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20th Century Multivariate Indian Ocean Regional Sea
Level Reconstruction
Praveen Kumar1 , Benjamin Hamlington2 , Se‐Hyeon Cheon2 , Weiqing Han3 ,
and Philip Thompson4

1Center for Coastal and Physical Oceanography, Old Dominion University, Norfolk, VA, USA, 2Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA, 3Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, CO, USA, 4Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA

Abstract Despite having some of the world's most densely populated and vulnerable coastlines, Indian
Ocean sea level variability over the past century is poorly understood relative to other ocean basins
primarily, due to the short and sparse observational records. In an attempt to overcome the limitations
imposed by the lack of adequate observations, we have produced a 20th century Indian Ocean sea level
reconstruction product using a new multivariate reconstruction technique. This technique uses sea level
pressure and sea surface temperature in addition to sea level data to help constrain basin‐wide sea level
variability by (1) the removal of large spurious signals caused as a result of insufficient tide gauge data
specifically during the first half of the 20th century and (2) through its information on large‐scale climate
modes such as El Niño‐Southern Oscillation and Indian Ocean Dipole. Basis functions generated by
Cyclostationary Empirical Orthogonal Functions are used for the reconstruction. This new multivariate
technique provides improved regional sea level variability estimates along with a longer record length in
comparison to existing globally reconstructed sea level data. The biggest advantage of using this multivariate
reconstruction technique lies in its ability to reconstruct Indian Ocean sea level for the first half of the
20th century, providing a long sea level record for the study of Indian Ocean internal climate variability. This
will enable future studies to help improve the understanding of how sea level trends and variability
can be modulated by internal climate variability in the Indian Ocean.

Plain Language Summary Densely populated coastal regions of the countries surrounding the
Indian Ocean are becoming increasingly vulnerable to the effects of sea level rise. Accurate predictions
of future sea level change will help minimize the social and economic damage posed to these coastal
communities. The key to predicting future sea level lies in howwell we understand past and present sea level
change. However, due to the presence of only a few short and scattered sea level observational records,
change in sea level over the Indian Ocean is not well understood. In this paper we have created a new sea
level data set by developing new methodology which is particularly well suited for filling data gaps left
by the observational record in the Indian Ocean. Additionally, this new technique allows us to reliably
extend the observational record to now span the entire 20th century and has been shown to have improved
sea level estimates when compared to an older existing sea level data product. Using this new longer sea
level data set, we hope that future studies will help shed more light and improve the understanding of Indian
Ocean sea level change over long time scales.

1. Introduction

The rise in global mean sea level (GMSL) associated with melting of land ice and thermal expansion of sea-
water over the last century threatens coastal infrastructure and ecosystems. For many coastal and island
populations the effects of sea level (SL) rise are already being experienced (Church & White, 2011).
Despite having some of the most densely populated and vulnerable coastal regions in the world (Swapna
et al., 2020), along with considerable evidence that the impact of Indian Ocean (IO) variability on climate
extends beyond the basin to global scales, IO SL has received considerably less attention compared to that
of the Pacific Ocean (Han, Vialard, et al., 2014). One reason for this is the absence of a network of
high‐quality long tide gauge (TG) records, limiting the study of IO SL to use only short observational data
(e.g., Lee & McPhaden, 2008) or model‐based approaches (e.g., Han et al., 2010; Han, Meehl, et al., 2014;
Nidheesh et al., 2013; Trenary & Han, 2013). With the TG stations sparsely distributed around the IO
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coasts and islands, the IO basin interior is left with no long‐term observational records. IO SL trend estimates
made using the sparse TG record are significantly impacted by the influence of regional and local variability,
such as local land movement (Hamlington & Thompson, 2015).

With the advent of TOPEX/Poseidon satellite data in October 1992, satellite altimetry has ushered in a new
era of monitoring the GMSL over the ice‐free oceans, providing sea surface height measurements that are
continuous and near‐global. Unlike TG data, the satellite altimeter derived data allow for basin‐wide SL
measurements with unprecedented accuracy and stability (Nerem et al., 2010). The short record of satellite
altimetry, however, makes it challenging to distinguish the longer‐term variability from secular trend. Yet
separating and removing internal variability from the SL record is essential for estimating long‐term trends
(e.g., Cazenave et al., 2014; Hamlington et al., 2013, 2014). Therefore, long SL records are needed to achieve
more accurate depictions of SL induced by internal climate variability and to estimate longer‐term trend in
the Indo‐Pacific region (Frankcombe et al., 2015).

In order to better understand the uncertainties present in the estimates of decadal variability due to the lim-
itations imposed by sparse spatial coverage of the TG stations and the relatively short temporal length of the
satellite altimetry record, researchers have developed a method that combines the long time‐series data pro-
vided by TG stations with the information about the spatial covariance of SL from satellite altimetry
(and sometimes models) to reconstruct historic SL fields with global coverage (Chambers et al., 2002;
Church et al., 2004; Church & White, 2006, 2011; Hamlington, Leben, Nerem, Han et al., 2011;
Hamlington, Leben, & Kim, 2012; Hamlington, Leben, Wright, et al., 2012; Hay et al., 2015; Meyssignac
et al., 2012; Ray & Douglas, 2011). SL reconstructions fill in the unsampled regions in the sparse historic
network with SL information derived from spatial patterns during time periods when the observational
network is dense. Although originally developed for the use with sea surface temperature (SST)
(e.g., Kaplan et al., 1998, 2000; Smith et al., 1996), the method of empirical orthogonal function (EOF) recon-
struction has since then been modified for SL studies by employing the weighted least squares fits of satellite
altimetry‐derived EOF to TG data. Following an EOF decomposition, a data record is split into a set of indi-
vidual modes, where in each mode consists of a single temporal evolution and a single spatial structure. The
work of Hamlington, Leben, Nerem, Han, and Kim (2011) highlights the advantages of using basis functions
derived from cyclostationary empirical orthogonal function (CSEOF) over EOF derived basis functions for SL
reconstructions. Unlike an EOF mode that consists of only one spatial pattern, making it strictly
time‐independent (stationary), a single CSEOF mode has a time‐dependent variability associated with its
spatial structure which allows it to have multiple spatial structures (for each mode) that are constrained to
be periodic with a selected nested period. As an example, consider the SL annual cycle that has a physical
oscillation with a 1‐year period and changes in strength from year to year. The CSEOF spatial structures cap-
ture the physical oscillation and effectively separates it from its amplitudemodulation which is in turn repre-
sented by the CSEOF temporal evolution. In this way the annual cycle can be captured using a single CSEOF
mode thus allowing us to retain the seasonal cycle before doing the CSEOF decomposition. This cyclostation-
ary nature of CSEOF spatial patterns is a significant advantage over an EOF spatial pattern when performing
SL reconstructions, as the CSEOF basis functions allow for a better representation of the longer‐time‐scale
fluctuations and time‐varying spatial patterns present in geophysical signals (Hamlington et al., 2011).

