Old Dominion University

ODU Digital Commons

OES Theses and Dissertations

Ocean & Earth Sciences

1991

A Geophysical and Geological Study of the Farmville Triassic **Basin**

Charles G. James Jr. Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds

Part of the Geology Commons, and the Geophysics and Seismology Commons

Recommended Citation

James, Charles G.. "A Geophysical and Geological Study of the Farmville Triassic Basin" (1991). Master of Science (MS), Thesis, Ocean & Earth Sciences, Old Dominion University, DOI: 10.25777/sc6s-m109 https://digitalcommons.odu.edu/oeas_etds/351

This Thesis is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

A GEOPHYSICAL AND GEOLOGICAL

STUDY OF

THE FARMVILLE TRIASSIC BASIN

by

Charles G. James Jr. B.S. August 1984, Old Dominion University

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of The Requirement For The Degree of

MASTER OF SCIENCE

GEOLOGY

OLD DOMINION UNIVERSITY

1991

Approved by:

Ali A.	Nowroozi	(Advisor)	
Ramesh	<u>Yenkatakı</u>	cis x hạn	
Stanle	y S. Jøhns	son	

ABSTRACT

The Farmville basin is one of many Triassic basins which are found along the eastern coast of North America, and is the largest of the central string of basins in Virginia. Metavolcanic and metasedimentary rocks of the Chopawamsic Formation, as well as felsic intrusives are the primary lithologies surrounding the basin. A detailed gravity survey was conducted along six roads that trend approximately NW-SE, Geologic, gravity, magnetic, and radioacross the basin. metric data were used to develop a kinematic model. Gravity anomalies were isolated using two-dimensional harmonic analysis methods to isolate the local, and regional anomalies. This analysis indicates that all the gravity anomalies are a result of structures that lie within the upper 8 kilometers of Results of gravity modelling indicate that the basin is a fault controlled half-graben with an east dipping border fault, and that the basin is relatively shallow. depth of the basin, occurs along State Road 636, and is less than 1 kilometer. Modelling further suggests that the deepest portion of the basin is opposite the border fault, and is a result of the master (primary) fault laying underneath the basin rocks. In addition to the kinematic model, this study provides evidence of unique geologic features, such as a diabase/granophyre dike that has a maximum width of 688 meters.

Acknowledgements

I would like to extend special thanks to my thesis Ali Nowroozi, Old Dominion University, committee. Dr. provided me with a solid background in geophysics by pushing me beyond what I expected from myself. It was his commitment to me and his profession that enabled me to develop and analyze the geophysical data presented in this study. Ramesh Venkatakrishnan, Golder Associates/Old University, is responsible for my understanding of structural geology and geotectonics, and is the reason I became a geologist. His knowledge of every field of geology, gave me the insight to bring all the little pieces together and reconstruct the past events. Stanley S. Johnson, Virginia Division Of Mineral Resources, gave me insight on how to combine geophysics and geology to reconstruct a geologic event. He also provided me with geophysical equipment that allowed me to finish my field work. I am eternally grateful to Mark Corbin, Brett Waller, Bill Decker, Andy Watkins, Tammy Hill Warden, Tom Fekete, Charles James Sr., and Kim James for their help in the field during the 100 degree days of summer and the freezing conditions of winter. An extended thanks should be given to Mark Corbin and Brett Waller for their insight and help during the course of this study. can express my thanks to Bill Decker, for all the programs he

developed that aided me in the analysis of my geologic data.

I also want to thank the Department of Geology, at Old

Dominion University for its support during my graduate career.

I want to thank my family for their support. Without the support of my family I would have never gone back to graduate school. To my mom, dad, and brother, Dixie, Charles, and Bruce James, thank you for giving me the love, courage, and support to finish my thesis. To Joyce and Jake James, my Aunt and Uncle, who gave me a place to live, and treated me like a son, I will always love you for your selfless act, and support. To my grandma and grandpa, Margaret and Bruce Thomson, thank you for your love, and moral/monetary support. To my wife, Kim James, thank you for your patience, love and support during the course of my graduate school.

Finally, I am dedicating this thesis to my two grandfathers, Bruce Thomson and Hatcher James, who passed away before the completion of my thesis.

TABLE OF CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	x
CHAPTER	
1. INTRODUCTION	1
OBJECTIVES	2
2. METHODS OF INVESTIGATION	4
DATA COLLECTION	4
Geophysical	6
Geological	9
DATA ANALYSIS	11
Reduction Programs	11
Analysis Programs	12
3. GEOLOGY AND GEOPHYSICS	17
PREVIOUS WORK	17
STRATIGRAPHY	20
Chopawamsic Formation	20
"Granitic" Gneiss Undifferinated	23
Arvonia Formation	24

Newark Supergroup	25
Dikes	27
GEOLOGICAL DATA	28
Folds	28
Foliation	28
Bedding	30
Joints	30
Rectified Stream Patterns	32
GEOPHYSICAL DATA	34
Gravity	34
Magnetic	34
Radiometric	36
PRECURSORY GEOLOGIC INTERPRETATION	36
Regional	36
Local	42
SUMMARY	48
4. GRAVITY MODELLING	49
U.S. HIGHWAY 460E	52
STATE ROAD 637	54
STATE ROAD 636	56
STATE ROAD 634	58
U.S. HIGHWAY 60	60
STATE ROAD 622	60
SUMMARY	62
5. INTERPRETATION	65
PREEXISTING THEORIES	65

STRUCTURAL GRAIN	66
FAULT REACTIVATION	67
STRUCTURAL MODEL	68
6. KINEMATIC MODEL	78
ALLEGHENIAN OROGENY	78
BASIN FORMATION	79
JURASSIC	81
POST-JURASSIC	82
COMPARISON AND CONTRAST	83
7. CONCLUSIONS	86
REFERENCES	88
APPENDICES	
I-A. Discussion Of GRAVAS FORTRAN	94
I-B. Discussion Of STATION FORTRAN	109
I-C. Comparison Of UPDW/UDD Algorithms	111
I-D. Analysis Of GRAVMOD FORTRAN	149
I-E. Analysis Of QUAD BAS	157
I-F. Discussion Of Remaining Programs	165
II. Listing of Gravity Data	173
III Listing Of Geologic Data	123

vii

LISTING OF TABLES

Tabl	e	Page
1.	Calculated Elevation Errors Of Surveyed Roads	8
2.	Stratigraphic Column Of Study Area	19
3.	Geophysical Characteristics Of Lithologies	
	In The Study Area	21
4.	Lithologies And Densities Used in Modelling	50

viii

LISTING OF FIGURES

Figu	re	Page
1.	State Map Of Virginia	3
2.	Reference Map Of The Study Area	5
3.	Stereo Plot Of Poles To Foliation	29
4.	Stereo Plot Of Poles To Bedding	31
5.	Stereo Plot Of Poles To Joints	33
6.	Stream Trend Analysis	35
7.	Bouguer Gravity Field At +0.64 Kilometers	37
8.	Bouguer Gravity Field At 2.89 Kilometers	39
9.	Bouguer Gravity Field At 8.00 Kilometers	41
10.	Lithologic Map Based On Gravity Field At +0.64 .	43
11.	Second Vertical Derivative Gravity Map	46
12.	Gravity Model Of Profile U.S. Highway 460E	53
13.	Gravity Model Of Profile State Road 637	55
14.	Gravity Model Of Profile State Road 636	57
15.	Gravity Model Of Profile State Road 634	59
16.	Gravity Model Of Profile U.S. Highway 60	61
17.	Gravity Model Of Profile State Road 622	63
18.	Structrual Model Of The Farmville Basin	69
19.	Idealized Model Of Basin With Single Fault	73
20.	Idealized Model Of Basin With Multiple Faults-1.	75
21.	Idealized Model Of Basin With Multiple Faults-2.	77
22.	Kinematic Model Of The Farmville Basin	80

23.	Contour Plot Of Gravity Values Over A Sphere	112
24.	Second Derivative Plot Of Spherical Data-UDD	114
25.	Second Derivative Plot Of Spherical Data-UPDW	116
26.	Contour Plot Of Tasubi (1959) Data	118
27.	+15.9 KM Continuation Of Tasubi (1959) Data	120

LISTING OF PLATES

	Plate
Gravity Map	1
Aeromagnetic Map	2
Aeroradiometric Map	3
Geologic Map	4
Linament Map	5

CHAPTER 1

INTRODUCTION

Early Mesozoic sediments were deposited in a series of fault bounded troughs, during the breakup of Pangea. The sediments deposited in the Mesozoic age troughs on the east coast of North America are considered part of the Newark Supergroup (Cornet, 1977). Current and past geological and geophysical surveys and studies have been made of the Mesozoic Several theories explaining the origin of age troughs. Mesozoic age troughs or basins have been proposed by many authors (Russell, 1892; Lindholm, 1978; Ratcliffe and Burton, 1985; Swanson, 1986). The data used to develop and support the formation of smaller basins and/or troughs is based on the mechanisms from larger basins, such as the Newark-Gettysburg (Ratcliffe and Burton, 1985). That is why geologic and geophysical evidence from smaller Mesozoic basins is a necessity if existing "unifying" theories are to substantiated. "Unifying" theories, such as Lindholm (1978) or Ratcliffe and Burton (1985) imply that a particular sequence of geologic events or mechanisms controlled the formation of all eastern North American Mesozoic basins.

The Farmville Basin is exposed in Buckingham, Prince Edward, and Cumberland Counties, Virginia (Figure 1). The Farmville basin exceeds 43 kilometers in length, and has a

maximum width of 16 kilometers (Figure 2). This basin was chosen for a geological and geophysical study because of its size, and the limited number of detailed geologic and geophysical investigations in the area. Geologic mapping was conducted to obtain a general understanding of the lithologies and structures in the study area. The geophysical surveys provided data that was used to interpret the subsurface lithologic and structural relationships. In addition, the geophysical data was a tool for identifying surface lithologies. This was possible because lithologies in the area have unique gravity-magnetic-radiometric signatures.

This thesis has three primary objectives. The first objective is to define distinct geologic and geophysical features within the study area. To accomplish this objective detailed field mapping and gravity readings were performed along the roads (profiles) shown in Figure 2. The profiles were chosen to reveal the greatest structural information given the constraints of this study. The second objective of this study was to develop a kinematic model to explain the formation of the Farmville Basin. The kinematic model presented is based on field data gathered and analyzed during this well as information study, as from previous studies(Johnson and others, 1985; Marr, 1980a, 1981; Brown, 1969; Wilkes and Lasch, 1979). The final objective was to compare and contrast the kinematic model from this study with existing models.

Figure 1: This figure is the state map of Virginia.

The study area is located in the counties highlighted by letters. Counties found in the study area are: Prince Edward, Cumberland, and Buckingham. A more detailed view of the study area is given in Figure 2.

CHAPTER 2

METHODS OF INVESTIGATION

Conclusions of a study are directly affected by the methods used to collect and analyze pertinent Gravimetric and geologic field data was gathered during this investigation. After collecting all geophysical and geologic field data, information from a variety of sources was compiled (Marr 1980a, 1981; Brown, 1969; Virginia Division of Mineral Resources Farmville Aeromagnetic Map, 1970a; Virginia Division Of Mineral Resources Dillwyn Aeromagnetic Map, 1970; Virginia Division Of Mineral Resources Farmville Aeroradiometric Map, Virginia Division Of Mineral Resources Aeroradiometric Map, 1978). All information was analyzed using computer and manual techniques. A hypothesis was developed from these analyzes to explain the mechanisms behind the formation of the Farmville Basin. This chapter is divided into data collection and data analysis.

DATA COLLECTION

Established field techniques were used to collect geophysical and geological data. Because field techniques used to collect geophysical and geological data differ they are examined separately.

Figure 2: Shown is a detailed view of the counties in which study area is located. Gravity readings were taken on all roads shown on this map. The letters define the respective 7 1/2 minute quadrangles comprising the study area. The quadrangles comprising the study area are as follows: A: Farmville, B: Rice, C: Willis Mountain, D: Hillcrest, E: Dillwyn, and F: Gold Hill. The bold square within the Farmville quadrangle is the town of Farmville.

Note: State Road 637 does not cross the entire basin, as a result, surveying was conducted off road to connect State Road 637 with Highway 15.

Gravity Data

The field techniques used to collect gravimetric data followed the techniques established by Nettleton (1954). Gravimetric data was gathered along roads trending NW-SE across the basin (Figure 2). The NW-SE trend of the roads is perpendicular to regional geophysical and geologic trends minimizing the affects of regional trends on the local models. A total of 695 gravimetric readings were taken along roads crossing the Farmville Basin. The gravity readings were taken along U.S. Highways 460E and 60, and State Roads 637, 637, 634, and 622 (Figure 2). Each road was surveyed to establish the location and elevation of each gravimetric station. Station elevation was determined using a Geotec-Al automatic level and English Transit Rod. Stations were spaced 61 meters apart. To minimize surveying errors, foresight and backsight readings were taken for each station. readings corresponding to the top-middle-bottom cross-hairs of the level were taken for each sighting to determine station spacing. Sighting information was used in conjunction with contour maps to determine station locations. The terminus and beginning of each surveyed road had a benchmark with the exception of State Road 637. In addition, most of the roads had intermediate bench marks allowing errors to be determined for every station. The only exception is State Road 637 (Table 1).

Several benchmarks were available along State Road 637;

however, a benchmark was not available at the road terminus. The nearest benchmark in which to tie to this profile was 7 kilometers from the terminus of State Road 637. A spot elevation was used to end the line. As a result, the last 25 stations on State Road 637 could have a maximum error of +/-0.3 meters.

Latitude and longitude of gravimetric stations located on the topographic maps were determined using a Numonics 2400 series digitizer. The digitizer cursor was placed over each station and the latitude and longitude, in degrees, were written to an ASCII computer file. Gravity readings were taken at each station in the field, after the above steps.

A LaCoste-Romberg Model-G (#289) gravimeter was used to obtain the gravity measurements. The G-model gravimeter has a range of over 7000 milligals (mgal), a drift rate of less than 1 mgal/month, and a reading accuracy of +/- 0.01 (LaCoste-Romberg, 1978). A gravity reading was taken at the Farmville gravity base station, at the beginning and end of each day. This station was established by Johnson and Ziegler (1972). Using the closed loop technique, a reading was taken periodically at the first station of each loop. Gravimetric readings were reduced to Free Air and Bouguer anomalies using the program GRAVAS FORTRAN (Appendix I-A). The gravity readings from this study, in addition to the published data of Johnson and others (1985), were hand contoured (Plate 1). The

Table 1: Calculated elevation errors for the six roads surveyed.

ELEVATION ERRORS OF SURVEYED ROADS

ROAD SURVEYED	ELEVATION ERROR
U.S. HIGHWAY 460E	-0.14619 cm/station
STATE ROAD 637	+0.30400 m for line
STATE ROAD 636	+0.03056 cm/station
STATE ROAD 634	+0.01111 cm/station
U.S. HIGHWAY 60	+0.00 cm/station
STATE ROAD 622	-0.02586 cm/station

Note: Elevation for State Road 637 could not be calculated for each station because a benchmark was not available at the end of the road.

contour gravity map was digitized using the program DIGIT BAS (Decker, 1987) and contoured at an interval of 1 milligal (mgal) using the program CONTOUR SAS (Appendix II-A). Comparison of the hand drawn and computer generated contour maps showed no discernable differences. This ensured that the computer generated data is a close approximation of the actual gravity field, allowing the data to be used in computer analysis.

Magnetic And Radiometric Data

Magnetic and radiometric data presented in this study was taken from Virginia Division Of Mineral Resources Aeromagnetic 15-minute (Dillwyn, 1970; Farmville, 1970), Maps Aeroradiometric 15 minute Maps (Dillwyn, 1978; Farmville, 1978). Airborne maps were used instead of ground data because of the extremely erratic readings being obtained from the ground equipment. Both airborne surveys were flown at an altitude of 152 meters above ground level, and used a flight spacing of 0.8 kilometers. The flight lines were flown in an E-W direction. The aeromagnetic and areoradiometric maps are at 1:62,500 scale and are illustrated in Plates 2 and 3, respectively.

Geologic Data

Geologic maps and rectified stream data aided in the development of a kinematic model of the Farmville Basin.

Geologic data was collected during an eight week period in December, January, and February of 1987. The field mapping was done to distinguish different lithologies, to define the basin's margin, and to identify geologic trends (Plate 4). This data was used in determining correlations between geological and geophysical signatures. Field mapping was primarily conducted in streams that parallel the roads shown in Figure 2. The structural features measured included the strike and dip of foliation, bedding, and joints. In addition, lithologic information was recorded for each outcrop.

A rectified drainage map was constructed for the study area (Plate 5). Construction of this map was done to identify significant drainage trends, and to determine if they were geologically controlled. Procedures used in the stream analysis are as follows:

- Digitizing of permanent streams (blue line) in the Farmville, Willis Mountain, Hillcrest, Rice and Gold Hill 7.5 minute quadrangles.
- 2) Analysis of data using programs developed to isolate significant azimuthal drainage trends.

Digitization of the stream maps was done using the Numonics 2400 digitizer and the program DIGIT BAS (Decker, 1987). Streams were digitized in a upstream-downstream direction with each stream assigned an identification number. Using the program RECTIFY BAS (Decker, 1988), the digitized streams were divided into straight line segments if the next

stream point varied 5 degrees or more from the previous point.

DATA ANALYSIS

Geophysical and geological data was interpreted using a series of existing programs, and programs specifically developed during the course of this research. The interpreted information was correlated and a kinematic model was developed based on the data. Because the computer programs are crucial to interpretations presented in this study, their purpose and algorithms are explained in the following section.

Reduction Programs

Reduction programs, as defined in this study, are computer programs that perform repetitive corrections to raw data. STATION FORTRAN and GRAVAS FORTRAN are the two reductions programs used to correct the elevation and gravity data, respectively. STATION FORTRAN (I-B) converts station foresight and backsight level readings to elevations. In addition, the program calculates station spacing, total elevation change, and total elevation error for each station. Output from STATION FORTRAN was verified by comparing the program output with hand calculated values for State Road 622. The comparison indicated that STATION FORTRAN generated the correct values and thus was used in determining the same information for the remaining lines.

GRAVAS FORTRAN (I-A) converts dial readings of the

LaCoste Romberg gravity meter (Model G, #289) to Free Air and Bouquer anomalies. The program first converts gravimetric dial readings to observed gravity values. Observed gravity values are corrected for elevation and mass differences between stations. Observed gravity values are then corrected for solar and lunar fluctuations (tides), and instrumental drift. Finally, GRAVAS FORTRAN applies Free Air and Bouguer corrections to the observed data, resulting in the Free Air and Bouquer anomalies for each station. A comparison of the Bouquer anomalies from this study and data from Johnson and Ziegler (1972) was conducted to ensure the gravimeter was properly calibrated. A difference of + 0.02 milligals was determined between the Bouquer values of this study and the Bouquer value of Johnson and Ziegler (1972). The + 0.02 milligal difference remained constant for all the compared This comparison indicates the gravimeter was properly calibrated. The + 0.02 milligal difference between the Bouguer values is attributed to the settling of the base station.

Analysis Programs

Analysis programs, as defined in this study, simplify and group data so that interpretation of the information is possible. UPDW FORTRAN and GRAVMOD FORTRAN are the two analysis programs that were used to interpret the geophysical data. In addition, the programs QUAD BAS, and SNET (Decker,

1988) were used to aid in the analysis of the stream and structural data, respectively.

