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Multiple transporters associated with malaria parasite
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Summary

Mutations and/or overexpression of various trans-
porters are known to confer drug resistance in a vari-
ety of organisms. In the malaria parasite Plasmodium
falciparum, a homologue of P-glycoprotein, PfMDR1,
has been implicated in responses to chloroquine
(CQ), quinine (QN) and other drugs, and a putative
transporter, PfCRT, was recently demonstrated to be
the key molecule in CQ resistance. However, other
unknown molecules are probably involved, as differ-
ent parasite clones carrying the same pfert and
pfmdr1 alleles show a wide range of quantitative
responses to CQ and QN. Such molecules may con-
tribute to increasing incidences of QN treatment fail-
ure, the molecular basis of which is not understood.
To identify additional genes involved in parasite CQ
and QN responses, we assayed the in vitro suscepti-
bilities of 97 culture-adapted cloned isolates to CQ
and QN and searched for single nucleotide polymor-
phisms (SNPs) in DNA encoding 49 putative trans-
porters (total 113 kb) and in 39 housekeeping genes
that acted as negative controls. SNPs in 11 of the
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putative transporter genes, including pfert and
pfmdr1, showed significant associations with
decreased sensitivity to CQ and/or QN in P. falci-
parum. Significant linkage disequilibria within and
between these genes were also detected, suggesting
interactions among the transporter genes. This study
provides specific leads for better understanding of
complex drug resistances in malaria parasites.

Introduction

The human malaria parasite Plasmodium falciparum kills
an estimated 1.1-2.7 million people each year (WHO,
2000), partly as a result of the emergence of parasites
resistant to a wide array of antimalarial drugs (Peters,
1990; Thimasarn et al.,, 1997). Chloroquine (CQ), one of
the most effective and affordable drugs over the past
50 years, has become useless in many parts of the world.
Quinine (QN), another quinoline-based drug, has been
effective against malaria parasites for centuries, but clini-
cal failures have been reported from Asia and South
America (Peters, 1987; Giboda and Denis, 1988; Pukrit-
tayakamee et al.,, 1994). QN is structurally related to CQ,
yet parasites resistant to CQ can be highly sensitive to
QN and vice versa (Peters, 1987; Malin and Hall, 1990;
Wongsrichanalai et al., 1997). Although mutations in two
genes, pfcrtand pfmdr1, have been shown to confer resis-
tance and modulate the response to CQ, respectively
(Fidock et al., 2000; Reed et al., 2000; Djimde et al., 2001;
Cooper et al., 2002; Sidhu et al., 2002), the mechanism
of decreasing QN susceptibility is not clear. Five loci,
however, have recently been implicated in QN response
in a genetic cross in which inheritance of QN and
CQ responses are correlated (M. T. Ferdig etal,
unpublished).

It is well known that mutations and/or overexpression of
certain transporters, especially transporters of the ABC
superfamily, can confer drug resistance in organisms from
bacteria to human cancer cell lines (Ouellette et al., 1994;
Chakraborti et al., 1999; Allen etal., 2000). In human
cancer cells, overexpression of P-glycoprotein and multi-
drug resistance-associated protein MRP1 are the princi-
pal causes of chemotherapy failure (Dean et al., 2001).
Simultaneous changes in multiple glutamate chloride ion
channels have been shown to be responsible for ivermec-
tin resistance in nematodes (Blackhall et al., 1998; Dent
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et al., 2000). In P, falciparum, pfcrtis a putative transporter
with 10 transmembrane domains (Fidock et al., 2000).
Two members of the ABC transporter superfamily from the
malaria parasite P facilarum, pfmdr1 and pfmdr2, have
also been implicated in responses to CQ and QN as well
as other drugs (Wilson et al.,, 1989; 1993; Foote et al.,
1990; Volkman and Wirth, 1998; Reed et al., 2000; Adagut
and Warhurst, 2001; Babiker et al., 2001). Although the
parasite has a limited number of transporters compared
with yeast and other organisms, several additional ABC
transporters are present in the genome (Gardner et al.,
2002). Given the fact that most parasites carrying the
same pfcrt and pfmdr1 alleles often respond to CQ and
QN differently (Fidock et al., 2000; Djimde et al., 2001;
Cooper et al., 2002), it is clear that additional molecules,
probably transporters or ion channels, play a role in mod-
ulating or contributing to drug responses.