While data products based on the SL reconstruction technique discussed above are a very good resource and
are commonly employed for the study of SL variability, data products based on ocean reanalysis (e.g., Carton
& Giese, 2008) and thermosteric SL data based on in situ observations (e.g., Levitus et al., 2012) are other
sources of data that can be used for the study of decadal SL variability. Using different methods, researchers
have developed a number of SL products to help better understand and quantify SL variability but in doing
so are now confronted with a major problem of choosing one product from all the available SL products gen-
erated. In an effort to test the interproduct SL consistency and coherence of the decadal variability displayed
by the available SL products for the Indo‐Pacific region, Nidheesh et al. (2017) compared 10 gridded multi-
decadal SL products. Of these, six had been generated by the method of SL reconstruction, three were rea-
nalysis products, and one was based on in situ data, all with a temporal length spanning their overlapping
period from 1960 to 2010. This study reported that although the data show an interproduct consistency in
the Pacific Ocean, there exists a significant disagreement in the IO, further underscoring the importance
of improving SL estimates in the IO.
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For the method of SL reconstruction, one way to improve regional SL estimates is to use basis functions that
are computed regionally instead of globally, which are often limited in their ability to capture regional varia-
bility and trends. Accurate estimates of SL variability at a regional scale are vital to policymakers in order to
make informed decisions about the present and future SL. The importance of regionally reconstructing SL
data is evident from the study of Hamlington, Leben, and Kim (2012) that noted a significant discrepancy
in the spatial variability of the secular trends computed for the Pacific Ocean from two reconstructions:
one for global and the other for the Pacific Ocean. In the IO, to our knowledge, there are no previous
attempts to regionally reconstruct 20th century SL, and this is a primary motivation for the current work.
Due to the limited temporal coverage of TG data in the IO, a reconstruction technique that relies on using
only historic TG data (e.g., Hamlington, Leben, Nerem, Han, & Kim, 2011) is inadequate for reconstructing
20th century SL, particularly during the first half of the 20th century when TG data are lacking. To overcome
this limitation, Hamlington, Leben,Wright, and Kim (2012) introduced a reconstruction technique that used
SST along with SL anomaly (SLA). This reconstruction relied on a multivariate linear regression technique
to extract relationships and establish links between SLA and SST. Climate variables in the Earth climate sys-
tem are often connected to each other (e.g., an increase in SST will most likely be associated with an increase
in SL). Climate variables can also be influenced by a common physical process and large‐scale climatemodes
(e.g., El Niño‐Southern Oscillation). The inclusion of SST into the reconstruction helps to improve the recon-
structed SL estimates by constraining large‐scale climate modes that have both SL and SST signatures. In
addition to this SST also adds information about variability over the open ocean (over which TG data is very
sparse).

The climate modes of El Niño‐Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are known to
have a significant influence on the IO SL, SST, and SLP (Murtugudde et al., 2000; Saji et al., 1999;
Webster et al., 1999). Both these climate modes impact large areas over the western tropical IO and eastern
IO off the coast of Java/Sumatra. The IO SST shows a basin wide warming pattern referred to as the IO Basin
Mode (e.g., Klein et al., 1999) as a direct response to ENSO. Additionally, during IOD and ENSO events,
cooler (warmer) than average SST anomalies appear off the coast of Java/Sumatra (over large parts of the
western tropical IO). The cooling off the coast of Java/Sumatra suppresses convection over the eastern tro-
pical IO and enhances convection over the western IO basin altering SLP patterns over the IO. From this we
can infer that the addition of SST and SLP into the reconstruction will help to better constrain large‐scale
climate modes in addition to providing information about variability over the open ocean and yield better
estimates of IO SL variability. Building on the reconstruction methodology of Hamlington, Leben, Wright,
and Kim (2012), we propose a new multivariate reconstruction (MV‐R) technique that allows for the inclu-
sion of multiple climate variables to help improve the reconstruction of SL that reflect coupled climate varia-
bility. For the current study, atmospheric sea level pressure (SLP) will be included as the third variable along
with SST and SLA, which is shown to improve 20th century SLA variability estimates for the dynamically
complex IO.

In this paper we summarize the results obtained using the MV‐R technique to create a new regionally recon-
structed SL product for the IO spanning the time period of 1900–2018. Section 2 of this paper provides a
detailed discussion outlining the data used and a short summary of the CSEOF MV‐R technique. A brief
explanation of the procedure used to create the final reconstructed SLA data has also been included. A
detailed description of the results obtained from comparisons made between the MV‐R SLA with satellite
altimetry and an existing global reconstruction by Hamlington et al. (2014) is presented in section 3. This
is followed by results obtained from examining the ability of the reconstruction to recreate climate modes
over the tropical IO. Section 4 provides a summary of the results and describes the benefit of using this newly
proposed MV‐R technique to reconstruct 20th century SLA in the IO.

2. Data and Methods

The work of Hamlington, Leben, and Kim (2012) and more recently Cheon et al. (2018) show that regionally
computed basis functions are capable of capturing and representing regional SL variability more accurately
compared to globally computed basis functions. We follow a similar approach and perform the MV‐R over
the IO region, defined as the region bound by 40°S to 30°N and 20°E to 120°E. Below is a brief description
of the data used by the MV‐R technique.
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2.1. Data
2.1.1. Tide Gauge Data
Monthly mean TG data archived at the Permanent Service for Mean Sea Level (PSMSL; Woodworth &
Player, 2003) subsampled for the IO were used as a source of in situ historical SL data. We only used the
Revised Local Reference (RLR) TG data set as it makes use of a constant local datum over the full record
of the SL measurement at each TG location. “Metric” data provided by PSMSL were not used for this study
as it is often subjected to unknown datum shifts, which makes the SL data unreliable for time series analysis.
With the multivariate nature of this reconstruction technique and a limited spatio‐temporal coverage of TG
records in the IO, we have opted to keep the selection and quality control criteria for TG data lenient. All the
TG editing criteria used for this study are similar to those described in Church et al. (2004) and yields a simi-
lar TG set for the IO. Using rates derived from the ICE‐5G VM2 model (Peltier, 2004) the TG records were
corrected for the ongoing glacial isostatic adjustment (GIA). There has been no effort made to avoid regional
clustering of TG stations. The robustness of this reconstruction technique toward data outliers allows us to
avoid selectively editing TG records. However, we note that it will be appropriate for future studies to imple-
ment a more careful TG selection and editing procedure. The location and number of TG stations available
through time used for the MV‐R over the IO are shown in Figure 1. The list of TG stations used has been
provided in the supporting information Figure S1.