Two programs were reviewed to isolate regional and local gravimetric anomalies. An evaluation was conducted of each program to determine the best program, because of differences in the methods used to analyze the data. UPDW FORTRAN and UDD FORTRAN (Appendix I-C) use algorithms based on two dimensional harmonic analysis (Bhattacharayya, 1965), and coefficient averaging (Henderson, 1960), respectively. Both programs are able to calculate upward/downward continuation, and derivative values from potential field data. Each method has advantages and disadvantages; however, after thorough evaluation it was determined the two-dimensional harmonic analysis method was best suited for this study. A complete discussion of the evaluation is given in Appendix upward/downward continuation and second derivative map of the gravimetric data was produced using UPDW FORTRAN. The contour maps of the gravity data was produced to obtain evenly spaced gravity nodes. CONTOUR SAS (Appendix I-F) gridded the raw data, then produced a contour map from the data. After examining the contour maps for errors, the gridded data was analyzed using UPDW FORTRAN.

Slight differences exist between modules used to perform upward/downward continuation, and the nTH vertical derivative in UPDW FORTRAN. The theory and methodology of this method is given in Appendix I-C. Two tests were developed to verify

that output from UPDW FORTRAN was correct. Each test used the potential field data of Tasubi (1959).

First, the potential field data of Tasubi (1959) was continued upward +15.9 kilometers, using UPDW FORTRAN. The output generated by UPDW FORTRAN was contoured and compared to the hand calculated values of Tasubi (1959), Appendix I-C. The comparison showed that differences between the two maps is negligible. To test the nTH vertical derivative algorithm of UPDW FORTRAN, the 1st vertical derivative of Tasubi's data was calculated. The data was contoured and compared to the same map in Agarwal's dissertation (1968). The comparison showed little difference between the two maps. Both tests indicated the algorithms used in UPDW FORTRAN produced valid and usable output.

The GRAVMOD FORTRAN program (Appendix I-D) allows the user to create a two-dimensional model of the subsurface geology. The input data is based on surface lithologies and their associated densities. The underlying principle and theory of this program is based on methods developed by Talwani (1964, 1965). Talwani's method allow a geophysist to approximate subsurface geology by polygons of an assigned density. Further explanation of the theory and method are given in Appendix I-D. This program was checked by producing a simple polygonal model. The results of the test proved the program produced accurate results.

In order to analyze the rectified stream data, QUAD BAS

(Appendix I-E) was developed to isolate, and identify significant drainage trends within the area. The program's algorithm is based on a paper by Abdel-Rahman Hay (1978) that deals with sampling and statistical analysis of multimodal orientation data. In this paper, azimuthal trends are identified using randomly spaced circular sampling units call Significant trends are then determined using quadrats. Possoin's distribution. The algorithm was modified in order that the analysis of the data could be done with randomly spaced square quadrats. In addition, equally spaced circular or square quadrat analysis could be chosen with azimuthal trends and significant trends identified for each quadrat. Discussion of the theory involved in this type of analysis is continued in the Appendix I-E.

To help in the analysis of the structural data the program SNET (Decker, 1988) was used. This program projects structural data onto a stereo graphic net, either Wulff or Schmidt. Once projected onto the net the data is contoured, and T statistics can be performed. The program also includes a file and record maintenance option.

Graphing programs were developed to present the analyzed data in an understandable form. The majority of these programs are written in SAS, with the remainder of the graphical programs written in BASIC. These programs include MODEL SAS, TWOLINE SAS, and CONTOUR SAS. Listings of these programs are found in Appendix I-F along with a brief

discussion of the function of each program.

CHAPTER 3

GEOLOGY AND GEOPHYSICS

Current ideas for the formation of the Newark Supergroup rift basins all involve reactivation of Paleozoic age structures. The basin geometry is invariably controlled by the basement fabric (structural grain); however, little research has been done to understand the internal geometry and true three-dimensional shape of the basins'. This study attempts to develop new data that might be used in the evaluation of mechanisms responsible for the formation of the Newark Supergroup.

PREVIOUS WORK

The Farmville Basin is one of many Mesozoic age basins found in the eastern United States. It is the largest of five basins composing the central system of Mesozoic basins in Virginia (Johnson, 1981). The study area is located in the Gold Hill, Willis Mountain, Hillcrest, and Farmville quadrangles (Figure 2). Several geophysical studies and surveys were conducted within the area of study, including aeromagnetic (Virginia Division of Mineral Resources (VDMR), 1970; 15-minute Farmville and Dillwyn maps), aeroradiometric (VDMR, 1978; 15-minute Farmville and Dillwyn maps), and gravity (Johnson et al., 1985) surveys. The airborne

surveys had flight line spacings of 0.8 kilometer at 152 meters above ground level. A regional gravity map (Johnson and others, 1985) covered approximately 5, 15 minute quadrangles and contains 1202 gravity stations including the only published lithologic map of the entire Farmville Basin.

William Barton Rodgers (1859) was the first person to describe the various lithologies in and around the Farmville Basin. Since that time, a majority of geologic studies in the vicinity have been reconnaissance in nature (Russell, 1892; Jonas, 1932; Espenshande and Potter, 1960). Two exceptions are the publications of Brown (1969) and Marr (1980).

A geologic map of the Dillwyn 15-minute guadrangle that includes the Gold Hill 7.5 minute quadrangle was prepared by Brown (1969). A geologic map of the Willis Mountain 7.5 minute quadrangle was prepared by Marr (1980). These two publications account for the majority of the known geology, within the study area. The stratigraphic columns presented in these two publications are different, and thus posed a problem as to the stratigraphic sequence of strata. Table 2 is a proposed stratigraphic column for the study area. This column is based on the publications by Brown (1969) and Marr (1980, 1981), as well as mapping conducted during this investigation. Rocks from oldest to youngest in the stratigraphic column are the Chopawamsic Formation, "Granitic" Gneiss Undifferentiated (Hatcher Complex (?)), Arvonia Formation, Triassic Rocks, Diabase/Granophyre dikes, and Quaternary alluvium.

Table 2: Tentative stratigraphic correlation of lithologies within the study area. The stratigraphic column used for this study is based on stratigraphy of Marr (1980, 1981), Brown (1969), and geologic mapping conducted during this investigation.

E R A	P E R I O D	Brown (1969)	Marr (1980)	Present Study
CENONOHO	Q A L	Alluvium	Alluvium	Alluvium
M E S	J R	Diabase Dikes	Diabase Dikes	Diabase/ Granophyric Diabase
ESOZOIC	TR	Newark Supergroup	Newark Supergroup	Newark Supergroup
PA		Arvonia Formation	Arvonia Formation	Arvonia Formation
	O R D	Hatcher Complex	?	"Granitic" Gneisses (Hatcher Complex Equivalent ?)
LE		?	Pegmatite	Pegmatite
OZOHC	3	Ultramafic Rocks & Hornblende Metadiorite	?	?
	С	Evington Group (?) & Rocks Of Uncertain Age	Chopawamsic Formation	Chopawamsic Formation

Note: The letter abbreviations in this table are defined as follows: C-Cambrian, ORD-Ordovican, TR-Triassic, JR-Jurrasic, and QAL-Quaternary. ?: Unknown

STRATIGRAPHY

The type section of the Chopawamsic Formation lies along Chopawamsic Creek near Quantico, Virginia (Southwick et al., 1971), and is estimated to be 1829 meters thick. Pavlidies (1980), and Conley and Johnson (1975) traced the formation from northern Virginia to the study area. Marr (1980) described the various lithologies within the Chopawamsic Formation, and defined a lower and upper member. Only the upper member is found within the study area. This formation has a maximum age of Early to Middle Cambrian (Tilton, 1970; Higgins, et al., 1977; Glover, 1975), and is comprised primarily of metavolcanic and metasedimetary rocks.

Chopawamsic Formation

The upper member of the Chopawamsic Formation is a biotite gneiss that ranges in thickness from 3 to 31 meters. The unit is interlayered with amphibolite gneiss. The biotite and amphibolite gneisses compose nearly 90 percent of this member. The remaining 10 percent of the upper member is comprised of felsic volcanics (rhyodacites), talc-tremolite schists, and ferruginous quartzites. These rocks are primarily found along the western margin of the basin; although, numerous outcrops are found farther to the south. The following descriptions of the above rocks units were taken from Marr (1980, and 1981) with modifications.

Table 3: General geophysical characteristics of lithologies
in the area.

E R A	P E R O I D	GEOPHYSCIAL CHARACTERISTICS OF LITHOLOGIES WITHIN STUDY AREA
MESOZOIC	T J	DIABASE/GRANOPHYRIC DIKE 1. High Magnetics 2. High Gravity 3. Low Radiometrics 4. density = 2.88 g/cm ³
	T R	TRIASSIC ROCKS 1. Low Magnetics 2. Low Gravity 3. Low Radiometrics 4. density = 2.55 g/cm ³
P A	O R D	"GRANITIC GNEISS" 1. Low Magnetics 2. Low Gravity 3. High Radiometric 4. density = 2.775 g/cm ³
LEONHC	С	CHOPAWAMSIC FORMATION 1. High Magnetics 2. High Gravity 3. Low Radiometrics 4. density = 2.845

Notel: The letter abbreviations in this table are defined as follows: C-Cambrian, ORD-Ordovican, TR-Triassic, JR-Jurrasic, and QAL-Quaternary.

Note2: The terms High, and Low are relative terms. In other, words they are relative to the surrounding rock units. For example, if a Triassic Rocks were in lithologic contact with the Chopawamsic Formation then magnetic, gravity, and radiometric readings of the two units would display the characteristics in this figure.

The biotite gneiss is medium to fine-grained, moderately foliated, and light gray to gray in color. Ouartzofeldspathic bands found within this unit are interlayered with biotite layers. Some of the biotite layers contain amphibole. Composition of this unit ranges from granitic gneiss to biotite-quartz-feldspar gneiss. This unit is not resistant to weathering and occupies areas of low topography. Outcrop of the biotite gneiss is predominately limited to the Willis Mountain and Farmville quadrangles. In the field this rock is usually highly weathered; however, fresh outcrops contain pegmatitic bands, ranging in size from a few centimeters to nearly a half a meter. The pegmatitic bands are a distinctive feature of this unit. Generally, quartz veins are absent from this unit; although, veins are concentrated in some areas. This unit usually displays low magnetic, intermediate gravity, and low radiometric values in comparison to the surrounding rocks (Johnson, 1981), Table 3, and grades into an amphibole gneiss.

The amphibole gneiss is medium to coarse-grained, banded, and greenish-black to black in color. The banding in this unit is composed of tremolite-cummingtonite hornblende-cummingtonite and quartz calcic oligoclase, biotite, epidote, and garnet. Talc-tremolite schistose bodies talc-tremolite range in composition from schist to actinolite-chlorite schist. This unit is generally found west of the basin and is more resistant to weathering than the

biotite gneiss, occurring in areas of rolling topography. The outcrop of this unit is often unweathered. Minor folds are common. Banding is not as distinctive in this unit as in the biotite gneiss. Light-green, quartz-epidote lenses are also characteristic of this unit. High magnetic and gravity values, and low radiometric values are the geophysical characteristic of the unit. Unconformably overlying the Chopawamsic Formation is the undifferentiated "granitic" gneiss.

Granitic-Gneiss Undifferentiated

The "granitic" gneiss is thought to be the equivalent of the Hatcher Complex Undifferentiated (Brown, 1969). (1969) and Mose (1980) assign an age of 454 \pm 9 millon years to the Hatcher Complex. Surface exposure of these rocks occur in the northern and eastern portions of the study area. Generally, these rocks are medium grained, strongly lineated, and light-gray to tan in color. The term "granitic" was used to describe a group of intrusive rocks ranging in composition from granite to quartz diorite. The gneisses have a low resistance to weathering; therefore, are found in areas of low topography. In the field this unit ranges from highly weathered to fresh, and is strongly banded and foliated. distinguishing characteristics exist, except interlocking granular patterns associated with intrusive rocks. When weathered the unit looks very similar to the

granitic gneisses of the Chopawamsic Formation. Geophysical characteristics include low magnetic and gravity values, and high radiometric values. Brown (1969) indicates that basal conglomerates of the Arvonia Formation uncomformably overly the granitic intrusives; therefore, the Arvonia is the younger of the two lithologies.

Arvonia Formation

Fossils indicate that the Arvonia Formation ranges in age from 440 to 460 million years (Mose, 1980; Mose and Nagel, 1983). Within the study area, this formation consists of the following rock units: quartz-mica schist with interlayered micaceous quartzite and quartz mica conglomerate, quartzite and kyanite quartzite, and porphyroblastic garnet mica schist. These rocks are found in the extreme northwestern part of the (1980)describes the conglomeritic Marr quartz-mica schist as medium to coarse grained, moderately foliated and lineated, light-gray to gray schist with blue quartz found in some conglomerates. Kyanite occurs locally as massive lenses and can make up as much as 30 percent of the The quartzite/kyanite quartzite unit is medium to coarse-grained, banded and cross-bedded, and is light-yellow to gray in color (Marr, 1980). This unit is resistant to weathering and found in areas of higher relief. This unit is resistant to weathering and underlies along NE-SE trending linear ridges formed by isoclinal synclines. The highest

magnetic values within the study area are found within this formation. The Arvonia Formation has intermediate radiometric and gravity values as compared to other lithologies within the study area. This formation is not used as a unit in the gravity models, produced in this study, because it lies outside the range of the surveyed gravity lines. An unconformity exists between the Arvonia Formation and the Triassic age rocks.

Newark Group

Unconformably overlying the metamorphic basement are the Triassic rocks of the Newark Supergroup. Basal strata are Carnian in age as determined by Robbins (1985). This age date is based on palynoflora data found in the basin. This places rocks of the Farmville basin, along with rocks in the Richmond and Taylorsville basins, as the oldest rocks in the Newark Supergroup (based on palynoflora data; Cornet, 1978). The rocks show a general fining away from the basin perimeter (Plate 4). According to Smoot (1985), this is indicative of a closed basin. He defines a closed basin as having no drainage outlet. In other words, all surface drainage and groundwater entering the basin evaporates. This is not to say the basin remained closed throughout its entire depositional history, since the erosion of hitherto undetermined strata overlying the presently exposed basin is not known.

Czechowski (1982) suggested that the paleoenvironment

during deposition of these rocks was more arid than the present climate. His conclusions are based on relative percentage of feldspar and lithic fragments in the Triassic rocks as compared with Quaternary stream sands in the basin. He also showed rocks within the basin have undergone less than 45 kilometers of transportation. Breccia-conglomerate, arkosic conglomerate, arkosic sandstone, and siltstone/shale are the four lithologies found in the basin.

The breccia-conglomerate is a fine to medium-grained, brown to reddish-brown rock with angular to subangular clast ranging from pebble to boulder size. In general, clasts are comprised of metamorphic rocks from the Chopawamsic and Arvonia Formations, and "granitic" gneiss undifferentiated. Clast imbrication indicate transportation of sediment comprising this unit was from the northwest (Marr, 1981; Czechowski, 1982).

The arkosic conglomerate is medium-grained and light brown to light gray in color, and has an arkosic sandstone matrix. Clasts are subangular to subrounded ranging from pebble to boulder size, and are predominately metamorphic in composition (Johnson, et al., 1985). Czechowski (1982) suggested that the clasts were transported in a north-south direction with source rocks laying farther than 43 kilometers north of the basin.

The arkosic sandstone is medium-grained, thick-bedded, and brown to light-brown in color with interlayers of

red-brown sandstone, siltstone, and shale (Johnson, et al., Source of this unit is thought to lie east of the basin (Cezchowski, 1982). Siltstone-shale is the youngest sedimentary unit in the basin. These rocks are light-gray in interbedded with red-brown color and are sandstone, quartz-pebble conglomerate, and dark-gray mudstone and coal. This unit is thought to have been deposited in a lacustrine environment (Cezchowski, 1982). The Mesozoic rocks are distinctive because of their low gravity, magnetic, and intermediate radiometric values. These rocks are cross-cut by diabase/granophyre dikes.

Dikes

The diabase dikes are the youngest rocks of interest in the area and are thought to be late Triassic to Jurassic in age (Marr, 1981). These dikes are medium to fine-grained, and light-gray to dark-gray in color. Several dikes have been found to contain granophyres (Rogan, pers. comm.). The granophyres are found predominately in larger (thicker) dikes. Compositionally, larger dikes seem to be of diabase composition along their margins with granophyre percentages increasing as one progresses towards their center. of dike trends are recognizable in the area. A majority of the dikes trend between N12°W and N25°W, with a second minor set trending between N and N20°E. Dikes in the area cross-cut Triassic Rocks, and the basin margin. This puts a cross

cutting relationship time constraint on sedimentation.

GEOLOGICAL DATA

The known structures from publications of Brown (1969) and Marr (1980), as well as structural data gained from this study give valuable information as to structures within and outside the basin. Knowing the structural regime of the area puts constraints on gravity models.

Folds

The scope of this thesis is limited to understanding the structural control of Mesozoic events imposed by Pre-Mesozoic structures. Previous studies discuss three phases of folding (Marr, 1980). The cumulative effect of these folding phases is the NE regional trend. Therefore, the geologic information collected during this study is limited in scope.

Foliation

Figure 3 is a compilation of 208 foliation measurements throughout the study area. Two foliation pole maxima are shown on the stereo net. The two maxima are separated by 35 degrees. The dominant pole concentration ('A') is in the NW quadrant of the net. This group of poles are representative of foliation that has an average strike of N15°E and dip of 35 degrees southeast. The secondary concentration of poles ('B')

Figure 3: Contour plot of 208 poles to foliation from this study and the geologic map of Marr (1980). The graph is a contour plot of foliation poles. The maxima represent foliation planes located at N15E 35 degrees SE, and N40W 35 degrees NE. Pole maxima are separated by 35 degrees. The distribution of pole clusters shows that the general modal average foliation plane strikes north-north east and dips to the south east.

One Percent Total Area Contour Of Poles To Foliation

is representative of foliation that has an average strike of N40W and dip of 35 degrees northeast.

Bedding

Poles of bedding within the basin show little variance (Figure 4). Bedding within the basin has an average strike of N45E and dip of 30 degrees northwest. Dips within the basin generally decrease from east to west. It should be noted that these dips vary along profile sections. A pattern of steep to shallow to steep is recognizable. This is best documented along the profile on State Road 636 (Plate 4).

Joints

Two systematic joint sets are found within the area (Figure 5). The joint set with poles in the NE quadrant of the stereo net have an average strike of N40W and an average dip of 50 degrees southwest ('A'). A second cluster of joint poles lay near the perimeter of the net in the NW quadrant ('B'). This joint set has an average strike of N70°E and dip of 80 degrees southeast. The contour projection indicates a third joint set may be present. In the NE and SW quadrants of the stereo net there are a group of poles that lie on the net's perimeter. This joint set has an average strike of N20°W and near vertical dips.

Figure 4: Contour plot of 108 poles to bedding taken in the Farmville Basin, during the course of this investigation. The stereo graphic projection is a contour plot of the poles to bedding and indicates that bedding in the basin has an average strike of N45E and dips 30 degrees northwest.

One Percent Total Area Contour Of Poles To Bedding

Rectified Stream Patterns

rectified stream analysis was correlated geological and geophysical trends to identify significant drainage trends, and to aid in the development of a kinematic model (Plate 5). This analysis is based on the underlying stream drainage is structurally assumption that the There is no validity to conclusions drawn from controlled. this type of analysis without this assumption. In this study, it is assumed streams are structurally controlled because of the near rectilinear stream segments.

