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In Vivo Effect of Leukemia Inhibitory Factor (LIF) and an Anti-LIF Polyclonal
Antibody on Murine Embryo and Fetal Development Following Exposure
at the Time of Transcervical Blastocyst Transfer

Michael H. Mitchell,2,3 R. James Swanson,1,2,3 and Sergio Oehninger3

Department of Biological Sciences,2 Old Dominion University, Norfolk, Virginia 23529
The Jones Institute for Reproductive Medicine,3 Department of Obstetrics and Gynecology,
Eastern Virginia Medical School, Norfolk, Virginia 23501

ABSTRACT

Leukemia inhibitory factor (LIF) enhances in vitro murine
preimplantation development in a time- and dose-dependent
fashion. Knockout experiments have demonstrated that endo-
metrial LIF is essential for in vivo murine implantation. We as-
sessed the impact of LIF and an anti-LIF polyclonal antibody
(pab) on in vivo development and developed a novel and suc-
cessful nonsurgical method of embryo transfer for this species,
a transcervical blastocyst transfer technique. The objectives of
this study were to evaluate the effects of LIF and the anti-LIF
pab on 1) implantation, resorption, pregnancy, and viability
rates and 2) the overall structural and skeletal development.
Two-cell embryos were recovered from superovulated mated do-
nors, cultured to the expanded blastocyst stage, and transferred
transcervically into pseudopregnant recipients. Exposure to
5000 U/ml LIF resulted in significant increases in implantation,
pregnancy, and viability rates compared with controls. A similar
dose of pab produced overall inhibitory effects with a significant
decrease in implantation rate. Paradoxically, lower pab doses
resulted in significantly increased viability rates. Exposure to LIF
had no effect on fetoplacental development. However, pab treat-
ments had variable but significant negative effects on placental
length, ossification of the exoccipital bone, and vertebral space
width compared with controls. Exposure of murine blastocysts
to LIF at the time of transcervical transfer resulted in pro-
nounced positive effects on implantation and pregnancy rates
without affecting fetal development. A similar pab dose dra-
matically reduced implantation and pregnancy rates; at high and
low doses, pab produced deleterious effects on placental and
skeletal development.

cytokines, implantation

INTRODUCTION

Leukemia inhibitory factor (LIF) is a pleiotropic and
multifunctional cytokine with paradoxical biological activ-
ities. This compound stimulates differentiation and inhibits
cell proliferation in the murine myeloid leukemia cell line
M1, whereas in embryonic stem cells it inhibits differen-
tiation and promotes proliferation [1–5]. LIF also exerts its
effects on blastomeres, embryonic carcinoma cells, extra-
embryonic cells, hematopoietic tissues/cells, bone, hepato-
cytes, neuron progenitors, and lipid metabolism [6–21].
This variety of biological properties is reflected by a diverse
nomenclature developed in multiple laboratories.

In mice, LIF increased the percentage of blastocysts
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reaching the hatched stage in vitro when starting with eight-
cell embryos cultured in 1000 U/ml of human recombinant
LIF for 5 days [22]. Further studies demonstrated that both
murine and human recombinant LIF significantly stimulat-
ed blastocyst formation and decreased embryo fragmenta-
tion/degeneration when added simultaneously at the initia-
tion of in vitro culture of two-cell mouse embryos [23, 24].
LIF effects showed both dose and time dependency [23].

In addition to the positive embryotrophic effects dem-
onstrated under in vitro coculture conditions, LIF appeared
to be essential for murine implantation. In elegant knockout
studies, females lacking a functional LIF gene were fertile,
but their blastocysts failed to implant. Those blastocysts,
however, were viable and implanted and developed to term
when transferred to wild-type pseudopregnant recipients
[6].

In the mouse, uterine expression of LIF by the endo-
metrium peaks at the time of ovulation and just before im-
plantation on the fourth day of pregnancy [25]. LIF is pro-
duced in the endometrial glands and might act as a para-
crine factor within the endometrium. LIF targets are be-
lieved to be the endometrium and the embryo. LIF
secretion appears to be required for the endometrium to
undergo decidualization and for implantation of the blas-
tocyst [26]. In humans, the expression of the LIF receptor
beta is restricted to the luminal epithelium [27].