To test the sensitivity of the MV‐R to an individual TG record a TG cross‐validation analysis was done
(results not shown here). For this, the IO SLA was reconstructed leaving out a single TG resulting in 45 addi-
tional reconstructions referred to as MV‐Rcv. The IO SL variability estimates obtained from MV‐Rcv were
compared toMV‐R, and the results showed no significant differences between the estimates of SL variability.
The MV‐R and MV‐Rcv SLA were then subsampled at the individual TG location which was left out and
compared to the SLA of the respective TG that was left out. The correlation coefficient obtained from corre-
lating subsampledMV‐R and TG SLAwas only marginally greater that the correlation coefficient of MV‐Rcv
versus TG SLA. These results suggest that the MV‐R is not overly sensitive to a particular TG station. Similar
results were obtained when using reconstruction created by leaving out all the TGs off the Australian coast
(MV‐RcvAus) and reconstructions created by leaving out all the South China Sea TGs (MV‐RcvChina).
Estimates of SL variability between theMV‐RcvAus, MV‐RcvChina, andMV‐Rwere found to be very similar
to each other.

Figure 1. (a) Spatial location of tide gauge stations used for the multivariate reconstruction (MV‐R). (b) Number of tide
gauge stations available over time for use in the MV‐R.
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2.1.2. Satellite Altimetry Data
Monthly mean SLA data used for generating SL basis functions required for the reconstruction were
obtained from Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) altimetry.
This data set was produced by the multimission altimeter processing system DUACS/SSALTO (Data
Unification and Altimeter Combination System/Segment Sol multimissions d'ALTimetrie, d'orbitographie
et de Localisation precise) that processes data collected by TOPEX/POSEIDON, ERS‐1 and 2, Geosat
Follow‐On, Envisat, Jason‐1, and OSTM satellites with intercalibration and improved homogenous correc-
tions applied to the entire data record. This is a delayed time, gridded data product with a spatial resolution
of 0.25° × 0.25° on a Cartesian grid. Monthly mean SLA is computed by averaging weekly maps of SLA,
month by month from January 1993 to produce one map per month since January 1993. Intercalibrated
highly accurate along track data associated with a consistent mean is obtained using local inverse methods
and global crossover minimizations. Finally, a global space‐time objective mapping technique is used to
merge along track data that corrects for correlated noise (Le Traon et al., 1998). In order to avoid an intro-
duction of a low frequency power into each CSEOF mode, global mean SL trend of 3.4 mm/year was
removed from the SLA data before computing the basis functions (1993–2018). Results from Tai (1989) sug-
gest a RMS signal reduction of only 30% when a linear trend is removed from a 20 year record, and thus the
ability of the reconstruction to capture decadal scale variations should not be impacted by the linear detrend-
ing of altimeter data before CSEOF decomposition. To account for latitudinal effects, the data were weighted
using the square root of the cosine of latitude. From here on in this paper, the satellite altimeter data will be
referred to as AVISO data.
2.1.3. Sea Surface Temperature Data
For historical SST data we used the Extended Reconstruction SST (ERSST) version 5 (Huang et al., 2017)
data set, which is derived from the International Comprehensive Ocean‐Atmosphere Data Set (ICOADS).
With a temporal resolution from 1854 to present, this gridded SST data set was produced using enhanced
statistical methods on a 2° latitude × 2° longitude grid with spatial completeness. No additional quality con-
trol was performed on the data since the use of averaged observations is known to curtail the influence of
extreme outliers, and the technique of CSEOF reconstruction is known to be relatively insensitive to the pre-
sence of outliers. A map containing percentage of available ERSSTv5 data for 1900–1960 (Figure S2a) and
1960–2018 (Figure S2b) included in the supporting information shows 100% data availability over the IO
for the full record length. The MV‐R was also done using ERSSTv4 (Huang et al., 2015) and HadSST3
(Kennedy et al., 2011) to evaluate the sensitivity to the choice of historical SST data used. Our results
(not shown) indicated no significant difference in the IO SL variability estimated using different historical
SST data fromwhich we concluded that theMV‐R is relatively insensitive to the choice of historical SST data.

To generate the CSEOF SST basis functions for the period between 1993 and 2018 NOAA Optimum
Interpolation (OI) SST v2 data (Reynolds et al., 2002) was used. This data set is comprised of monthly SST
fields which have been obtained by averaging daily values that were linearly interpolated from weekly OI
version 2 fields. The OI SST analysis is a blend of SST data obtained from in situ, satellite and SST simulated
by sea‐ice cover. The data have a spatial resolution of 1° × 1° and are available from 1981 to present. Before
creating the CSEOF SST basis functions a linear trend was removed from each spatial grid point, and the
data were weighted using the square root of the cosine of latitude to account for latitudinal effects. The sea-
sonal cycle was retained prior to performing the CSEOF analysis as the analysis allows to capture the seaso-
nal cycle in an individual mode.
2.1.4. Sea Level Pressure Data
SLP from International Comprehensive Ocean‐Atmosphere Data Set (ICOADS) was used as a source of his-
toric SLP data. The enhanced SLP product combines observations from ships and other in situ marine plat-
form like drifting and moored buoys. This is a monthly mean gridded SLP data product and has a spatial
resolution of 2° × 2° and temporal coverage from 1800 to present. For this study we use the ICOADS
Release 3.0 (Freeman et al., 2017) which has new updated input data sources (more ship and buoy observa-
tions) with improvements made to the existing data sources along with removal of erroneous data. Data den-
sity maps shown in the supporting information indicate a better spatio‐temporal data coverage for the period
1960–2018 (Figure S2d) compared to the data available for the period 1900–1960 (Figure S2c).

Reanalysis SLP data produced by a cooperative project between the National Centers for Environmental
Prediction (NCEP) and the National Center for Atmospheric Research (NCAR), NCEP‐NCAR Reanalysis
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1 (Kalnay et al., 1996; Kistler et al., 2001), were used to generate the CSEOF SLP basis functions for the per-
iod between 1993 and 2018. This is a gridded, monthly mean SLP data set with a temporal resolution cover-
ing the period from 1948 to present day and a spatial resolution of 2.5° × 2.5°. Data that are assimilated for
this product includes land surface, ship, rawinsonde, pibal, aircraft, and satellite data. The SLP CSEOF basis
functions were computed over the IO after the removal of a linear trend from each spatial grid point with the
seasonal cycle retained. To account for latitudinal effects, the data were weighted using the square root of the
cosine of latitude before obtaining the CSEOF basis functions.
2.1.5. Other Gridded Sea Level Products
Globally reconstructed gridded SL data by Hamlington, Leben, et al. (2014) available from 1950 to 2009 with
a spatial resolution of 0.5° × 0.5° were downloaded from NASA PODAAC and will be referred to as H‐R for
this study. H‐R uses globally computed basis functions and reconstructs SLA using data from TG's only. A
detailed description of these data can be found in Hamlington, Leben, Nerem, Han, and Kim (2011). The
data have a temporal resolution of 7 days which has been averaged to monthly mean values.

Gridded monthly SL data from the Simple Ocean Data Assimilation (SODA) version 2.2.4 (Giese &
Ray, 2011) were downloaded from the IRI/LDEO Climate Data Library. This version represents their first
assimilation run of over 100 years and is available for the time period between 1871 and 2010. The data have
a global coverage with a spatial resolution of 0.5° × 0.5°. These data will be referred to as SODA for here on.