Studies of stream patterns have been used in the identification of drainage trends and associated geologic and/or geophysical trends. This enables past geologic events to be reconstructed (Scheidegger, 1980 a, 1980 b; Cox and Harrison, 1979; Venkatakrishnan, 1984).

At least three significant trends have been identified from analysis of rectified stream data (Figure 6). These trends, listed in order of prominence, are NNW to SSE (160 to 180 degrees), NW to SE (120 to 130 degrees), and NE to SW (030 to 040 degrees) The most prominent trend occurs in the azimuthal range of 160 to 180 degrees.

Figure 5: Contour plot of 208 joint poles taken in this study from various areas within the area. From this plot one may interpret two joint sets; one at N40 $^{\circ}$ W-50 degrees SW, and the other at N70 $^{\circ}$ E- 80 degrees SE.

One Percent Total Area Contour Of Poles To Joints

GEOPHYSICAL DATA

Gravity Data

The Bouguer Gravity anomaly map of the Farmville Basin (Plate 1) is prepared from two sets of gravity data. The first contains 700 detailed gravity readings taken along six roads at station spacings of 61 meters (Figure 2). All readings from this set either lie within the basin or within a 1.609 kilometers circumference of the basin's border. An additional 700 gravity readings were obtained from data of Johnson and others (1975). These readings lie outside the 1.609 km circumference of the basin's border.

The gravity map (Plate 1) defines both regional and local anomalies. Regionally, a general pattern of high gravity anomalies is evident on the west, and low anomalies occur on the east side of the basin. A strong NE-SW regional trend is evident on the gravity map. An E-W orientation of the regional trend becomes dominant in the southern portion of the map. Letters A-E, on the map designate local gravity anomalies.

Magnetic Data

The aeromagnetic map (Plate 2) show distinct regional and local trends (Virginia Division Of Mineral Resources Aeromagnetic 15-minute Maps; Dillwyn, 1970; Farmville, 1970). Magnetic anomalies in the area decrease in a NW-SE transverse. In addition, the anomalies indicate a strong NE-SW trend.

Figure 6: Plot of significant stream trends within the study area. The plots were generated for each 7.5 minute quadrangle within the study area. In addition, one plot has been generated to show the sum total of drainage trends. The degrees at the bottom of plots is the azimuthal range of streams. If peaks lie above the upper deviation bar it is deemed to be significant (Red Bar). Significant troughs lie below the lower deviation bar (Blue Bar).

Upper Bar : Upper Third Deviation (Red Bar)

Middle Bar: Zero Deviation (Hollow Bar)

Lower Bar : Lower Third Deviation (Blue Bar)

Linear features and low closures, designated A-C on Plate 2, are the local anomalies identified on the magnetic map.

Radiometric Data

Three domains can be identified on the Radiometric Anomaly map (Plate 3). NW-SE profiles across the basin indicate radiometric anomalies west of the basin have a range of 100 to 200 count-per-second (cps). Radiometric anomalies generally have a range of 300 to 400 cps in the basin, and are higher than 400 cps east of the basin (Virginia Division Of Mineral Resources Aeroradiometric 15 minute Maps (Dillwyn, 1978; Farmville, 1978).

PRELIMINARY GEOLOGIC INTERPRETATION

Before gravity modelling, a geologic interpretation is necessary, using the information presented in this chapter, to properly constrain the models. Without these constraints the gravity models could have an infinite number of solutions. The geologic interpretation will start with regional features, and terminate with a discussion of local features.

Regional Features

The regional NE-SW trend is the one feature common to all the geophysical anomalies, and geologic structures of the area (Plate 1,2,3; Figures 3, 4, 5). No other feature is common to both the geophysical and geological data. By closely examining

Figure 7: This is the Bouguer gravity field, shown on Plate 1, at the continuation level of +0.64 kilometers. The letters on this figure show the location of the following geologic features:

A: Whispering Creek Anticline

B: Diabase/Granophyre Dike

C: Deepest Part Of Basin

D: "Granitic" Gneiss Undifferentiated

E: Possible Shear Zone (direction of shear shown

by arrows)

Note: Variation in gravity anomalies indicate that differences in density of the rocks can be seen at this level.

GRAVITY FIELD AT 0.64 KILOMETERS

the geophysical and geological data conclusions pertaining to the regional geology become apparent. Gravity and Magnetic maps are potential field data. This means that they measure the horizontal difference between densities (gravity), or magnetic susceptibilities (magnetic) of the lithology. A difference between two potential field readings indicates differences exist in the property of those rocks.

A wealth of information about the regional geology is contained on the gravity map (Plate 1). By drawing any NW-SE (X-X') profile on the gravity map, it is apparent that there are distinct differences in gravity values, leading to the conclusion that densities of lithologies along such a profile vary. This poses the question, whether the density variations are a result of shallow (< 10 km), or subcrustal features?

To address this problem, upward continuation of the gravity field (Plate 1) was performed. The upward continuation was done at various levels up to 8 kilometers (Figures 7, 8, 9). This resulted in the isolation of gravity anomalies attributed to density variations at the specified continuation level. This means that an upward continuation performed at 2 kilometers is providing a map of the variation in densities of rocks at a depth of 2 kilometers and higher, while upward continuation at 8 kilometers is providing data on the density of rocks at depth of 8 kilometers and more. It is apparent, from Figures 7, 8, and 9, that most of the gravity anomalies shown on Plate 1 are a result of density variations

Figure 8: This is the Bouguer gravity field, shown on Plate 1, at the continuation level of +2.89 kilometers. The letters on this figure show the location of the following geologic features:

- A: Whispering Creek Anticline
- B: Diabase/Granophyre Dike
- C: Deepest Part Of Basin
- D: "Granitic" Gneiss Undifferentiated
- E: Possible Shear Zone

Note: Variation in gravity anomalies indicate that differences in density of the rocks can be seen at this level.

GRAVITY FIELD AT 2.89 KILOMETERS

within the upper 8 kilometers of crust. At 8 kilometers, the NE-SW trend is apparent; although, the E-W trend (Plate 1) is no longer apparent in the southern portion of this map.

Magnetic anomalies, like gravity anomalies, show a strong NE-SW trend (Plate 2). In addition, the magnetic values generally decrease along NW-SE (X-X') profiles. This implies that the magnetic susceptibilities of the rocks, along such a profile, are different. With this information it can confidently be concluded that there are distinct lithologic breaks underneath and outside of the basin.

Both gravity and magnetic anomaly maps (Plates 1 and 2) show definite change in the density and susceptibilities of rocks along NW-SE profiles. This is Table 2, shows that there are supported by the geology. several distinct lithologies in the study area. The geophysical properties of these rocks are listed in Table 3. The values in Table 3 are useful in approximating the regional surface geology. For example, using the gravity map (Plate 1) a general set of lithologic boundaries can be drawn, using the 15 milligal contour as a lithology break (Figure 10). The 15 milligal contour was chosen as the reference contour because it was present on the 8.00 kilometer continuation map (Figure 9), meaning it is a regional phenomenon. Figure 10 shows four distinct lithologic groups. These groups are from oldest to youngest: Chopawamsic Formation, "Granitic" Gneiss, Arvonia Formation, and Triassic rocks. This map is very close to the

Figure 9: This is the Bouguer gravity field, shown on Plate 1, at the continuation level of +8.00 kilometers. The letters on this figure show the location of the following geologic features:

A: Whispering Creek Anticline

B: Diabase/Granophyre Dike

C: Deepest Part Of Basin

D: "Granitic" Gneiss Undifferentiated

E: Possible Shear Zone

Note: Variation in gravity anomalies indicate that differences in density of the rocks can be seen at this level.

GRAVITY FIELD AT 8.00 KILOMETERS

detail maps of Marr (1980) and Brown (1969). Because of the good correlation, geophysical data was used to make inferences about lithologies shown on Plate 4.

Radiometric data provides further proof that the study area is comprised of the lithologic units defined above (Plate 3). These domains correlate with lithologic units in the area. NW-SE profiles across the basin indicate radiometric anomalies west of the basin have a range of 100 to 200 countsper-second (cps). Radiometric anomalies generally have a range of 300 to 400 cps in the basin, and are generally higher than 400 cps, east of the basin.

Structurally, foliation, bedding, and joint measurements all have concentration of poles whose average plane strike lies within 25 degrees of the NE-SW regional trend. The dominant foliation pole concentration, has an average strike of N15°E and dip of 35 degrees southeast (Figure 3). The average bedding strike is N45°E and dips 30 degrees northwest (Figure 4). The secondary joint set has an average strike of N70°E and dips 80 degrees southeast (Figure 5). In addition, the rectified stream analysis identified a significant drainage trend in the azimuthal range of 030 to 040 degrees.

Local Analysis

An examination of local geophysical and geological anomalies is necessary to complete the preliminary geological analysis of the area. Once again, examination of the gravity

Figure 10: This is the Bouguer gravity field, shown on Plate 1, at the continuation level of +0.64 kilometers. This maps show the four lithologies based on gravity values. The reference line for dividing the lithologies is 15 milligals.

Note: Variation in gravity anomalies indicate that differences in density of the rocks can be seen at this level.

LITHOLOGIES:

CHOPAWAMSIC FORMATION
"GRANITIC" GNEISS UNDIFFERENTIATED
ARVONIA FORMATION
TRIASSIC BOCKS

GRAVITY FIELD AT 0.64 KILOMETERS

and magnetic maps indicate localized features. Two local anomalies are common to both the gravity (Plate 1) and magnetic (Plate 2) maps. The first feature is the gravity and magnetic lows found on the eastern margin of the Farmville Basin, marked 'C' respectively. Another common feature to both maps is a NNW-SSE diabase/granophyre dike marked 'B' on both maps.

Labels A-E, on the gravity map (Plate 1), are the locations of localized gravity anomalies. The circular high marked 'A' (Plate 1) is in excess of 21 milligals. This high is attributed to the Whispering Creek Anticline (Brown, 1969) A sharp high amplitude feature marked 'B' on the gravity map is a diabase/granophyre dike that exceeds 488 meters in width, across U.S. Highway 460E. At location 'C' the gravity values decrease below 10.5 milligals. It is at this point where the deepest portion of the basin is believed to exist. elliptical gravity low 'D' is typical of intrusive bodies (Griffin, 1949). An unusual gravitational anomaly, marked 'E' (Plate 1) is thought to be a remanent of a shear zone. conclusion is made from the 'Z' pattern displayed by the gravity contours (Plate 1). The 'Z' pattern indicates a leftlateral sense of shear has occurred. If this is a shear zone, then projecting it south indicates it continues underneath the basin.

The upward continuation maps (Figures 7, 8, and 9) give an approximate depth of the local features. As the gravity

field is continued upward regional features are emphasized, as previously discussed. Remember, the upward continuation is a sampling of the variation of densities at the continuation level; therefore, if a local anomaly is no longer present at a continuation level then the horizontal variation in rocks that caused that anomaly is no longer present. The result is that the maximum depth of a local anomaly can be determined using upward continuation.

At the continuation level of 0.64 kilometers all the localized anomalies are still definable; although, the diabase/granophyre dike ('B', Plate 1) is barely discernable. After the 1 kilometer continuation the circular gravity anomaly, 'C' Plate 1, is no longer present. This suggest that the basin is less than 1.00 kilometer in thickness. If this is the case then no gravity model can have the basin exceeding 1.00 kilometers in depth. Continuing the gravity field to 2.89 kilometers eliminates the dike anomaly, 'B' Plate 1. At the continuation level of 8 kilometers, the gravity map is less sinuous, the Whispering Creek gravity high ('A', Plate 1) is no longer present, and the strong E-W trend in the southern portion of the study area is not present (Figure 9).

Figure 11 is the second vertical derivative of the gravity field. This map has several interesting features. The linear features that lie outside the basin are diabase dikes ('a' and 'b'). On the basin margin and inside the basin are linear highs adjacent to lows ('c' and 'd') which are

Figure 11: Second vertical derivative of the study area gravity field. Locations 'a' and 'b' mark the location of diabase dikes, while the locations 'c' and 'd' mark the location of possible mylonite zones.

Second Vertical Derivative Map

thought to be mylonite zones. This is supported by field evidence at location 'c'. Inside the basin these features are believed to mylonite zones; however, no field evidence was found to support or disprove this hypothesis. No diabase outcrop was found in the vicinity of these highs, eliminating possibility that the linear highs in the basin are a result of diking. Gravity modelling should take into account all features shown on this map.

High frequency magnetic values indicates the presence of dikes and a basin that is relatively shallow. Linear magnetic features present on the magnetic map (Plate 2) are diabase/granophyre dikes. The area marked 'B' and the linear high east of 'C' on the magnetic map are large dikes. The dike marked 'B' exceeds 488 meters in width across U.S. Highway 460E. The low marked 'C' on the magnetic map (Plate 2) is attributed to the deepest part of the basin.

Field data provides limited insight into local structures of the area, because of the large scale on which it was conducted. One exception is the variation of bedding dips within the basin. Mapping conducted along State Road 636 (Plate 4) shows a variance in dips from shallow to steep to shallow. This phenomenon is a result of some type of localized displacement. The cause of this displacement has to be addressed in any gravity model.

SUMMARY

The study area is dominated by a NE-SW regional trend. This trend is present in the basement structural grain of the rock, as well as the local lithologies. As a result, this trend can be identified on all geophysical and geological maps, data, and analyzes. One implication of this finding is that most of the structures in the area are dependent on this feature.

The relationship of the various lithologies in the area are a second factor to consider in defining the structural controls on the basin geometry. There are five lithologic units in the area; however, only the Chopawamsic Formation, "Granitic" Gneiss Undifferentiated, and Dikes are in surfical contact with the Triassic rocks. Each of these lithologies have unique physical properties (i.e. densities, magnetic susceptibilities, and radioactive elements). It is the unique physical properties of these lithologies that cause a majority of the local anomalies found on the geophysical maps (Plates 1, 2, and 3). These anomalies support the hypothesis that the Farmville Basin covers the lithologic contact between the Chopawamsic Formation and the "Granitic" Gneiss. If this is the case, then the lithologic contact is a possible plane of weakness along which faults could form. Only subsurface modelling can verify this hypothesis.

CHAPTER 4

GRAVITY MODELLING

INTRODUCTION

Gravity models are based on data obtained from six the cross-cut Farmville Basin profiles that nearly perpendicular to the regional geophysical and geological trends. Four lithologic units were used to create the gravity models. The modelled lithologies from oldest to youngest are the Chopawamsic Formation, "Granitic" Gneiss Undifferentiated, Triassic rocks, and Diabase/Granophyre dikes. Density listing of the Arvonia Formation is not given because it is not present in the gravity models. Densities for the modelled lithologies are listed in Table 4. These values were calculated from a series of density measurements. The density values for the Triassic rocks were obtained by taking the mean of the density measurements along the southern traverse across the basin (Wilkes and Lasch, 1979). Density measurements were not taken for basin rocks because most of the outcrops were highly weathered. Two categories of dikes are distinguished One group of dikes have an average based on densities. density of 2.99 g/cm³ and the second group have an average density of 2.89 g/cm3. Most dikes that cross the gravity profiles contained granophyres; therefore, the density value of 2.89 g/cm³ was used for modelling.

Table 4: Densities of the lithologies used in the gravity models. This legend is referenced in the gravity models that follow.

LEGEND

UNIT	DENSITY (g/cm3)
CHOPAWAMSIC FORMATION	2.845
GRANITIC GNEISSES	2.775
TRIASSIC ROCKS	2.55
MESOZOIC DIKES	2.88

+ : OBSERVED GRAVITY CURVE

* : THEORETICAL GRAVITY CURVE

----: REGIONAL GRAVITY GRADIENT

The assigned density when modelling the "granitic" gneiss is much higher than the measured densities. The density value used for the "granitic" gneiss is from the density values of the Columbia Granite (Keller and others, 1985). The densities assigned to the modelled lithologies remained constant in all profiles. This gave additional constrains to the gravity models.

PROFILES

Figure 2 shows the location of the modelled gravity Discussion of these models will begin with U.S. profiles. Highway 460E continuing north and ending with State Road 622. A description of the lithologies used in the models is given in Table 4. Each of the modelled profiles is comprised of two graphs. The upper graph is a plot of the observed and theoretical Bouguer anomalies. The lower graph is the gravity model that produced the theoretical curve, shown on the upper The regional gravity gradient is represented by the solid line on the upper graph. The regional gradients are related to the deeper structure, and are used to identify local gravitational anomalies. The term "residual" is used to describe the variation of the observed gravity with respect to the regional gradient. In modeling one must keep in mind the basin's geometry, strike and dip orientations of faults and dikes, as well as the density contrast of the various lithologies.

Models indicate two sets of faults are present in the study area. Master faults (solid lines in lower graph on Figures 13-16) are believed to be reactivated Paleozoic faults. The greatest displacement occurred along such faults in the study area. Splay faults (dashed line in lower graph) are believed to be Mesozoic in age, and are thought to have formed along existing planes of weakness (other than faults) in the structural grain of the basement rocks. All faults were drawn on the models after each model was completed. The relative displacement of each fault is shown by the arrows. Each fault is drawn so that the models were as close to being a balanced cross-section, as possible.

U.S. Highway 460E Profile

U.S. Highway 460E crosses the southern portion of the basin. Figure 12 is the gravity model produced for this profile. The profile is 6705 meters in length and modelled to a depth of 3657 meters. A model depth of 2800 meters is shown for this profile to keep uniformity between each profile. A model depth of 2800 meters is possible with this profile because the lithology appear to be homogenous below 2800 meters. The anomaly marked on the profile is attributed to a diabase/granophyre dike, as shown in the model. Location of a dike at this location is supported by outcrop found along U.S. 460E (Plate 4), as well as the geophysical evidence previously discussed. In outcrop, the dike is at least 305

Figure 12: The gravity model developed for the profile U.S. 460E. The lower graph is the geologic model that generated the calculated Bouguer anomalies shown on the upper plot. Letters shown on the gravity profile are representative of the geologic features:

A: "Massive" Diabase/Granophyre Dike Anomaly

B: "Granitic" Gneiss Anomaly

C: Triassic Basin Anomaly

Arrows: Indicate direction of displacement along fault

Dashed Line: Secondary listric normal faulting

meters in width. This width increases to 488 meters at depth. Residual lows, marked 'B' and 'C', occur on both sides of the two milligal high. The residual low 'B' is interpreted to be the result of the "granitic" gneiss undifferentiated laying 305 meters below the surface. Triassic rocks of the basin are responsible for the low marked 'C'. Modelling indicates the Chopawamsic Formation is present east of the basin. Length and depth of the basin is 1402 meters, and 91 meters, respectively. The length of the modelled basin is greater than suggested by Johnson and others (1975). Basin width, along this profile, is based on the soil map of Prince Edward County (Henery et. al, 1949). The western border fault, of the basin is defined as a splay fault. This fault dips 35 degrees SE, at the surface, and decreases with depth. A 10 to 15 degree difference exist between the average dip of foliation (45 degrees) and the splay fault. The fault is shown to have normal slip displacement. Palinspastic reconstruction of this profile suggests 5 percent extension has occurred.

