
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Spring 5-2023

SeaLion CubeSat Mission Architecture Using Model Based SeaLion CubeSat Mission Architecture Using Model Based

Systems Engineering with a Docs as Code Approach Systems Engineering with a Docs as Code Approach

Kevin Yi-Tzu Chiu
Old Dominion University, rovert40@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

 Part of the Aerospace Engineering Commons, and the Systems Engineering Commons

Recommended Citation Recommended Citation
Chiu, Kevin Y.. "SeaLion CubeSat Mission Architecture Using Model Based Systems Engineering with a
Docs as Code Approach" (2023). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering,
Old Dominion University, DOI: 10.25777/gec4-xm08
https://digitalcommons.odu.edu/mae_etds/360

This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital
Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/360?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SEALION CUBESAT MISSION ARCHITECTURE USING MODEL

BASED SYSTEMS ENGINEERING WITH A DOCS AS CODE APPROACH

by

Kevin Yi-Tzu Chiu

B.S. May 2017, University of Massachusetts Amherst

A Thesis Submitted to the Faculty of

Old Dominion University in Partial Fulfilment of the

Requirements for the Degree of

 MASTER OF SCIENCE

AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY

May 2023

Approved by:

Sharan Asundi (Director)

Drew Landman (Member)

Resit Unal (Member)

ABSTRACT

SEALION CUBESAT MISSION ARCHITECTURE USING MODEL

BASED SYSTEMS ENGINEERING WITH A DOCS AS CODE APPROACH

Kevin Yi-Tzu Chiu

Old Dominion University, 2023

Director: Dr. Sharan Asundi

 CubeSats are a growing population within the space industry. Every year, universities

launch numerous amounts of CubeSats due to their inexpensive cost of development, launch, and

deployment. However, this comes with numerous challenges. As the number of university-

CubeSats grow, so too do the numbers that fail. With development teams consisting mainly of

students with little to no training, proper and yet easy to use tools or methods should be

implemented to help ensure mission success. Especially in the critical stages of planning before

and during development, a technical approach to quickly track life cycle development of a

CubeSat is needed. This includes a toolchain and language with minimal training requirements

and overhead.

 In response, the action was taken to use a model-based systems engineering

methodology with a docs-as-code approach. Presented here, a method created with the Mach 30

Modelling Language and other state-of-the-art tools to help facilitate flight software

development and other CubeSat development processes. Using easily human readable and

editable YAML files, an architecture was formed that allowed for ease of editing that

communicated with the rest of the model. Thus, allowing for the joining of a collection of

references, stakeholder needs, user stories, and data structures. Components as well as their

interfaces, junctions, and assembly instructions are also included in the architecture’s

development.

 This approach was used for the SeaLion CubeSat mission, a joint mission between Old

Dominion University and US Coast Guard Academy, as a guide of implementation and to

validate the approach with the eventual launch later in the year 2023.

iv

Copyright, 2023, by Kevin Yi-Tzu Chiu, All Rights Reserved.

v

ACKNOWLEDGMENTS

 Firstly, I would like to thank my family for their continued support throughout my

academic career as well as throughout my life. Special acknowledgements to my parents

especially for providing the support and motivation to continue forward regardless of the

challenges that may be ahead.

 I would like to give great thanks to my advisor as well as chair, Dr. Sharan Asundi, for

providing the opportunity to work with him. His inclusion of me within the SeaLion CubeSat

project has given me great insight on space systems development that I would otherwise not have

received. His continued support has been greatly appreciated to help me see things through to

the end.

To Dr. Drew Landman and Dr. Resit Unal, my committee members, I would like to give

my thanks for their support as well as the knowledge they have imparted onto me during my

graduate studies.

 Extreme gratitude should be given to Sean Marquez who has been the lead on the

SeaLion flight software team. Without him, I would not have gained anywhere near the level of

insights I’ve had when it comes to developing an architecture or system engineering methods in

general. This gentleman was always patient with me and willing to answer any and all questions

that I had.

 Lastly and not least, special thanks to the SeaLion CubeSat project team. Their continued

efforts to create SeaLion should be commemorated. Without their efforts, the SeaLion project

would not be in the great place that it is today.

vi

NOMENCLATURE

1U 1-Unit

2U 2-Unit

3U 3-Unit

AC Alternating Current

AFIT Air Force Institute of Technology

AIAA American Institute of Aeronautics and Astronautics

AODS Altitude and Orbit Determination System

BOM Bill of Material

ConOps Concept of Operations

COTS Commerical Off-the-Shelf

DeCS Deployable Composite Structure

DOA Dead on Arrival

doctools Dcoument Tools

DOF Distributed OSHW Framework

EVR Event

FPP F Prime Prime

GPS Global Positioning System

ISS International Space Station

M30ML Mach 30 Modelling Language

MBSE Model Based Systems Engineering

MC3 Mobile CubeSat Command and Control

Me-S Multi-spectral Sensor

NRL Naval Research Laboratory

ODU Old Dominion University

OML Ontological Modeling Language

OSHW Open Source Hardware

OWL2 Web Ontology Language 2

Q4 Quarter Four

SPADE Space PlasmADiagnostic suitE

SWRL Semantic Web Rule Language

UHF Ultra High Frequency

UML Unified Modelling Language

USCGA United States Coast Guard Academy

VLEO Very Low Earth Orbit

WFF Wallops Flight Facility

vii

TABLE OF CONTENTS
Page

LIST OF TABLES .. ix

LIST OF FIGURES ..x

Chapter

1 – INTRODUCTION AND MOTIVATION ..1

1.1 – INCREASING CUBESAT POPULATIONS ..2

1.2 – ENSURING CUBESAT SUCCESS ...4

1.3 – MISSION SEALION 3U CUBESAT ..6

2 – MODEL-BASED SYSTEMS APPROACH AND DOCUMENT-AS-CODE APPROACH . 12

2.1 – MODEL-BASED SYSTEMS ENGINEERING .. 12

2.2 – DOCUMENTATION AS CODE APPROACH .. 13

2.3 – MODELLING LANGUAGE AND METHODOLOGY .. 14

2.4 – ONTOLOGICAL MODELING LANGUAGE .. 16

2.5 – MACH30 MODELING LANGUAGE .. 16

3 – MODELING THE MISSION SEALION ARCHITECTURE USING DOCS-AS-CODE

APPROACH ... 18

3.1 – FILE STRUCTURE ... 18

3.2 – STAKEHOLDER NEEDS .. 21

3.3 – USER STORIES... 30

4 – OUTCOMES OF DOCS-AS-CODE MODELING OF MISSION SEALION

ARCHITECTURE .. 42

4.1 – DATA STRUCTURES ... 43

4.2 – DOCUMENT GENERATION ... 53

4.3 – SOFTWARE DEVELOPMENT WORKFLOW ... 54

4.4 – DISTRIBUTED OSHW FRAMEWORK.. 56

4.5 – COMPONENT DATA STRUCTURE AND DOCUMENT GENERATION 58

5 – CONCLUSION AND FUTURE SCOPE ... 64

5.1 – CONCLUSION .. 65

5.2 – FUTURE WORK ... 66

viii

Page

REFERENCES ... 67

APPENDICES .. 71

A. SEALION MISSION ARCHITECTURE GENERATED DOCUMENT 72

B. SEALION DOF GENERATED DOCUMENT ... 86

C. SEALION ASSEMBLY INSTRUCTIONS GENERATED DOCUMENT 96

VITA .. 99

ix

LIST OF TABLES

Table Page

2.1. Selection of Modelling Language versus Criteria .. 15

3.1: References YAML files .. 20

4.1. Satellite health data packet tabulated from 1-SatelliteHealth.yaml 44

4.2: Satellite GPS data tabulated from 2-AODSGPSData.yaml.. 46

4.3: AODS sensor data tabulated from 3-AODSSensorData.yaml ... 49

4.4: ECI state vector data tabulated from 4-TLE.yaml ... 50

4.5: Mission data tabulated from 5-MissionData.yaml ... 52

4.6. Component data structure ... 59

x

LIST OF FIGURES

Figure Page

1.1: CubeSat family by size [1] ...1

1.2: Nanosatellite launch data provided by M. Swartwout as of July 21, 20213

1.3: Mission status of CubeSat university-class missions provided by Swartwout4

1.4: SeaLion CubeSat prototype model..7

1.5: SeaLion CubeSat prototype model blown up ..8

1.6: SeaLion IP payload ..9

1.7: SeaLion Me-S payload ...9

1.8: SeaLion DeCS payload deployed shown as the four black composite booms. 10

2.1: OML catalog file example [30]... 16

2.2: Example YAML File for a User Story .. 17

3.1: Architecture folders within the sealion mission architecture GitHub 19

3.2: Example of references YAML file .. 19

3.3: References YAML file structure ... 21

3.4: Example of stakeholders YAML file .. 22

3.5: Stakeholder needs YAML file structure .. 23

3.6: 1.1-PrimaryMissionObjective-A1.yaml .. 24

3.7: 1.2-PrimaryMissionObjective-A2.yaml .. 25

3.8: 1.3-PrimaryMissionObjective-A3.yaml .. 25

3.9: 1.4-PrimaryMissionObjective-A4.yaml .. 26

3.10: 1.5-PrimaryMissionObjective-A5.yaml .. 26

3.11: 2.1-SecondaryMissionObjective-B1.yaml ... 27

xi

Page

3.12: 2.2-SecondaryMissionObjective-B2.yaml ... 28

3.13: 3.1-TertiaryMissionObjective-C1.yaml .. 28

3.14: 3.2-TertiaryMissionObjective-C2.yaml .. 29

3.15: 3.3-TertiaryMissionObjective-C3.yaml .. 29

3.16: UML diagram of stakeholder needs mapping .. 30

3.17: User stories YAML file structure .. 31

3.18: Example of user stories YAML file .. 32

3.19: 1-PingSatellite.yaml ... 33

3.20: 2-ViewBeaconData.yaml .. 34

3.21: 3-SetInterruptTimer.yaml ... 35

3.22: 4-RequestTelemetryData.yaml ... 35

3.23: 4.1-RequestSatelliteHealthData.yaml ... 36

3.24: 4.1.1-RequestSatelliteHealthDataSBand.yaml .. 37

3.25: 4.2-RequestMissionData.yaml .. 38

3.26: 5-SetMissionModeDuration.yaml ... 39

3.27: UML diagram mapping stakeholder needs links to user stories. Zoom in (left) and whole