The ECMWFOcean ReAnalysis System 5 (ORAS 5) SL data were downloaded from Integrated Climate Data
Center. ORAS 5 contains five ensemble members (see Zuo et al., 2019), and for the current study we have
used the control member without perturbation. The data have a spatial resolution of 1° × 1° with a temporal
resolution that spans the period of 1979 to present and a backward extension that spans 1958–1978. We have
combined the ORAS 5 and ORAS 5 backward extension data, so the data now have a temporal resolution of
1958 to present and will hence forth be referred to it as ORAS5 in this paper.

2.2. Methods

Basis functions for the MV‐R technique were generated using CSEOF in an attempt to represent the cyclos-
tationary variability present in geophysical data. To give the reader some perspective, we begin by first
introducing EOFs and describe common terminology associated with this method. This is followed by a
brief summary of the concept of CSEOF and a discussion on the advantages of using CSEOF over EOF
for generating basis functions. Finally, a detailed explanation of the newly proposed MV‐R technique is
provided.
2.2.1. Empirical Orthogonal Function
In the study of climate variability, linear estimation problems often involve the use of EOFs to estimate the
contributions from individual statistical modes by exploiting the ability of EOFs to act as a natural basis set.
The capability of EOFs lies in their ability to split data into orthogonal modes, each consisting of a single spa-
tial pattern referred to as the loading vector (LV) and a corresponding amplitude time series called the prin-
cipal component time series (PCTS) (Kim et al., 1996). An example of the mathematical representation of
this system is described in the equation below:

D x; tð Þ ¼ ∑
m

n¼1
Sn xð Þ Tn tð Þ (1)

In Equation 1, D(x, t) is the input spatio‐temporal data, m is the total number of modes, S(x) is the spatial
component (LV) associated with a physical process, and T(t) is a time series (PCTS) that modulates the spa-
tial pattern. Although S(x) and T(t) are associated with amplitudes that are arbitrary, their product is always
constrained by D(x, t). In order to represent the amplitude of S(x) in usual physical units a common choice is
to normalize T(t) to a standard deviation of one. The EOF analysis also facilitates the decomposition of the
total variance into a sum of variances, thereby assigning eachmode with a fraction of the total variance. This
greatly helps the investigator in identifying and removing known dominant modes of variability (e.g., the
annual cycle) from the data record, to help focus on the lesser known modes of variability thus making it
easier to study the response of a complicated physical system. Since each EOFmode is associated with a sin-
gle spatial pattern, by definition, the EOF LVs are orthogonal and considered time‐independent or stationary
while the amplitude of the PCTS varies in time. This stationary nature of EOF basis functions makes them
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suboptimal for the study of climate variability as most of the variability is associated with time‐varying
patterns that occurs on multiple time scales (Hamlington, Leben, Nerem, Han, & Kim, 2011; Hamlington,
Leben, Nerem, & Kim, 2011; Kim et al., 1996).
2.2.2. Cyclostationary Empirical Orthogonal Function
In an attempt to better represent the cyclostationary variability present in geophysical signals Kim and
Chung (2001), Kim and North (1997), Kim and Wu (1999), and Kim et al. (1996) introduced the concept
of CSEOF. The primary difference between an EOF and a CSEOF mode is the time dependence of the
CSEOF LVs. Unlike in an EOFmode, each CSEOFmode is associated with spatial patterns periodically vary-
ing in time determined by a defined nested period (Hamlington, Leben, Nerem, Han, & Kim, 2011).
Equation 2 is the mathematical expression of this system:

D x; tð Þ ¼ ∑
m

n¼1
Sn x; tð Þ Tn tð Þ (2)

S x; tð Þ ¼ S x; t þ zð Þ (3)

In Equation 2, the spatial pattern S(x, t) is time‐dependent (as defined in Equation 3) and periodic with a
nested period specified by (z). As an example, consider the modulated annual cycle (MAC), created by the
change in amplitude of the annual cycle oscillating in addition to its native one‐year periodicity. This can
be seen in Figure 2 which shows the first mode associated with the CSEOF decomposition of AVISO
monthly data specifying a nested period of 1 year. There are 12 spatial patterns (LV, Figure 2a) associated
with this CSEOF mode as we have specified a nested period of 1 year. The 12‐month period of the annual

Figure 2. Mode 1 computed from the CSEOF decomposition of satellite altimetry data which represents the Modulated
Annual Cycle. (a) The spatial plots show time‐dependent monthly LVs and (b) associated PCTS. (c) Time series
of the Modulated Annual Cycle obtained by reforming (LV*PCTS) the CSEOF mode.
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cycle is described by the 1‐year periodicity of the LVs. The longer time‐scale fluctuations of the annual cycle
are described by the PCTS (Figure 2b) which is normalized to a standard deviation of one. Combining the
LVs of each mode with their associated PCTS allows us to reconstruct and evaluate the contribution of each
mode to the data. Figure 2c shows the time series of the MAC obtained by reforming (LV*PCTS) CSEOF
mode and represents the MAC contribution to the IO regional mean sea level (MSL) explaining 23% of
the total variance. It is important to note that the characteristic 6‐month semiannual cycle is well repre-
sented in this reconstructed mode. For the purposes of this paper we have only used a 1‐year nested period
for all the CSEOF decompositions performed. Although Equations 1 and 2 look similar, the computation of
CSEOF differ significantly from that of EOF. The reader is directed to the papers by Kim and Chung (2001),
Kim and North (1997), Kim and Wu (1999), and Kim et al. (1996) which provide additional details and
description about the computation and explanation of CSEOF.
2.2.3. Choice of Basis Function: EOF Versus CSEOF
The advantages of using CSEOF derived basis functions over EOF derived basis functions for SL reconstruc-
tions have already been discussed in detail by Hamlington, Leben, Nerem, Han, and Kim (2011) and
Hamlington, Leben, Wright, and Kim (2012) and will only be briefly summarized in this subsection. The
time dependence of the spatial pattern associated with CSEOF LVs allows for optimally capturing low fre-
quency oscillations originating from signals containing nested oscillations. The ability of CSEOF to capture
low‐ and high‐frequency oscillations allows for the retention of the annual cycle in the data prior to perform-
ing a CSEOF decomposition. By limiting the variability that is lost as a result of mode mixing, CSEOF helps
reconstruct individual signals (e.g., MAC) more accurately. Finally, the use of CSEOF basis functions for the
reconstruction of SL makes it possible to fit a larger window of data, thus reducing the number of historical
data points to derive meaningful results along with decreasing sensitivity toward inaccurate TG measure-
ments. These are some of the main reasons that strongly favor the use of CSEOF basis functions over EOF
derived basis functions for SL reconstructions.
2.2.4. Multivariate Reconstruction Technique
The reconstruction framework used for this paper was originally introduced by Hamlington, Leben, Nerem,
Han, and Kim (2011). However, their reconstruction technique relied only on SL obtained from TG records,
resulting in the reconstructed SL to have poor estimates for the periods where TG data were limited. This
technique was later updated by Hamlington, Leben, Wright, and Kim (2012) by adding a second variable
SST to help improve the reconstructed SL estimates especially during periods where the TG coverage was
poor. Building on this technique we have created a newMV‐R framework that now allows the input of mul-
tiple climate variables. For the current study SLP is included as the third variable which along with SL and
SST allows us to reconstruct reliable estimates of 20th century IO SL.