State Road 637 Profile

State Road 637 is 3.2 kilometers north of U.S. Highway 460E (Figure 13). This profile is 9448 meters in length and modelled to a depth of 2743 meters. Observed Bouguer gravity values indicated there are several residual highs interpreted. These highs are interpreted as dikes. Outcrop and float found along the profile support this interpretation. Corresponding

Figure 13: The gravity model developed for the profile State Road 637. The lower graph is the geologic model that generated the calculated Bouguer anomalies shown on the upper plot. Letters shown on the gravity profile are representative of the geologic features:

A: "Massive" Diabase/Granophyre Dike Anomaly

Arrows: Indicate direction of displacement along fault

Dashed Line: Secondary listric normal faulting

Solid Line: Primary listric normal faulting

dike locations are shown on the model. The largest dike is 274 meters in width ('A'), and is the same dike found along profile U.S. 460E. Dike width has decreased 61 meters within 3.2 kilometers. Basin length, along profile State Road 637, is 7925 meters, and is modelled to a depth of 343 meters. Rotational listric type faulting (Wernicke and Burchfield, 1982) is clearly indicated on the model. Both master (solid line) and splay faults (dashed line) are identified in the model, each shows normal slip displacement. Splay faults form the western margin of the basin. At the surface the splay fault dips 24 degrees to the southeast. The master fault is covered by the Triassic rocks. The greatest displacement occurs along the master. Ten percent extension is estimated for this profile, as a result of palinspastic reconstruction.

State Road 636 Profile

State Road 636 is the longest of all modelled profiles. It is 10896 meters in length and is modelled to a depth of 2743 meters (Figure 14). Two broad residual highs, marked 'A' and 'B' on the profile represent high density country rocks occurring along the basins' margin and a 61 meter dike, respectively. This dike contains granophyres and is a continuation of the dike present on profile U.S. Highway 460E and State Road 637. The low, marked 'C', is caused by the Triassic rocks. Basin length is 8229 meters, and is modelled to a depth of 617 meters making it the deepest part of the

Figure 14: The gravity model developed for the profile State Road 636. The lower graph is the geologic model that generated the calculated Bouguer anomalies shown on the upper plot. Letters shown on the gravity profile are representative of the geologic features:

A: Chopawamsic Formation Anomaly

B: "Massive" Diabase/Granophyre Dike Anomaly

C: Triassic Basin Anomaly

D: "Granitic" Gneiss Anomaly

Arrows: Indicate direction of displacement along fault

Dashed Line: Secondary listric normal faulting

Solid Line: Primary listric normal faulting

basin. Unlike existing Mesozoic basin models, the deepest section of the Farmville basin lies along its' eastern margin. This conclusion is supported by the low closures found on both gravity and magnetic contour maps (Plates 1 and 2). Rotational listric normal slip movement is displayed by both the master and splay faults. A splay fault forms the western margin of the basin, dipping 28 degrees to the southeast, on the surface. All faults shallow with depth cross-cutting the foliation. Extension of 15 percent was calculated for this model after palinspastic reconstruction.

State Road 634 Profile

Figure 15 is the gravity model of State Road 634. The profile is 8500 meters in length and is modelled to a depth of 2743 meters. No sharp high amplitude residuals are present on this profile, meaning that no dikes greater than 50 meters cross the profile. Field evidence supports this aspect of the model. A broad residual low, marked 'A', is caused by the basin. Along this profile the basin is 3554 meters in length and 427 meters in depth. As in previous profiles the deepest part of the basin lies along its eastern margin. Both splay and master faults are present along this profile. The westernmargin of the basin is bounded by a splay fault with the master fault laying underneath the basin rocks. All faults are listric normal slip with the western border fault dipping to the SE at 28 degrees. The palinspastic

Figure 15: The gravity model developed for the profile State Road 634. The lower graph is the geologic model that generated the calculated Bouguer anomaly shown on the upper gravity profile. Letters shown on the gravity profile are representative of the geologic features:

A: Triassic Basin

Arrows: Indicate direction of displacement along fault

Dashed Line: Secondary listric normal faulting

Solid Line: Primary listric normal faulting

reconstruction of this model indicates a maximum of 10 percent extension has occurred along this profile.

U.S. Highway 60 Profile

The gravity profile and model for U.S. Highway 60 is Profile length is 3353 meters with a shown in Figure 16. modelled depth of 2591 meters. Residual highs are found at the NW and SE ends of this profile. These highs are attributed to the higher density country rocks that surround the basin. The residual low, marked 'A', is a typical pattern of a full graben basin; however, modelling indicates the basin is a true half graben with listric type fault geometry. The basin is 2591 meters in length and 259 meters in depth along this profile. As in the four previous profiles, a splay fault forms the western margin of the basin. The border fault dips 25 degrees to the southeast, decreasing at depth. Unlike the four previous profiles, evidence suggests the master fault lies east of the basin. Palinspastic reconstruction of the profile was difficult because of the individual unit shapes; however, it is estimated that 11 percent of extension has occurred.

State Road 622

The northern most of the modelled profiles is State Road 622 (Figure 17). This profile has a length of 3231 meters and is modelled to a depth of 3231 meters. The basin is 914

61

Figure 16: The gravity model developed for the profile U.S. Highway 60. The lower graph is the geologic model that generated the calculated Bouguer anomaly shown on the upper gravity profile. Letters shown on the gravity profile are representative of the geologic features:

A: Triassic Basin

Dashed Line: Secondary listric normal faulting

Solid Line: Primary listric normal faulting

meters and is 122 meters in depth at this location. A splay fault forms the basin's western margin, dipping to the southeast at 26 degrees. The fault indicates normal displacement has occurred. As the fault shallows with depth it cross-cuts the foliation. It is believed that the master fault lies east of the profile section. Outcrop east of this profile showed mylonitic signs; although the highly weathered condition of the rocks proved inconclusive. Reconstruction of this profile indicates this area of the basin has undergone 8 percent extension.

SUMMARY

Gravity models show the subsurface relationship of the lithologies present in the area. All models indicate the western margin of the Farmville Basin is bounded by splay faults with the master fault(s) lying beneath or east of the basin. Along U.S. Highway 460E and State Road 622 the master fault lies to the east of the profiles. Modelling further indicates the basin's geometry is of normal, listric, rotational-type faulting described by Wernicke and Burchfield (1982). When averaged, the calculated extension of the individual profiles is 9.8 percent. Indicating that at least 9.8 percent extension has occurred in the study area. It is to be noted that the total extension does not include extension caused by dilation as a result of dike emplacement. Extension

Figure 17: The gravity model developed for the profile State Road 622. The lower graph is the geologic model that generated the calculated Bouguer anomaly shown on the upper gravity profile. Letters shown on the gravity profile are representative of the geologic features:

A: Triassic Basin

Solid Line: Primary listric normal faulting

as noted only measures fault slip or horizontal heave.

CHAPTER 5

INTERPRETATION

To explain the geologic processes responsible for the structure and formation of the Farmville Basin, a kinematic model was developed. This model is based on geological and geophysical data presented in this study. The past century has seen the development of numerous theories explaining the formation of Mesozoic basins. "Unifying" theories explaining the formation of the Newark Supergroup are grouped into rift, structural grain, and fault reactivation categories.

PREXISTING THEORIES

Russell (1892) proposed what is known as the Broad Terrane hypothesis, to explain the formation of the Newark Supergroup. He summarized his hypothesis by stating the Newark system of basins are remnants of a broader terrane that, at one time, united all the Newark basins. Russell suggested that sedimentation, orogenic movements, and upheaval occurred. These processes were followed by faulting and dike emplacement.

The theory of continental drift lead Sanders (1963) to propose the broad terrane of Russell was a failed rift. Sanders suggested development of the present day Newark basin is a result of three phases. During phase 1, Pangea began to break-up forming a rift basin along the present day North

American east coast. Sediments from the surrounding terranes filled the basin. As rifting continued the center of the rift was gradually heaved upward because of thermal processes. upheaval defines the second phase of the This Supergroup evolution. As upheaval continued a central ridge developed within the rift. Sediments west of the central dipped west, and sediments east of the ridge dipped east. When the rift failed, 160 million year of erosion began. period of erosion defines the third phase. During this third phase, the rift was eroded to a point where the only distinguishable features left are the remnant basins of today. Sander suggested that basins with a western border fault lay west of the central ridge and basins with an eastern border fault lay east of the ridge.

STRUCTURAL GRAIN

Lindholm (1978) proposed that the structural grain of basement rocks and their orientation to tensional stresses is the primary mechanism controlling the occurrence and formation of Mesozoic basins. The present day foliation is representative of the ancient structural grain, according to Lindholm (1978). Making this assumption Lindholm discovered that a majority of the Mesozoic basins have border faults dipping the same direction as the surrounding basement foliation. After extensive analysis Lindholm postulated that basins formed in areas where the basement structural grain was nearly perpendicular to tensional stresses. He related this

to the separation of Pangea. Erratic foliation, foliation not suitably oriented to tensional stresses, and/or the dip of the foliation was either to high or to low are the three reasons given to explain why basins did not form.

FAULT REACTIVATION

Ratcliffe and Burton (1985) proposed that the formation basin was the result of duplex ofNewark reactivation. They stated that asymmetry, width, thickness of sediments within some eastern North American Mesozoic half-grabens may be related to the position and attitude of Paleozoic fault systems, in basement rocks, formed by tensional stresses. This theory concludes that all west dipping asymmetric basins, like the Newark basin, formed from reactivation of either concave listric foreland thrust, or convex ramp systems. As an example they chose the Newark basin, and explained that by simple extensional reactivation of a complex system of curvilinear thrust ramp structures one could explain present structures of the basin. The widest and deepest part of the basin occurs where SE extension was normal to the strike of the ancestral thrust ramp complex, according the this theory.

A similar hypothesis was proposed by Swanson (1986). This hypothesis states reactivation of preexisting fault systems of late Paleozoic age is the primary control for Mesozoic basin formation. His sites as examples in Virginia,

the Lakeside fault controlling the formation of the Farmville basin and it's stringers (this fault lies to the east of the basin), the Hylas fault controlling the formation of the Richmond and Taylorsville basins, and the Chatham fault controlling formation of the Danville basin and possibly the Scottsville and Culpeper basins.

STRUCTURAL MODEL

The structural model presented in Figure 18 illustrates several structural and lithologic relationships. The models indicate the "granitic" gneiss undifferentiated varies in depth and form between profile sections. Another conclusion drawn from this model is that rocks of the "granitic" gneiss undifferentiated generally lie east, and rocks of Chopawamsic Formation generally lie west of the basin's margin, at the surface. The contact between the "granitic" gneisses and Chopawamsic Formation is not exposed at the surface. This contact is covered by the Carnian aged rocks of the Farmville Basin. The model further shows the Farmville basin has a block fault geometry similar to the models published by Wernicke and Burchfield (1982). All the observations presented in this model have supporting geological and geophysical evidence.

An igneous origin explains the variance in depth and form of the "granitic" gneisses. It is often assumed that an

Figure 18: Structural model of the Farmville Basin. This model is intended to show the subsurface relationship of the modelled lithologies.

LITHOLOGIES

intrusive body forms a smooth surface with the country rock. In reality, the contact surface between an intrusive body and the country rock is highly irregular. Only indirect evidence supports the proposed subsurface relationship between the "granitic" gneisses and the Chopawamsic Formation. Although there are an infinite number of solutions in gravity modelling, there are enough geologic constraints on the modelled profiles to ensure a close approximation of the actual subsurface geology.

Geologic and geophysical evidence support that the rocks of the Chopawamsic Formation lie to the west and that the "granitic" gneisses lie to the east of the basin, at the surface. Plate shows these lithologies and their 4 relationship to the basin. Supporting geophysical evidence includes high gravity and magnetic, and low radiometric values west of the basin. East of the basin, geophysical signatures include low gravity and magnetic values, and high radiometric values (Plates 1, 2, 3). The geophysical pattern changes in the southern portion of the study area. In the vicinity of profile U.S. Highway 460E it is known that the Chopawamsic Formation occurs on both sides of the basin, based on field mapping. However, the radiometric anomalies are greater than 400 CPS (indicative of the "granitic" gneisses). In addition, there is a change in the regional gravity gradient from NE-SW to E-W, along the same profile. Based on geophysical evidence, rocks of the "granitic" gneiss undifferentiated should be

present. The structural model indicates the "granitic" gneisses are present, but lie 1000 to 1200 meters below the surface. The model suggest the "granitic" gneisses taper off in a southern direction causing the change in the regional gravity gradient.

The structural model indicates that the Farmville Basin's geometry is controlled by a series of down faulted blocks. Using the classification of Wernicke and Burchfield (1982), this basin is defined as having a listric normal rotational-type fault geometry. Several geological and geophysical relationships would be expected with this type of geometry. Expected geological relationships include near vertical border faults, variations in dips across the basin, and a general trend of dips decreasing toward the shallow part of the basin. Circular gravity and magnetic lows over the deepest part of the basin would be expected. In addition, large mylonite zones, if present, should be recognizable on gravity maps due to their high density.

A listric fault defined by Shelton (1984) should have near vertical dips at the surface and decrease with depth. His definition is based on Basin and Range structures in the western United States. Many of these structures are young relative to Triassic times. If these structures were uplifted and eroded, faults at the erosion surface would begin to shallow; therefore, the more uplift and erosion, the less the dip of the border fault at the surface. This is believed to

be the case for the Farmville Basin where the border fault at the surface generally dips to the SE between 24 and 35 degrees.

The structural model developed indicates that the basin is comprised of a series of down-faulted blocks, separated by what are believed to be mylonite zones. The mylonite zones are reactivated Paleozoic faults and possibly Mesozoic splay faults. The Paleozoic faults lie beneath the basin, and the Mesozoic faults form the basin's western border. Since the deepest part of the basin lies along the eastern portion part of the basin it is concluded that larger displacements occurred along the reactivated Paleozoic faults. This is shown in all the models, and is supported by the low gravity and magnetic closures along State Road 636.

Geological evidence strongly supports this aspect of the model. Strike and dip of bedding within the basin is generally NE-SW at 30 degrees NE; however, there is a large variation in dips across the basin. Three basins with listric rotational type geometry and east dipping border faults are shown in Figures 19, 20, and 21. The first model shows a basin with a rotational geometry soled on one fault. The second and third models show basins with a listric rotational type of geometry. Model 2 shows the deepest part to be nearest the western border fault while Model 3 is representative of a basin that is deepest nearest its eastern margin. Each model has unique features and these are discussed below.

Figure 19: Model 1 shows a basin comprised of a single fault that shallows with depth. Distinguishing characteristics of this model are the dip of basin rocks and the age of the basin rocks increases away from the border.

Legend:

Dark Solid Lines : Dip of Triassic Beds

Light Solid Lines: Triassic Rocks

Dotted Area : Country Rock

Angle Cross-Hatch: Master Fault

Arrows : Indicate Fault Displacement

MODEL 1: SINGLE MASTER FAULT

Basins with the geometry shown in model 1 have two distinguishing features (Figure 19). The most recognizable feature of a basin having this geometry is the dip of rocks within the basin increase away from the border fault. The second distinguishing feature is rocks are older in age as one proceeds away from the border fault. As a basin of this type is eroded the dips of rocks become steeper at the surface. Geophysical anomalies of this type of basin are unique. Residual values of the Bouguer and magnetic anomalies would have minimums near the basins' center. Neither rocks of the Farmville Basin nor the gravity data indicate the basin has the geometry of model 1.

Model 2 is the geometric scenario presented for all modelled Mesozoic Basins to date (Figure 20). In this model, the primary fault bounds the basins' western border, with secondary faults covered by the Triassic rocks. Faults divide the basin into a series of blocks that join the master fault. Dip patterns of rocks in such a basin are unique. The dips alternate from shallow to steep to shallow. Overall the dips in the basin decrease away from the border fault. If a mylonite zone bounds the basin then the gravity values sharply decrease at the basins' border fault. Gravity values gradually increase away from the basin border fault. This is attributed to the decrease in basin thickness away from the master fault.

Figure 20: Model 2 shows a basin comprised of a two fault system. The master fault forms the western border of the basin, while splay faults (secondary) are found underneath the basin rocks. All faults shallow with depth. The splay faults eventually join the master fault at depth. The shallow to steep to shallow change in dip patterns along profile section is typical of such basins. The dips generally steepen toward the master fault. If a mylonite zone is present then the Bouguer curve may displays a peak near the border fault perimeter, at the surface.

Legend:

Dark Solid Lines : Dip of Triassic Beds

Light Solid Lines : Triassic Rocks

Dotted Area : Country Rock

Angled Cross-Hatch : Master Fault

Vertical Cross-Hatch: Splay Fault

1, 2, 3 : Fault Blocks

Arrows : Direction Of Displacement

MODEL 2: LISTRIC FAULTING

Multiple Faults with Primary on Western Border

Model 3 is believed to be representative of the Farmville Basin (Figure 21). In this model, the primary fault lies near the basins' center while secondary faults bound the basin. With this geometry the deepest part of the basin lies on the basins' opposite side of the western border fault. Distinguishing geologic characteristics of this model include dip variations, and a general decrease in dips toward the basin border fault. The lowest gravity anomalies are found over the deepest part of the basin, or nearest the eastern margin.

Figure 21: Model 3 shows a basin comprised of a two fault system. A splay fault forms the western border of the basin, while the master fault(s) are found underneath the basin rocks. All faults shallow with depth. The splay faults eventually join the master fault at depth. The shallow to steep to shallow change in dip patterns along profile section is typical of such basins; however, unlike Model 2 the dips generally steepen toward the eastern portion of the basin (master fault).

Legend:

Dark Solid Lines : Dip of Triassic Beds

Light Solid Lines : Triassic Rocks

Dotted Area : Country Rock

Angled Cross-Hatch : Master Fault

Vertical Cross-Hatch: Splay Fault(s)

1, 2, 3, 4 : Fault Blocks

MODEL 3: LISTRIC FAULTING

Multiple Faults with Primary Underneath Basin

CHAPTER 6

KINEMATIC MODEL

Geologic Evolution

All evidence gathered and analyzed during this study indicates that the present day geometry of the Farmville Basin is a result of Alleghanian, Triassic, and Jurassic structures. The kinematic model developed for the Farmville Basin attempts to explain the evolution of the basin and how the various structures interacted to form the present day basin. Stresses that apparently controlled basin evolution are also examined. Alleghanian or Preexisting Structures

The Alleghanian orogeny occurred during the Middle Carboniferous to Late Permian (Lefort and Van derVoo, 1980). This orogeny was the result of a collision between North America and Africa. A majority of the regional structural trends found in the study area, are thought to be a result of this orogeny and these are the NE-SW orientation of foliation and folds, as well as the NW-SE orientation of master joints. Foliation and folds were formed as a result of NW-SE directed primary stress or shortening (P1), during the Alleghanian orogeny. A majority of the folds plunge to the SE and are classified as tight isoclinal (Fluety, 1964). In general, foliation dips to the SE between 35 and 45 degrees. Crustal cooling occurred during Post-Alleghanian times, and is

believed to be responsible for the NW-SE joints. This joint set is related to extension or release fracturing, as a result of the cooling. Features formed during the Alleghanian and Post-Alleghanian were the primary structures in determining the geometry of the Farmville Basin.

Basin Formation

Manspeizer and others (1982) suggested the breakup of Pangea began sometime during the Late Permian to Middle Triassic, with the onset of continental uplift. The uplift caused tensional stresses, resulting in graben type structures on both continents. Dooley and Smith (1982) sited evidence to support the conclusions of Manspeizer and others (1982). Van der Voo and others (1976) concluded a counter-clockwise rotation of Africa relative to North America occurred during the Triassic. Venkatarishnan and Lutz (1989) presented a kinematic model of the Richmond basin based on the model of Van der Voo (1976).