LIF transcripts have also been detected in the preim-
plantation stage blastocyst in the mouse (3.5 days postco-
ital), and LIF receptors have been found on the 4-day-old
mouse embryo [28]. LIF affects the production of certain
proteases implicated in the process of embryonic tropho-
blast invasion of the endometrial tissues during implanta-
tion. Both urokinase plasminogen activators and matrix me-
talloproteinase-9 levels increase under the influence of LIF
in the mouse embryo on Day 3 of culture [29]. Recently,
LIF and LIF receptor transcripts were detectable in human
preimplantation embryos (with maximal expression on Day
2 embryos and Day 8 embryos and at the morula stage)
[30]. Conflicting effects of LIF on human cytotrophoblasts
have been reported, including diversion to the anchoring
phenotype rather than the invasive pathway [31]. Therefore,
LIF may be able to affect implantation and embryo devel-
opment in an autocrine or a paracrine manner through en-
dometrial (principally) and embryonic effects.

In the present murine studies, we aimed to assess the
effect on in vivo implantation and embryo-fetal develop-
ment of LIF and an anti-LIF polyclonal antibody (pab)
when added at the time of blastocyst transfer to recipient
females. Two-cell embryos were collected from B6CBAF1/
J donors, cultured to the expanded blastocyst stage, and
transcervically transferred to CD1 (ICR) recipients. Specif-
ically, we examined the effect of LIF and the pab on 1)
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TABLE 1. Effects of LIF and various doses of an anti-LIF pab on murine implantation, resorption, pregnancy, and viability rates.

Treatment Implantation Resorption Pregnancy per transfer Viability

LIF (5000 U/ml)
Control
pab

5000 U/ml
2500 U/ml
1000 U/ml

70/405 (17%)a
36/405 (9%)

11/390 (3%)a
22/225 (10%)
20/210 (10%)

27/70 (38%)
21/36 (58%)

4/11 (36%)
3/22 (14%)a
3/23 (13%)a

15/27 (55%)a
7/27 (26%)

2/26 (8%)
10/15 (66%)
7/14 (50%)

43/405 (11%)a
15/405 (4%)

7/390 (2%)
19/225 (8%)a
17/210 (8%)a

a Significantly different from control.

implantation, resorption, pregnancy, and viability rates and
2) the overall structural and skeletal developmental of vi-
able fetuses. LIF and/or its antibody could be used to en-
hance or inhibit the number of embryos capable of achiev-
ing successful implantation and normal development fol-
lowing uterine transfer.

MATERIALS AND METHODS
Embryos from 6- to 8-wk-old mice (Mus musculus) were used for this

project. The CD1 (ICR) (Charles River Laboratories, Wilmington, MA)
and B6CBAF1/J (Jackson Laboratory, Bar Harbor, ME) mice were given
water and food ad libitum. Females from both strains were mated with
CD1 (ICR) males (at least 10 wk of age). All mice were maintained in an
animal facility at 258C on a 14L:10D cycle.

A modified Krebs bicarbonate-buffered medium (mKBB) supplement-
ed with 0.4% (4 mg/ml) BSA (Sigma, St. Louis, MO) was used for col-
lection, culture, and transfer of embryos, as described previously [32]. The
culture medium was filter sterilized through a 0.22-mm cellulose acetate
membrane filter (Corning Inc., Corning, NY), dispensed into 25-cm2 tissue
culture flasks (Corning), and refrigerated at 0–48C until utilized. The cul-
ture medium was equilibrated by incubating at 378C in 5% CO2 in 100%
humidified air for at least 2 h prior to use.

Superovulation of female donors was induced by i.p. injection of 5 IU
eCG (Sigma) followed in 48 h by 5 IU hCG (Sigma). At the time of hCG
injection, each donor was individually caged with a proven fertile CD1
male. The following morning, approximately 16 h after hCG injection, the
female mice were inspected for vaginal copulatory plugs (Day 0 of preg-
nancy). On the morning of Day 1, plug-positive females were killed by
cervical dislocation and the abdominal skin was retracted. Under sterile
conditions, the abdominal wall was opened and the oviducts were removed
and placed in 2 ml mKBB culture medium in sterile 35- 3 10-mm poly-
styrene dishes. Using 20–53 magnification on a dissecting microscope
(Zeiss Urban Quadrascope; Carl Zeiss, Thornwood, NY), two-cell embry-
os were removed from the oviducts by irrigating the fimbriated end of the
oviduct with a 30-gauge needle connected to a 1-ml tuberculin syringe
filled with mKBB medium until the embryos were expelled. Morpholog-
ically normal two-cell embryos were collected and cultured in mKBB
medium for 72 h at 378C in 5% CO2 in 100% humidified air.