diagram (right). .. 40

3.28: UML diagram of user stories in relation to ground station operator. 41

4.1: Data structures YAML file structure ... 44

4.2: 1-SatelliteHealth.yaml .. 45

4.3: 2-AODSGPSData.yaml .. 46

4.4: Excerpt of the 3-AODSSensorData.yaml .. 48

xii

Page

4.5: 4-TLE.yaml .. 50

4.6: 5-MissionData.yaml ... 51

4.7: UML diagram of mapping of user stories to their derived data structures 53

4.8: Excerpt of issues (tasks) of the flight software GitHub repository 54

4.9: Issue #24 – Create the structure for Satellite Mission Data ... 55

4.10: Components file folder structure excerpt example for sealion-cubesat 57

4.11: Example excerpt of the parts YAML file for sealion-cubesat .. 57

4.12: Sealion-structure folder structure .. 60

4.13: Excerpt from 'parts.yaml' file in ‘sealion-structure’ folder... 61

4.14: Excerpt from 'tools.yaml' file in ‘sealion-structure’ folder... 61

4.15: Excerpt from 'assemblySteps.yaml' file in ‘sealion-structure’ folder 62

4.16: Example N2 diagram [12] .. 63

1

CHAPTER 1 – INTRODUCTION AND MOTIVATION

The CubeSat, originating from California Polytechnic State University in 1999, are a

standardized form of nanosatellites. Nanosatellites are satellites typically defined with a mass of

less than 10 kg. CubeSats, also known as Cube Satellites, are defined by the standardized and

modular architecture of 1-Unit (1U) cube with dimensions of 10 cm ✕10 cm ✕ 10 cm with a

mass of up to 2 kg [1]. They can be scaled to 2-Units (2U), 3-Units (3U), and even higher as

designated by the CubeSat specification [1]. This is shown illustratively in Figure 1.1 by the

additional of standardized cube units to the overall design. The ability to scale by modularity

gives a highly standardized structure for ease of expansion to provide versatility in functionality.

Due to their small size, mass, and lack of dedicated launch vehicles, CubeSats are typically

launched as secondary payloads in conjunction with other larger satellites, informally known as

“piggy-backing”. This greatly decreases the cost of launching a CubeSat which greatly increases

the accessibility of inserting objects into space.

Figure 1.1: CubeSat family by size [1]

2

1.1 – INCREASING CUBESAT POPULATIONS

CubeSats were initially conceived as educational tools for space systems engineering [2].

Now, their roles have been expanded to not only just educational tools but for observation,

technology demonstrations, and research that were previous monopolized by much larger

satellites due to the aforementioned low cost of production and launch of these CubeSat

satellites. As such, there has been increasing popularity for CubeSats as seen by the number of

launches in Figure 1.2 since year 2000 [3]. Note, there was a significant downtrend in CubeSat

launches in the year 2020 and 2021; however, the thesis author theorizes that this may be due to

the COVID-19 pandemic and its subsequent lockdowns halting many operations globally. The

CubeSat design specification [1] as well as the availability of commercial off-the-shelf (COTS)

parts and kits have greatly influenced the rise of popularity. For example, a basic CubeSat kit

from Pumpkin can be purchased with a baseline price of as little as $6250 [4]. Even the SeaLion

CubeSat utilizes many COTS parts as well. Thus, it has become highly accessible to low-budget

groups such as small companies and university groups. CubeSats have caused the

“democratization” of space due to their low cost which has allowed many groups to fly satellites

[5].

University groups especially are a large contributor in the overall number of launches of

CubeSats yearly. As of July 27, 2021, alone, there have been 68 CubeSat launches with 40 of

them being from university groups (about 58% of launches) in the year of 2021; university

groups have consistently maintained plurality on total launches [3]. This showcases directly how

many university-based CubeSat projects occurred or potentially may occur if trends continue

onwards into the future. However, this poses challenges to many of these projects given the

3

mainly student composed teams which includes the SeaLion mission at Old Dominion University

(ODU).

Figure 1.2: Nanosatellite launch data provided by M. Swartwout as of July 21, 2021

4

1.2 – ENSURING CUBESAT SUCCESS

 The increased number of CubeSats launched also means a greater number of CubeSats

from universities being launched as well. The motivation of this thesis is to improve the success

rate of CubeSat missions from university groups by providing readily available and easily usable

tools for university teams. To further reinforce the need to improve the success rate, the

following data is presented in Figure 1.3 which showcases the total successes and failures of

CubeSats from universities for the given time periods [6]. The data provided is categorized by

six different mission statuses of unknown, launch fail, dead on arrival (DOA), early loss, partial

mission, and full mission.

Figure 1.3: Mission status of CubeSat university-class missions provided by Swartwout

 As seen in the preceding Figure 1.3, failure rates over time appear to be increasing among

CubeSats launched from universities. However, Swartwout notes that highest number of the

Mission Status for University-

Class Missions (2002-2009)
Mission Status for University-

Class Missions (2010-2017)

5

failures originate from “regular independent” groups with a failure rate of 65% at the time of

data gathering in 2017 [6]. These “regular independent” groups are groups that have fewer than

four missions nor designated as a national center of for spacecraft development by its

government.

 The issue present is that many of the growing number of university groups producing

CubeSats lack the resources, training, experience, or methodology to reliably give assurance to

their missions. Often, the majority of the work is done by untrained university students that are,

many times, unfamiliar with the system engineering, design methodologies, testing, etc. that are

associated with CubeSat development. The SeaLion team also faced these issues as well.

To address some of these issues, a method was sought to help simplify the development

process by providing readily available and easily learnable system engineering approaches and

tools. These provided system engineering approaches and tools include factors such as planning,

documentation, project management, and simplifying the process. Special attention should be

given to systems engineering and information exchange for multidisciplinary teams [7]. To

showcase these factor’s importance, a survey conducted, by University of Bristol, on how to set

up CubeSat projects of forty CubeSat groups emphasized the following relevant lessons learned

[8]:

• Planning: Make efforts to “spend a lot of time in the planning stage”.

• Documentation / Project Management: Groups should have “good documentation of

requirements, work done and work to do”.

• Simplicity: Simply anything you possibly can to increase confidence in success.

The developed mission architecture and associated tools will emphasize the aforementioned

points to further the SeaLion CubeSat’s development.

6

1.3 – MISSION SEALION 3U CUBESAT

The SeaLion CubeSat mission is a joint project between Old Dominion University (ODU),

the United States Coast Guard Academy (USCGA), and the Air Force Institute of Technology

(AFIT). The end goal is to produce a 3U CubeSat consisting of 3 payloads for on-orbit

validation. ODU provided one payload while the USCGA and AFIT provided the other two

payloads. SeaLion was initially planned to launch as a secondary payload on a Northrop

Grumman Antares Rocket from Wallops Flight Facility (WFF) during March of 2023 [9]. The

prototype CubeSat model is shown in Figure 1.4 and Figure 1.5. However, this mission was

changed recently just prior to this thesis’ publication.

The mission profile was intended for the SeaLion CubeSat was to have a lifespan of mere

days before power was lost in the non-rechargeable batteries. The initially planned very low

earth orbit (VLEO) altitude of SeaLion caused its lifespan in-orbit to be short and measured in

days (predicted on-orbit time was 10 days). However, due to weight considerations from the

primary payload on the planned Antares Rocket, SeaLion was removed from the launch.

Instead, SeaLion is planned to launch in quarter four (Q4) 2023 on a Firefly rocket from

Vandenberg Space Force Base into a sun synchronous orbit, of 500 miles altitude, which greatly

extends the planned lifespan of the SeaLion mission. The content presented in this thesis is

based on the prior mission profile from the launch at WFF into VLEO.

7

Figure 1.4: SeaLion CubeSat prototype model

8

Figure 1.5: SeaLion CubeSat prototype model blown up

 The first payload, provided by the USCGA and AFIT, is the Impedance Probe (IP). The

IP is derived from U.S. Naval Research Laboratory’s (NRL’s) ‘Space PlasmADiagnostic suitE’

(SPADE) aboard NASA’s International Space Station (ISS) where plasma density & temp are

computed with alternating current (AC) impedance measurements using an innovative, first of its

kind surface mounted dipole radio frequency antenna [9]. Thus, the scientific objective of the IP

on SeaLion is to measure density and temperature of plasma surrounding the spacecraft. The IP

part is shown in Figure 1.6.

9

Figure 1.6: SeaLion IP payload

The second payload, provided by the USCGA and AFIT, is the multispectral (Me-S)

‘Pixel Sensor’ with a with a 450 nm – 1000 nm spectral range [9]. Its purpose is to provide

SeaLion’s in-situ spectral data as a baseline. This baseline will be used for future missions that

may require this spectral data. The Me-S part is shown in Figure 1.7.

Figure 1.7: SeaLion Me-S payload

10

 The third payload, provided by ODU, is the deployable composite structure (DeCS).

This payload is a proof-of-concept deployable mechanism and composite boom that is meant to

be a platform host to a number of number of applications [9]. For example, these applications

include solar panels, solar sails, drag sails, sensory sails, and magnetometer booms. Deployment

on SeaLion is meant to validate the deployable mechanism for composite boom in the space

environment and to validate boom dynamic during and after deployment in orbit. The DeCS

upon deployment is shown in Figure 1.8.