The MV‐R technique used to create gridded space‐time SL data for this paper can be divided into three sec-
tions. First, the CSEOF Decomposition wherein the data were decomposed using the CSEOF analysis over
the IO. For this we decomposed SLA (AVISO), SST (OISST), and SLP (NCEP‐NCAR) data spanning the per-
iod between 1993 and 2018. The seasonal cycle was not removed prior to CSEOF decomposition as CSEOF
has the ability to reconstruct individual signals more accurately by limiting the variability that is lost as a
result of mode mixing. From the CSEOF decomposition, the first 21 modes for SLA, SST, and SLP were
retained which explained at least 90% of the total variance in each data set. Since we are not interested in
reconstructing the SL seasonal cycle, we have opted to leave out the mode associated with the seasonal cycle
before continuing with the following steps. The second step is the Regression which is based on the under-
standing that it is possible to find physical and dynamic consistency between two separate CSEOF sets com-
puted from two different variables. The regression technique introduced by Lim and Kim (2007) was used in
this step of the reconstruction. The SST and SLP PCTS are regressed onto each individual SLA PCTS gener-
ating a set of regression coefficients. These regression coefficients were then used along with the original SST
and SLP LVs to create a new set of SST and SLP LVs which now have the amplitude fluctuations as described
by the SLA PCTS. The final step is the Estimation of PCTS which was done by simultaneously fitting the new
SST and SLP LVs along with the SLA LVs to historical measurements of SST (ERSST), SLP (ICOADS), and
SLA (TG) thus, reconstructing a SLA PCTS with a temporal resolution that covers the period between 1900
and 2018.

Like any other EOF‐based reconstruction technique, an important assumption made while performing a
reconstruction using this technique is that the basis functions and regression relationship both, calculated
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over the time period 1993–2018, hold good over the entire time period of reconstruction. Due to the short
record length of the AVISO data a single CSEOF mode is not capable of capturing the secular trend
pattern and in the event that it did capture it, we cannot assume the secular trend pattern to be stationary
over the reconstructed time period. We choose to take a similar approach used by Hamlington, Leben,
Nerem, Han, and Kim (2011) wherein the computation of the secular trend was separated from the
reconstruction procedure. Furthermore, since the primary goal of this study is to improve the estimates of
regional IO SL variability using a regional reconstruction technique, we made no attempt to reproduce
trends in GMSL. To remove the effect of GMSL, before performing a CSEOF decomposition a trend of
3.4 mm/year for the period between 1993 and 2018 was subtracted from the AVISO SLA. It is important
to note that all the trends presented in this paper are relative to a background trend in GMSL over the
period for which it is computed. Estimation of GMSL is not an easy task and for a global MV‐R, GMSL
can be accounted for by using an approach similar to the one presented in Hamlington, Leben, Nerem,
Han, and Kim (2011).

From previously published research it has been noted that errors emerging from truncating the basis func-
tions estimated from the AVISO data set in combination with instrument errors do not significantly influ-
ence the results presented in this paper. As error estimation for a SL reconstruction procedure is not a
trivial task, errors are not explicitly addressed in this paper following a similar approach taken by previous
studies (e.g., Church et al., 2004; Hamlington, Leben, Nerem, Han, & Kim, 2011). Reconstruction techniques
that involve estimating the GMSL generally include a detailed error analysis, but as we do not include the
GMSL such a discussion is not presented.

3. Results
3.1. Estimated PCTS

To emphasize the importance of using this new MV‐R technique specifically in a region characterized by a
sparse spatio‐temporal TG coverage, we have compared PCTS estimated from the MV‐R technique to PCTS
estimated from a “TG only” reconstruction (Figure 3). While the PCTS of MV‐R was estimated using histor-
ical SST and SLP in addition to SLA, we estimated the PCTS of the TG only reconstruction by using TG data
alone as a source of historical data. For this kind of reconstruction technique, the reliability and quality of
the estimated PCTS depend largely on the spatio‐temporal resolution of the input TG data. For this reason,
a larger number of longer TG records spread evenly across the study area is ideal. However, for a region like
the IO that has an extremely poor spatio‐temporal resolution of TG data, estimating historic PCTS from a TG
only reconstruction is not ideal. This is illustrated in Figure 3, which shows estimated PCTS of the first three
modes (not including the seasonal cycle) for a TG only reconstruction (blue line) andMV‐R (black line). The

Figure 3. Estimated PCTS for the first three modes (seasonal cycle not included) for a tide gauge only reconstruction
(blue line) and multivariate reconstruction (MV‐R, black line). PCTS for the AVISO SLA (red line) is in good
agreement with the PCTS estimated from the MV‐R. For the first half of the 20th century, PCTS is observed to be
overestimated by the TG only reconstruction.
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spatial pattern associated with these three modes have been shown in the supporting information
(Figure S3). Although both the reconstructions seem to agree well with the AVISO PCTS (red line), it is
important to note that PCTS estimated from the MV‐R shows a better agreement to AVISO PCTS as
indicated by the correlation values listed in Figure 3.

Differences between the estimated PCTS begin to grow as we go back in time notably for the first half of the
20th century. The TG only reconstruction is observed to largely overestimate the PCTS before 1940, thus lim-
iting its use to only the second half of the 20th century. The reason for this large variability observed in the
estimated PCTS of the TG only reconstruction can be explained based on the drastic decline in the number of
TG stations (see Figure 1), decreasing from 20 in 1980 to only three available TG stations before 1940.
Although we use the same TG set for the MV‐R technique, the inclusion of historic SST and SLP to supple-
ment the lack of spatio‐temporal TG data results in estimating a more consistent PCTS for the entire 20th
century. This is a major advantage of using the MV‐R technique over a TG only reconstruction technique
for reconstructing 20th century SL variability in the IO.

3.2. Spatial Comparison With AVISO Data

The ability to reproduce spatial variability of SLA over the IO can be evaluated by checking linear depen-
dence with AVISO SLA using a spatial correlation map. We compared the AVISO SLA to the SLA obtained
from the MV‐R and H‐R. To decrease the chances of obtaining high spatial correlation coefficients, com-
monly generated by the presence of a seasonal cycle and trends being included in the data, before calculating
the correlation coefficients the data sets were detrended, and the seasonal cycle removed. Figure 4a shows
the spatial correlation between the AVISO SLA and the MV‐R SLA for the period between 1993 and 2008.
The spatial correlation between the AVISO SLA and H‐R SLA for the same period is shown in Figure 4b.

