
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