Figure 1.8: SeaLion DeCS payload deployed shown as the four black composite booms.

11

Given the number of payloads loaded onto the SeaLion CubeSat, special care and

consideration is required to ensure success of the mission. In response, the action was taken to

provide a mission architecture for the SeaLion team as a whole to better organize and direct the

efforts of the team. The results of that effort are presented herein of this thesis.

This thesis presents the systems engineering approach of the SeaLion CubeSat mission

architecture. Presented here is the modeling language, tools, and technical approach used to

facilitate the configuration management, design, specification, & implementation of the SeaLion

mission architecture for the flight software using a model-based approach. Through, model-

based systems engineering (MBSE), models were able to be created, as opposed to documents,

that serve as the authoritative source of truth for the conduction of system engineer activities

[10]. These models were used to conduct activities such as design, specification, analysis,

verification & validation of the system. This was done by applying the NASA Handbook on

Systems Engineering [11] to CubeSat mission design in efforts to facilitate a top-down design

methodology from mission concept to specification of subsystem components, including flight

software architecture [12]. This thesis also serves as an expansion of the conference proceedings

presented at American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum 2023

[13].

12

CHAPTER 2 – MODEL-BASED SYSTEMS APPROACH AND

DOCUMENT-AS-CODE APPROACH

Special attention should be given to as planning, documentation, project management, and

simplifying the process. That special emphasize should be given to systems engineering and

information exchange [7]. Traditional approaches use documents as their authoritative source of

truth for conducting system engineering activities [10]. Information in a traditional systems

engineering approach today is mostly captured informally, not authored based on a methodology,

configuration managed in silo tools, although adhoc and infrequently integrated, not easily

traceable to its provenance, not properly configuration managed, not properly changed managed,

and not effectively shared with stakeholders [14]. These documents often do not have a living

relationship with other documents or to other corresponding elements; thus, changes to one

document require manual changes to other documents [15].

2.1 – MODEL-BASED SYSTEMS ENGINEERING

An MBSE approach supports capturing information in a highly structured modeling language,

authored based on a methodology, configuration managed in a common tool, highly integrated,

traceable to its provenance, and sharing with stakeholders. Models provide the following key

advantages over document-based approaches [15]:

• Information is readily communicated and shared within the project.

• Changes are easily accommodated.

• Traceability is automated.

In contrast, document-based approaches can exacerbate problems since it lacks point-to-point

communication channels as well as lacking methods to enforce consistency [16]. Since models

have these direct lines of communication, MBSE can alleviate these concerns. A side-by-side

13

comparison between MBSE and non-MBSE approaches with a architecting process, of 4,858

information element transfers, noted that all of these transfers were done manually with non-

MBSE approaches; however, 13% of these transfers with automated with MBSE with the potential

of up to 81% should it be used for trade study and peer review tasks [17]. The SeaLion team

wishes to take advantage of these automated processes of information transfers.

Space-related systems have been taking advantage of MBSE such as the ExoMars mission,

Euclid, Galileo, and nanosatellite programs [18], [19], [20]. The usage of MBSE on CubeSats has

even been done before and has been shown to “hold promise of reducing the burden of system

engineering tasks” [21]. This will especially be important to help reduce the workload of these

small university CubeSat teams. Especially as students join for new future projects to “promote

uniformity and consistency across future CubeSat models” [21]. Since students from prior projects

are usually not available for future university projects due to events such as graduation.

2.2 – DOCUMENTATION AS CODE APPROACH

Documentation as code (Docs-as-code) refers to a philosophy that team members should

be writing documentation with the same tools as code [22]. This allows for documentation to

updated seamlessly without additional work with document tools (doctools). The code tools

would include version control (e.g., Git), issues trackers, code tools (e.g., Visual Studio), etc. To

do so would mean that the “following the same workflows as development teams and being

integrated in the product team. It enables a culture where writers and developers both feel

ownership of documentation, and work together to make it as good as possible” [22].

 Taking advantage of the aforementioned philosophy would allow the SeaLion to realize

the benefits of utilizing the same principles and practices used to manage software, using modern

version control tools (e.g., Git), for the configuration management of mission and flight software

14

architecture documentation, and captured in a model-based approach [22]. Models can also be

stored persistently on a local file system without the use of cloud-based services or software.

This is especially advantageous when there is a need to generate documentation, modify

documentation, or modify models without the need for proprietary services. Similar methods to

have documents as code have been seen in open source such as Structurizr; however, methods

such as one noted may have too much of a learning curve for university students newly admitted

to the field [23]. Additionally, F Prime is an open-source software framework developed by

NASA’s Jet Propulsion Laboratory [24]. Methods to produce some documentation has also been

developed from code for visualization purposes using F Prime Prime (FPP) [25]. Thus, this

methodology of docs-as-code isn’t without precedent. However, the intent is to establish the

docs-as-code approach while also being much more accessible as well.

2.3 – MODELLING LANGUAGE AND METHODOLOGY

A trade study was conducted to down select a suitable modeling language for the goals of

the SeaLion mission. The languages considered were SysML V1, SysML V2, PlantUML, and

the Mach 30 modelling language (M30ML). Table 2.1 provides a summary of this down select

and various criteria that was taken into consideration. The criteria are described as follows:

• Extensible ontology language in order to facilitate any and all modelling needs the team

may have.

• Supports both textual & graphical view generation for use of the docs-as-code approach

the team has adopted.

• Lightweight textual syntax for ease of use and learning.

• Relatively minimal overhead with modern doctools to facilitate the docs-as-code

approach.

15

• Supports execution semantics to better define systems and their execution.

 M30ML in the end was chosen for its lightweight human and machine-readable textual

syntax, file-based model interchange support (for persisting models directly on the local

filesystem), ability to generate both textual and graphical views, and relatively minimal overhead

with modern doctools [26]. The other candidates lacked in many regards compared to M30ML

in these criteria and thus, M30ML was selected. SysML v2 had a good number of characteristics

that M30ML had, however, the lack of minimal overhead with modern doctools prevented its

adoption. For a team that had very minimal experience working with such tools, having a

modelling language that was easy to establish and easy to use was essential for the SeaLion

project.

Table 2.1. Selection of Modelling Language versus Criteria

Criteria
SysML v1

[27]

SysML v2

[28]

PlantUML

[29]

M30ML

[26]

Extensible ontology language X X X X

Supports both textual &

graphical view generation
 X X

Lightweight textual syntax X X X

Relatively minimal overhead

with modern doctools
 X X

Supports execution semantics X

16

2.4 – ONTOLOGICAL MODELING LANGUAGE

M30ML was developed using the Ontological Modeling Language (OML) as its basis.

OML is a language that enables defining systems engineering vocabularies and using them to

describe systems [30]. OML, inspired by Web Ontology Language 2 (OWL2) and the Semantic

Web Rule Language (SWRL), is meant to be a gentler and more disciplined method of

aforementioned standard for use in systems engineering [30]. OWL2 does not conform easily to

individual modelling rules without tooling support; thus, OML was created. OML is a tool to

improve the speed of modeling and the quality of models while in a more concise and human-

friendly high-level external representation [31]. However, in the interest of simplicity, OML was

not made the modelling language of choice for SeaLion. OML’s format as shown in Figure 2.1,

it contains considerable syntax rules that may cause issues with those without the time needed to

learn them. Especially when OML is compared to M30ML which is shown in Figure 2.2.

Figure 2.1: OML catalog file example [30]

2.5 – MACH30 MODELING LANGUAGE

M30ML is a language for modeling an architecture with YAML-based modeling.

YAML is especially important as a file structure since it is a highly structured, machine query-

able, human-readable, lightweight, and line-oriented markup language. This makes it ideal for

document generation use cases as well as use with version control tools like Git. The simple line

17

by line structure as shown in Figure 2.2 exemplifies its simplicity. Users are easily able to read,

interpret, and edit documents using the YAML file format so as long they are taught what each

line element is. Doctools such as asciidoctor and bibtex were made compatible easily with

minimal technical overhead which was taken advantage of for the submission to the AIAA

SciTech 2023 Forum [13]. M30ML also provided modeling elements familiar in agile software

development, such as stakeholder needs, user stories, data structures, and with relationship

elements for defining traceability between modeling elements [26].

Figure 2.2: Example YAML File for a User Story

18

CHAPTER 3 – MODELING THE MISSION SEALION ARCHITECTURE

USING DOCS-AS-CODE APPROACH

 This chapter presents the implementation of M30ML as the basis for SeaLion mission

architecture. Presented here are the various elements, components, and products generated that

is stored on the sealion-mission-architecture GitHub page [32]. At the time of publication of this

thesis, the implementation of the SeaLion mission architecture was done to the prior mission

parameters where the SeaLion CubeSat was designed for a short lifespan compared to now

greatly extended planned lifespan. Since the mission parameters was changed rather recently

prior to publication, the architecture had yet to be updated for them.

3.1 – FILE STRUCTURE

 The SeaLion mission architecture is organized into two main folders of architecture and

of components [32]. Architecture contains the references, stakeholder needs, user stories, and

data structures shown in Figure 3.1. Components, as the name implies, contains the components

and subcomponents of the CubeSat. This architecture set-up is the primary concern and focus of

this thesis. For the mission architecture shown in Figure 3.1, generally data structures are

derived from user stories. Further, user stories are subsequently derived from stakeholder needs

with their respective references.

19

Figure 3.1: Architecture folders within the sealion mission architecture GitHub

References are simply stored reference material such as standards, specifications books,

etc. They are very simple two-line YAML files as shown in Figure 3.2. This creates a continued

link between the YAML files within their respective folders from which documents can be

updated seamlessly. Information changed within one file can interact with other files. All

references in the mission architecture at the time of thesis’ publication is listed within Table 3.1

and Figure 3.3.