The injection schedule for female recipients was 24 h later than that
for donors. Recipients were placed with vasectomized CD1 males on the
afternoon of hCG injection and examined for copulatory plugs the follow-
ing morning to determine pseudopregnancy. On Day 4 of embryo devel-
opment (Day 3 of pseudopregnancy), the pseudopregnant recipient females
(surrogate uteri) were tranquilized using 0.1 mg/kg body mass aceprom-
azine maleate (10 mg/ml Promace; Henry Schein, Melville, NY). For em-
bryo transfer, Clay Adams PE10 tubing (Baxter Scientific, Columbia, MD)
was square cut at the end (no beveling) and connected to a 30-gauge
needle fitted to a 500-ml threaded Hamilton syringe (1750TP; Hamilton,
Reno, NV). The PE10 tubing and syringe were filled with mKBB medium
devoid of air bubbles. Approximately 1 cm of air was pulled into the distal
tip of the tubing followed by 3 cm (20 ml) of medium containing 15
expanded blastocysts from the donor group. A final 0.5 cm of air was
drawn into the transfer tube. Embryos were collected in as little medium
as possible to reduce the risk of having them wash back out of the uterus
upon removal of the transfer tubing. The cervical os was visualized using
a glass speculum constructed from a Pasteur pipette. Using a Wild-Heer-
brugg dissecting microscope (Sciscope Co., Iowa City, IA), the distal end
of the embryo transfer tube was inserted approximately 2 cm into the
cervical os, and the embryos were forced out of the tube by increasing
the pressure in the Hamilton syringe until the proximal air spacer was
observed passing the cervical os. The transfer tubing was gently removed,
and females were caged individually and allowed to recover from tran-

quilization. The transfer tubing was rechecked under the microscope to
ensure delivery of all embryos to the uterus.

Murine recombinant LIF (rmLIF) and a goat anti-murine recombinant
LIF pab were purchased from R&D Systems (Minneapolis, MN). Test
treatments were 1) 5000 U/ml rmLIF, 2) 5000 U/ml pab, 3) 2500 U/ml
pab, and 4) 1000 U/ml pab. The lowest concentration of rmLIF (1000 U/
ml) was previously determined to enhance the development of preimplan-
tation mouse embryos. We selected this concentration as the lowest and
examined the two higher concentrations to investigate potential effects.
Multiple replicates for each of the test groups and controls were generated
for each of multiple stimulation cycles. The neutralization dose50 (ND50)
for the pab (activity) was defined as the concentration necessary to pro-
duce one-half maximum inhibition of rmLIF activity in a responsive cell
line. The cell line utilized by R&D Systems for this purpose was a murine
myeloid leukemia line known as DA-1a. Murine LIF was shown to en-
hance proliferation of these cells with a typical ED50 of 0.03–0.1 ng/ml.
The ND50 for the pab was 0.1–0.2 mg/ml in the presence of 0.5 ng/ml
rmLIF (approximately 1 U; R&D Systems). LIF and the pab solutions
were prepared in mKBB to achieve the desired concentrations in the 20-
ml volume transferred to the uterus with the blastocysts. Control females
were established by a sham procedure in which 15 embryos were trans-
ferred in 20 ml of mKBB medium transcervically as previously described.

On Day 17 of pregnancy, females were killed by lethal overdose of
i.p. sodium pentobarbital (64.8 mg/ml; Anpro Pharmaceuticals, Henry
Schein). The abdominal skin of the females was removed, and the abdo-
men was opened to externalize the uterus. The uterus was inspected for
number of implantation sites (viable 5 fetuses; nonviable 5 resorption
sites) prior to removal. Amniotic membranes were stripped, and fetuses
were separated from each placenta and analyzed.

The following data were recorded: number of fetuses, fetal tail length,
fetal crown-rump length, fetal mass, placental mass, placental linear di-
mensions, and number of resorption sites. Length was measured in milli-
meters, and mass was measured in grams. The following definitions were
used: 1) implantation rate: number of implantation sites (both viable pups
and resorbed fetuses)/total number of embryos transferred in the group;
2) pregnancy rate: number of pregnant females (i.e., the number of females
with pups that appeared viable or morphologically normal at Day 17)/total
number of females transferred in the group; 3) resorption rate: number of
amorphous resorption sites or fetuses demonstrating severe macroscopic
developmental retardation/the total number of implantation sites (both vi-
able and resorbed); and 4) viability rate: number of viable fetuses/total
number of embryos transferred for the group.