Field evidence, basin shape and geophysical modelling suggests that extension was in a NW-SE direction during the formation of the Farmville Basin (Figure 22). This study places P1 in an E15S orientation. This implies P1 (tensional maximum stress) was nearly perpendicular to the NE-SW strike of the foliation, and less than 30 degrees from being parallel with the NW-SE joint set. As extension continued through the

Figure 22: Simplified block diagram illustrates the major structural features and associated stereograms of these structures. Large converging arrows mark the directions of shortening (P1) during the Alleghanian and large diverging arrows mark principal extensional stress (P3) during the Mesozoic times (see text for further details).

STRESSES

P₁: Primary Stress (convergent arrows - shortening stress)

P₂: Intermediate Stress

P₃: Minimum Stress (divergent arrows - extensional stress)

P'₃: Minimum Stress During Dike Emplacement (extensional stress during dike emplacement)

STRUCTURES

T : Thrust Fault

N : Reactivated Thrust Fault

F : Foliation

J1: NE-SW Release Fractures

J2: E-W Extension Joints

B : Bedding

Carnian, reactivation of the NE-SW fabric occurred forming listric faults. During Mesozoic extension, the NW-SE directed principal extensional stress (P3, corresponding to maximum shortening axis during the Alleghanian) resulted in the reactivation of favorably oriented Paleozoic structures. Alleghanian thrust faults appear to have been reactivated as listric-normal, down-to-the east step faults. Even-though there is no kinematic explanation presently available to suggest why the western most normal fault does not form the basin marginal fault, field evidence suggest that the "master" fault may indeed lie beneath the basin. If this model (Figure 21) is accepted then it is suggested that the basin oversteps the western marginal fault (see also Wernicke and Burchfield, 1982). The geophysical models also support the above interpretation.

Jurassic

As extension continued, changing orientations of the principal extensional stress appears to have resulted in the emplacement of dikes that trend about north-south. Dike orientations range from NNW-SSE to NE-SW. These dikes were part of a "major" igneous event(s) that occurred along eastern North America, Europe, Africa, and South America, during the Jurassic (Dooley and Smith, 1983). It is believed that dikes within the study area were emplaced during the Jurassic; however, radiometric dating of these dikes has not been conducted. Dikes striking in a NE-SW direction parallel the

strike of regional foliation. This indicates that foliation was the structural feature responsible for the NE-SW oriented dike group. The NNW-SSE dike group is thought to have formed along N-S fractures formed as a result of sea-floor spreading. in the NNW-SSE group were found to have a high concentration of granophyres (Rogan, personal communication, 1987). This lead to the conclusion that the two dike groups were emplaced at different times. Granophyres found in the NNW-SSE dike group indicated the parent magma of this dike group was chemically mature compared to the parent magma of the NE-SW dike group. This implies the NE-SW dike group was emplaced before the NNW-SSE dike group, and lends support to the two phase igneous event suggested by Smith and Noltier (1979). They claim an igneous event occurred at 190 million years and a second igneous event occurred at 170-175 million Further field and laboratory analysis is needed to confirm the proposed two phase igneous events proposed in this study.

Post Jurassic

From the Cretaceous to the Holocene tectonic, stresses in the study area are generally attributed to isostatic rebound. This conclusion is supported by the lack of structural features cross-cutting dikes in the area. To test this reasoning, a rectified stream analysis was conducted to determine structural trends. The results of the stream analysis indicates there are three significant trends within

the study area, including a N-S, a NE-SW, and a NW- SE trend. These trends approximate the Pre-Jurassic NE-SW foliation, N-S dikes, and NW-SE joint set. From the evidence gathered during this study it is believed that the present Farmville Basin is a remanent of a much larger basin. It is commonly accepted that as much as 2 kilometers of erosion has occurred in the Piedmont of Virginia (Dooley and Smith, 1982).

COMPARISON WITH OTHER MODELS

One purpose of this study was to compare and contrast the kinematic model of the Farmville Basin with existing models that explain the formation of the Newark-Supergroup. Of existing models, this study presents data to support some aspect of every model with the exception of the Broad Terrane hypothesis (Russell, 1892).

Foliation Control

Strong evidence exist to support the Foliation Control theory of Lindholm (1978). As Lindholm stated, the geometry of a basin and its location was dependent on the Paleozoic foliation, and its orientation to p1, during the break-up of Pangea. This study definitely indicates that preexisting foliation was one factor contributing to the Farmville Basins' geometry. This foliation is thought to have formed during the Alleghanian orogeny. The difference between Lindholm's theory and the kinematic model is that structural features, besides

foliation, contributed to the present day geometry of the Farmville Basin. In addition, mapping in the Farmville Quadrangle showed that the foliation strikes are perpendicular to the western border of the basin (Plate 4). This is a direct contradiction to Lindholm's model.

Paleozoic Fault Control

Swanson (1982) believes the primary factor controlling a basins' geometry and location are Paleozoic Mylonite zones. Though Swanson's model is vague, he believes that the Newark-Supergroup of basins formed along Paleozoic Fault zones. Evidence from this study indicates that Paleozoic age mylonitic zones were critical in determining the Farmville Basins' geometry; however, this was not the only factor contributing to the formation of the basin.

Ratcliffe And Burton (1985)

The strongest similarity between the model of Ratcliffe and Burton (1985), and the model presented in this study is that the geometry of the Farmville basin is a direct result of Paleozoic structures. This study concludes that foliation, joints, and Allegahnian thrust are the structural features most strongly controlling the geometry of the Farmville Basin. In contrast, the duplex reactivation model of Ratcliffe and Burton (1985) proposes reactivation of concave and convex Paleozoic thrust systems as the primary factor controlling a

basin's geometry. The geophysical model does not support a duplex model. Ratcliffe and Burton (1985) proposed the duplex reactivation model can explain the geometry of all Mesozoic Basin in eastern North America. Differences explained above between the duplex reactivation and kinematic model raise doubts as to whether the model of Ratcliffe and Burton (1985) is a unifying model for the formation of basins of the Newark Supergroup. One primary difference is that the geometry of the Farmville Basin is of rotational listric type as defined by Wernicke and Burchfield (1982) and convex and concave fault geometry does not appear to be present.. In other words, the basin is comprised of a series of block faults joining a master decollement at depth. fault with The maximum displacement in the Farmville Basin is believed to lie underneath the basin as opposed to the western margin of a basin (as is the case in the duplex reactivation model). Ratcliffe and Burton (1985) suggest the deepest part of a basin occurs immediately to that east of the border fault. The results of this study and evidence presented in this study clearly shows that the deepest part of the Farmville Basin lies farther to the east of the border thrust (eastern part of the basin). Geophysical evidence from this study suggests that block faults were displaced by cross-faults while no evidence was presented indicating that similar displacements were expected in duplex reactivation model.

CHAPTER 7

CONCLUSIONS

Field geological and geophyscial data obtained during the course of this study show that the Farmville basin is indeed a true half graben. The half graben was formed during NW-SE directional Mesozoic extension. However, unlike the generally accepted and existing models sugesting that basin formation nucleates on one common marginal border fault, this study shows that the fault displays maximum down-dip movement and hence controlling the deepest part of the basin may indeed lie within the central part of the basin. In other words, the Newark Group of Triassic basins need not all be nucleated on a western, down-to-the-east marginal fault. The geophysical models presented also clearly displayed the staircase geometry of reactivated Paleozoic faults. However, amounts of down-dip (to the east) movement varied. The deepest part of the Farmville basin is clearly along the eastern margin of the basin.

Future study would be extremely helpful in clarifying some of the more obscure points in this study. A detailed structural analysis is needed of the basin rocks to determine if cross-faults do exist in the basin. Proving the presence of cross-faults would lend more support to the structural and

kinematic models presented in this study. Other areas of study that would be useful in understanding the formation of the Farmville Basin include, a detailed analysis of dike morphology, and seismic profiles across the modelled gravity profiles.

REFERENCES CITED

- Abdel-Rahman, M.A., Hay, A.M., 1978. Sampling and Statistical Analysis Of Mult-Modal Data. Contribution 12 <u>in</u>: Basement Tectonic Contributions, p.73-85.
- Agarwal R. G., 1968. Double Harmonic Analysis for Upward and Downward Continuation: Unpublished Dissertation From Dept. of Physics, Edmonton, Alberta.
- Bhattacharyya, B.K., 1965. Two-Dimensional Harmonic Analysis As a Tool For Magnetic Interpretation: Geophysics, Vol. 20, p. 829-857.
- Brown, W.R., 1969. Geology of the Dillwyn quadrangle, Virginia: Virginia Division of Mineral Resources Rept. Inv. 10, 77 p.
- Conley, J.F. and Johnson, S.S., 1975. Road log of the geology from Madison to Cumberland counties in the Piedmont, central Virginia: Virginia Minerals Vol. 21, No. 4, p. 29-38.
- Cornet, B., 1977. The palynostratigraphy and age of the Newark Supergroup: University Park, Penn. State University, Unpublished PhD Dissertation, p. 501.
- Cox, J.C., and Harrison, S.S., 1979. Fracture-trace influnced stream orientation in glacial drift, North Western Pennsylvania: Canadian Journal Earth Science, Vol. 16, p. 1511-1514.
- Czechowski, D.A., 1982. Petrologic Comparison of Holocene Stream Sands and Triassic Sandstones in The Central Piedmont of Virginia: Evidence For Triassic Paleoclimate: Unpublished Masters Thesis, Southern Illinois University., 96p.
- Decker, E.W., 1987. DIGIT.EXE: A digitizing program for the Numonics 2400 series digitizer (Personal Communication).
- Decker, E.W., 1988. RECTIFY.EXE: A program to break stream segements into straight line segments (Personal Communication).
- Decker, E.W., 1988. SNET.EXE: A program for maintaining and analyzing geologic structural data (Personal Communication).

- Decker, E.W., and James Jr., C.G., QUAD.EXE: A program designed to analyze multimodal data (i.e. rectified stream data) (Personal Communication).
- Dooley, R.E., and Smith, W.A., 1982. Age and magnetism of diabase dykes and tilting of the Piedmont: Tectonophysics, 90., p. 283-307.
- Espenshade, G. H., and Potter, D. B., 1960. Kyanite, sillimanite, and andalusite deposits of the southeastern states: U.S. Geol. Survey Prof. Paper 336, 121 p.
- Fleuty, M. J., 1964. The description of folds, Proc. Geol. Assoc., 75, Pt 4, p. 461-489.
- Glover, L. III, Pratt, T.L., Costain, J.K., Coruh, C., Mose, D.G., Gates, A.E., Evans, N.H., 1987. Tectonics and Crustal Structure In The Central Appalacians of Virginia: Reinterpretation From USGS I-64 Reflection Seismic Profile: Abstract GSA SE Regional Meeting, Norfolk, Virginia.
- Griffin, W.R., 1949. Residual Gravity in Theory and Practice: Geophysics, Vol. 14, p. 39-56.
- Henderson, R.G., 1960. A Comprehensive System of automatic Computation in Magnetic and Gravity Interpretation: Geophysics, Vol. 25, p. 569-585.
- Henery, E.F., Welch, W.J., Fussell, K.E., Bailey, H.H., and Smith, G.K., 1958. Soil survey of Prince Edward County Virginia: United States Dept. of Agriculture, Series 1949, No. 4.
- Higgins, M.W., Sinha, A.K., Zartman, R.E., and Kirk, W.S., 1977. U-Pb zircon dates from Central Appalachian Piedmont: A possible case of inherited radiogenic lead: Geol. Soc. America Bull., Vol. 88, p. 124-132.
- Johnson, S.S., 1981. Regional geophysics, in Geologic investigations in the Willis Mountain and Andersonville quadrangles: Virginia Division of Mineral Resources Publication 29, p. 9-16.
- Johnson, S.S., Wilkes, G.P., and Zeigler, T.L., 1985. Simple Bouger gravity anomaly map of the Farmville, Briery Creek, Roanoke Creek, Randolph, and Scottsburg basins and vicinity, Virginia: Virginia Division of Mineral Resources, Publication 47, one sheet.

- Johnson, S.S, and Zeigler, R.E., 1972. Virginia gravity base net: Virginia Division of Mineral Resources, Inf. Circ. 17, 22 p.
- Jonas, A.I., 1932. Geology of the kyanite belt of Virginia, in Kyanite in Virginia: Virginia Geol. Survey Bull. 38, p. 1-38
- Klein, G. deV., 1969. Deposition of Triassic sedimentary rocks in seperate basins, eastern North America:
 Geol. Society of America Bull., Vol. 80, p. 1825-1831.
- Lefort, J. P., and R. Van der Voo, 1981. A kinetic model for the collision and complete suturing between Gondwana and Laurussia in the Carboniferous: Journal of Geology, Vol. 84, p. 537-550.
- Linholm, R.C., 1978. Triassic-Jurassic faulting in eastern North America-A model based on pre-Triassic structures: Geology, Vol. 6, p. 365-368.
- Lacoste and Romberg, 1980. Model G Instruction Manual: Lacoste and Romberg Inc.
- Manspeizer, W., 1981, Early Mesozoic Basins of the Central Atlantic Passive Margins, <u>in</u>: Geology of Passive Continental Margins, AAPG Eastern Sectional Meeting, Education Course Note Series #19, p. 4:1-4:60.
- Marr, J. D., Jr., 1980A. The geology of the Willis Mountain quadrangle, Virginia: Virginia Division of Mineral Resources Publication 25, text and 1:24,000 scale map.
- Marr, J.D., Jr., 1981. Statigraphy and structure (Triassic System by M.B. McCollum), in Geologic investigations in the Willis Mountain and Andersonville quadrangles, Virginia: Virginia Division of Mineral Resources Publication 29, p. 3-8.
- Mose, D.G., and Nagel, M.S., 1983. Plutonic Events in The Piedmont of Virginia: South Eastern Geol., Vol. 23, p. 25-39.
- Mose, D.G., 1980. Rb-Sr Whole-Rock Studies: Virginia Piedmont II: Year Book, Carnegie Institution of Washington, p. 483-485.
- Nettleton, L.L., 1954. Regionals, Residuals, and Structures: Geophysics, Vol. 9, p. 1-22.

- Ratcliffe, N.M., and Burton, W.S., 1985. Fault reactivation models for origin of the Newark basin and studies related to Eastern U.S. seismicity: U.S. Geol. Survey Cir. 946, p. 36-44.
- Robbins, E.I., 1985. Palynostratigraphy of coal-bearing sequences in early Mesozoic Basins of the eastern United States: U.S. Geol. Survey Cir. 946, p. 27-28.
- Rogan, P., 1988. personal communication
- Rodgers, W.B., 1840. Report of the progress of the geological survey of the state of Virginia for the year 1839. Richmond, 1840. Pp. 1-161, pls.1-2. (Reprinted in a reprint of annual reports and other papers on the geology of the Virginians, by the late William Barton Rogers. New York, 1889, p. 285-410, pl. op. 276, and pl.1)
- Russell, I.C., 1892. Correlation papers-the Newark System: U.S. Geol. Survey Bull. 85, p.344.
- Sanders, J.E., 1963. Late Triassic tectonic history of northeastern United States: American Journal of Science, Vol.261, p. 501-524.
- Scheidegger, A.E., 1980b. The Geotectonics stress field and crustal movements: Tectonophysics, Vol. 71, p. 217-226.
- Shelton, J.W., 1984. Listric normal faults: An illustrated summary: American Assoc. of Petroleum Geol. Bull., Vol. 68, No. 7, p. 801-815.
- Smoot, J.P., 1985. The closed-basin hypothesis and it's use in facies analysis of the Newark Supergroup: U.S. Geol. Survey Cir. 946, p. 4-9.
- Southwick, D.L., Reed, J.C., Jr., and Mixon, R.B., 1971. The Chopawamsic Formation-A new stratigraphic unit in the Piedmont of northern Virginia: U.S. Geol. Survey Bull. 1324-D, 11 p.
- Swanson, M.T., 1986. Preexisting fault control for Mesozoic basin formation in eastern North America: Geology, Vol. 14, No. 5, p 36-38.
- Tilton, G.R., 1970. Zircon age measurements in the Maryland Piedmont with special reference to Baltimore Gneiss problems; in Fisher, G.W., eds. Studies of Appalachian Geology-central and southern: New York, Interscience, p. 429-434.

- Talwani, M., Heirtzler, J.R., 1964. Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape, in Computers in the Mineral Industries, Part 1: Stanford University Publications, Geological Sciences Vol. 9, No. 1, p. 464-480.
- Talwani, M., 1965. Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbirary shape: Geophysics, Vol. 30, p. 797.
- Tasubi, C., 1959. Applications of Double Fourier Series to Computing Gravity anomalies and other Gravimetrical Quantities at higher Elevations from Surface Anomalies: Report No.2 Institute Geodesy, Photogrammetry, and Cartography, Ohio St. University.
- Venkatakrishnan, R., 1984. A remote sensing-based study of lineament block tectonics in the Coastal Plain of Virginia: (Personal Communication).
- Venkatakrishnan, R. and Lutz, R., 1989. Chapter 13: A Kinematic Model For The Richmond Triassic Basin, Virginia in: Triassic-Jurassic Rifting, Manzpeizer, W.. Elseir Publications, The Netherlands.
- Virginia Division Of Mineral Resources, 1970A. Aeromagnetic contour map of the Farmville quadrangle (15-minute map; scale 1:62,500): Open file report, Virginia Division Of Mineral Resources.
- Virginia Division Of Mineral Resources, 1970. Aeromagnetic contour map of the Dillwyn quadrangle (15-minute map; scale 1:62,500): Open file report, Virginia Division Of Mineral Resources.
- Virginia Division Of Mineral Resources, 1978. Aeroradiometric contour map of the Farmville quadrangle (15-minute map; scale 1:62,500): Open file report, Virginia Division Of Mineral Resources.
- Virginia Division Of Mineral Resources, 1978. Aeroradiometric contour map of the Dillwyn quadrangle (15minute map; scale 1:62,500): Open file report, Virginia Division Of Mineral Resources.
- Wernicke, B., and Burchfiel, B.C., 1982. Modes of extensional tectonics: Journal of Struc. Geol., No. 4, p. 105-115.

Wilkes, G.P., and Lasch, D.K., 1979. The Farmville Triassic Basin: an integrated geological/geophysical study: Va. J. Sci., Vol. 30, No.2.