Figure 3.2: Example of references YAML file

20

Table 3.1: References YAML files

YAML File Name Reference Title

1-AX.25Specification.yaml

AX.25 Link Access

Protocol for Amateur

Packet Radio version 2.2

[33]

2-CubeSatDesignSpecificationRev13.yaml

CubeSat Design

Specification rev. 13

(specification updated to

Rev 14 [1])

3-

PlanetarySystemsCorporationCubeSatDesignSpecificationfor3U-

6U-12U.yaml

Planetary Systems

Corporation CubeSat

Design Specification for

3U-6U-12U [34]

4-DeploymentMechanismForSmallSatellite.yaml
Canisterized Satellite

Dispenser [35]

5-ITARCompliance.yaml
ITAR Compliance Guide

[36]

6-SpaceSystemsEngineering.yaml
Space Systems

Engineering 4th ed. [37]

7-GroundDataSystems&MissionOperations.yaml
Ground Data Systems &

Mission Operations [38]

8-TwoLineElementData.yaml
Two-Line Element Data

[39]

21

Figure 3.3: References YAML file structure

3.2 – STAKEHOLDER NEEDS

 The development of SeaLion’s mission architecture is guided by a series of stakeholder

needs [40]. After SeaLion’s project methodology documentation is committed to using M30ML

based on YAML modelling tools, the first step is to identify all stakeholder needs. The two

primary stakeholders of SeaLion are ODU and the CGA. Their respective needs are classified

from primary, secondary, and tertiary based on mission importance.

Stakeholder YAML files are stored in ‘1-StakeholderNeeds’ shown in Figure 3.1. Each

file is numbered with a X.X number format with the first number designating if it’s primary,

secondary, or tertiary and the second number denoting a place within a list of that class (e.g., 1.1

architecture

0-References

1-AX.25Specification.yaml

2-CubeSatDesignSpecificationRev13.yaml

3-
PlanetarySystemsCorporationCubeSatDesignSpecificat

ionfor3U-6U-12U.yaml

4-DeploymentMechanismForSmallSatellite.yaml

5-ITARCompliance.yaml

6-SpaceSystemsEngineering.yaml

7-GroundDataSystems&MissionOperations.yaml

8-TwoLineElementData.yaml

1-StakeholderNeeds

2-UserStories

3-DataStructures

22

would indicate primary stakeholder need #1). In addition, the letter associated (e.g., A1, B1, C1,

etc.) in the filename would also signify if it’s a primary, secondary, or tertiary stakeholder need.

Each YAML file contains an id number, name, statement, and derivedFrom field shown in

Figure 3.4. Note the reference YAML file that has filed in the derivedFrom field that serves as

the basis for the stakeholder need. While not all stakeholder needs have it filled, it is available to

be used as needed. Figure 3.5 showcases all the YAML files stored in the stakeholders file

folder.

Figure 3.4: Example of stakeholders YAML file

23

Figure 3.5: Stakeholder needs YAML file structure

The first primary stakeholder need is that “the SeaLion mission shall establish UHF

communication link with Virginia ground station" [32]. UHF refers to the ultra-high frequency

(UHF) band. Its associated YAML file named ‘1.1-PrimaryMissionObjective-A1.yaml’ is

architecture

0-References

1-StakeholderNeeds

1.1-
PrimaryMissionObjective-

A1.yaml

1.2-
PrimaryMissionObjective-

A2.yaml

1.3-
PrimaryMissionObjective-

A3.yaml

1.4-
PrimaryMissionObjective-

A4.yaml

1.5-
PrimaryMissionObjective-

A5.yaml

2.1-
SecondaryMissionObjective

-B1.yaml

2.2-
SecondaryMissionObjective

-B2.yaml

3.1-
TertiaryMissionObjective-

C1.yaml

3.2-
TertiaryMissionObjective-

C2.yaml

3.3-
TertiaryMissionObjective-

C3.yaml

2-UserStories

3-DataStructures

24

presented in Figure 3.6. This stakeholder need is important in order to perform any and all

missions associated with the SeaLion CubeSat. Without the ability to communicate with

SeaLion, there is no ability to either control the CubeSat or validate the function of any of its

payloads. Thus, establishing a connection is a primary mission objective.

Figure 3.6: 1.1-PrimaryMissionObjective-A1.yaml

The second primary stakeholder need is that “the SeaLion mission shall establish S-Band

communication link with MC3 ground station" [32]. The MC3 ground station refers to the

Mobile CubeSat Command and Control (MC3) ground station. The MC3 ground station uses a

S-Band communication link in lieu of UHF. This is to provide a secondary form of

communication to the SeaLion CubeSat via its payloads that use the S-Band frequency. Its

associated YAML file named ‘1.2-PrimaryMissionObjective-A2.yaml’ is presented in Figure

3.7. The USCGA included the need to use S-Band communications and is subsequently deemed

a primary stakeholder need. Its importance is akin to primary stakeholder need 1.1 of Figure 3.6.

Establishing and maintaining a communication link is imperative to the completion of the

SeaLion mission of validating its payloads.

25

Figure 3.7: 1.2-PrimaryMissionObjective-A2.yaml

 The third primary stakeholder need is that “the SeaLion mission shall successfully

transmit “mission data” defined above to ground stations on the Earth” [32]. Its associated

YAML file named ‘1.3-PrimaryMissionObjective-A3.yaml’ is presented in Figure 3.8. Mission

data refers to the feedback from the SeaLion CubeSat regarding to its various mission modes.

Mission modes are the various operating modes that the satellite enters to perform certain

specified functions. This data is essential to the operation of SeaLion and to gather data to

validate the functionality of its payloads.

Figure 3.8: 1.3-PrimaryMissionObjective-A3.yaml

The fourth primary stakeholder need is that “the SeaLion mission shall adhere to CubeSat

standards” [32]. The satellite has to adhere to the standard requirements of a CubeSat to qualify

as one. This includes requirements such as size, mass, and configuration among others. This is

to ensure that the satellite is in its proper configuration for the purposes of operation and

integration into the launch vehicle. Its associated YAML file named ‘1.4-

PrimaryMissionObjective-A4.yaml’ is presented in Figure 3.9. Note that there is a linked

26

reference in the derivedFrom field which refers to the CubeSat Design Specification which is one

of the references listed in Table 3.1.

 Figure 3.9: 1.4-PrimaryMissionObjective-A4.yaml

The fifth primary stakeholder need is that “the SeaLion mission shall validate the

operation of the Impedance Probe (IP) as a primary payload in-orbit” [32]. Its associated YAML

file named ‘1.5-PrimaryMissionObjective-A5.yaml’ is presented in Figure 3.10. The IP is the

payload provided by the USCGA and AFIT and is deemed the primary payload to test and

validate per discussion between ODU and the USCGA. Thus, it cemented its place as a primary

stakeholder need. The IP is meant to measure density and temp of plasma surrounding the

spacecraft [9]. Validation of its function would mean a primary mission success for SeaLion.

Figure 3.10: 1.5-PrimaryMissionObjective-A5.yaml

27

The first secondary stakeholder need is that “the SeaLion mission shall provide a means

to validate a Multi-spectral Sensor (Me-S) in-orbit” [32]. Its associated YAML file named ‘2.1-

SecondaryMissionObjective-B1.yaml’ is presented in Figure 3.11. This is the second payload

provided by the USCGA and AFIT. The Me-S is meant to provide baseline SeaLion’s in-situ

spectral data measurements [9]. These spectral data measurements are meant to give a baseline

for future missions. Per discussions between ODU and the USCGA, this was deemed a

secondary stakeholder need. While the inability to validate the Me-S would be a major blow to

the SeaLion mission, it would not constitute a total mission failure for SeaLion compared to the

validation of the IP’s functionality.

Figure 3.11: 2.1-SecondaryMissionObjective-B1.yaml

The second secondary stakeholder need is that “the SeaLion mission shall provide a

means to validate a deployable composite structure (DeCS) in-orbit” [32]. Its associated YAML

file named ‘2.2-SecondaryMissionObjective-B2.yaml’ is presented in Figure 3.12. The DeCS is

the third payload of SeaLion which is provided by ODU. The DeCS is meant to qualify the

deployable mechanism for composite boom in the space environment and to validate boom

dynamic during and after deployment in orbit [9]. Per discussions between ODU and the

USCGA, this was deemed a secondary mission objective. While the failure to validate the DeCS

28

would be a major blow to the SeaLion mission, it would not constitute a total mission failure for

SeaLion compared to the validation of the IP’s functionality.

Figure 3.12: 2.2-SecondaryMissionObjective-B2.yaml

The first tertiary stakeholder need is that “the SeaLion mission shall qualify on-orbit the

deployment and functioning of the newly developed UHF antenna system and its deployment”

[32]. Its associated YAML file named ‘3.1-TertiaryMissionObjective-C1.yaml’ is presented in

Figure 3.13. The UHF antenna is deployed on the opposing end of the CubeSat compared to the

DeCS payload as seen in Figure 1.8. This UHF system is newly developed and ODU would like

to see it deployed successfully.

Figure 3.13: 3.1-TertiaryMissionObjective-C1.yaml

The second tertiary stakeholder need is that “the SeaLion mission shall qualify a CubeSat

bus architecture for very-low Earth orbit (VLEO)” [32]. Its associated YAML file named ‘3.2-

TertiaryMissionObjective-C2.yaml’ is presented in Figure 3.14. The bus architecture is

necessary to perform actions such as transmit data between the various components of the

CubeSat for operation. Qualifying its functionality for very-low Earth orbit (VLEO) operations

29

was necessary for the mission. However, this stakeholder need requires an update to the very

recently change mission parameters to a planned higher orbit altitude.