We hypothesized that parasite transporters play an
important role in the P, falciparum response to antimalarial
drugs, including CQ and QN, and that the levels of the
responses result from additive and/or interacting contribu-
tions of multiple proteins. Genetic variations and/or
changes in gene expression in different parasite transport-
ers should therefore affect the parasite response to anti-
malarial drugs. The P falciparum genome sequencing
project provides an excellent opportunity to study the
potential contributions of transporters to drug resistance.
The majority of the parasite genes are available in
genome databases (Gardner et al., 2002). A comprehen-
sive search of the parasite genome for genetic changes
in putative transporters provides a unique approach to
identify candidate transporters involved in drug transport
or otherwise contributing to drug resistance.

To identify genes contributing to QN sensitivity as well
as genes that may modulate parasite response to CQ, we
collected single nucleotide polymorphisms (SNPs) from
49 genes that encode predicted or known transporters
and transport regulatory proteins available from public
databases. We then genotyped a total of 97 culture-
adapted isolates (34 from Africa, 42 from Asia, 16 from
the Americas and five from Papua New Guinea) and mea-
sured the dose-responses to CQ and QN in vitro. We
show that SNPs from multiple transporters are associated
with elevated levels of the parasite response to CQ and/
or QN and provide evidence of co-selection of SNPs from
the associated genes, supported by linkage disequilibra
(LD) between genes on different chromosomes.

Results and discussion
SNPs from 49 putative transporter genes

We searched the P falciparum genome databases at the
websites of the genome sequencing consortium (websites

of TIGR, Sanger Center and Stanford University) for pro-
tein motifs similar to known transporters. A total of 113 kb
of DNA, 99 kb coding and 14 kb non-coding, containing
49 putative transporter sequences, was amplified from
four parasite isolates (Hb3 of central America, Dd2 of
south-east Asia, D10 of Papua New Guinea and 7G8 of
South America) and sequenced. SNPs and polymorphic
microsatellite (MS) sites were identified after alignment of
the DNA sequences from five isolates (including 3D7 from
the genome sequencing project). Two hundred and thirty-
one polymorphic sites, including 67 MS and 164 SNPs,
were obtained from 42 of the 49 genes (Table 1). Of the
SNPs, 130 are in coding regions (cSNPs) and 34 are in
non-coding regions. This gives an overall frequency of one
SNP per 690bp DNA (nucleotide polymorphism,
0=7.3x10™), one SNP per 764 bp in coding regions
(6=6.3x10™*) and one SNP per 412 bp in non-coding
regions (8=1.2x107° respectively. Among the 130
cSNPs, 96 are non-synonymous substitutions (74%) and
34 are synonymous. MS are mostly in introns and are
present at a frequency of one in =1.7 kb. These results
confirm that the P, falciparum genome is highly polymor-
phic when parasites from around the world with different
CQ selection histories are scored, with a polymorphic site
occurring every 0.49 kb DNA in just five isolates, which is
consistent with that reported for chromosome 3 (Mu et al.,
2002).

The SNPs are not evenly distributed among the genes.
There are genes that contain no SNPs, possibly reflecting
functional constraints (Table 1). However, 14 genes are
quite variable, having three or more non-synonymous sub-
stitutions, but few or no synonymous changes. This pat-
tern suggests the possibility of positive selection, although
the high frequency of non-synonymous substitutions
partly reflects the paucity of synonymous sites (Mu et al.,
2002).