APPENDIX I-A

GRAVAS FORTRAN

Gravas Fortran is a used to reduced the gravimetric dial readings to Free Air and Bouguer Anomalies. The algorithm first converts the dial readings from a LaCoste Romberg gravity meter (Model G, #289) to observed gravity values. The program converts observed gravity values for elevation and mass differences between stations, as well as solar and lunar fluctuations (tides), and instrumental drift. Finally, the algorithm applies Free Air and Bouguer corrections to the observed data yielding the Free Air and Bouguer anomalies for each station. This program was originally written by Virginia Division of Mineral Resources, Charlottesville Virginia. The program is listed below:

GRAVAS FORTRAN:

Written By: Virginia Division Of Mineral Resources

C ROUTINE GRAVAS (AFTER SNOWDEN; FROM VDMR) GRA00010
C GRA00020
DIMENSION VIM(72),NBASE(30),BASEG(30) GRA00030
DIMENSION DELT(100),DELG(100),RES(100) GRA00040
DIMENSIONIDATE(190),PHI(190),ALON(190),OBSG(190),H(190),NUM(190)GRA00050

```
DIMENSION HS(190), SURNAM(21)
                                                                            GRA00060
      CHARACTER*6TAG(13), STA1(190), STA2(190), A, B, C, D, E, F, G, Q, R, S, T, U, VGRA00070
      CHARACTER *6 CONVER
                                                                            GRA00080
      CHARACTER * 1 TITLE (67)
                                                                            GRA00090
      OPEN (UNIT=1, ACCESS='SEQUENTIAL', FILE='CAL')
C
                                                                            GRA00100
C
      OPEN (UNIT=2, ACCESS='SEQUENTIAL', FILE='GRAVAS')
                                                                            GRA00110
C
      OPEN (UNIT=4, ACCESS='SEQUENTIAL', FILE='FINAL')
                                                                            GRA00120
      JIMMY=0
                                                                            GRA00130
      WRITE(6,1141)
                                                                            GRA00140
1141 FORMAT(10X,44HENTER DESIRED DISTANCE TO START FOR PLOTTING,/,
                                                                            GRA00150
     +20X,49HIF DISTANCE DESIRED IS 0.0 FEET ENTER -400.0 FEET,/)
                                                                            GRA00160
      READ(5,*) DIST
                                                                            GRA00170
C
                IF JAG =
                                                                            GRA00180
C
                         O TERMINATE RUN
                                                                            GRA00190
C
                         1 DO NOT READ CALIBRATION
                                                                            GRA00200
C
                         2 READ CALIBRATION TABLE
                                                                            GRA00210
C
                IF KAG =
                                                                            GRA00220
C
                         1 DO NOT READ BASE STNS
                                                                            GRA00230
C
                         2 READ BASE STNS
                                                                           GRA00240
C
                IF LAG =
                                                                           GRA00250
C
                         1 OMIT OPTION
                                                                           GRA00260
C
                         2 READ GMT REJKT CALIM RHO
                                                                           GRA00270
C
                IF MAG =
                                                                           GRA00280
C
                         1 LOOP DRIFT COMPUTATION
                                                                            GRA00290
C
                         2 LINE DRIFT COMPUTATION
                                                                            GRA00300
C
                IF NAG =
                                                                            GRA00310
C
                         1 INDIVIDUAL LOOP(LINE) COMPUTATION
                                                                           GRA00320
C
                        2 STORE LOOP PENDING INTERLOOP COMPARISON
                                                                           GRA00330
C
                        3 LAST LOOP, STORE, EXECUIT COMPARISON
                                                                           GRA00340
C
                IF IAG =
                                                                           GRA00350
C
                         1 IGNORE OPTION
                                                                           GRA00360
C
                         2 PUNCH ACIC CARDS
                                                                           GRA00370
C
                         3 PUNCH NON-ACIC CARDS
                                                                           GRA00380
C
                IF IFOR =
                                                                           GRA00390
C
                         O PRINT STANDARD TITLE
                                                                           GRA00400
C
                         1 PRINT ALTERNATE TITLE
                                                                           GRA00410
   90 READ (1,100) JAG, KAG, LAG, MAG, NAG, IAG, IFOR
                                                                           GRA00420
                                                                           GRA00430
  100 FORMAT(711)
      NOMTYP=0
                                                                           GRA00440
      IF(JAG) 700,700,150
                                                                           GRA00450
  150 GO TO (300,200), JAG
                                                                           GRA00460
               TAG IS CALIBRATION TABLE TITLE
C
                                                                           GRA00470
  200 READ (1,225) (TAG(I), I=1,13)
                                                                           GRA00480
  225 FORMAT (13A6)
                                                                           GRA00490
      READ (1,230) SCALE
                                                                           GRA00500
  230 FORMAT(F8.6)
                                                                           GRA00510
      DO 250 I=1,9
                                                                           GRA00520
C
               VIM (VALUE IN MILLIGALS) IS CALIBRATION TABLE
                                                                           GRA00530
      K=I*8
                                                                           GRA00540
      J=K-7
                                                                           GRA00550
  250 READ (1,260) (VIM(L),L=J,K)
                                                                           GRA00560
  260 FORMAT(8F10.2)
                                                                           GRA00570
      IF(SCALE) 285,300,285
                                                                           GRA00580
  285 DO 290 I=1,72
                                                                           GRA00590
  290 VIM(I)=VIM(I)*SCALE
                                                                           GRA00600
                                                                           GRA00610
  300 GO TO (400,310), KAG
C
       NBASE AND BASEG ARE NUMBER AND MGAL VALUE OF BASE STATIONS
                                                                           GRA00620
  310 READ (1,320) NNBASE
                                                                           GRA00630
  320 FORMAT(12)
                                                                           GRA00640
      DO 330 I=1, NNBASE
                                                                           GRA00650
      IF(IFOR.NE.O) GO TO 345
                                                                           GRA00660
      READ (2,340) NBASE(I), BASEG(I)
                                                                           GRA00670
```

```
340 FORMAT(14,2X,F9.3)
                                                                            GRA00680
       GO TO 330
                                                                             GRA00690
  345 READ (2,346) NBASE(I), BASEG(I)
                                                                             GRA00700
  346 FORMAT(15, F9.3)
                                                                             GRA00710
  330 BASEG(I)=BASEG(I)-976000.
                                                                            GRA00720
  400 GO TO (500,410), LAG
                                                                            GRA00730
C
           LCT+GMT=GCT
                                                                            GRA00740
C
                REJKT IS REJECTION LIMIT
                                                                            GRA00750
C
                CALIM IS CALIBRATION REJECTION LIMIT
                                                                            GRA00760
  410 READ (1,420) GMT, REJKT, CALIM
                                                                             GRA00770
  420 FORMAT(F6.2,2F5.3)
                                                                            GRA00780
       IF(CALIM.LE.O.) CALIM=.15
                                                                            GRA00790
       IF(REJKT.LE.O.) REJKT=.05
                                                                            GRA00800
                READ LOOP (LINE) TITLE
                                                                            GRA00810
  500 IF(IFOR.NE.O) GO TO 511
                                                                            GRA00820
       READ(2,505) (TITLE(II), II=1,67)
                                                                            GRA00830
505
      FORMAT (67A1)
                                                                            GRA00840
      WRITE(4,510) (TITLE(II),II=1,67)
                                                                            GRA00850
510
      FORMAT(1X,67A1)
                                                                            GRA00860
       GO TO 519
                                                                            GRA00870
  511 READ (2,512) (SURNAM(I),I=1,8),TYPINS,INSNO,SURNAM(9),SURNAM(10),GRA00880
     1NOMTYP, (SURNAM(I), I=11,21)
                                                                            GRA00890
  512 FORMAT(8A6,A3,I3,2A6,I3,11A1)
                                                                            GRA00900
      WRITE (4,513) (SURNAM(I), I=1,8), TYPINS, INSNO, (SURNAM(I), I=9,21)
                                                                            GRA00910
  513 FORMAT(1H1,45X,5A6/2X,10HLOOP/LINE,A6,7X,5HDATE,2A6,7X,11HGRAVIMGRA00920
     1ETER ,A3, 13, 7X, 9HOBSERVER , 2A6, 7X, 8HCOMMENT , 11A1)
                                                                            GRA00930
  519 WRITE (4,225) (TAG(I), I=1,13)
                                                                            GRA00940
  520 CALL STORE (IDATE, PHI, ALON, OBSG, H, NUM, VIM,
                                                      GMT, ICOUNT, STA1, STA2GRA00950
     1, IYEAR, HS, IFOR)
                                                                            GRA00960
  530 CALL TIDE (ICOUNT, NUM, IDATE, OBSG, PHI, ALON, H)
                                                                            GRA00970
       CALL DRIFT (ICOUNT, NUM, OBSG, IDATE, REJKT, MAG, NNBASE, NBASE, BASEG,
                                                                            GRA00980
     1DELT, DELG, RES, RR, DD)
                                                                            GRA00990
      GO TO (550,560,550,550), NAG
                                                                            GRA01000
  550 IF(IFOR.NE.O) GO TO 552
                                                                            GRA01010
      WRITE (4,551) A,B,C,D,E,G,Q
                                                                            GRA01020
  551 FORMAT (1H1, 9X, 5A6, 2X, 2A6)
                                                                            GRA01030
                                                                            GRA01040
      GO TO 554
  552 WRITE (4,553) (SURNAM(I), I=1,5)
                                                                            GRA01050
  553 FORMAT(1H1,45X,5A6)
                                                                            GRA01060
  554 GO TO (555,560,560,555), NAG
                                                                            GRA01070
  555 WRITE (4,225) (TAG(I), I=1,13)
                                                                            GRA01080
  560CALLGRANET(ICOUNT, NUM, STA1, STA2, OBSG, PHI, ALON, H, NNBASE, NBASE, BASEGRA01090
     1G, NOMTYP, JIMMY, NAG, IAG, HS, RR, DD, DIST)
                                                                            GRA01100
      IF(NAG.EQ.4)CALLCALIB(ICOUNT,NUM,OBSG,NNBASE,NBASE,BASEG,STA1,STGRA01110
     1A2, NAG, PHI, ALON, H, CALIM, DELT, DELG, RES)
                                                                            GRA01120
      IF(NAG.EQ.5) GO TO 560
                                                                            GRA01130
      GO TO 90
                                                                            GRA01140
C
       CLOSE (UNIT=20)
                                                                            GRA01150
C
       CLOSE (UNIT=21)
                                                                            GRA01160
C
       CLOSE (UNIT=41)
                                                                            GRA01170
C
       CLOSE (UNIT=42)
                                                                            GRA01180
  700 STOP
                                                                            GRA01190
      END
                                                                            GRA01200
C
                                                                            GRA01210
C
                                                                            GRA01220
C
                                                                            GRA01230
      SUBROUTINE STORE(IDATE, PHI, ALON, OBSG, H, NUM, VIM,
                                                            GMT, ICOUNT, STAGRA01240
     1 1,STA2, JYEAR, HS, IFOR)
                                                                            GRA01250
C
        IDATE = DATE AND TIME OF OBSERVATION
                                                                            GRA01260
C
       CONVERTS YEAR , DAY , HOUR , MINUTES TO ONE VARIABLE IDATE IN MINUGRA01270
C
          LEAP YEAR TAKEN INTO ACCOUNT, CONVERSION TO GMT
                                                                            GRA01280
```

```
C
       LATITUDE , LONGITUDE CONVERTED TO RADIANS
                                                                            GRA01290
                                                                            GRA01300
       DIAL READING CONVERTED TO MGALS
C *****NUMBER, DATE, TIME, OBS.G, PHI, LAMBDA, HEIGHT ARE STORED
                                                                           GRA01310
       DIMENSION IDATE(1),PHI(1),ALON(1),OBSG(1),NUM(1),VIM(1)
                                                                           GRA01320
      DIMENSION HS(1),H(1)
                                                                            GRA01330
       CHARACTER *6 CONVER, CON, CKF, STA1(1), STA2(1)
                                                                            GRA01340
                                                                            GRA01350
       CKF='F'
                                                                            GRA01360
 1000 IF(IFOR.NE.O) GO TO 50
                                                                            GRA01370
      READ (2,1001) NUM(I),STA1(I),STA2(I),IDAY,MONTH,IYEAR,IHOUR,DIA
                                                                           GRA01380
     1L, IPHI, JPHI, PHI(I), LON, ILON, ALON(I), CONVER, H(I)
                                                                            GRA01390
 1001 FORMAT(15,2A6,12,12,14,14,F7.3,213,F2.0,14,13,F2.0,A1,F8.2)
                                                                            GRA01400
      WRITE (9,1002) STA1(I),STA2(I)
                                                                            GRA01410
      FORMAT (5X, 2A6)
                                                                            GRA01420
      GO TO 99
                                                                           GRA01430
  999 PHI(I)=PHI(I)*0.6
                                                                           GRA01440
      ALON(I) = ALON(I) *0.6
                                                                           GRA01450
   50 READ (2,51) NUM(I), STA1(I), STA2(I), IDAY, MONTH, IYEAR, IHOUR, MINUTE, GRA01460
     11PHI, PHI(I), LON, ALON(I), CONVER, H(I)
                                                                            GRA01470
   51 FORMAT(15,2A6,212,14,212,F7.3,13,F5.2,14,F5.2,A1,F8.2)
                                                                            GRA01480
      WRITE (9,1002) STA1(I),STA2(I)
                                                                           GRA01490
   99 IF(IYEAR) 105,100,105
                                                                           GRA01500
  100
       ICOUNT=I-1
                                                                           GRA01510
       RETURN
                                                                           GRA01520
      GO TO (110,111,112,113,114,115,116,117,118,119,120,121), MONTH
  105
                                                                           GRA01530
       IDATE(I)=IDAY
  110
                                                                           GRA01540
       GO TO 125
                                                                           GRA01550
  111
       IDATE(I) = IDAY + 31
                                                                           GRA01560
       GO TO 125
                                                                           GRA01570
       IDATE(I)=IDAY+59
                                                                           GRA01580
  112
       GO TO 125
                                                                           GRA01590
                                                                           GRA01600
  113
       IDATE(I)=IDAY+90
       GO TO 125
                                                                           GRA01610
  114
       IDATE(I)=IDAY+120
                                                                           GRA01620
       GO TO 125
                                                                           GRA01630
                                                                           GRA01640
  115
       IDATE(I) = IDAY + 151
                                                                           GRA01650
       GO TO 125
  116
       IDATE(I)=IDAY+181
                                                                           GRA01660
       GO TO 125
                                                                           GRA01670
  117
       IDATE(I) = IDAY + 212
                                                                           GRA01680
       GO TO 125
                                                                           GRA01690
  118
       IDATE(I) = IDAY + 243
                                                                           GRA01700
       GO TO 125
                                                                           GRA01710
  119
                                                                           GRA01720
       IDATE(I) = IDAY + 273
       GO TO 125
                                                                           GRA01730
  120
       IDATE(I) = IDAY + 304
                                                                           GRA01740
       GO TO 125
                                                                           GRA01750
  121
       IDATE(I)=IDAY+334
                                                                           GRA01760
  125
       YEAR=IYEAR
                                                                           GRA01770
      IDATE(I) = IDATE(I) + (IYEAR-1900)/4+1
                                                                           GRA01780
      IF(YEAR/4.-FLOAT(IYEAR/4)) 145,135,145
                                                                           GRA01790
  135 IF(MONTH-3) 140,145,145
                                                                           GRA01800
  140 IDATE(I)=IDATE(I)-1
                                                                           GRA01810
  145 TIME=(FLOAT(IHOUR)/100.0)+0.001
                                                                           GRA01820
      JHR=IFIX(TIME)
                                                                           GRA01830
      MINUTE=IFIX((TIME-FLOAT(JHR))*100.0)
                                                                           GRA01840
      IHOUR=JHR
                                                                           GRA01850
      IDATE(I)=(IYEAR-1900)*525600+(IDATE(I)-2)*1440+IHOUR*60+IFIX(GMT*6GRA01860
     10.)+720+MINUTE
                                                                           GRA01870
       IF(CONVER.EQ.CKF) H(I)=H(I)/3.280833
                                                                           GRA01880
      IF(IFOR.EQ.O) GO TO 180
                                                                           GRA01890
                                                                           GRA01900
      IF(CON.EQ.CKF) HS(I)=HS(I)/3.280833
```

```
GRA01910
  180 PHI(I)=DERAD2(IPHI,JPHI,PHI(I))
      ALON(I) = DERAD2(LON, ILON, ALON(I))
                                                                          GRA01920
                                                                          GRA01930
       J=IFIX(DIAL/100.0)
       CR=FLOAT(J)*100.0
                                                                          GRA01940
                                                                          GRA01950
       R=DIAL-CR
                                                                          GRA01960
       J=J+1
                                                                          GRA01970
      OBSG(I) = VIM(J) + R*(VIM(J+1) - VIM(J))/100.
      JYEAR=IYEAR
                                                                          GRA01980
       I=I+1
                                                                          GRA01990
       GO TO 1000
                                                                          GRA02000
                                                                          GRA02010
       END
                                                                          GRA02020
С
C
                                                                          GRA02030
C
                                                                          GRA02040
      SUBROUTINE TIDE (ICOUNT, NUM, IDATE, OBSG, PHI, ALON, H)
                                                                          GRA02050
     COMPUTES TIDAL CORRECTION BY LONGMAN METHOD. JGR, VOL. 64, NO. 12, P. 23GRAO 2060
C
       DIMENSION PHI(1), IDATE(1), H(1), ALON(1), OBSG(1), NUM(1)
                                                                          GRA02070
            SMLA, SMLC1, SMLE, SMLM, OMEGA, AMU, BIGM, BIGS, SMLC, SMLI, SMLAP, CON1GRA02080
     1, CON2, CON3, CON4, CON5, CON6, CON7, CON8, CON9, CON10, CON11, CON12, CON13,
                                                                           GRA02090
     2CON14, CON15, CON16, CON17, CON18, CON19, CON20, CON21, CON22, CON23, CON24/GRA02100
     36.37827E8,1.495E13,5.489972E-2,7.4804E-2,4.09314616E-1,6.670E-8,GRA02110
     47.3537E25,1.993E33,3.84402E10,8.979719E-2,.260931E-10,.006738,.016GRA02120
     575104,.00004180,.126E-6,4.90822947,3.00052642E-2,7.90246E-6,5.818EGRA02130
     6-8,4.71996657,8399.70914,-1.97803982E-5,3.29673303E-8,5.83515153,
                                                                          GRA02140
     771.0180412,1.80205245E-4,2.18166156E-7,4.88162793,628.331951,5.279GRA02150
     862E-6,.261799388,4.52360045,33.7571462,3.62640633E-5,3.87850945E-8GRA02160
                                                                          GRA02170
      WRITE (4,71)
                                                                          GRA02180
   71 FORMAT(///5x,6HSTA NO,14x,4HDATE,10x,12HUNCORR OBS G,10x,9HTIDE COGRA02190
     1RR//20X,14HJULIAN MINUTES,9X,5HMGALS,15X,5HMGALS//)
                                                                          GRA02200
      DO 300 I=1, ICOUNT
                                                                          GRA02210
                                                                          GRA02220
       SNPHI=SIN(PHI(I))
       CSPHI=COS(PHI(I))
                                                                          GRA02230
  205 T=FLOAT(IDATE(I))/52596000.
                                                                          GRA02240
       T2=T**2
                                                                          GRA02250
       T3=T*T2
                                                                          GRA02260
  210
       BIGC=SQRT(1.0/(1.0+CON1*SNPHI**2))
                                                                          GRA02270
       SMLR=BIGC*SMLA+H(I)*100.0
                                                                          GRA02280
       SMLE1= CON2-CON3*T-CON4*T2
                                                                          GRA02290
       SMLAP1=1.0/(SMLC1*(1.0-SMLE1**2))
                                                                          GRA02300
       SMLP1=CON5+CON6*T+CON7*T2+CON8*T3