Figure 3.14: 3.2-TertiaryMissionObjective-C2.yaml

The third tertiary stakeholder need is that “the SeaLion shall verify DeCS in-orbit

behavior performance.” [32]. Its associated YAML file named ‘3.3-TertiaryMissionObjective-

C3.yaml’ is presented in Figure 3.15. The DeCS in-orbit behavior performance needs to be

verified in order to gauge its functionality for other applications such as solar sails, sensor sails,

drag sails, etc. This is done via the usage of strain gauges to determine its behavior. However,

successful deployment is required before verification hence the secondary stakeholder need B2

in Figure 3.12 taking precedence.

Figure 3.15: 3.3-TertiaryMissionObjective-C3.yaml

 Figure 3.16 presents all the stakeholder needs via a unified modelling language

(UML) diagram generated from the YAML files within the ‘1-StakeholderNeeds’ folder. The

two primary stakeholders being ODU and the USCGA. The generation of these diagrams via the

30

YAML files presented herein showcases the docs-as-code approach. YAML files structured as a

code are then converted into easily human readable documents for presentation.

 Figure 3.16: UML diagram of stakeholder needs mapping

3.3 – USER STORIES

 Once the SeaLion mission architecture’s stakeholder needs are identified and recorded,

the stakeholder needs are then used to identify a series of user stories which then lead to design

decisions captured in data structure and activity definitions [41]. These user stories are written

31

from the perspective of the ground operator which would be a student from ODU who monitors

and controls the functions of the SeaLion CubeSat. User story YAML files are stored in ‘2-

UserStories’ folder shown in Figure 3.1. These files are all given an ID number in no particular

order of importance. See Figure 3.17 for the user story YAML file structure.

Figure 3.17: User stories YAML file structure

 As shown in Figure 3.18, each user story YAML file contains an ID number, name, actor,

behavior, rationale, derivedFrom field, and example. ID and name are simply for identification.

architecture

0-References

1-StakeholderNeeds

2-UserStories

1-PingSatellite.yaml

2-ViewBeaconData.yaml

3-SetInterruptTimer.yaml

4-
RequestTelemetryData.ya

ml

4.1-
RequestSatelliteHealthDat

a.yaml

4.1.1-
RequestSatelliteHealthDat

aSBand.yaml

4.2-
RequestMissionData.yaml

5-
SetMissionModeDuration.

yaml

3-DataStructures

32

The actor is the ground station operator as previously discussed. Behavior is the action that the

ground station operator would perform along with the rationale to why the operator performs it.

The example input is an example sentence to give further context to other readers of the SeaLion

team. The actor, behavior, and rationale together form a full user story statement. These

statements will be detailed alongside their respective user story YAML files described herein.

Figure 3.18: Example of user stories YAML file

 The first user story desire is to “establish communication link with satellite” [32]. Its full

statement, derived from the actor, behavior, and rationale, would read “as a ground station

operator I want to ping satellite so that I can establish communication link with satellite” [41].

Its associated YAML file named ‘1-PingSatellite.yaml’ is presented in Figure 3.19. Note that

this user story is derived from stakeholder need A1 which is the first primary stakeholder need

mentioned in the prior section of this chapter. The ground station operator needs to ping the

satellite to establish the UHF communication link. This is done to provide a means of operating

the CubeSat to complete mission objectives.

33

Figure 3.19: 1-PingSatellite.yaml

The second user story desire is to “verify that satellite is operating nominally” [32]. Its

full statement, derived from the actor, behavior, and rationale, would read “as a Ground Station

Operator I want to view satellite beacon data (alternating between health & mission data),

received via UHF so that I can verify that satellite is operating nominally” [41]. Its associated

YAML file named ‘2-ViewBeaconData.yaml’ is presented in Figure 3.20. Note that this user

story is derived from stakeholder needs A1, A3, A5, B1, B2, C1, C2, and C3 which are

stakeholder needs mentioned in the prior section of this chapter. Additionally, the example

statement is cut-off in Figure 3.20 for readability. It should read in full as “View satellite beacon

data (health or mission data) to verify that state vector corresponds with expected orbit profile

and/or to validate that a mission mode was successful”. This satellite beacon data, transmitted

via UHF, is used to validate that any and all functions of the satellite are operating nominally or

as planned in respect to their payloads hence the large derivedFrom list in the associated YAML

file.

34

Figure 3.20: 2-ViewBeaconData.yaml

The third user story desire is to “finetune parameters for attitude or orbit analysis or to

conserve power” [32]. Its full statement, derived from the actor, behavior, and rationale, would

read “as a Ground Station Operator I want to send a request to set count value at which interrupt

timers (i.e., beacon, GPS ping, or orbit propagator) are triggered so that I can finetune parameters

for attitude or orbit analysis or to conserve power” [41]. Its associated YAML file named ‘3-

SetInterruptTimer.yaml’ is presented in Figure 3.21. Note that this user story is derived from

none of the stakeholder needs mentioned in the prior section of this chapter. This user story is an

additional action required for power conservation due to the lack of rechargeable batteries rather

than direct stakeholder requirements. Thus, the satellite needs to be prompted to not consistently

transmit a beacon to conserve power.

35

Figure 3.21: 3-SetInterruptTimer.yaml

The fourth user story desire is to “verify/validate health status or mission data” [32]. Its

full statement, derived from the actor, behavior, and rationale, would read “as a Ground Station

Operator I want to Request satellite telemetry or eventlog data so that I can verify/validate health

status or mission data” [41]. Its associated YAML file named ‘4-RequestTelemetryData.yaml’ is

presented in Figure 3.22. Note that this user story is derived from none of the stakeholder needs

mentioned in the prior section of this chapter. The telemetry data sent from the satellite is

required to ensure that the satellite is operating properly, hence its inclusion within the user

stories group as a specified action for the ground station operator.

Figure 3.22: 4-RequestTelemetryData.yaml

The fifth user story is to “verify/validate AODS sensors & GPS data are within nominal

parameters” [32]. Its full statement, derived from the actor, behavior, and rationale, would read

“as a Ground Station Operator I want to request satellite health data packet so that I can

verify/validate AODS sensors & GPS data are within nominal parameters” [41]. Its associated

36

YAML file named ‘4.1-RequestSatelliteHealthData.yaml’ is presented in Figure 3.23. Note

that the ID number is 4.1 rather than 5. This is because this user story is a subset of the fourth

user story shown in Figure 3.22. The data required to verify/validate altitude and orbit

determination system (AODS) sensors and global positioning system (GPS) data are all part of

the data that the ground station operator would receive as part of the fourth user story.

Additionally, note that this user story is derived from another user story rather than a stakeholder

need. This is because this user story is meant to be a part of the linked User Story 4.

 Figure 3.23: 4.1-RequestSatelliteHealthData.yaml

The sixth user story desire is to “verify/validate AODS sensors & GPS data are within

nominal parameters” [32]. Its full statement, derived from the actor, behavior, and rationale,

would read “as a Ground Station Operator I want to request satellite health data packet via S-

band radio so that I can verify/validate AODS sensors & GPS data are within nominal

parameters” [24]. Its associated YAML file named ‘4.1.1-

RequestSatelliteHealthDataSBand.yaml’ is presented in Figure 3.24. Note that the ID number is

4.1.1 rather than 4.2 or 6. This is because this user story is a subset of the fifth user story shown

in Figure 3.23. This user story details an action identical to the one described in User Story

4.1. However, this is done via the S-band radio rather than the default UHF communication link.

37

This will be done to validate the S-band communications link in lieu of using UHF.

Additionally, note that this user story is derived from stakeholder need A2 mentioned in the prior

section of this chapter as well as User Story 4. Stakeholder need A2 details the requirement to

communicate with the satellite via the S-band radio.

Figure 3.24: 4.1.1-RequestSatelliteHealthDataSBand.yaml

The seventh user story desire is to “validate in-orbit AODS and/or payload performance”

[32]. Its full statement, derived from the actor, behavior, and rationale, would read “as a Ground

Station Operator I want to request satellite mission data so that I can validate in-orbit AODS

and/or payload performance” [24]. Its associated YAML file named ‘4.2-

RequestMissionData.yaml’ is presented in Figure 3.25. Note that the ID number is 4.2 rather

than 7. This is because this user story is a subset of the fourth user story shown in Figure 3.22.

The mission data is used to validate AODS and the payloads which is transmitted by the actions

described in User Story 4. Note that this user story is derived from User Story 4 as well as

stakeholder needs A1, A3, A5, B1, B2, C1, C2, and C3 since this data is critical to validating

many of SeaLion’s systems and payloads.

38

Figure 3.25: 4.2-RequestMissionData.yaml

The eighth user story desire is to “manage time spent per mission mode” [32]. Its full

statement, derived from the actor, behavior, and rationale, would read “as a Ground Station

Operator I want to send a request to set mission mode duration so that I can manage time spent

per mission mode” [24]. Its associated YAML file named ‘5-SetMissionModeDuration.yaml’ is

presented in Figure 3.26. This user story is to note that the ground station operator has to set

mission mode times for how long they last. This is dependent on what is needed to validate the

payloads and to sync transmission time so that the mission data reaches the ground station in

Virginia. Note that this user story is derived from none of the stakeholder needs mentioned in

the prior section of this chapter.

39

Figure 3.26: 5-SetMissionModeDuration.yaml

Figure 3.27 and Figure 3.28 are UML diagrams generated using the YAML files stored in

‘2-UserStories’ folder. Figure 3.27 is a mapping of stakeholder needs to user stories. Figure

3.28 is the user stories presented in a use case diagram to showcase what the ground station

operator needs to perform. The generation of these diagrams via the YAML files presented

herein showcases the docs-as-code approach. YAML files structured as a code are then

converted into easily human readable documents for presentation.