Figure 4. (a) Spatial correlation map between the AVISO SLA and multivariate reconstruction (MV‐R) SLA computed
for the time period between 1993 and 2008. The spatial correlation map for the period 1993–2018 was computed and
looks similar to panel (a). The bubbles represent correlation between subsampled MV‐R SLA and tide gauge data and the
size of each bubble corresponds to the percentage of available tide gauge data over the period 1993–2018.
(b) Spatial correlation map between the AVISO SLA and Hamlington, Leben, et al. (2014) (H‐R) SLA created for the
period between 1993 and 2008. (c) Spatial correlation map (1993–2008) between AVISO SLA and reconstructed SLA
created using both SST and SLP without the use of TG data referred to as MV‐R (sst + slp). (d) Spatial correlation map
(1993–2008) between AVISO SLA and reconstructed SLA created using only TG data referred to as MV‐R (tg). It
should be noted that MV‐R (tg) is same as “TG only” reconstruction that is discussed in Figure 3. Prior to calculating the
correlation coefficients, the seasonal cycle was removed and SLA was detrended. The color bar represents the
correlation coefficient value.

10.1029/2020JC016270Journal of Geophysical Research: Oceans

KUMAR ET AL. 10 of 18

AGU 
ADVANCING EARTH 
AND SPACE sctENCE 

0.1 0.2 0.3 

Spatial Correlation Map 

0.4 0.5 0.6 0.7 0.8 0.9 



It should be noted that the spatial correlation between the MV‐R SLA and AVISO SLA for the period
between 1993 and 2018 was checked and found to be similar to Figure 4a. For both the reconstructions, spa-
tial correlations with AVISO SLA are observed to be higher in the equatorial IO (10°S to 10°N) and along the
west Australian coast with a spatially averaged correlation coefficient of 0.79 for the MV‐R and 0.37 for H‐R
over the entire IO.

For the H‐R SLA (Figure 4b), extremely poor correlations with the AVISO SLA are observed in the southern
IO and regional Arabian Sea and Bay of Bengal. The overall poor correlations observed between H‐R and
AVISO could be a result of a combination of factors. H‐R uses globally computed basis functions which
may not be able to resolve IO variability at a regional scale. The basis functions used for H‐R were computed
using a shorter altimeter record length, and H‐R SLA was reconstructed using TGs only. By using IO region-
ally computed basis functions derived from a longer altimeter record coupled with the use of the MV‐R tech-
nique, an overall good correlation with the AVISO SLA is observed in Figure 4a. This is an indication that
the new regionally reconstructedMV‐R data have improved regional SL variability estimates for the IO com-
pared to H‐R. The fill color of the bubbles in Figure 4a represents the correlation coefficient between the TG
SLA and MV‐R SLA. The size of each bubble corresponds to the percentage of TG data available between
1993 and 2018. Majority of the TG stations show a very good agreement to the MV‐R SLA indicating that
the MV‐R technique is successful in representing the SL variability observed in TG data. It is observed that
TG stations that have data records of lesser than 50% between 1993 and 2018 tend to show a lesser agreement
with the MV‐R and AVISO SLA. The TG station of Aden (Red Sea) has a very short and discontinuous SLA
record resulting in a poor correlation coefficient. In contrast, although the TG stations along the coast of
Thailand have a long SL record length, the SLA shows large variability which is not seen in the MV‐R
SLA resulting in lower correlation coefficients for these stations. Along the west coast of India, TG stations
are characterized by SL records that have a large variability accompanied by long data gaps resulting in low
correlation coefficients. Overall, the SLA estimated from theMV‐R technique is seen to have a good estimate
of regional SL of the IO over the altimeter time period.

To help highlight the benefits of reconstructing SLA using the MV‐R (SST and SLP in addition to SLA), we
created two additional reconstructions (1) that used both SST and SLP without the use of TG data referred to
as MV‐R (sst + slp) and (2) that used only TG data referred to as MV‐R (tg). It should be noted that MV‐R (tg)
is same as “TG only” reconstruction that is discussed in section 3.1. Spatial correlations were then computed
over the period 1993–2008 between MV‐R (sst + slp) and AVISO SLA (Figure 4c) and MV‐R (tg) and AVISO
SLA (Figure 4d). Results of spatial correlations computed over 1993–2018 were found to be similar to
Figures 4c and 4d. It can be observed that the correlation values in Figure 4c specifically over the southcen-
tral IO, Arabian Sea and Bay of Bengal are marginally higher when compared to Figure 4d. This demon-
strates the advantage of including SST and SLP to help improve SL variability over the open ocean (over
which TG data are very sparse). The advantages of regionally reconstructing SL data are apparent from
the comparison between Figure 4b (H‐R was created using globally computed basis functions) and
Figure 4d which is created using IO regionally computed basis functions. Although both H‐R and MV‐R
(tg) use the similar set of TGs in the IO, H‐R basis functions were created using a shorter altimeter data
length which could also be why Figure 4b shows poor correlations. Overall, the higher spatial correlation
observed in Figure 4a when compared to Figures 4c and 4d is evidence that shows the benefit of using
SLA, SST, and SLP to reconstruct SLA. Although one can argue that there is only a marginal increase in cor-
relation values (Figure 4a compared to Figures 4c and 4d) the real advantage of using MV‐R (SST and SLP in
addition to SLA) is in reconstructing SL variability over the first half of the 20th century.

3.3. IO Regional SL Trends

Bymaking direct trend comparisons to AVISO SLA we attempt to validate the ability of the MV‐R technique
to accurately reproduce regional trends observed in the IO SL. For all the trend maps presented in this sec-
tion it is important to note that regional trends are computed relative to a background GMSL trend over the
same time period as we have chosen not to account for GMSL (see section 2.2.4). Prior to computing the
trendmap the seasonal cycle from the AVISO andMV‐R SLAwas removed. The spatial distribution of regio-
nal SLA trends over the IO for the period between 1993 and 2018 is shown in Figure 5 for the (a) AVISO and
(b)MV‐R SLA. Higher trends are observed in the eastern IO and parts of the southern IO. It is encouraging to
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observe that the overall spatial trend patterns of the MV‐R SLA closely
resemble spatial trend patterns of regional IO as observed from the
AVISO SLA.

In Figure 5b the color of the bubbles represents the trend value at each TG
station. Prior to computing trends, the seasonal cycle and a GMSL trend
have been removed from the TG data for the period between 1993 and
2018. In general, trends computed from TG stations that have more than
75% of continuous uniformly varying SLA data tend to show a very good
agreement toMV‐R SLA trends. A good example of some such TG stations
are those along the Australian coast. On the other hand, TG stations with
short SLA records, those containing long periods of missing data, and an
overall noncoherent SLA variability are seen to be associated with trend
estimates that disagree with the MV‐R SLA trends, the west coast of
India being one such example. Overall, majority of the TG stations show
a reasonably good agreement between the trends computed at each TG
station and trends computed from the subsampled MV‐R SLA at the
respective TG location.