                                                                          GRA02310
       SMLS=CON9+CON10*T+CON11*T2+CON12*T3
                                                                          GRA02320
       SMLP=CON13+CON14*T-CON15*T2-CON16*T3
                                                                          GRA02330
       SMLH=CON17+CON18*T+CON19*T2
                                                                          GRA02340
  220
       BIGRD=1.0/SMLC1+SMLAP1*SMLE1*COS(SMLH-SMLP1)
                                                                          GRA02350
       SMLRD=1.0/SMLC+SMLAP*SMLE*COS(SMLS-SMLP)+SMLAP*SMLE**2*COS(2.0*GRA02360
     1(SMLS-SMLP))+(15.0/8.0)*SMLAP*SMLM*SMLE*COS(SMLS-2.0*SMLH+SMLP)+GRA02370
     2 SMLAP*SMLM**2*COS(2.0*(SMLS-SMLH))
                                                                          GRA02380
  225 SMLTO=FLOAT(IDATE(I)-(IDATE(I)/1440)*1440)/60.0
                                                                          GRA02390
       SMLT=CON20*(SMLTO
                              )+ALON(I)
                                                                          GRA02400
       CHI1=SMLT+SMLH
                                                                          GRA02410
       SMLL1=SMLH+2.0*SMLE1*SIN(SMLH-SMLP1)
                                                                          GRA02420
       BIGN=CON21-CON22*T+CON23*T2+CON24*T3
                                                                          GRA02430
       CSBIGI=COS(OMEGA)*COS(SMLI)-SIN(OMEGA)*SIN(SMLI)*COS(BIGN)
                                                                          GRA02440
       SNBIGI=SQRT(1.0-CSBIGI**2)
                                                                          GRA02450
       BIGI=ATAN2 (SNBIGI, CSBIGI)
                                                                          GRA02460
 235
       SNGNU=SIN(SMLI)*SIN(BIGN)/SNBIGI
                                                                          GRA02470
       CSGNU=SQRT(1.0-SNGNU**2)
                                                                          GRA02480
       GNU=ATAN2 (SNGNU, CSGNU)
                                                                          GRA02490
                                                                          GRA02500
       CHI=SMLT+SMLH-GNU
       CSALFA=COS(BIGN)*CSGNU+SIN(BIGN)*SNGNU*COS(OMEGA)
                                                                          GRA02510
```

```
SNALFA=SIN(OMEGA)*SIN(BIGN)/SNBIGI
                                                                           GRA02520
       ALFA=2.0*ATAN(SNALFA/(1.0+CSALFA))
                                                                           GRA02530
  240 ETA=BIGN-ALFA
                                                                          GRA02540
       SIGMA=SMLS-ETA
                                                                           GRA02550
       SMLL=SIGMA+2.0*SMLE*SIN(SMLS-SMLP)+1.25*SMLE**2*SIN(2.0*(SMLS-GRA02560
        SMLP))+3.75*SMLM*SMLE*SIN(SMLS-2.0*SMLH+SMLP)+(11.0/8.0)*SMLM**2*GRA02570
     2 SIN(2.0*(SMLS-SMLH))
                                                                           GRA02580
  245 CSFEE=SNPHI*SIN(OMEGA)*SIN(SMLL1)+CSPHI*(COS(OMEGA/2.0)**2*COS
                                                                          GRA02590
     1 (SMLL1-CHI1)+SIN(OMEGA/2.0)**2*COS(SMLL1+CHI1))
                                                                           GRA02600
  250 CSTHET=SNPHI*SNBIGI*SIN(SMLL)+CSPHI*(COS(BIGI/2.0)**2*COS(SMLL- GRA02610
     1 CHI)+SIN(BIGI/2.0)**2*COS(SMLL+CHI))
                                                                          GRA02620
C THE NEXT TWO STATEMENTS ARE WRITTEN TO TAKE ADVANTAGE OF MACHINES WITHGRA02630
  LIMITATIONS AS TO THE SIZE OF LARGE NEGATIVE EXPONENTS
                                                                          GRA02640
       GS=AMU*BIGS*SMLR*BIGRD**2*BIGRD*(3.0*CSFEE**2-1.0)
                                                                           GRA02650
  260 GM=AMU*BIGM*SMLR*SMLRD**3*(3.0*CSTHET**2-1.0)+1.5*AMU*BIGM*SMLRDGRA02660
     1**2*SMLR**2*SMLRD**2*(5.0*CSTHET**3-3.0*CSTHET)
                                                                          GRA02670
  270 \text{ GOO}=(GM+GS)*1200.0
                                                                          GRA02680
      WRITE (4,3000) NUM(I), IDATE(I), OBSG(I), GOO
                                                                          GRA02690
 3000 FORMAT(5X, I5, 10X, I10, 8X, F10.3, 13X, F6.3)
                                                                          GRA02700
       OBSG(I) = OBSG(I) + GOO
                                                                          GRA02710
       RETURN
                                                                          GRA02720
       END
                                                                          GRA02730
C
                                                                          GRA02740
C
                                                                          GRA02750
C
                                                                          GRA02760
      SUBROUTINE DRIFT(ICOUNT, NUM, OBSG, IDATE, REJKT, MAG, NNBASE, NBASE,
                                                                          GRA02770
                                                                          GRA02780
     1BASEG, DELT, DELG, RES, ZSUM, ZENO)
      DIMENSION NUM(1),OBSG(1),IDATE(1),NBASE(1),BASEG(1)
                                                                          GRA02790
      DIMENSION DELT(1), DELG(1), RES(1), LUM(100)
                                                                          GRA02800
C
      IF MAG=@
                                                                          GRA02810
C
             1,LOOP COMPUTATION
                                                                          GRA02820
C
             2, LINE COMPUTATION
                                                                          GRA02830
      KDAT=IDATE(1)
                                                                          GRA02840
            REFERANCE ALL TIMES TO INITAL TIME
                                                                          GRA02850
       WRITE (4,69)
                                                                          GRA02860
   69 FORMAT(//5x,6HSTA NO,14x,4HTIME,14x,4HOBSG,15x,'(CORRECTED FOR
                                                                          GRA02870
     1 TIDE)'/)
                                                                          GRA02880
      WRITE (4,1)
                                                                          GRA02890
    1 FORMAT(10H
                                                                          GRA02900
                           )
      DO 10 J=1, ICOUNT
                                                                          GRA02910
   10 IDATE(J)=IDATE(J)-KDAT
                                                                          GRA02920
       DO 12 I=1, ICOUNT
                                                                          GRA02930
      WRITE (4,15) NUM(I), IDATE(I), OBSG(I)
                                                                          GRA02940
   15 FORMAT(5X,15,13X,16,11X,F9.3)
                                                                          GRA02950
   12 CONTINUE
                                                                          GRA02960
      JC=ICOUNT-1
                                                                          GRA02970
С
           REMOVE DRIFT STNS
                                                                          GRA02980
      DO 19 J=1,JC
                                                                          GRA02990
      IF(NUM(J).NE.0) GO TO 19
                                                                          GRA03000
      IF(NUM(J)-NUM(J+1)) 19,16,19
                                                                          GRA03010
   16 GLAY=OBSG(J+1)-OBSG(J)
                                                                          GRA03020
      LAYT=IDATE(J+1)-IDATE(J)
                                                                          GRA03030
      KK=J+1
                                                                          GRA03040
      DO 18 K=KK, ICOUNT
                                                                          GRA03050
      OBSG(K) = OBSG(K) - GLAY
                                                                          GRA03060
   18 IDATE(K)=IDATE(K)-LAYT
                                                                          GRA03070
   19 CONTINUE
                                                                          GRA03080
C
            TEST FOR AND REMOVE ANY LAY-OVERS
                                                                          GRA03090
       DO 30 J=1,JC
                                                                          GRA03100
      IF(NUM(J).EQ.0) GO TO 30
                                                                          GRA03110
      IF(NUM(J)-NUM(J+1)) 30,20,30
                                                                          GRA03120
```

```
20 GLAY=OBSG(J+1)-OBSG(J)
                                                                          GRA03130
      LAYT=IDATE(J+1)-IDATE(J)
                                                                          GRA03140
                                                                          GRA03150
      KK=J+1
                                                                          GRA03160
      NUM(KK) = 0
      DO 25 K=KK, ICOUNT
                                                                          GRA03170
      OBSG(K) = OBSG(K) - GLAY
                                                                          GRA03180
   25 IDATE(K)=IDATE(K)-LAYT
                                                                          GRA03190
   30 CONTINUE
                                                                          GRA03200
      GO TO(31,150), MAG
                                                                          GRA03210
            TEST FOR REOCCUPATIONS, FORM DELTA G2S AND DELTA T2S
                                                                          GRA03220
C
   31 XYSUM=0.
                                                                          GRA03230
      X2SUM=0.
                                                                          GRA03240
                                                                          GRA03250
      XSUM=0.
      YSUM=0.
                                                                          GRA03260
      L=0
                                                                          GRA03270
       WRITE (4,39)
                                                                          GRA03280
   39 FORMAT(///)
                                                                          GRA03290
      DO 50 I=1,JC
                                                                          GRA03300
      IF(NUM(I)) 50,50,32
                                                                          GRA03310
   32 K=I+1
                                                                          GRA03320
      DO 45 J=K, ICOUNT
                                                                          GRA03330
   35 IF(NUM(I)-NUM(J)) 45,40,45
                                                                          GRA03340
                                                                          GRA03350
   40 L=L+1
      LUM(L) = NUM(J)
                                                                          GRA03360
      DELG(L) = OBSG(J) - OBSG(I)
                                                                          GRA03370
                                                                          GRA03380
      DELT(L) = IDATE(J) - IDATE(I)
      WRITE (4,941) L,DELG(L),L,DELT(L)
                                                                          GRA03390
  941 FORMAT(1H ,5HDELG(,12,2H)=,F7.3,8X,5HDELT(,12,2H)=,F8.1)
                                                                          GRA03400
                                                                          GRA03410
      XYSUM=XYSUM+DELG(L)*DELT(L)
      X2SUM=X2SUM+DELT(L)**2
                                                                          GRA03420
      XSUM=XSUM+DELT(L)
                                                                          GRA03430
      YSUM=YSUM+DELG(L)
                                                                          GRA03440
   45 CONTINUE
                                                                          GRA03450
   50 CONTINUE
                                                                          GRA03460
      WRITE (4,600)
                                                                          GRA03470
  600 FORMAT(1H1,50X,20HD R I F T
                                      P L O T//)
                                                                          GRA03480
      CALL PLOT2D(L,DELT,DELG)
                                                                          GRA03490
C
            SOLVE FOR BEST FIT LINEAR DRIFT
                                                                          GRA03500
      WRITE (4,68)
                                                                          GRA03510
   68 FORMAT(1H1)
                                                                          GRA03520
      IPASS=1
                                                                          GRA03530
      DENO = L+1
                                                                          GRA03540
      ZENO=DENO
                                                                          GRA03550
   70 DENOM= DENO*X2SUM-XSUM**2
                                                                          GRA03560
      AC=(DENO*XYSUM-XSUM*YSUM)/DENOM
                                                                          GRA03570
      BINT=(YSUM*X2SUM-XYSUM*XSUM)/DENOM
                                                                          GRA03580
C
            COMPUTE RESIDUALS , TEST AGAINST REJECTION LIMIT
                                                                          GRA03590
      II=1
                                                                          GRA03600
      RSUM=0.
                                                                          GRA03610
      WRITE (4,800) IPASS, REJKT
                                                                          GRA03620
  800 FORMAT(////13H FIT NUMBER ,11,37H REJECTED VALUES REJECTION LIMGRA03630
     1IT = ,F5.3,5HMGALS/)
                                                                          GRA03640
      DO 72 I=1,L
                                                                          GRA03650
      IF(LUM(I)) 72,72,71
                                                                          GRA03660
   71 RES(I)=BINT+AC*DELT(I)-DELG(I)
                                                                          GRA03670
      RSUM=RSUM+RES(I)**2
                                                                          GRA03680
   72 CONTINUE
                                                                          GRA03690
      IF(IPASS.EQ.1) ZSUM=RSUM
                                                                          GRA03700
      SIGMA=SQRT(RSUM/DENO)
                                                                          GRA03710
      RESMAX=0.
                                                                          GRA03720
      DO 74 I=1,L
                                                                          GRA03730
      IF(LUM(I)) 74,74,73
                                                                          GRA03740
```

```
73 RESMAX=AMAX1(RESMAX, ABS(RES(I)))
                                                                        GRA03750
  74 CONTINUE
                                                                        GRA03760
     DO 76 I=1,L
                                                                        GRA03770
     IF(LUM(I)) 76,76,75
                                                                        GRA03780
  75 IF (ABS(RES(I))-RESMAX) 76,77,77
                                                                        GRA03790
  77 IF(ABS(RES(I))-REJKT) 76,76,80
                                                                        GRA03800
  80 II=2
                                                                        GRA03810
     XYSUM=XYSUM-DELG(I)*DELT(I)
                                                                        GRA03820
     X2SUM=X2SUM-DELT(I)**2
                                                                        GRA03830
     XSUM=XSUM-DELT(I)
                                                                        GRA03840
     YSUM=YSUM-DELG(I)
                                                                        GRA03850
     KDELT=DELT(I)
                                                                        GRA03860
     WRITE (4,900) LUM(I), KDELT, RES(I)
                                                                        GRA03870
 900 FORMAT(1H0,11HSTA NUMBER, I5,4X,6HTIME =, I5,5X,11HRESIDUAL = ,F7.3GRA03880
                                                                        GRA03890
     LUM(I)=0
                                                                        GRA03900
     DENO=DENO-1.
                                                                        GRA03910
  76 CONTINUE
                                                                        GRA03920
     WRITE (4,1000) IPASS, SIGMA
                                                                        GRA03930
1000 FORMAT(1H0,14HSIGMA FOR FIT, 11,3H = ,F8.4)
                                                                        GRA03940
           IF ANY VALUES REJECTED REFIT DRIFT
                                                                        GRA03950
     GO TO(120,85),II
                                                                        GRA03960
  85 IPASS=IPASS+1
                                                                        GRA03970
     GO TO 70
                                                                        GRA03980
     DRIFT COMPUTATION FOR LINE
                                                                        GRA03990
 150 DO 170 I=1, NNBASE
                                                                        GRA04000
     IF(NUM(1)-NBASE(I)) 160,155,160
                                                                        GRA04010
 155 FIRST=BASEG(I)
                                                                        GRA04020
 160 IF(NUM(ICOUNT)-NBASE(I)) 170,165,170
                                                                        GRA04030
 165 BLAST=BASEG(I)
                                                                        GRA04040
                                                                        GRA04050
 170 CONTINUE
     REFDIF=FIRST-BLAST
                                                                        GRA04060
     DIF=OBSG(1)-OBSG(ICOUNT)
                                                                        GRA04070
                                                                        GRA04080
     AC=(REFDIF-DIF)/FLOAT(IDATE(ICOUNT))
 120 AII=AC*60.
                                                                        GRA04090
     WRITE (4,1200) AII
                                                                        GRA04100
1200 FORMAT(1H0,19HFINAL DRIFT RATE = ,F8.4,16HMILLIGALS / HOUR)
                                                                        GRA04110
     IF(MAG.NE.1) GO TO 121
                                                                        GRA04120
     WRITE (4,1250) BINT
                                                                        GRA04130
1250 FORMAT(1X,12HINTERCEPT = ,F8.4,5H MGAL)
                                                                        GRA04140
          APPLY DRIFT CORRECTION AND FORM DELTA G2S WITH RESPECT TO FIGRA04150
 121 DO 125 I=1, ICOUNT
                                                                        GRA04160
     IF(NUM(I)/1000.GT.0) GO TO 126
                                                                        GRA04170
 125 CONTINUE
                                                                        GRA04180
 126 GEE=OBSG(I)
                                                                        GRA04190
     DO 130 I=1, ICOUNT
                                                                        GRA04200
 130 OBSG(I)=OBSG(I)-GEE
                             -AC*FLOAT(IDATE(I))
                                                                        GRA04210
     WRITE (4,1300)
                                                                        GRA04220
1300 FORMAT(///6X,17HCORRECTED DELTA G//)
                                                                        GRA04230
     WRITE (4,1400)
                                                                        GRA04240
1400 FORMAT (6X,3HSTA,13X,1HG,11X,8HINTERVAL)
                                                                        GRA04250
     DO 1700 I=1, ICOUNT
                                                                        GRA04260
     IF(NUM(I)) 1700,1700,1450
                                                                        GRA04270
1450 WRITE (4,1500) NUM(I),OBSG(I)
                                                                        GRA04280
1500 FORMAT(5X, 15, 5X, F11.3)
                                                                        GRA04290
                                                                        GRA04300
     J=I+1
1505 IF(J.GT.ICOUNT) GO TO 1700
                                                                        GRA04310
     IF(NUM(J).GT.O) GO TO 1550
                                                                        GRA04320
1510 J=J+1
                                                                        GRA04330
     GO TO 1505
                                                                        GRA04340
1550 XINT=OBSG( J )-OBSG(I)
                                                                        GRA04350
     WRITE (4,1600) XINT
                                                                        GRA04360
```

```
GRA04370
 1600 FORMAT(31X,F11.3)
                                                                            GRA04380
 1700 CONTINUE
                                                                            GRA04390
      RETURN
                                                                            GRA04400
      END
                                                                            GRA04410
C
                                                                            GRA04420
C
                                                                            GRA04430
C
                   GRANET (ICOUNT, NUM, STA1, STA2, OBSG, PHI, ALON, H, NNBASE, NBASGRA04440
                                                                            GRA04450
     1E, BASEG, NOMTYP, JIMMY, NAG, IAG, HS, RR, DD, DIST)
           COMPUTES MEAN VALUES FOR REOBSERVATIONS
                                                                            GRA04460
C
                                                                            GRA04470
           ADDS REFERENCE STATION VALUE TO DELTA G
C
      DIMENSION NUM(1), PHI(1), ALON(1), H(1), HS(1), OBSG(1), NBASE(1)
                                                                            GRA04480
      DIMENSION NUMI(500), PHII(500), ALONI(500), HI(500), STA1I(500),
                                                                            GRA04490
                                                                            GRA04500
     1STA2I(500), BASEG(1), OBSGI(500), HSI(500)
                                                                            GRA04510
       DIMENSION STA1(1), STA2(1)
                                                                            GRA04520
   39 GO TO(310,400,400,310,15),NAG
                                                                            GRA04530
      AVERAGING FOR SINGLE LOOP
                                                                            GRA04540
  310 IC=ICOUNT-1
      II=ICOUNT
                                                                            GRA04550
                                                                            GRA04560
      DO330 I=1,IC
      IF(NUM(I)) 330,330,315
                                                                            GRA04570
                                                                            GRA04580
  315 K=I+1
                                                                            GRA04590
      CN=1.
                                                                            GRA04600
      SUM=OBSG(I)
      DO325 J=K,ICOUNT
                                                                            GRA04610
                                                                            GRA04620
      IF(NUM(I)-NUM(J)) 325,320,325
                                                                            GRA04630
  320 NUM(J) = 0
                                                                            GRA04640
      CN=CN+1.
                                                                            GRA04650
      SUM=SUM+OBSG(J)
                                                                            GRA04660
  325 CONTINUE
                                                                            GRA04670
      OBSG(I)=SUM/CN
                                                                            GRA04680
  330 CONTINUE
                                                                            GRA04690
C
      ZERO DELTA G
                                                                            GRA04700
      DO 6 I=1, ICOUNT
                                                                            GRA04710
      IF(NUM(I)/1000) 6,6,8
                                                                            GRA04720
    6 CONTINUE
                                                                            GRA04730
    8 GEE=OBSG(I)
      DO 14 J=1, ICOUNT
                                                                            GRA04740
                                                                            GRA04750
