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suboptimal for the study of climate variability as most of the variability is associated with time�varying
patterns that occurs on multiple time scales (Hamlington, Leben, Nerem, Han, & Kim, 2011; Hamlington,
Leben, Nerem, & Kim, 2011; Kim et al., 1996).
2.2.2. Cyclostationary Empirical Orthogonal Function
In an attempt to better represent the cyclostationary variability present in geophysical signals Kim and
Chung (2001), Kim and North (1997), Kim and Wu (1999), and Kim et al. (1996) introduced the concept
of CSEOF. The primary difference between an EOF and a CSEOF mode is the time dependence of the
CSEOF LVs. Unlike in an EOF mode, each CSEOF mode is associated with spatial patterns periodically vary-
ing in time determined by a de�ned nested period (Hamlington, Leben, Nerem, Han, & Kim, 2011).
Equation 2 is the mathematical expression of this system:

D x; tð Þ ¼�
m

n¼1
Sn x; tð ÞTn tð Þ (2)

S x; tð Þ¼ S x; t þ zð Þ (3)

In Equation 2, the spatial patternS(x, t) is time�dependent (as de�ned in Equation 3) and periodic with a
nested period speci� ed by (z). As an example, consider the modulated annual cycle (MAC), created by the
change in amplitude of the annual cycle oscillating in addition to its native one�year periodicity. This can
be seen in Figure 2 which shows the� rst mode associated with the CSEOF decomposition of AVISO
monthly data specifying a nested period of 1 year. There are 12 spatial patterns (LV, Figure 2a) associated
with this CSEOF mode as we have speci� ed a nested period of 1 year. The 12�month period of the annual

Figure 2. Mode 1 computed from the CSEOF decomposition of satellite altimetry data which represents the Modulated
Annual Cycle. (a) The spatial plots show time�dependent monthly LVs and (b) associated PCTS. (c) Time series
of the Modulated Annual Cycle obtained by reforming (LV*PCTS) the CSEOF mode.
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cycle is described by the 1‐year periodicity of the LVs. The longer time‐scale fluctuations of the annual cycle
are described by the PCTS (Figure 2b) which is normalized to a standard deviation of one. Combining the
LVs of each mode with their associated PCTS allows us to reconstruct and evaluate the contribution of each
mode to the data. Figure 2c shows the time series of the MAC obtained by reforming (LV*PCTS) CSEOF
mode and represents the MAC contribution to the IO regional mean sea level (MSL) explaining 23% of
the total variance. It is important to note that the characteristic 6‐month semiannual cycle is well repre-
sented in this reconstructed mode. For the purposes of this paper we have only used a 1‐year nested period
for all the CSEOF decompositions performed. Although Equations 1 and 2 look similar, the computation of
CSEOF differ significantly from that of EOF. The reader is directed to the papers by Kim and Chung (2001),
Kim and North (1997), Kim and Wu (1999), and Kim et al. (1996) which provide additional details and
description about the computation and explanation of CSEOF.
2.2.3. Choice of Basis Function: EOF Versus CSEOF
The advantages of using CSEOF derived basis functions over EOF derived basis functions for SL reconstruc-
tions have already been discussed in detail by Hamlington, Leben, Nerem, Han, and Kim (2011) and
Hamlington, Leben, Wright, and Kim (2012) and will only be briefly summarized in this subsection. The
time dependence of the spatial pattern associated with CSEOF LVs allows for optimally capturing low fre-
quency oscillations originating from signals containing nested oscillations. The ability of CSEOF to capture
low‐ and high‐frequency oscillations allows for the retention of the annual cycle in the data prior to perform-
ing a CSEOF decomposition. By limiting the variability that is lost as a result of mode mixing, CSEOF helps
reconstruct individual signals (e.g., MAC) more accurately. Finally, the use of CSEOF basis functions for the
reconstruction of SL makes it possible to fit a larger window of data, thus reducing the number of historical
data points to derive meaningful results along with decreasing sensitivity toward inaccurate TG measure-
ments. These are some of the main reasons that strongly favor the use of CSEOF basis functions over EOF
derived basis functions for SL reconstructions.
2.2.4. Multivariate Reconstruction Technique
The reconstruction framework used for this paper was originally introduced by Hamlington, Leben, Nerem,
Han, and Kim (2011). However, their reconstruction technique relied only on SL obtained from TG records,
resulting in the reconstructed SL to have poor estimates for the periods where TG data were limited. This
technique was later updated by Hamlington, Leben, Wright, and Kim (2012) by adding a second variable
SST to help improve the reconstructed SL estimates especially during periods where the TG coverage was
poor. Building on this technique we have created a newMV‐R framework that now allows the input of mul-
tiple climate variables. For the current study SLP is included as the third variable which along with SL and
SST allows us to reconstruct reliable estimates of 20th century IO SL.

The MV‐R technique used to create gridded space‐time SL data for this paper can be divided into three sec-
tions. First, the CSEOF Decomposition wherein the data were decomposed using the CSEOF analysis over
the IO. For this we decomposed SLA (AVISO), SST (OISST), and SLP (NCEP‐NCAR) data spanning the per-
iod between 1993 and 2018. The seasonal cycle was not removed prior to CSEOF decomposition as CSEOF
has the ability to reconstruct individual signals more accurately by limiting the variability that is lost as a
result of mode mixing. From the CSEOF decomposition, the first 21 modes for SLA, SST, and SLP were
retained which explained at least 90% of the total variance in each data set. Since we are not interested in
reconstructing the SL seasonal cycle, we have opted to leave out the mode associated with the seasonal cycle
before continuing with the following steps. The second step is the Regression which is based on the under-
standing that it is possible to find physical and dynamic consistency between two separate CSEOF sets com-
puted from two different variables. The regression technique introduced by Lim and Kim (2007) was used in
this step of the reconstruction. The SST and SLP PCTS are regressed onto each individual SLA PCTS gener-
ating a set of regression coefficients. These regression coefficients were then used along with the original SST
and SLP LVs to create a new set of SST and SLP LVs which now have the amplitude fluctuations as described
by the SLA PCTS. The final step is the Estimation of PCTS which was done by simultaneously fitting the new
SST and SLP LVs along with the SLA LVs to historical measurements of SST (ERSST), SLP (ICOADS), and
SLA (TG) thus, reconstructing a SLA PCTS with a temporal resolution that covers the period between 1900
and 2018.

Like any other EOF‐based reconstruction technique, an important assumption made while performing a
reconstruction using this technique is that the basis functions and regression relationship both, calculated
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