Results from the study of Nidheesh et al. (2017) suggest that there exists
disagreements in the interproduct SL consistency and coherence among
various reconstructed and reanalysis products over the southwest tropical
IO. This is observed in Figure 6 which shows a comparison of spatial trend
maps computed from the (a) MV‐R, (b) H‐R, (c) SODA, and (d) ORAS5 for

the common time period of 1958–2005 over which the data overlap. Before computing spatial trendmaps the
seasonal cycle and GMSL rise time series have been removed. Multidecadal SL trends over the tropical

Figure 6. Spatial trend map computed from (a) multivariate reconstruction (MV‐R), (b) Hamlington, Leben, et al. (2014)
(H‐R), (c) SODA and (d) ORAS5 for the period 1958–2005. The seasonal cycle and global mean sea level rise time
series have been removed before computing the trend. The boxed region (17°S–5°S, 50°E–85°E) is situated in the
thermocline ridge of the southwest tropical IO, and the value in each box represents the spatially averaged trend value
over the box. The color bar represents the trend in units of mm/year.

Figure 5. Spatial trend map for the (a) AVISO SLA and (b) multivariate
reconstruction (MV‐R) SLA computed from 1993 to 2018. Color of bubbles
represent the tide gauge trend value and the size of each bubble
corresponds to the percentage of available tide gauge data over the period
1993–2018. Before calculating the trend, seasonal cycle and a trend of
3.4 mm/year were removed for the period between 1993 and 2018. The
color bar represents the trend in units of mm/year.
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southwest IO show falling SL since the 1960s (Han et al., 2010). To make quantitative comparisons in
Figure 6, spatially averaged trends are computed over the boxed region (17°S–5°S, 50°E–85°E) which is situ-
ated in the thermocline ridge of the southwest tropical IO. These trend values over the boxed region have
been listed in Figure 6. A falling SL trend is observed for the MV‐R, SODA, and ORAS5 data (Figures 6a,
6c, and 6d). However, the trend computed from H‐R (Figure 6b) shows a rising SL trend value. Although
magnitude of the trend in each box over southwest tropical IO is different, there is no simple way to ascertain
which data product best represents the IO SL variability. Nonetheless, the ability of the MV‐R to capture this
falling SL trend over the southwest tropical IO represents a significant improvement in reconstructed regio-
nal IO SL variability estimates when compared to the reconstructed SL of H‐R.

3.4. IO Mean Sea Level Variability

The robustness of this MV‐R technique lies in its capability of capturing variability about a trend. This can be
evaluated by the ability to reproduce the variability observed in the IO MSL. The spatially averaged IO MSL
computed from the MV‐R, H‐R, AVISO, SODA, and ORAS5 data over the IO is presented in Figure 7. Before
computing the MSL, the seasonal cycle and global mean SL rise time series have been removed from the
data. To focus on the ability of the reconstruction to represent variability about a trend, MSL has been
detrended and smoothed by computing runningmeans over 1‐year periods. In Figure 7, over themore recent
altimeter time period (1994–2008) for which all the data sets overlap, MSL calculated from the MV‐R has a
very good agreement with the AVISO MSL and shows a similar pattern of variability when compared to the
MSL calculated from ORAS5 data. MSL computed from H‐R and SODA is seen to overestimate the ampli-
tude of IOMSL variability when compared to AVISOMSL. Over the longer period for which the data overlap
(1959–2005), the MV‐R MSL is observed to have highest correlation with SODA MSL (0.44), followed by
ORAS5 (0.34) and H‐R (0.33). As we go back in time, the similarities in the variability of IO MSL between
the SODA and MV‐R begin to decrease and have the most difference for the first half of the 20th century.
Based on the good agreement with AVISO MSL, the reduced variability of the MV‐R IO MSL observed for
the first half of the 20th century can be considered to be more realistic than the IO MSL computed from
SODA data. A good agreement between the AVISO MSL and MV‐R MSL along with similarities in the pat-
tern of MSL variability between the MV‐R and SODAMSL is evidence that the MV‐R technique is robust in
representing variability about a trend. These results further suggest that the MV‐R technique shows an
improvement in representing the regional IO SLA variability over the SLA variability estimates from H‐R.

3.5. Climate Modes Over the Tropical IO

In its mean state, the thermocline in the tropical IO is deep in the eastern equatorial IO warm pool region
due to the mean surface westerly winds in the equatorial IO. The resulting structure of the thermocline,
which is deeper in the east as compared to the west, favors a more convective atmosphere over the eastern
equatorial IO. However, during particular years unusually warm SSTs are observed over large parts of the
western IO and unusually cold SSTs off Java/Sumatra which is accompanied by wind and rainfall anomalies.
This anomalous departure from the mean state of the ocean‐atmosphere system is referred to as the Indian
Ocean Dipole (IOD) (Murtugudde et al., 2000; Saji et al., 1999; Webster et al., 1999) and is well recognized as

Figure 7. Spatially averaged mean sea level (MSL) computed from the multivariate reconstruction (MV‐R), Hamlington,
Leben, et al. (2014) (H‐R), AVISO, SODA, and ORAS5 SLA over the Indian Ocean. The seasonal cycle and global
mean sea level rise time series have been removed before computing the MSL. To focus on the ability of the MV‐R to
represent variability about a trend, the MSL has been detrended and smoothed using a running mean over the period of a
year.
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the dominant signal of coupled interannual variability in the IO. The spatial pattern associated with the
second EOF mode of SST data is known to be characteristic to the IOD spatial structure and can be seen
from Figure 8a, which shows the second EOF mode of ERSST.

For SLA data, the spatial pattern associated with the first EOF mode shows a dipole structure with higher
SLA over parts of the western and central equatorial IO and lower SLA in the eastern IO. Figure 8b is the
spatial pattern of the first EOF mode of the MV‐R SLA. The northwest‐southeast slope of higher SLA has
been shown to be driven by anomalous downwelling Rossby waves that are radiated from the southeastern
IO, primarily forced by anticyclonic wind stress curl in the southern tropical IO (Rao & Behera, 2005; Xie
et al., 2002). The lower SLA seen in the eastern equatorial IO is a result of Kelvin waves excited by equatorial
easterly wind anomalies along with local southeasterly along shore winds that drive a coastal upwelling
along the Java/Sumatra coast. These upwelling Kelvin waves are reflected as coastally trapped Kelvin waves
and associated with lower SLA observed along the Bay of Bengal (Rao et al., 2002; Vinayachandran
et al., 1999, 2002).