Parasite responses to CQ and QN

To investigate whether SNPs from the transporter
genes are associated with drug sensitivity, we deter-
mined in vitro 1Cs,s to both CQ and QN for 97 cloned
isolates (Table 2). Plots of descending CQ and QN ICs,
values showed continuous distributions (Fig. 1A and B)
characteristic of multigenic, quantitative traits. One obvi-
ous gap in the distribution of CQ ICs, (dashed line in
Fig. 1A) can be attributed to mutations in pfert. all the
parasites below this interval carry a wild-type pfert
allele, whereas parasites above this gap have mutant
alleles (data not shown). Significantly, isolates carrying
an identical pfert mutant allele displayed a wide range
of ICs, values, indicating the participation of additional
genes in modulating the level of response to CQ. A
similar, but smoother continuous distribution of QN ICs,

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 49, 977—-989
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Table 2. Parasite isolates, origins and responses to CQ and QN.
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Isolates Origin CQ ICs QN ICs, Isolates Origin CQ ICs QN ICs
98-8a Thailand 6.460 3.460 PNG2 PNG 0.559 0.110
98-5 Thailand 3.260 0.780 98-26b Thailand 0.550 0.890
1088 Thailand 2.970 2.800 7G8 Brazil 0.546 0.390
Thai19 Thailand 2.163 0.824 DIV30 Brazil 0.538 0.278
123/5 Sudan 1.876 0.350 TM191c Thailand 0.528 0.978
PC49 Peru 1.706 0.457 99-22a Thailand 0.520 0.290
V1/S Vietnam 1.631 1.263 98-9a Thailand 0.510 0.680
98-8c Thailand 1.580 0.290 TM92c-815 Thailand 0.500 0.410
PC09 Peru 1.518 1.147 T17-1 Thailand 0.500 0.800
Indo Indochina 1.353 3.022 99-16b Thailand 0.500 0.250
PC15 Peru 1.323 1.750 99-15 Thailand 0.500 0.650
JCK Cambodia 1.290 1.446 PNG13 PNG 0.491 0.082
M97 The Gambia 1.281 0.550 98-13 Thailand 0.490 0.850
FCB SE Asia 1.218 1.612 99-10a Thailand 0.480 0.570
99-29a Thailand 1.200 1.510 98-22b Thailand 0.480 0.560
9020 Ghana 1.159 0.172 98-4 Thailand 0.440 0.560
P31 SE Asia 1.125 1.120 ECU Ecuador 0.387 0.210
KMVII Kenya 1.124 2.277 Fab6 S. Africa 0.173 0.416
98-11 Thailand 1.120 0.110 106/1 Sudan 0.112 0.852
DIV17 Brazil 1.092 0.670 K39 Kenya 0.107 0.351
124/8 Sudan 1.087 0.269 Hb3 Honduras 0.084 0.632
Thai16 Thailand 1.079 0.353 D10 PNG 0.075 0.131
102/1 Sudan 1.068 0.165 T2/c6 Thailand 0.073 0.166
DIV14 Brazil 1.064 0.573 Fab9 S. Africa 0.068 0.221
Dd2 Indochina 1.000 1.000 9021 Ghana 0.067 0.107
99-3 Thailand 0.950 0.990 SL/D6 Sierra Leone 0.064 0.136
128/4 Sudan 0.939 0.321 M24 Kenya 0.058 0.113
PC17 Peru 0.925 0.507 MR80 Vietnam 0.054 0.131
TM284 Thailand 0.899 0.940 601 The Gambia 0.054 0.080
D5 SE Asia 0.875 1.117 9016 Ghana 0.052 0.165
99-8 Thailand 0.860 2.040 M5 Mali 0.052 0.268
ICS Brazil 0.859 0.551 Hu425 The Gambia 0.051 0.101
99-29d Thailand 0.840 0.680 433 The Gambia 0.051 0.107
T18-1 Thailand 0.820 0.770 425 The Gambia 0.049 0.130
98-17a Thailand 0.820 0.120 3D7 The Netherlands 0.048 0.253
M2 Mali 0.792 0.227 713 Guinea Bissau 0.047 0.128
PC26 Peru 0.783 0.710 M190 The Gambia 0.046 0.149
TM91c-40 Thailand 0.760 0.310 224 The Gambia 0.046 0.129
JAV Colombia 0.757 0.499 418 The Gambia 0.042 0.120
9013 Ghana 0.756 0.313 449 The Gambia 0.041 0.109
T2-2 Thailand 0.750 0.880 4156 The Gambia 0.040 0.166
C2A Thailand 0.746 1.139 REN Sudan 0.040 0.173
ECP Brazil 0.712 0.517 Haiti Haiti 0.040 0.207
PAD Brazil 0.666 0.280 MT/s-1 Thailand 0.039 0.105
PNG4 PNG 0.620 0.196 434 The Gambia 0.039 0.059
PNG3 PNG 0.601 0.082 LF4/1 Liberia 0.037 0.136
99-18 Thailand 0.570 1.480 P13 Mali 0.037 0.088
98-18 Thailand 0.570 1.600 Camp Malaysia 0.031 0.051
S35 Mali 0.568 0.231