40

Figure 3.27: UML diagram mapping stakeholder needs links to user stories. Zoom in (left) and

whole diagram (right).

41

Figure 3.28: UML diagram of user stories in relation to ground station operator.

42

CHAPTER 4 – OUTCOMES OF DOCS-AS-CODE MODELING OF

MISSION SEALION ARCHITECTURE

An intent of developing the architecture for SeaLion CubeSat mission was to capture the data

structures and expected behaviors for the development of the flight software. It had to be done

such that it can unambiguously understood well enough to be implemented, as well as provide full

traceability and rationale for architectural elements with minimal configuration management

overhead [32]. Thus, the SeaLion CubeSat mission architecture had to achieve the following:

• Ensure templates only contain formatting data (this includes not storing boilerplate text in

templates)

• Ensure models are the authoritative source of truth for all artifact content (e.g., artifact

structure, meta-data, boilerplate, commentary, discussion, diagrams, tables, etc.)

• Models should persist on the local filesystem.

• Documents should be in plaintext as to be compatible with modern distributed version

control system (e.g., Git) and for ease of use.

• Documents should be able to sit alongside code and speak to one another.

• Documents should be model-based as to have a separation of concerns between content

and formatting as well as be both human and machine-readable for querying and generating

views.

A MBSE approach was adopted by the SeaLion project since it provided benefits such as

reducing the ambiguity that usually comes with using informal language to specify systems or its

various aspects. It also minimized the duplication of content that tends to accumulate in a

document-based system engineering approach.

43

Proper adoption of a MBSE approach also includes the selection of modeling language

and modeling tool. Considerations when selecting the modeling language and tool was overhead

incurred from training the team, the technical overhead of setting up modelling tools, and future

adaptability. Refer to Table 2.1 for modelling language down selection overview. In addition, it

was eventually decided to adopt a docs-as-code approach to further enhance the MBSE approach

to achieve the listed criteria shown above.

4.1 – DATA STRUCTURES

User stories once identified will then lead to design decisions captured in data structures

and activity definitions. These data structures are the data that would transmitted back and forth

between ground station operator and CubeSat. Data structure YAML files are stored in ‘3-

DataStructures’ folder shown in Figure 3.1. Each data structure YAML has name, purpose,

template, elements, and derived from elements as shown in Figure 4.2 as an example. Name and

purpose are for identification and stated use case. Template lists out all the elements that are

called out via their identifying key. Elements detail the specific values as part of the data

structure; each element has their own identifying information and descriptions. The derived

from field is used to tie back the data structure to a user story YAML file should it be applicable.

Table 4.1 is a table generated from the YAML file shown in Figure 4.2 for documentation

purposes. Figure 4.1 details the file structure under the 3-DataStructures’ folder.

As shown in Figure 4.2, the data structure, with YAML file named ‘1-

SatelliteHealth.yaml’ is for determining the satellite’s health. This data would be transmitted

with the beacon data to be received by the ground station operator. Note that this data structure

is derived from the user stories 2 and 4.1 described in the prior chapter. These user stories detail

the ground station operator’s tasks to view the satellite beacon data and to request satellite health

44

data packet so that operator can verify that AODS sensors & GPS data are within nominal

parameters. Table 4.1 details the various fields that would be required in this beacon data packet

to accomplish the aforementioned tasks.

Table 4.1. Satellite health data packet tabulated from 1-SatelliteHealth.yaml

Field Type Item

Type

Description

call_sign string Identifying call sign for the Sealion mission.

battery_health float Percent value indicating the remaining charge of

the batteries.

temperature_battery float The temperature of the battery. Units in Kelvin.

mode integer Integer value indicating current mission mode. 0

= Safe, 1 = mission mode 1, 2 = mission mode 2,

3 = mission mode 3.

state_vector ECIStateVector ECI state vector from orbit propagator at time of

beacon.

Figure 4.1: Data structures YAML file structure

architecture

0-References

1-StakeholderNeeds

2-UserStories

3-DataStructures

1-SatelliteHealth.yaml

2-AODSGPSData.yaml

3-AODSSensorData.yaml

4-TLE.yaml

5-MissionData.yaml

45

Figure 4.2: 1-SatelliteHealth.yaml

 The data structure for the GPS data of SeaLion, is shown in the ‘2-AODSGPSData.yaml’

file given in Figure 4.3. Note that there isn’t a user story where this data structure is derived

from, however, the data is still important for the basic task of determining orbit propagation

which is a basic task of the satellite. Table 4.2 details the various fields that would be required in

this beacon data packet to accomplish the aforementioned task.

46

Table 4.2: Satellite GPS data tabulated from 2-AODSGPSData.yaml

Field Type Item

Type

Description

time_stamp string Time stamp when GPS data was acquired.

altitude_data_GPS float The altitude data of the satellite from GPS.

latitude_GPS float Latitude coordinate of the satellite from GPS.

longitude_GPS float Longitude coordinate of the satellite from GPS.

Figure 4.3: 2-AODSGPSData.yaml

47

The data structure for the AODS sensor data of SeaLion, is shown in the ‘3-

AODSSensorData.yaml’ file with an excerpt given in Figure 4.4. Note that this data structure is

derived from the User Story to 4.2 described in the prior chapter. This user story details the

ground station operator’s task to request satellite mission data so that the operator can validate

in-orbit AODS and payload performance. Table 4.3 details the various fields that would be

required in this beacon data packet to accomplish the aforementioned task for the in-orbit AODS

specifically.

48

Figure 4.4: Excerpt of the 3-AODSSensorData.yaml

49

Table 4.3: AODS sensor data tabulated from 3-AODSSensorData.yaml

Field Type
Item

Type
Description

imu_gyro_x float

The angular rate of the body with to

respective to the x-axis in the IMU’s

reference frame.

imu_gyro_y float
The angular rate of the body with to respective

to the y-axis in the IMU’s reference frame.

imu_gyro_z float
The angular rate of the body with to respective

to the z-axis in the IMU’s reference frame.

imu_magnetometer_x float
The magnetic field strength with respective to

the x-axis in the IMU’s reference frame.

imu_magnetometer_y float
The magnetic field strength with respective to

the y-axis in the IMU’s reference frame.

imu_magnetometer_z float
The magnetic field strength with respective to

the z-axis in the IMU’s reference frame.

sun_sensor_pitch_pos float
Sun sensor measurement with respect to

positive pitch angle.

sun_sensor_pitch_neg float
Sun sensor measurement with respect to

negative pitch angle.

sun_sensor_yaw_pos float
Sun sensor measurement with respect to

positive yaw angle.

sun_sensor_yaw_neg float
Sun sensor measurement with respect to

negative yaw angle.

sun_sensor_roll_pos float
Sun sensor measurement with respect to

positive roll angle.

sun_sensor_roll_neg float
Sun sensor measurement with respect to

negative roll angle.

time_stamp string Time stamp of the last transmission.

The data structure for the earth-centered inertial (ECI) state vector of SeaLion, is shown

in the ‘4-TLE.yaml’ file given in Figure 4.5. Note that this data structure is derived from the

User Story 4.2 described in the prior chapter. This user story detail the ground station operator’s

task to request satellite mission data so that the operator can validate in-orbit AODS and payload

performance. Table 4.4 details the various fields that would be required in this beacon data

packet to accomplish the aforementioned task.

50

Table 4.4: ECI state vector data tabulated from 4-TLE.yaml

Field Type Item Type Description

x integer position in kilometers (km) along x-axis

y integer position in kilometers (km) along y-axis

z integer position in kilometers (km) along z-axis

xd integer velocity in kilometers per second (km/s) along x-axis

yd integer velocity in kilometers per second (km/s) along y-axis

zd integer velocity in kilometers per second (km/s) along z-axis

Figure 4.5: 4-TLE.yaml

51

The data structure for the mission or event (EVR) data of SeaLion, is shown in the ‘5-

MissionData.yaml’ file given in Figure 4.6. Note that this data structure is derived from the user

stories 2 and 4.2 described in the prior chapter. These user stories detail the ground station

operator’s tasks to view the satellite beacon data and to request satellite mission data so that the

operator can validate in-orbit AODS and payload performance. Table 4.5 details the various

fields that would be required in this beacon data packet to accomplish the aforementioned task

for the payload performance specifically.

Figure 4.6: 5-MissionData.yaml

52

Table 4.5: Mission data tabulated from 5-MissionData.yaml

Field Type
Item

Type
Description

entry_tle ECIStateVector
ECIStateVector at time of beginning of mission

mode

obc_sensors AODSSensorData AODS Sensor data

mission_data string Data recorded during mission mode

exit_tle ECIStateVector ECIStateVector at time of end of mission mode

Figure 4.7 is a UML diagram of mapping of user stories to data structures generated from

the YAML files shown in Figure 4.1. The generation of this diagram and the tables via the

YAML files presented herein showcases the docs-as-code approach. YAML files structured as a

code are then converted into easily human readable documents for presentation.

53

Figure 4.7: UML diagram of mapping of user stories to their derived data structures

4.2 – DOCUMENT GENERATION

As noted multiple times throughout this thesis, there have been a number of figures and

tables generated from the YAML files placed within the SeaLion mission architecture GitHub

repository. Many of the figures are UML diagrams that are auto-generated artifacts rendered

from the M30ML modeling language and formatted using the Liquid template language. This is

the link for the docs-as-code approach. YAML code files are used to generate documents for

information sharing between group members. This means that any changes made to the SeaLion

mission architecture model can immediately be used to generate new documents. Whether it be

diagrams, tables, or text, continuous updating is ensured that any changes affecting dependencies

within the mission architecture are kept in sync. Appendix A is provided to showcase the entire

54

SeaLion mission architecture in its generated document form [41]. Appendix A is the latest main

branch version of the architecture at time of this thesis’ publication. The conference proceeding

manuscript presented in AIAA SciTech 2023 was also created purely by a docs-as-code format

[13]. The team used a LaTeX template to automatically format the manuscript to the conference

guidelines and subsequently inject items such as the generated diagrams, tables, and references

directly into the manuscript.