Fetuses were removed from amniotic membranes and separated from
each placenta, and various measurements were taken. Cartilage and bone
were differentially stained to reveal any gross skeletal defects. Once re-
moved from the uterus, the fetuses were fixed in 10% neutral buffered
formalin for at least 24 h. After fixation, evisceration was accomplished
using watchmaker forceps. At this time, the fetuses were washed in several
changes of distilled water to remove most of the formaldehyde. Following
washing, the fetuses were placed in an alcian blue (Sigma) solution (10
mg alcian blue, 70 ml 100% ethanol, 30 ml glacial acetic acid) for 12–48
h [33]. Once the cartilage was stained, the dehydration step was accom-
plished by placing the fetuses in a minimum of two absolute alcohol baths
for at least 24 h. Fetuses were rehydrated by a 2-h exposure to a series of
baths consisting of decreasing concentrations of ethanol (i.e., 75%, 50%,
and 25%) followed by two consecutive distilled water baths for 1 h each.
After rehydration, fetuses were partially macerated for 1–2 h in a solution
containing 1 g of trypsin (Fisher Scientific, Norcross, GA), 30 ml saturated
aqueous sodium borate (Fisher), and 70 ml distilled water. The fetuses
were left in this solution until the soft tissues became transparent and the
fetuses had a consistency of warm gelatin. The bone tissue was stained
by placing fetuses in alizarin red (Sigma) solution (0.5% KOH, 0.1% aliz-
arin red in water) for 24 h. Thereafter, the fetuses were placed in a 25%
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TABLE 2. Effects of LIF and various doses of an anti-LIF pab on murine feloplacental development.

Treatment
Body mass

(g)
Crown-rump
length (mm)

Tail length
(mm)

Placental
length (mm)

Placental
width (mm)

Placental
mass (g)

LIF (5000 U/ml)
Control
pab

5000 U/ml
2500 U/ml
1000 U/ml

0.53 6 0.1
0.58 6 0.1

0.45 6 0.07a

0.73 6 0.2
0.63 6 0.2

17.6 6 2.1
17.7 6 2.9

16.6 6 0.7
18.2 6 2.1
17.3 6 2.1

6.9 6 1.3
7.0 6 1.4

6.9 6 0.3
7.7 6 1.3
7.4 6 2.0

9.5 6 1.3
9.8 6 1.1

9.7 6 1.6
8.8 6 0.7b

8.5 6 0.9a

9.3 6 1.1
9.5 6 0.9

9.0 6 1.0
9.8 6 1.6
9.0 6 1.5

0.16 6 0.05
0.17 6 0.04

0.2 6 0.08
0.17 6 0.05
0.15 6 0.03

a Significantly different from pab 2500 U/ml.
b Significantly different from control.

TABLE 3. Effects of LIF and various doses of an anti-LIF pab on murine skeletal development.

Treatment
Humerus

length (mm)

Humerus diaphyseal
ossification center

(mm)
Vertebral space

width (mm)

Ossification
exoccipital
bone (%)

Ipsilateral scapula
length (mm)

Ossification center
of scapular spine

length (mm)

LIF (5000 U/ml)
Control
pab

5000 U/ml
2500 U/ml
1000 U/ml

3.0 6 0.2
3.0 6 0.5

2.8 6 0.3
3.4 6 0.5
3.3 6 0.5

0.9 6 0.2
1.0 6 0.5

0.6 6 0.1
1.3 6 0.4b

1.3 6 0.5b

0.8 6 0.2
0.8 6 0.2

0.9 6 0.2
1.0 6 0.1a

1.0 6 0.1a

82.7 6 29
88.6 6 24

47.0 6 31a

95.0 6 13
90.0 6 26

2.4 6 0.3
2.4 6 0.4

2.3 6 0.2
2.8 6 0.5b

2.7 6 0.6b

0.9 6 0.2
1.0 6 0.4

0.6 6 0.1
1.3 6 0.4b

1.2 6 0.5b

a Significantly different from control.
b Significantly different from pab 5000 U/ml.

glycerin in 0.5% aqueous KOH solution for 24 h. To this solution, three
to five drops of 3% hydrogen peroxide per 100 ml glycerin were added.