The ICs, of each isolate for CQ and QN, representing median values from at least five independent assays, was normalized to that of control
parasite Dd2 (mean ICs,: 404.1 nM for CQ and 315.9 nM for QN) included in each assay to account for day-to-day assay variation.

from the isolates was observed (Fig.1B), suggesting
the lack of a major genetic determinant. Although the
majority of the CQ-sensitive (CQS) parasites carrying
the wild-type pfert allele also have lower QN IC5, val-
ues, parasites carrying the mutant pfert alleles vary
widely for QN IC5, (Fig. 1C). Best-fit curves of 1Cs, val-
ues (Fig. 1C) showed approximately parallel lines for
CQ and QN, indicating the likely involvement of com-
mon genes, especially pfert, in levels of sensitivity to
both drugs (Fig. 1C).

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 49, 977—-989

SNPs from multiple transporter genes associated with CQ
and QN responses

To identify genes that may contribute to responses to
CQ and QN, we analysed the relationship between the
SNPs and the quantitative parasite drug responses by
direct genotype—phenotype association. When all 97 iso-
lates were tested for associations (columns headed ‘All’,
Table 3), 15 SNPs from six genes (pfert, G2, G7, G25,
G30 and G49) were strongly associated with the quanti-
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Fig. 1. Plots of P, falciparum isolate responses (ICs, normalized to Dd2 response in the same assay plate) to CQ and QN. Median IC5, from five
independent assays were sorted in descending order and plotted. Each isolate shows a unique IC5, in responses to CQ (A) and QN (B). Parasites
above the dashed line (A) have mutant pfcrt alleles, whereas those under the line carry the wild-type allele. Except for the five parasites with the
highest ICs, no obvious ICs, jump was found in the QN plot (B). Best-fit curves (C) of the IC5, values to CQ (red dots) and QN (black dots).
Isolates were sorted according to CQ ICs, in descending order, and ICs, to both CQ and QN were plotted (Lowess regression using PRISM3
software). Note that CQS parasites (right side of the vertical dashed line) generally have low ICs, to QN.

tative CQ responses at P <0.001, and four additional
SNPs, from pfmdr1, G47 and G70, gave more marginal
P-values (Table 3). Similar P-values were obtained for
associations of these SNPs with the QN responses of
the 97 isolates (Table 3). These P-values give an intrigu-
ing hint of multiple drug susceptibility determinants, as
the strong CQ associations include most SNPs from
pfert, and four of the associated genes encode putative
ABC transporters (pfmdr1, G2, G7 and G49). However,
the associations in the worldwide cohort of 97 parasites
may reflect co-ancestry of lineages in different geo-
graphical regions in addition to drug response associa-
tions. Accordingly, we also analysed the parasites by
different continental regions, where they have distinct
CQ selection histories and CQR origins (Wootton et al.,
2002).

The separate associations for Asia, Africa and the
Americas (Table 3) show that 14 SNPs from six genes
(pfert, pfmdr1, G2, G30, G49 and G55) are strongly
associated with CQ responses in at least one geographi-
cal region (P < 0.01), and four additional SNPs from G7,
G25 and G49 have P-values <0.022 (cut-off threshold
from permutation analysis). Interestingly, different SNPs
from pfmdr1 are significantly associated with CQ
responses among different parasite populations; the
SNPs at amino acid position 86 and 1034 are signifi-
cantly associated with CQ responses in parasites from
Africa and South America respectively (Table 3), a find-
ing consistent with results reported previously (Volkman
and Wirth, 1998; Foote et al., 1990; Reed et al., 2000;
Adagut and Warhurst, 2001; Babiker et al., 2001). For
the South American parasites, which are all CQ resis-
tant, most of the SNPs in pfcrt are not informative for
quantitative drug response associations because of the

absence of the ancestral pfcrt allele in this region. The
majority of the pfcrt SNPs (except amino acid position
72 and 97) from African and Asian parasites were very
significantly associated (P < 0.0001) with CQ response
(Table 3).