4.3 – SOFTWARE DEVELOPMENT WORKFLOW

The purpose of much of this documentation that is generated is guide flight software

development for the SeaLion mission. The SeaLion uses these YAML files from the SeaLion

mission architecture repository [32] and the generated documentation to form the basis of

required tasks. At the time of this thesis’ publication, software is being developed on a private

GitHub repository. Shown in Figure 4.8 is the issues tracker of this repository as well as issue

#24 shown at the top of Figure 4.9 in Figure 4.8. Figure 4.9 is pulled directly from the mission

architecture developed and guides the software development in the repository.

Figure 4.8: Excerpt of issues (tasks) of the flight software GitHub repository

55

Figure 4.9: Issue #24 – Create the structure for Satellite Mission Data

56

4.4 – DISTRIBUTED OSHW FRAMEWORK

A brief description of current component implementation into the SeaLion model is

provided. The M30ML pillars are based on Open Source Hardware (OSHW) principals [26].

The current SeaLion mission architecture repository, at time of thesis publication, for

components is “structured as a Distributed OSHW Framework (DOF) – component for defining

the contents of the Mission concept of operations (ConOps) as a collection of nested

subcomponents, component interfaces, and component functions for generating bill of materials

(BOMs) and assembly instructions for the SeaLion CubeSat” [32].

 Inside the components folder of the SeaLion mission architecture repository there are

two subfolders; one labeled with ‘sealion-cubesat’ and another labeled with ‘sealion-ground-

station’. Each of those folders would contain a components folder and subsequently those

individual labeled components can have their own components folder. Thus, a chain of

components and subcomponents can be created as illustrated in Figure 4.10. A parts YAML file

in each components folder details what the subcomponents would be. An excerpt example for

the main SeaLion CubeSat is provided in Figure 4.11 that is associated with the file folders

shown in Figure 4.10.

57

Figure 4.10: Components file folder structure excerpt example for sealion-cubesat

Figure 4.11: Example excerpt of the parts YAML file for sealion-cubesat

components

sealion-cubesat components

sealion-antenna components

sealion-aods-
sensors

components

sealion-board-
assembly

components

sealion-cga-
payload

components

sealion-odu-
payload

components

sealion-structure components

sealion-ground-
station

58

4.5 – COMPONENT DATA STRUCTURE AND DOCUMENT GENERATION

A series of YAML files for components have been created. Figure 4.11 showcases the parts

YAML file, however, parts is only one element of the component’s data structure thus far.

Showcased in Table 4.6 is the entire component data structure from the SeaLion DOF templates

[40]. There are several component data structures prepared that may be used for a variety of

purposes. The SeaLion DOF templates document have been generated in the DOF repository

[42]. This document has been provided in Appendix B as the latest version at time of this thesis’

publication. The data structures created are as follows:

• Component: Represents the smallest logical element in an OSHW project. A Component

may be a project in its own right (with a sub-component hierarchy) or may be nested as a

sub-component in the "source" of another component.

• Component List Item: Identifies a part or tool used in the fabrication of the component.

Parts and tools are defined by their source material in the components list.

• Activity Step: Defines a single step in an activity, e.g., assembly instructions.

• Parameter: Defines a data structure for an input or output of a component function.

• Function: Defines a data structure for a component function.

• Interface List Item: Identifies an interface on a part or tool.

For the purposes of this architecture structure. An interface is a point on a component where

it can join up with other components. For example, it could be a USB plug port or electrical wall

outlet. In comparison a junction is the action of joining two interfaces together. For example, a

USB flash drive with a USB male end is plugged into a USB female port on a computer. The act

of plugging the flash drive into the computer is the junction. The two interfaces are the USB

59

male end and the USB female port which are used to join two components of both the flash drive

and the computer.

Table 4.6. Component data structure

Field Type Item Type Description

name string

Source representation of the component’s name.

Format = single word, only lowercase letters, and

may contain hyphens and underscores.

version string Version number of the component’s source. Format =

x.x.x per semantic versioning guidelines.

description string Human readable representation of the component’s

name. Typically used in rendered documentation

referencing the component.

license string List of licenses used within the component’s source.

Format = SPDX license expression.

author string Identifies author (e.g., owner of source intellectual

property). Format (email and website are optional) =

Author Name <email address> (website URL)

dependencies dictionary string Per NPM/Yarn. Key = dependency name. Value =

Semantic versioning version string.

components dictionary Component Listing of sub-components directly owned by this

component. Key = sub-component’s name. Value =

sub-component’s data structure.

parts dictionary Component

List Item

Listing of the component’s parts (and substitutions)

defined as sub-components. Key = part’s id. Value =

part’s key data.

functions list Function Listing of component functions.

tools dictionary Component

List Item

Listing of the required tools (and substitutions)

defined as sub-components. Key = tool’s id. Value =

tool’s key data.

precautions list string Listing of caution statements (e.g., safety warnings)

for the component.

assemblySteps list Activity

Step

Sequence of steps required to assemble the

component.

 The initial intent is to list the components of the SeaLion CubeSat and to generate

assembly steps for them. Thus, at minimum the major subfolders seen in Figure 4.10 should

60

have component subfolders and a ‘parts.yaml’ file seen in Figure 4.11 and possibly a

‘tools.yaml’ file should it be required for assembly. See Figure 4.12 for an illustrative example

for the ‘sealion-structure’ components folder. With the components under ‘sealion-structure’

and listed out in the ‘parts.yaml’ file as well as the ‘tools.yaml’ file, assembly instructions can be

generated. This is done by reading the ‘assemblySteps.yaml’ file that references the parts and

tools. These YAML files are shown in Figure 4.13, Figure 4.14, and Figure 4.15 respectively.

Figure 4.12: Sealion-structure folder structure

sealion-cubesat components sealion-structure

components

parts.yaml

tools.yaml

assemblySteps.yaml

package.json

61

Figure 4.13: Excerpt from 'parts.yaml' file in ‘sealion-structure’ folder

Figure 4.14: Excerpt from 'tools.yaml' file in ‘sealion-structure’ folder

62

Figure 4.15: Excerpt from 'assemblySteps.yaml' file in ‘sealion-structure’ folder

Appendix C provides example assembly instructions for the SeaLion CubeSat structure.

These assembly instructions have also been generated through the SeaLion mission architecture

repository much akin to Appendix A. Thus, it creates an easily human readable document from

the YAML files code as per the docs-as-code approach.

Eventually, the purpose of all these component data structures is to also create an N2

diagram. An N2 diagram is used to “is used to capture the interfaces, mechanical and electrical,

for all components of the satellite obtained through the mapping process” [12]. An example has

been provided in Figure 4.16. The end state is that the architecture would use interfaces and

junctions within the YAML files code to automatically generate an N2 diagram. Thus, it allows

for continuous updating that ensures that any changes affecting dependencies within the mission

architecture are kept in sync. This would allow for a team to easily identify “areas where

conflicts could arise in interfaces, and highlights input and output dependency assumptions and

requirements” [12]. Thus, leading to higher efficacy in planning the development and assembly

of the satellite.

63

Figure 4.16: Example N2 diagram [12]

64

CHAPTER 5 – CONCLUSION AND FUTURE SCOPE

There were many lessons learned during the work to implement this MBSE methodology

with a doc-as-code approach. With the ODU SeaLion team comprising mainly of students of

various background and obligations, communication was a definite issue moving forward in the

implementation of this approach. Many of the team members were unavailable due to focusing

in on their own specific tasks for SeaLion or obligations beyond the SeaLion project. This

showed considerably when compiling the SeaLion component architectures detailed in chapter 4.

Many of the subject matter experts were unavailable to meet frequently enough to give details on

the components of the CubeSat. Thus, much of the component architecture remains unfinished

and many of the team members have yet to interact with the architecture apart from just viewing

the generated documents. However, this understandable given that other university obligations

take priority and are considerably time consuming. It is to be expected that issues may arise in

scheduling of information transfer.

In addition, there were issues with decisions being made before proper MBSE

methodologies could come into effect. Components were chosen and design decisions made on

a rather frequent basis and were not communicated to the mission architecture team. This caused

a disconnect with the actual SeaLion CubeSat prototype and the documented mission

architecture at times since the mission architecture team may be unaware of a change until well

after it was made. It is only recently that strides have been made to complete the components

architecture due to this.

The author suggests that going forward on future projects, effort should be made that

systems engineering approaches be conducted prior to any major design decisions or physical

work is done. The team should also communicate clearly any decisions made so that other team

65

members are aware. If using the docs-as-code approach, individual members should update the

architecture to reflect these decisions so other members can immediately view the changes as

well as any commit history. All individual members should be trained on this approach prior to

significant work on the project beginning.

5.1 – CONCLUSION

A MBSE with docs-as-code approach was applied to the SeaLion CubeSat project. This

was done in efforts to reduce the friction and disconnect associated with traditional systems

engineering for the CubeSat developers. Especially today when CubeSat projects are growing

more numerous and with many of their respective team members being new to space systems

development. It has accomplished the ability to create individual elements of the architecture in

an easily human readable code that is also easy to revise. Even for those who are unfamiliar with

coding software or methods. Thus, minimal training is required for usage. It also generates

documents locally without the use of any external document tools for presentation with just the

information stored in the YAML files. The overall methods to use a docs-as-code approach have

been established.