Fetuses were then placed in succeeding solutions of increasing glycerin
concentrations (50% glycerin with 0.5% KOH, 75% glycerin with 0.5%
KOH, and 100% glycerin), each for 24 h. Specimens were stored in glyc-
erin to which a few crystals of phenol or thymol were added [33]. Fetuses
were then examined and photographed using a Wild-Heerbrugg dissecting
microscope. Humerus length, length of diaphyseal ossification in the hu-
merus, width of dorsal gap between the vertebral pedicles or the vertebral
space, estimated percentage of ossification in the exoccipital bone, length
of ipsilateral scapula measured from vertebral border to glenoid cavity,
and length of ossification center in scapular spine were recorded.

The results of treatments (LIF, pab, and control conditions) on implan-
tation, resorption, viability, and pregnancy rates were compared using 2
3 4 contingency tables (two-tailed) and chi-square analysis as appropriate.
ANOVA (followed by the Bonferroni t-test for multiple comparisons) was
utilized to assess differences in fetoplacental and skeletal measurements
in response to the various treatments. Results are presented as mean 6
SD. Differences were considered significant when P values were #0.05 .

RESULTS

Table 1 presents the results of LIF and the anti-LIF pab
treatments on implantation, resorption, pregnancy, and vi-
ability rates. Treatment with LIF (5000 U/ml) resulted in
significantly increased implantation (17% versus 9% in
controls, P 5 0.0005), pregnancy (55% versus 26% in con-
trols, P 5 0.05), and viability (11% versus 4% in controls,
P 5 0.0002) rates when compared with the nontreated con-
ditions.

Exposure to a similar dose of the pab (5000 U/ml) pro-
duced a significant reduction in the implantation rate (3%
versus 9% in controls, P 5 0.0005) and a decrease in the
pregnancy rate that reached borderline significance (8%
versus 28%, P 5 0.07). However, the lower pab doses re-
sulted in a significant reduction in the resorption rate (14%
and 13%, respectively, versus 58% in controls, P 5 0.0008
for both) and an increase in the viability rate (8% for both
versus 4% in controls, P 5 0.01).

The number of viable pups per individual female varied
for each group. Controls ranged from zero to four fetuses
per female with an average of 0.56 fetuses/female. For the
LIF treatment group, the range was zero to six fetuses per

female (average of 1.6 fetuses/female). The three pab test
groups demonstrated the following individual variability: 1)
1000 U/ml group: zero to five fetuses per female (average
of 1.2 fetuses/female); 2) 2500 U/ml group: zero to four
fetuses per female (average of 1.3 fetuses/female); 3) 5000
U/ml group: zero to four fetuses per female (average of
0.25 fetuses/female).

The effects of LIF and pab on fetoplacental development
are shown in Table 2. LIF treatment had no significant im-
pact on any of the fetal or placental parameters assessed.
In contrast, the pab treatments had a significant overall neg-
ative effect on placental length (P 5 0.002). Specifically,
at 2500 and 1000 U/ml the pab significantly decreased pla-
cental length (P , 0.05 and P , 0.01, respectively, versus
controls).

Table 3 presents the results of LIF and pab treatments
on murine skeletal development. LIF had no impact on any
of the bone measurements. Conversely, pab treatments had
a significant overall effect on the ossification of the exoc-
cipital bone and on vertebral space width (P 5 0.0001 for
both parameters). Although the effects of the various pab
doses were heterogeneous, significant differences depicting
a negative effect on defined areas of bone development
were demonstrated. At 5000 U/ml, the pab resulted in a
significant reduction in the ossification of the exoccipital
bone as compared with controls (P , 0.01). At 2500 U/ml
and 1000 U/ml, the pab produced significant variation in
vertebral space width (P , 0.01 for both doses).

DISCUSSION

LIF plays a critical role in murine reproduction by en-
hancing in vitro preimplantation embryo development [22,
23] and is an absolute requirement for implantation [6, 25].
LIF stimulates mouse embryo development in vitro in a
dose- and time-dependent manner. At a dose of 1000–
100 000 U/ml for two-cell embryos, LIF produced maximal
stimulation of blastocyst formation and decreased the per-
centage of degenerating embryos. These effects were also
mouse strain dependent [23]. Both LIF and its receptors
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seem to be operative in the embryo (at early stages of de-
velopment) and the endometrium (at the time of implanta-
tion), making possible auto-paracrine cross-talk pathways.
The addition of LIF to blastocysts at the time of uterine
transfer could enhance in vivo embryo development/im-
plantation.