Additionally, 12 SNPs from five genes showed
evidence of association with the higher QN ICs, in the
continental subpopulations (P < 0.022, Table 3). These
included seven strongly significant (P < 0.001) pfcrt SNP
associations in both Asian and African populations and,
to a lesser degree, SNPs in G30 (Africa), G54 (Asia)
and G70 (Asia). Also, two SNPs from G2 and one from
G49, which have marginally non-significant P-values in
the permutation tests, are significant by the regression
analysis.

The strong association between pfcrt SNPs and
responses to both CQ and QN is consistent with a sce-
nario in which pfcrt may physically interact with both
drugs, which is supported by various observations: (i)
substitutions of K with | or N at amino acid position 76 of
pfert changed the parasite response to both CQ and QN
simultaneously (Cooper et al., 2002); (ii) the majority of
CQS parasites carrying the wild-type pfert also have low
QN ICs, (Fig. 1C); and (iii) the antimalarial effects of CQ
and QN are antagonistic (Skinner-Adams and Davis,
1999). The results also agree with historical observations
that no QN failures were reported before CQR (Peters,
1987) and are consistent with the proposal that the use
of CQ may have led to background mutations contributing
to steady decreases in QN potency (Knowles et al., 1984).
The majority of the associations with both CQ and QN are
corroborated by significant P-values (P < 0.05) from anal-
ysis of variance and linear regression (underlined in
Table 3).
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Negative controls and SNPs from 39 putative
housekeeping genes

Of the 39 putative transporter genes that have SNPs, 28
show no significant associations with CQ or QN
responses. These SNPs/genes can serve as controls for
false associations due to population structures or other
unknown factors. Additionally, we also searched for SNPs
from 39 putative housekeeping genes (or partial genes)
on chromosome 3 among five isolates (Dd2, 3D7, Hb3,
D10 and 7G8), totalling 33.6 kb coding and 3.9 kb non-
coding sequences (Mu etal, 2002) (Table 4). These
SNPs were then assayed in all 97 isolates. Only 13 of
these 39 putative housekeeping genes (compared with 39
of 49 putative transporter genes) showed nucleotide sub-
stitutions, a significant difference between the transporter
and housekeeping classes in the number of polymorphic
genes (x? test, P <0.001). Nucleotide substitution rates
within these 13 housekeeping genes are also significantly
lower (x? test, P <0.0001), suggesting purifying selection
acting on the housekeeping genes and/or positive selec-
tion on the transporters (6 = 2.0 x 10~ for the housekeep-
ing genes compared with 8= 7.3 x 10~ for the transporter
genes). Of the 13 genes with nucleotide substitutions, only
two satisfied our informativeness index criterion of / >0.5
among the 97 isolates (guanine nucleotide-binding protein
/=0.59 and 40S ribosomal protein S12 /=0.66). The
SNPs in these two genes are not significantly associated
with either CQ or QN responses according to our P-value
thresholds from permutation analysis (data not shown).