Results from the study of Zhang and Han (2020) suggest that the SLA pattern as observed in Figure 8b is
associated with the climate modes of IOD and ENSO. Their results indicate that the eastern Pacific El
Niño causes a reduced convection over the eastern tropical IO and an enhanced convection over the western
IO basin driving easterly wind anomalies which in turn strongly influences the upwelling in the eastern tro-
pical IO. Since the ENSO is highly seasonal and phase locked to boreal winter, we have computed the
December, January, February (DJF) average value of MV‐R PCTS 1 and Niño3.4 index (used for representing
ENSO events). The impact of ENSO on IO SLA can be observed from Figure 8c which shows a high correla-
tion of 0.82 with theMV‐R PCTS 1. Saji et al. (1999) proposed an index for representing IOD events called the
DipoleMode Index (DMI) which relates to the PCTS of the second EOFmode of SST data over the IO. DMI is
defined as the difference in the spatially averaged SST anomalies between the tropical western IO box and

Figure 8. (a) Spatial structure associated with the second EOF mode of ERSST data recognized as the Indian Ocean
Dipole. (b) Spatial structure of the first EOF mode of multivariate reconstruction (MV‐R) SLA showing spatial
characteristics of a dipole. (c) December, January, February (DJF) average value of MV‐R PCTS 1 and Niño3.4 index.
(d) September, October, November (SON) average value of MV‐R PVTS 1 and DMI index. Black dashed line in
(c) and (d) indicates one standard deviation.
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tropical south‐eastern IO box (Figure 8a). The IOD is also highly seasonal but phase locked to boreal fall. For
this reason, we computed the September, October, November (SON) average value of MV‐R PVTS 1 and
DMI which is presented in Figure 8d. The high correlation of 0.76 highlights the dominance of IOD on IO
SL. It should be noted that in Figures 8c and 8d, the data have been normalized by its standard deviation
before plotting. From Figure 8d it can be observed that the positive IOD events of 1961, 1963, 1972, 1982,
1994, 1997, and 2006 are captured by the MV‐R PCTS 1. Although some of the positive IOD events
co‐occur with El Niño, the ability of the reconstruction to capture independent IOD events of 1961, 1994,
and 2006 reassures us that the MV‐R technique is capable of representing the regional IO SL variability sig-
nificantly well.

4. Discussion and Conclusion

The large uncertainty associated with the precise quantification of 20th century SL rise in the IO can be
attributed to the presence of short and sparse historic IO TG records. This has also resulted in disagree-
ments on the relationship between IO SL and internal variability. To capture and accurately represent
the SL contribution of internal variability on interannual to decadal timescales, long SL data records
are essential. SL reconstruction techniques provide a way to overcome these sampling challenges by
combining historic TG data with the information about the spatial covariance of SL from satellite altime-
try. However, due to the lack of historical SL data records coupled with poor spatial and temporal
sampling by TG stations, it is extremely challenging to reconstruct SL data in the IO. With only three
available TG records before 1940, using a TG only reconstruction technique in the IO limits reliable
estimates SL to only the second half of the 20th century. In this paper we have proposed a new regional
CSEOF MV‐R framework that represents a significant advancement over traditional SL reconstruction
techniques. The ability of CSEOF to capture the evolution of cyclostationary geophysical signals in a
single mode make CSEOF a more appropriate set of basis functions for reconstructing SL than compared
to the more traditional choice of using EOF. Building upon an existing CSEOF SL reconstruction tech-
nique, SLP has been included as the third variable which along with SLA and SST is used to reconstruct
IO SLA back to 1900.

This MV‐R technique is seen to be particularly effective in estimating PCTS for the first half of the 20th cen-
tury (see Figure 3), which is characterized by an extremely poor spatio‐temporal TG coverage in the IO. For
the more recent altimeter time period (1993–2008), the MV‐R SLA shows a significantly better agreement to
AVISO SLA than compared to the agreement shown between H‐R SLA and AVISO SLA (Figure 4).
Similarities in the spatial trend patterns calculated from the MV‐R SLA and AVISO SLA seen from
Figure 5 highlight the strength of the MV‐R technique in representing regional IO SLA trends. TG stations
that have a long continuous SLA record show a good correlation and have trend estimates that are similar to
the MV‐R SLA subsampled at the respective TG station. These results show that the MV‐R technique is cap-
able of providing reliable estimates of the IO SL over the altimeter time period, which in turn implies that
this technique can be reliably used to generate realistic IO SL trends and variability for the 20th century.
The ability of the MV‐R technique to capture the falling SL trend over the southwest tropical IO
(Figure 6a) indicates a significant improvement in regional IO SL estimates when compared to H‐R.
Consistent with previous literature, the first EOF mode of the MV‐R SLA was observed to be associated with
a dipole structure and the PCTS showed a good agreement to both the DMI and Niño3.4 index. The IOD
events that occurred independent of El Niño were successfully captured indicating the capability of the
MV‐R technique in representing internal climate variability observed in the IO.

Through this work it has been shown that the MV‐R technique is robust and particularly well suited to over-
come the reconstruction challenges imposed by the sparse spatio‐temporal TG sampling in the IO. Using this
MV‐R technique, we have successfully reconstructed regional IO SLA for the 20th century. This new tech-
nique provides improved SL variability estimates and a longer temporal coverage in comparison to the
reconstructed product of Hamlington, Leben, et al. (2014). Perhaps the biggest advantage of using this recon-
struction technique is the ability to reliably estimate SLA back to 1900 which will enable future studies to
shed more light on the IO internal climate variability on interannual to decadal timescales. Further, by
removing the fraction of variability associated with internal climate variability the underlying anthropo-
genic trend in the IO can be isolated. This will help gain valuable insights into the past, present, and
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future SL changes occurring as a result of anthropogenic influences. An improved representation of internal
climate variability and the anthropogenic trend in the IO will ultimately benefit all the adaptation and miti-
gation strategies developed for the densely populated IO rim countries that are becoming increasingly vul-
nerable to the effects of higher SL.

Data Availability Statement

The new reconstructed multivariate IO SL data have been made publicly available and can be downloaded
online (https://doi.org/10.6084/m9.figshare.12609908). Tide gauge data are available from the Permanent
Service for Mean Sea Level (PSMSL; https://www.psmsl.org/), and the satellite altimetry data are
available through the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO;
https://www.aviso.altimetry.fr/en/data/products/sea‐surface‐height‐products/global.html). SST and SLP
data are provided by NOAA/OAR/ESRL Physical Sciences Division, Boulder, Colorado, USA. The
Extended Reconstruction SST (ERSST) version 5 SST data were downloaded from https://psl.noaa.gov/
data/gridded/data.noaa.ersst.v5.html, and the NOAA Optimum Interpolation (OI) SST v2 data were down-
loaded online (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). SLP data from
the International Comprehensive Ocean‐Atmosphere Data Set (ICOADS) were download at https://www.
esrl.noaa.gov/psd/data/gridded/data.coads.2deg.html and the NCEP‐NCAR Reanalysis 1 SLP data were
download online (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html). The
globally reconstructed SLA data by Hamlington, Leben, et al. (2014) can be downloaded at https://
podaac‐opendap.jpl.nasa.gov/opendap/allData/recon_sea_level/preview/L4/tg_recon_sea_level/, Simple
Ocean Data Assimilation (SODA) version 2.2.4 were downloaded from https://iridl.ldeo.columbia.
edu/SOURCES/.CARTON‐GIESE/.SODA/.v2p2p4/index.html?Set‐Language=en, and ECMWF Ocean
ReAnalysis System 5 (ORAS 5) SL data and backward extension were downloaded online (http://icdc.cen.
uni‐hamburg.de/projekte/easy‐init/easy‐init‐ocean.html).
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