In the present study, LIF (at 5000 U/ml) significantly
stimulated blastocyst implantation, leading to enhanced
pregnancy (per transfer) and viability (per embryo) rates.
This is the first report of such an effect using in vivo-gen-
erated murine embryos grown to blastocysts under in vitro
culture conditions and transcervically transferred to the
uteri of synchronized female recipients.

Surgical transfer of embryos to the uterine horns [34,
35] or to the fimbriated end of the oviduct [36, 37] are
common techniques, requiring anesthesia and laparotomy,
and as many as 70–80% of these embryos develop to term
[38]. We developed a novel and successful nonsurgical
method of murine embryo transfer, transcervical blastocyst
transfer. This procedure is a modification of a technique
described previously for which development to term was
approximately 30% [39]. The efficiency of our technique is
demonstrated by the adequate pregnancy rate achieved in
controls (26%).

The present results also extend the observations of Fry
et al. [40], who studied the effect of culturing ovine em-
bryos at the morula stage in 1000 U/ml LIF. LIF treatment
resulted in an increase in the number of hatching blasto-
cysts and a higher pregnancy rate when treated embryos
were transferred to recipient females. The stimulatory ac-
tivity of LIF may be due to embryonic/trophoblastic or en-
dometrial effects because LIF receptors are present in both
target tissues.

These initial results demonstrate that LIF enhances mu-
rine implantation rates following blastocyst transfer to the
uterus. We are studying whether this effect of LIF is also
present following the transfer of in vitro-generated embry-
os. The positive impact of LIF on the number of implanted
embryos that developed to viable fetuses was not accom-
panied by any deleterious effects on overall fetal skeletal
development or placental growth. Although the precise
role(s) of LIF in humans has not been established, it is
tempting to speculate that LIF could be used to optimize
human blastocyst transfer at the time of in vitro fertilization
therapy. However, although LIF levels are relatively con-
stant in the human fallopian tube, elevated levels have been
associated with ectopic pregnancies [41].

At a concentration of 5000 U/ml, the anti-LIF pab pro-
duced a significant inhibition of the implantation rate when
compared with control conditions. This inhibition is prob-
ably the result of a blockage of ‘‘native’’ LIF (endometrial
or embryonic) effects. Paradoxically, the lower concentra-
tions of the pab (2500 and 1000 U/ml) resulted in a sig-
nificant decrease in the resorption rate and a consequent
increase in the viability rate. Further investigation is re-
quired to explain these observations. Nonspecific effects
cannot be ruled out. However, R&D Systems, using a direct
ELISA, found that this particular pab demonstrated no
cross-reactivity when tested with more than eight other re-
combinant murine (rm) cytokines, including rmIL-1a and
b, rmGM-CSF, and rmTNFa and b, as well as over 50
recombinant cytokines from other animal models (R&D
Systems, personal communication). Based on our current
data, we cannot explain the apparently paradoxical effect
observed with pab [42].

At the high dose studied, the anti-LIF pab demonstrated

potential contraceptive activities by possibly preventing
murine embryo implantation. However, there was a general
deleterious effect of the pab on placental growth (decrease
of placental width) and skeletal development (decrease of
the ossification of the exoccipital bone and increase in ver-
tebral space width) of the viable fetuses. LIF increases the
resorption of bone [43–45], and high levels have been as-
sociated with pathologic conditions such as cachexia, tissue
calcification, pancreatitis, and gonadal and thymic anoma-
lies [11]. LIF also inhibited bone nodule formation in fetal
rat calvaria cell cultures [46] and inhibited growth and min-
eralization of early fetal mouse long bone cultures [47]. In
our study, LIF did not seem to affect bone development.
Nevertheless, the anti-LIF pab showed deleterious effects
that were heterogeneous and not dose dependent.

The addition of LIF at the time of transcervical blasto-
cyst transfer resulted in a significant enhancement in im-
plantation and pregnancy rates. Both LIF and anti-LIF pab
have pronounced effects on implantation and fetal devel-
opment in mice.
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