As shown herein, references, stakeholder needs, user stories, and data structures have

been established in SeaLion’s architecture. With these, a tight coupling of the in-development

flight software and the current architecture documentation can be established. The methods

described herein to take a docs-as-code approach can be used to base future developments within

the greater CubeSat community.

66

5.2 – FUTURE WORK

Future work includes further expanding the components described in sections 4.4 and 4.5.

Other immediate actions include updating the architecture to the very recently changed mission

requirements of the new launch parameters for the Firefly rocket. At minimum, with the now

planned orbit being significantly higher, considerations to operational lifespan are required.

Afterwards, the validation of the docs-as-code approach will be tested with the upcoming launch

of SeaLion later this year. Should this be successful, further expansion of potential projects and

users of this approach using the M30ML modeling language will be explored.

67

REFERENCES

[1] The CubeSat Program, Cal Poly SLO, "CubeSat Design Specification Rev. 14," 2022.

[Online]. Available: https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf.

[2] H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka and R. J. Twiggs, "CubeSat - A new

generation of picosatellite for education and industry low-cost space experimentation,"

AIAA/USU Annual Conference on Small Satellites, 12th, Utah State University, Logan;

UNITED STATES; 21-24 Aug.2000, 2000.

[3] M. Swartwout, "CubeSat Database," 2021. [Online]. Available:

https://sites.google.com/a/slu.edu/swartwout/cubesat-database.

[4] CubeSat Shop, "Pumpkin CubeSat Kits," [Online]. Available:

https://www.cubesatshop.com/product/pumpkin-cubesat-kits/. [Accessed 16 March

2023].

[5] C. Cappelletti, S. Battistini and B. Malphrus, Cubesat handbook : From mission design

to operations, Elsevier Science & Technology, 2020.

[6] M. Swartwout, "Reliving 24 Years in the Next 12 Minutes: A Statistical and Personal

History of University-Class Satellites," 2018. [Online]. Available:

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4277&context=smallsat.

[7] J. Praks, A. Kestilä, T. Tikka, O. H. Leppinen, Khurshid and M. Hallikainen, "AALTO-1

earth observation cubesat mission — Educational outcomes," in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015.

[8] L. Berthoud and M. Schenk, "How to Set Up a CubeSat Project – Preliminary Survey

Results," in 30th Annual AIAA/USU Conference on Small Satellites, 2016.

[9] Old Dominion University & United States Coast Guard Academy, Critical Design

Review: Mission SeaLion - ODU/CGA 3U CubeSat, 2022.

[10] S. Friedenthal and C. Oster, Architecting spacecraft with SysML: A Model-based

Systems Engineering Approach, CreateSpace Independent Publishing Platform, 2017.

[11] NASA, "NASA System Engineering Handbook," 2016. [Online]. Available:

https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handboo

k_0.pdf.

[12] S. A. Asundi and N. G. Fitz-Coy, "CubeSat mission design based on a systems

engineering approach," in 2013 IEEE Aerospace Conference, 2013.

68

[13] S. Marquez, K. Chiu and S. Asundi, "Model-Based CubeSat Flight-Software

Architecture using a Docs-as-Code approach," 19 January 2023. [Online]. Available:

https://arc.aiaa.org/doi/10.2514/6.2023-1126.

[14] D. Wagner, S. Y. Kim, A. Jimenez, M. Elaasar, S. Jenkinis and N. Rouquette,

"CAESAR Model-Based Approach to Harness Design," Proceedings of IEEE Aerospace

Conference, 2020.

[15] B. Brown, "Model-based systems engineering: Revolution or evolution?," IBM Rational,

2021.

[16] D. R. Call and D. R. Herber, "Applicability of the diffusion of innovation theory to

accelerate model-based systems engineering adoption," Systems Engineering, vol. 25,

no. 6, pp. 535-617, November 2022.

[17] P. J. Younse, J. E. Cameron and T. H. Bradley, "Comparative Analysis of Model-Based

and Traditional Systems Engineering Approaches for Architecting a Robotic Space

System Through Automatic Information Transfer," IEEE Access, vol. 9, pp. 107476-

107492, 2021.

[18] S. Mazzini, E. Tronci, C. Paccagnini and X. Olive, "A Model-Based methodology to

support the Space System Engineering (MBSSE)," in ERTS2 2010, Embedded Real Time

Software & Systems, Toulouse, France, 2010.

[19] ESA, "Model-based system engineering," 28 June 2022. [Online]. Available:

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Prepar

ation/Model-based_system_engineering.

[20] D. Nottage and S. Corns, "Application of model-based systems engineering on a

university satellite design team," Procedia Computer Science, vol. 8, pp. 207-213, 2012.

[21] D. Kaslow, B. Ayres, P. T. Cahill, L. Hart and R. Yntema, "Developing a CubeSat

Model-Based System Engineering (MBSE) reference model — Interim status #3," in

2017 IEEE Aerospace Conference, Big Sky, MT, USA, 2017.

[22] E. Holscher, "Docs as Code," 2022. [Online]. Available:

https://www.writethedocs.org/guide/docs-as-code/.

[23] "Structurizr Software architecture models as code," Structurizr, 2023. [Online].

Available: https://structurizr.org/.

[24] California Institute of Technology., "F' Flight Software & Embedded Systems

Framework," 2020. [Online]. Available: https://nasa.github.io/fprime/.

69

[25] R. L. Bocchino, J. W. Levison and M. D. Starch, "FPP: A Modeling Language for F

Prime," in 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 2022.

[26] J. Simmons, "Mach30 Modeling Language," Mach30 Foundation, 2022. [Online].

Available: https://github.com/Mach30/m30ml.

[27] SysML Partners, "SysML Specifications," [Online]. Available: https://sysml.org/sysml-

specs/.

[28] SysML v2 Submission Team, "SysML-v2-Release," [Online]. Available:

https://github.com/Systems-Modeling/SysML-v2-Release.

[29] PlantUML, "PlantUML," [Online]. Available: https://plantuml.com/.

[30] M. Elaasar and N. Rouquette, "Ontological Modeling Language: Origin and Rationale,"

2022. [Online]. Available: http://www.opencaesar.io/oml/.

[31] S. Jenkinis, "Ontological Modeling Language 1.4," 2022. [Online]. Available:

http://www.opencaesar.io/imce/2021/06/19/OML-Origin-and-Rationale.html.

[32] Old Dominion University, "SeaLion Mission Architecture GitHub," GitHub, 2022.

[Online]. Available: https://github.com/ODU-CGA-CubeSat/sealion-mission-

architecture.

[33] W. A. Beech, D. E. Nielsen and J. Taylor, "AX.25 Link Access Protocol for Amateur

Packet Radio," Tucson Amateur Packet Radio Corporation, July 1998. [Online].

Available: http://www.tapr.org/pdf/AX25.2.2.pdf.

[34] "Canisterized Satellite Dispenser Payload Specification for 3U, 6U & 12U," Rocket Lab

USA, August 2018. [Online]. Available:

https://www.rocketlabusa.com/assets/Uploads/PSC/Rocket%20Lab%20PSC%20-%2020

02367F%20Payload%20Spec%20for%203U%206U%2012U.pdf.

[35] "Canisterized Satellite Dispenser," Rocket Lab USA, August 2018. [Online]. Available:

https://www.rocketlabusa.com/assets/Uploads/PSC/Rocket%20Lab%20PSC%20-%2020

02337F%20CSD%20Data%20Sheet.pdf.

[36] "Is My Satellite ITAR or EAR?," MIT, [Online]. Available:

https://research.mit.edu/integrity-and-compliance/export-control/information-

documents/my-satellite-itar-or-ear.

[37] P. Fortescue, G. Swinerd and J. Stark, Spacecraft Systems Engineering, 4th Edition,

Wiley, 2011.

70

[38] B. Dunbar and S. Caldwell, "State-of-the-Art of Small Spacecraft Technology," NASA,

March 2023. [Online]. Available: https://www.nasa.gov/smallsat-institute/sst-soa-2020.

[39] T. S. Kelso, "NORAD Two-Line Element Set Format," CelesTrak, July 2022. [Online].

Available: https://celestrak.org/NORAD/documentation/tle-fmt.php.

[40] Old Dominion University, "Distributed OSHW Framework (DOF)," GitHub, 2023.

[Online]. Available: https://odu-cga-cubesat.github.io/dof-cubesat/.

[41] Old Dominion University, "SeaLion Mission Architecture," 2023. [Online]. Available:

https://odu-cga-cubesat.github.io/sealion-mission-architecture/.

[42] Old Dominion University, "dof-cubesat," 2023. [Online]. Available:

https://github.com/ODU-CGA-CubeSat/dof-cubesat.

71

APPENDICES

72

A. SEALION MISSION ARCHITECTURE GENERATED DOCUMENT

73

74

75

76

77

78

79

80

81

82

83

84

85

86

B. SEALION DOF GENERATED DOCUMENT

87

88

89

90

91

92

93

94

95

96

C. SEALION ASSEMBLY INSTRUCTIONS GENERATED DOCUMENT

97

98

99

VITA

 Kevin Yi-Tzu Chiu was born in Akron, Ohio in 1995. During his childhood, he always

dreamed of working within the aerospace industry especially after watching numerous launches

from Kennedy Space Center during his time in Florida. He attended the University of

Massachusetts Amherst in 2013 where he received his Bachelor of Science in mechanical

engineering in May, 2017. Afterwards, he moved to Virginia to become a mechanical engineer

at Newport News Shipbuilding. From here, he was to enter Old Dominion University as part of

the Master of Science program in aerospace engineering. Becoming interested in space systems,

he contacted Dr. Sharan Asundi to conduct research and subsequently became part of the

SeaLion CubeSat project.

	SeaLion CubeSat Mission Architecture Using Model Based Systems Engineering with a Docs as Code Approach
	Recommended Citation

	tmp.1687888677.pdf.Rx7I6