Linkage disequilibrium among associated genes

Co-selection of pfert amino acid T76 and pfmdr1 Y86
positions by CQ treatment has been reported recently
(Adagut and Warhurst, 2001; Babiker et al., 2001; Djimde
et al., 2001), suggesting either that the two genes may
work in concert in determining CQ resistance levels or that
the mutation at pfmdr1Y86 may compensate deleterious
pfert mutations. To detect potential co-selection, we eval-
uated LD (D) between pairs of SNPs within a geographical
region, including Africa (A), Asia (B) and South America
(C) (Fig. 2). In addition to strong LD within pfcrt, the most
notable finding was the strong LD detected between pfcrt
and pfmdr1 (position 86), G7, G30 and G55 in African
parasites, and between pfcrt and G2, G7, G47 and G49
in Asian parasites (P < 0.00001, red, Fig. 2A and B). Addi-
tionally, strong LD is present in African isolates within G2
and G54 and between G25 and G49 (Fig.2A), and in
Asian parasites within G2, G49 and G54 and between the
following pairs: G7/G47, G7/G49, G47/G49 and G54/G70
(Fig. 2B). For parasites from South America, strong LD is
detected between pfcrt and pfmdr1 (position 1034 only),
pfmdr1/G47 and G49/54 in addition to LD within pfert, G2
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Fig. 2. LD among SNPs within and between 11 putative transporter
genes associated with CQ and QN responses. Pairwise LD parameter
D was calculated as described in the Experimental procedures. P-
values and confidence intervals were determined from permutation
tests, giving thresholds for unadjusted P-values P < 0.001 (marginal,
green) and P <0.00001 (highly significant, red). More genes show LD
among parasites from Africa (A) and Asia (B) than from South
America (C), probably because of a more uniform genetic background
in the South American population: for example, most pfcrt positions
are not informative for LD detection in South American isolates
because there is only one allele. The numbers represent individual
genes that have one or more SNPs (small rectangles) significantly
associated with drug responses in Table 3: 1, pfcrt, 2, pfmdr1; 3, G2;
4, G7;5, G25; 6, G30; 7, G47; 8, G49; 9, G54; 10, G55; and 11, G70.
All the LDs in this figure are also significant (P < 0.01) by tests
performed using an A? estimate implemented in DNASP (data not
shown). The permutation test criterion was also used to evaluate LD
between all SNP pairs from the two informative housekeeping genes
and the 28 transporter-encoding genes that showed no significant
drug associations. These were negative for LD: only a few of these
SNP pairs showed near-marginal P-values, as expected by chance
(data not shown).
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and G54 (Fig.2C) and, to a lesser extent (P=0.001—
0.00001), between pfcrt and pfmdr1 (position 1034).
Some SNPs do not show LD in the South American pop-
ulation because many of the positions (for example in
pfert) have only one allele. These LDs were corroborated
using estimates of R? implemented in DNASP (Rozas and
Rozas, 1999; data not shown).

The LD between pfcrt and pfmdr1 in parasites from
Africa (pfmdr1 position 86) and South America (pfmdr1
position 1034) supports previous reports suggesting co-
selection or involvement of both pfert and pfmdr1 in CQR
(Adagut and Warhurst, 2001; Babiker et al., 2001; Djimde
etal., 2001; Chen et al., 2002). It is interesting that pfcrt
is linked to different SNPs in pfmdr1 in parasites from
Africa and South America. This implies that specific
genetic backgrounds are associated with various pfcrt
mutant alleles and that patterns in LD reflect distinct drug
selection histories in Africa and South America (Wootton
et al., 2002). Lack of LD between pfcrt and pfmdr1 in the
Asian population could also be a result of extensive meflo-
quine use that may counter the selective effect of CQ
(Duraisingh et al., 1997). Strong LD between the genes
located on different chromosomes (Table 1) provides indi-
rect evidence that some genes work in concert with pfert
in CQ and QN responses.

Of course, many unknown factors may also contribute
to the observed LD, including other antimalarial agents not
tested in this study; therefore, strong LD between putative
transporters does not constitute formal proof that they are
linked as a result of CQ and QN selection. Similarly, the
strong associations between SNPs and drug response
phenotypes do not formally prove that drug selection
acted historically on these SNPs per se rather than on
closely linked loci. However, our results as a whole pro-
vide support for the hypothesis that multiple drug
response determinants have acted in different combina-
tions on different continents.

All the proteins encoded by the genes associated with
CQ and QN responses are predicted to be membrane-
spanning transporters or transport regulators that function
in either the plasma or the organellar membrane (Table 1).
Four of the genes (G2, G7, G49 and G55) encode ABC
transporter/ATPases similar to pfmdr1, consistent with the
hypothesis that these genes are generally involved in drug
transport. G30 encodes a GTPase predicted to be a trans-
lation factor (Leipe et al., 2002) that may affect protein
synthesis. The majority of substitutions observed are
unlikely, however, to cause drastic distortions in the struc-
tures of the encoded proteins. It is possible that some of
the genes may affect gene expression levels caused by
polymorphisms in non-coding regions such as those in
G7, G30 and G54.

Results from this study show that, in addition to pfcrt
and pfmdr1, SNPs from several putative transporters are

significantly associated with elevated responses to CQ
and/or QN, providing evidence that the level of CQ and
QN response is a multigenic phenomenon and that muta-
tions in different transporter genes may impact the
response to antimalarial compounds. Additionally, we
provide strong evidence that pfert is also involved in
responses to QN. There appear to be shared genes
underlying CQ and QN responses, and mutations in pfcrt
are probably necessary, but not sufficient, to confer QN
resistance. With the near saturation of mutant pfcrt alle-
les in south-east Asia and South America and an
increasing prevalence in Africa, the genetic background
for QN treatment failure may exist in current parasite pop-
ulations. Overlapping, but not identical sets of genes,
including many encoding unknown proteins, may provide
an explanation for why a parasite can be resistant to CQ
but highly sensitive to QN. Although the number of para-
site isolates tested in this study is relatively small, identi-
fication of these genes implicated in drug responses
provides a foundation for their further functional charac-
terization and allows for a better understanding of the
genetic basis of drug resistance in malaria parasites. The
molecular roles of these candidate genes and transporter
proteins in CQ and QN responses can now be tested
rigorously using transfection and gene knock-out
experiments.

Experimental procedures
Gene sequences and parasite DNA

Predicted coding sequences of the 3D7 parasite were down-
loaded from the websites of the genome sequencing centres
and PlasmoDB (http://www.sanger.ac.uk/Projects/Protozoa/;
http://www.stanford.edu/group/malaria/index.html; http://
www.tigr.org/tdb/edb2/pfal/htmis/; http://www.plasmodb.
org/). Text search using key word ‘transporter and motif
searches for membrane proteins and ion channels were per-
formed to identify sequences with homologies to various
transporters. Coding sequences are according to annotation
in the database. Parasite isolates were genotyped with MS
markers (Wootton et al., 2002) to verify clonality, and isolates
with mixed genotype were cloned by limiting dilution before
drug tests. Parasite culture, DNA extraction and in vitro drug
assays were performed as described previously (Su et al.,
1997).

Amplification of parasite DNA and DNA sequencing

Oligonucleotide primers were designed to amplify and
sequence DNA of the transporter genes from four isolates
first (Dd2, Hb3, D10 and 7G8). These isolates have been
genotyped previously with 342 MS markers and shown to
have diverse genetic backgrounds (Wootton et al., 2002).
Primers, 20—-25 bp long, were synthesized in a DNA synthe-
sizer (Applied Biosystems) or obtained through a commercial
supplier (Invitrogen). Polymerase chain reaction (PCR) set-
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ups include 4 ul of DNA (=5ng), 0.5ul of each primer
(50 pM) and 45 ul of PCR mix containing 5 ul of 10x PCR
buffer, 1.0 ul of dNTPs (10 mM) and 0.1 ul (5 U ul™") of Tag
polymerase (Invitrogen). All the amplifications were per-
formed with one cycling condition: 94°C for 2 min, 35 cycles
of 94°C for 20 s, 52°C 10 s, 48°C for 10 s and 60°C for 1-
4 min, and 60°C for 5 min. Five microlitres of the PCR prod-
ucts were run on 1% agarose gel to check for quality of
amplification. If there was a single band, and no obvious
‘primer—dimer’ was present, the PCR product was treated
with 1 pl of EXoSAP-IT (USB) at 37°C for 15 min and 80°C
for another 15 min. The PCR product (2-5 ul) was used in a
sequencing reaction using dichlororhodamine or BigDye
terminator chemistry on ABI377 or ABI3100 (Applied
Biosystems).

SNP discovery and verification

DNA sequences were aligned using SEQUENCHER 3.1 (Gene
Codes Corporation) or ASSEMBLYLIGN software (Oxford
Molecular). All potential SNPs and each of the ambiguities
were verified by visual inspection. Polymorphic MS
sequences were aligned with the software first, then with
visual assistance to minimize artificial SNPs.

SNP association and linkage disequilibrium analyses

Genetic analysis was adapted to the haploid inheritance sys-
tem of P falciparum. We used two independent methods,
namely permutation analysis and quantitative trait locus
(QTL) regression analysis, to evaluate association between
the multilocus alleles and the drug susceptibility phenotypes.
Permutation analysis used refinements of methods described
by Churchill and Doerge (1994), Long and Langley (1999)
and Zhao et al. (2000). The association statistic, A, for the ith
polymorphic site, used the discrete small-sample equivalent
of the ttest statistic based on the direct distance between
the binary-encoded genotype vector and the scaled (0,1)
phenotype vector of log ICs, values. The significance of A;
was determined from the distribution of simulated values
obtained from 1000 random permutations of the scaled phe-
notype vector on the fixed indices of the genotypes. If A; was
within the range of values from permutations, an exact, dis-
tribution-independent P-value was obtained from the propor-
tion of permuted samples more extreme than A. If A; was
more extreme than the computed permutation distribution, its
P-value was estimated by extrapolation using Fishers Z-
score approximation. These unadjusted P-values are pre-
sented in Table 3; however, as long recognized (Good, 1953),
such estimates do not translate directly into conventional
significance levels. Accordingly, empirical significance
thresholds were determined using second-order nested per-
mutations of the permuted phenotype vectors. Intervals esti-
mated by this test were: ‘marginal’, P<0.022 (one false
positive expected by chance in the entire multilocus associ-
ation analysis); and ‘highly significant’, P < 0.001. Such
thresholds are sample size independent and account for both
the non-normality of the permutation distribution and the mul-
tiple tests of the multilocus analysis, thus enabling us to
minimize the false discovery rate of associations.
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We also used the same 1000 permutations to make an
empirical estimate of the ‘informativeness index’, I, of each
ith SNP locus for the four geographical sets of isolates anal-
ysed (‘All regions’, ‘Asia’, Africa’ and ‘Americas’). /;is the ratio
T/ Trax, Where T is the range (Auppe—Aiower) Of the association
statistic obtained from the 1000 permutations for locus J, and
Tnex is the corresponding range from 1000 random permuta-
tions for a maximally informative model locus with equal allele
frequencies. /; is independent of sample size and provides a
consistent criterion to exclude the less informative SNPs from
significance tests: loci with / <0.5 are denoted ‘NI’ (not infor-
mative) in Table 3.

Population-based quantitative trait loci (QTL) regression
association was performed as described previously (Zhao
et al., 2001). Briefly, each locus tested is assumed to have
two alleles, A (wild-type) and a (mutant), with frequencies Pa
and P, respectively. Let y; be the ICs, value of the ith parasite
response to CQ and QN and x; be an indicator variable of the
allele at the locus, defined as x; = 1 if the allele is a and x; = —
1if the allele is A. QTL analysis was modelled by the following
regression:

Vi =U+ X0+ €

where p is overall population mean, o is genetic additive
effect and e, is an error with E[e] = 0 and Var (e) = 6%. The
generalized likelihood ratio test statistic, which follows an
Fino distribution, was used to test the null hypothesis
Ho: o = 0. P-values for the F statistics were assessed using
regression ANOVA tests.

In view of caveats about inferences from single LD mea-
sures (Hedrick and Kumar, 2001), we used two independent
methods to calculate the amount of LD between alleles
(nucleotides) at different polymorphic sites. The basic LD
measure, D (Lewontin and Kojima, 1960), was computed for
all pairs of loci from the numerically encoded allele vectors
of loci A and B, and its significance was evaluated by permu-
tation analysis. The observed D-value was compared with the
distribution computed from 400 random permutations of the
allele values of locus B on the fixed indices of the locus A
vector. P-values and confidence intervals were determined
from these permutation tests, as described above for geno-
type—phenotype associations: the thresholds for unadjusted
P-values (Fig. 2) were P < 0.001 (marginal) and P < 0.00001
(highly significant). LD was also calculated using a pairwise
R? estimate implemented in the DNASP package (Rozas and
Rozas, 1999). A concatenated sequence (haplotype) of the
associated genes for each isolate was created and aligned
according to geographical origins and imported into DNASP.
The significance levels of R? were evaluated by the y*-test
option of this package. Nucleotide polymorphism (8) was also
calculated using DNASP.
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