      HSI(J)=HS(J)
                                                                            GRA04760
      HI(J)=H(J)
                                                                            GRA04770
   14 OBSG(J)=OBSG(J)-GEE
      ADD BASE VALUE
                                                                            GRA04780
                                                                            GRA04790
   16 DO 30 I=1, ICOUNT
                                                                            GRA04800
      IF(NUM(I)/1000.LE.0) GO TO 30
                                                                            GRA04810
      DO 25 JA=1, NNBASE
                                                                            GRA04820
      IF(NUM(I)-NBASE(JA))25,10,25
                                                                            GRA04830
   10 DO 20 J=1, ICOUNT
                                                                            GRA04840
   20 OBSG(J)=OBSG(J)+BASEG(JA)
                                                                            GRA04850
      GO TO 40
                                                                            GRA04860
   25 CONTINUE
   30 CONTINUE
                                                                            GRA04870
   40 GO TO(300,100,100,300), NAG
                                                                            GRA04880
                                                                            GRA04890
      STORE DATA FOR COMPARISON
                                                                            GRA04900
  100 JIMMY=JIMMY+1
      IF(JIMMY.NE.1) GO TO 105
                                                                            GRA04910
                                                                            GRA04920
      SR=0.
                                                                            GRA04930
      SD=0.
                                                                            GRA04940
      RM=0.
                                                                            GRA04950
  105 IF(SQRT(RR/DD).GT.RM) RM=SQRT(RR/DD)
                                                                            GRA04960
                                                                            GRA04970
      SR=SR+RR
```

```
SD=SD+DD
                                                                            GRA04980
     DO 190 I=1, ICOUNT
                                                                            GRA04990
     IF(NUM(I)) 190,190,110
                                                                            GRA05000
 110 DO 140 J=1,500
                                                                            GRA05010
     IF(NUMI(J)) 120,120,130
                                                                            GRA05020
 120 NUMI(J)=NUM(I)+100000
                                                                            GRA05030
     II=II+1
                                                                            GRA05040
     PHII(J)=PHI(I)
                                                                            GRA05050
     ALONI(J)=ALON(I)
                                                                            GRA05060
     HI(J)=H(I)
                                                                            GRA05070
     HSI(J) = HS(I)
                                                                            GRA05080
     STA1I(J)=STA1(I)
                                                                            GRA05090
     STA2I(J)=STA2(I)
                                                                            GRA05100
     OBSGI(J)=OBSG(I)
                                                                            GRA05110
     GO TO 190
                                                                            GRA05120
 130 IF(NUMI(J)-(NUMI(J)/100000)*100000.EQ.NUM(I)) GO TO 150
                                                                            GRA05130
140 CONTINUE
                                                                            GRA05140
     WRITE (4,1000)
                                                                            GRA05150
1000 FORMAT (1H1, 33X, 54HOBSERVATION ARRAYS FILLED, EXECUTE MEANING AND COGRA05160
                                                                            GRA05170
     GO TO 200
                                                                            GRA05180
150 OBSGI(J) = OBSGI(J) + OBSG(I)
                                                                            GRA05190
     NUMI(J) = NUMI(J) + 100000
                                                                            GRA05200
190 CONTINUE
                                                                            GRA05210
     GO TO (310, 90,200), NAG
                                                                            GRA05220
200 NSUM=0
                                                                            GRA05230
     DO 260 I=1,II
                                                                            GRA05240
     NSUM=NSUM+NUMI(I)/100000
                                                                            GRA05250
     OBSGI(I)=OBSGI(I)/FLOAT(NUMI(I)/100000)
                                                                            GRA05260
260 NUMI(I)=NUMI(I)-(NUMI(I)/100000)*100000
                                                                            GRA05270
     SIG=SQRT(SR/SD)
                                                                            GRA05280
     WRITE (4,2000) NSUM, II, SIG, RM, JIMMY
                                                                            GRA05290
     FORMAT(1H1, I10, 2X, 12HOBSERVATIONS, 10X, I4, 2X, 8HSTATIONS, 10X, 13HMEANGRA05300
    1 \text{ SIGMA} = ,F6.3,10\text{X},16\text{HMAXIMUM SIGMA} = ,F6.3/60\text{X},15,2\text{X},5\text{HLOOPS})
                                                                            GRA05310
     JIMMY=0
                                                                            GRA05320
    CALL
          NOMALY(II, NUMI, STA1I, STA2I, OBSGI, PHII, ALONI, HI, NOMTYP, IAG, HSIGRAO5330
    1,DIST)
                                                                            GRA05340
     NAG=0
                                                                            GRA05350
     DO 270 J=1,II
                                                                            GRA05360
270 NUMI(J)=0
                                                                            GRA05370
     RETURN
                                                                            GRA05380
300 IF(NAG.EQ.4) RETURN
                                                                            GRA05390
 15 CONTINUE
                                                                            GRA05400
    CALL
           NOMALY(II, NUM, STA1, STA2, OBSG, PHI, ALON, HI, NOMTYP, IAG, HSI, DIST)GRAO5410
 90 NAG=0
                                                                            GRA05420
     RETURN
                                                                            GRA05430
400 DO 405 I=1, ICOUNT
                                                                            GRA05440
     IF(NUM(I)/1000.GT.0) GO TO 410
                                                                            GRA05450
405 CONTINUE
                                                                            GRA05460
410 LN=NUM(I)
                                                                            GRA05470
     GS=0.
                                                                            GRA05480
     CN=0.
                                                                            GRA05490
     DO 415 I=1, ICOUNT
                                                                            GRA05500
     IF(NUM(I).NE.LN) GO TO 415
                                                                            GRA05510
     GS=GS+OBSG(I)
                                                                            GRA05520
     CN=CN+1.
                                                                            GRA05530
415 CONTINUE
                                                                            GRA05540
     GS=GS/CN
                                                                            GRA05550
     DO 420 I=1, ICOUNT
                                                                            GRA05560
     IF(NUM(I).EQ.LN) GO TO 418
                                                                            GRA05570
     OBSG(I) = OBSG(I) - GS
                                                                            GRA05580
     GO TO 420
                                                                            GRA05590
```

```
418 OBSG(I) = 0.
GRA05600
  420 CONTINUE
                                                                          GRA05610
      GO TO 16
                                                                          GRA05620
      END
                                                                          GRA05630
C
                                                                          GRA05640
                                                                          GRA05650
C
                                                                          GRA05660
C
      SUBROUTINE NOMALY (ICOUNT, NUM, STA1, STA2, OBSG, PHI, ALON, HI, NOMTYP,
                                                                          GRA05670
     1IAG, HSI, DIST)
                                                                          GRA05680
C
           COMPUTES FREE AIR AND BOUGUER ANOMALIES
                                                                          GRA05690
С
           PRINTS FINAL OUTPUT TAB
                                                                          GRA05700
                                                                          GRA05710
           PUNCHES CARDS
      DIMENSION NUM(1), PHI(1), ALON(1), H(1), OBSG(1)
                                                                          GRA05720
      DIMENSION HS(1), HI(1), HSI(1)
                                                                          GRA05730
      DIMENSION COEF(11)
                                                                          GRA05740
      CHARACTER *6 SECCON(2), TYP(13), STA1(1), STA2(1)
                                                                          GRA05750
      DATA(COEF(I), I=1,11)/.3086,.1119,.2238,.06886,.2225,.04191,.08382,GRA05760
     1.06999,.2248,.03843,.07347/,(TYP(I),I=1,13)/'1','2','3','4','5','
                                                                          GRA05770
     26','7','8','9','A','B','C','D'/
                                                                          GRA05780
      WRITE (4,1000)
                                                                          GRA05790
 1000 FORMAT (/25X, 69HP R I N C I P A L
                                          FACTS
                                                      АТ
                                                            G R A V I T YGRA05800
         S T A T I O N S//6X,16HSTA NAME AND NUM,5X,8HLATITUDE,3X,9HLONGGRAO5810
     2ITUDE, 3X, 9HELEVATION, 2X, 9HSUPP ELEV, 2X, 10HOBSERVED G, 2X, 8HFREE AIRGRA05820
     3,3x,7HBOUGUER,3x,7HTHEOR G/28x,7HNORTH +,5x,6HEAST +,6x,6H FEET , GRAO5830
     45X,6HMETERS,6X,4HMGAL,7X,4HMGAL,6X,4HMGAL,6X,4HMGAL/)
                                                                          GRA05840
      SECCON(1) = '2'
                                                                          GRA05850
      SECCON(2)=' '
                                                                          GRA05860
      NOMTYP=NOMTYP+1
                                                                          GRA05870
      IPAGE=0
                                                                          GRA05880
      T=1
                                                                          GRA05890
      DO 500 J=1,ICOUNT
                                                                          GRA05900
      IF(NUM(J).EQ.O)GO TO 500
                                                                          GRA05910
      CALL RADEG(PHI(J), KDEG, XMIN)
                                                                          GRA05920
      CALL RADEG(ALON(J), JDEG, TMIN)
                                                                          GRA05930
      H(1)=HI(J)
                                                                          GRA05940
      HS(1) = HSI(J)
                                                                          GRA05950
      GAMMA=2049.+978049.*(.0052884*SIN(PHI(J))**2-.0000059*SIN(2.*PHI(JGRA05960
     1))**2)
                                                                          GRA05970
      GO TO (10,15,20,25,30,35,40,45,50,55,60,65,70), NOMTYP
                                                                          GRA05980
   10 FA=OBSG(J)+COEF(NOMTYP)*H(I)-GAMMA
                                                                          GRA05990
      BA=FA-COEF(NOMTYP+1)*H(I)
                                                                          GRA06000
      GO TO 100
                                                                          GRA06010
   15FA=OBSG(J)+COEF(NOMTYP+1)*HS(I)+COEF(NOMTYP-1)*(H(I)-HS(I))-GAMMAGRA06020
      BA=FA-COEF(NOMTYP)*H(I)
                                                                          GRA06030
      GO TO 100
                                                                          GRA06040
   20 FA=OBSG(J)-GAMMA
                                                                          GRA06050
      BA=FA+COEF(NOMTYP+1)*H(I)
                                                                          GRA06060
      GO TO 100
                                                                         GRA06070
   25 FA=OBSG(J)-COEF(NOMTYP+1)*HS(I)-GAMMA
                                                                         GRA06080
      BA=FA+COEF(NOMTYP)*H(I)
                                                                         GRA06090
      GO TO 100
                                                                         GRA06100
   30 FA=OBSG(J)-COEF(NOMTYP)*HS(I)-GAMMA
                                                                         GRA06110
      BA=FA+COEF(NOMTYP-1)*HS(I)
                                                                         GRA06120
      GO TO 100
                                                                         GRA06130
   35 FA=OBSG(J)+COEF(NOMTYP-5)*H(I)-GAMMA
                                                                         GRA06140
      BA=FA-COEF(NOMTYP)*HS(I)-COEF(NOMTYP-4)*(H(I)-HS(I))
                                                                         GRA06150
      GO TO 100
                                                                         GRA06160
   40 FA=OBSG(J)+COEF(NOMTYP)*HS(I)+COEF(NOMTYP-6)*(H(I)-HS(I))-GAMMA GRA06170
      BA=FA-COEF(NOMTYP-1)*HS(I)-COEF(NOMTYP-5)*(H(I)-HS(I))
                                                                         GRA06180
      GO TO 100
                                                                         GRA06190
```

```
45 FA=OBSG(J)+COEF(NOMTYP-1)+COEF(NOMTYP-7)*(H(I)-HS(I))-GAMMA
                                                                          GRA06200
      BA=FA-COEF(NOMTYP-2)*H(I)-COEF(NOMTYP)*(H(I)-HS(I))
                                                                          GRA06210
                                                                          GRA06220
      GO TO 100
   50 FA=OBSG(J)+COEF(NOMTYP-8)-GAMMA
                                                                          GRA06230
                                                                          GRA06240
      BA=FA-COEF(NOMTYP-3)*H(I)-COEF(NOMTYP-1)*(H(I)-HS(I))
                                                                          GRA06250
      GO TO 100
   55 FA=OBSG(J)+COEF(NOMTYP-9)*H(I)-GAMMA
                                                                          GRA06260
      BA=FA-COEF(NOMTYP-8)*H(I)+COEF(NOMTYP-2)*HS(I)
                                                                          GRA06270
                                                                          GRA06280
   60 FA=OBSG(J)+COEF(NOMTYP-10)*H(I)-COEF(NOMTYP-2)*HS(I)-GAMMA
                                                                          GRA06290
      BA=FA-COEF(NOMTYP-9)*H(I)+COEF(NOMTYP-3)*HS(I)
                                                                          GRA06300
      GO TO 100
                                                                          GRA06310
   65 FA=OBSG(J)+COEF(NOMTYP-11)*H(I)-GAMMA
                                                                          GRA06320
      BA=FA-COEF(NOMTYP-2)*H(I)-COEF(NOMTYP-1)*(H(I)-HS(I))
                                                                          GRA06330
      GO TO 100
                                                                          GRA06340
   70 FA=OBSG(J)+COEF(NOMTYP-12)*H(I)-GAMMA
                                                                          GRA06350
      BA=FA-COEF(NOMTYP-3)*HS(I)-COEF(NOMTYP-11)*(H(I)-HS(I))
                                                                          GRA06360
  100 OBSG(J) = OBSG(J) + 976000.
                                                                          GRA06370
      GAMMA=GAMMA+976000.
                                                                          GRA06380
      H(I)=H(I)*3.280833
                                                                          GRA06390
      WRITE (4,2000) STA1(J),STA2(J),NUM(J),KDEG,XMIN,JDEG,TMIN,H(I),
                                                                          GRA06400
     1HS(I),OBSG(J),FA,BA,GAMMA
                                                                          GRA06410
      FORMAT(5X,2A6,1X,15,3X,13,F6.2,2X,14,F6.2,2X,F10.3,2X,F9.3,1X,F11.GRA06420
                                                                          GRA06430
     13,2X,F10.3,2X,F10.3,1X,F11.3)
      WRITE (6,2001) STA1(J), STA2(J), KDEG, XMIN, JDEG, TMIN, H(I), OBSG(J), GRA06440
     *FA,BA
                                                                          GRA06450
                                                                          GRA06460
      WRITE (6,*) FA,BA
2001 FORMAT(4X,2A6,1X,13,F6.2,1X,14,F6.2,F10.3,1X,F11.3,2X,E9.3,1X,
                                                                          GRA06470
     *E9.3)
                                                                          GRA06480
      DIST=DIST+200.
                                                                          GRA06490
C
      IF (BA.EQ.13.3262033) THEN
                                                                          GRA06500
C
      PRINT *, 'HELLO'
                                                                          GRA06510
      DIST=DIST+200.
С
                                                                          GRA06520
      END IF
                                                                          GRA06530
      TLAT1=KDEG - (XMIN/60.)
                                                                          GRA06540
      TLONG1=JDEG + (TMIN/60.)
                                                                          GRA06550
      WRITE (3,1234) DIST, BA
                                                                          GRA06560
1234
      FORMAT(F9.2,2X,F6.2)
                                                                          GRA06570
      IPAGE=IPAGE+1
                                                                          GRA06580
      IF(IPAGE.LT.50) GO TO 200
                                                                          GRA06590
      IPAGE=0
                                                                          GRA06600
      WRITE (4,4000)
                                                                          GRA06610
 4000 FORMAT('1')
                                                                          GRA06620
      WRITE (4,1000)
                                                                          GRA06630
  200 CONTINUE
                                                                          GRA06640
      IF(IAG.EQ.1) GO TO 500
                                                                          GRA06650
      KMIN=IPUNIX(XMIN,2)
                                                                          GRA06660
      JMIN=IPUNIX(TMIN,2)
                                                                          GRA06670
      IH=IPUNIX(H(I),1)
                                                                          GRA06680
      IHS=IPUNIX(HS(I),1)
                                                                          GRA06690
      OBSG(J) = OBSG(J) - 976000.
                                                                          GRA06700
      IG=IPUNIX(OBSG(J),2)
                                                                          GRA06710
      IFA=IPUNIX(FA,1)
                                                                          GRA06720
      IBA=IPUNIX(BA,1)
                                                                          GRA06730
      IF(IAG.EQ.3) GO TO 300
                                                                          GRA06740
      WRITE(6,3000)SECCON(1),SECCON(2),KDEG,KMIN,JDEG,JMIN,TYP(NOMTYP)GRA06750
     1, IH, IHS, IG, IFA, IBA, NUM(J)
                                                                          GRA06760
 3000
       FORMAT(2A1, I3, I4, 2X, I4, I4, IX, A1, IX, I7, IX, I5, IX, I6, IX, I5, IX, I5, I4X, GRA06770
     114)
                                                                          GRA06780
      GO TO 500
                                                                          GRA06790
  300 OBSG(J) = OBSG(J) + 976000.
                                                                          GRA06800
      WRITE(6,5000)STA1(J),STA2(J),KDEG,XMIN,JDEG,TMIN,H(I),OBSG(J),FAGRA06810
```

```
GRA06820
     1,BA
 5000
       FORMAT(2A6,2X,13,F6.2,2X,14,F6.2,2X,F8.2,2X,F10.3,4X,F7.2,4X,F7.2)GRA06830
                                                                            GRA06840
  500 CONTINUE
      RETURN
                                                                            GRA06850
      END
                                                                            GRA06860
C
                                                                            GRA06870
C
                                                                            GRA06880
                                                                            GRA06890
      SUBROUTINE CALIB (ICOUNT, NUM, OBSG, NNBASE, NBASE, BASEG, STA1, STA2, NAG, GRAO6900
     1PHI, ALON, H, CALIM, PUBG, Y, V)
                                                                            GRA06910
      DIMENSION NUM(1), OBSG(1), NBASE(1), BASEG(1), STA1(1), STA2(1)
                                                                            GRA06920
      DIMENSION PHI(1), ALON(1), H(1)
                                                                            GRA06930
      DIMENSION PUBG(1), Y(1), V(1)
                                                                            GRA06940
      WRITE (4,1000)
                                                                            GRA06950
 1000 FORMAT(46X,38HCALIB IS A DUMMY, NO SCALE WAS COMPUTED)
                                                                            GRA06960
      NAG=NAG+1
                                                                            GRA06970
      RETURN
                                                                            GRA06980
      END
                                                                            GRA06990
C
                                                                            GRA07000
C
                                                                            GRA07010
C
                                                                            GRA07020
      SUBROUTINE PLOT2D(N,X,Y)
                                                                            GRA07030
С
        PLOTS Y AGAINST X. N IS NUMBER OF POINTS
                                                                            GRA07040
        Y AND X ARE SCALED AGAINST THEIR MAX AND MIN VALUES
C
                                                                            GRA07050
        THE ELEMENTS OF X AND Y ARRAYS ARE NOT ALTERED
C
                                                                            GRA07060
      DIMENSION X(1),Y(1)
                                                                            GRA07070
      CHARACTER *6 P(100)
                                                                            GRA07080
      DO 10 I=1,100
                                                                            GRA07090
   10 P(I) = ' '
                                                                            GRA07100
      XMIN=0.0
                                                                           GRA07110
      XMAX=0.0
                                                                           GRA07120
      YMIN=0.0
                                                                           GRA07130
      YMAX=0.0
                                                                           GRA07140
      DO 20 I=1,N
                                                                            GRA07150
      IF(XMIN.GT.X(I)) XMIN=X(I)
                                                                           GRA07160
      IF(X(I).GT.XMAX) XMAX=X(I)
                                                                           GRA07170
      IF(YMIN.GT.Y(I)) YMIN=Y(I)
                                                                           GRA07180
      IF(Y(I).GT.YMAX) YMAX=Y(I)
                                                                           GRA07190
   20 CONTINUE
                                                                           GRA07200
      WRITE (4,200) XMIN,XMAX
                                                                           GRA07210
  200 FORMAT(3X,F7.0,92X,F7.0)
                                                                           GRA07220
      XSCALE=(XMAX-XMIN)/99.0
                                                                           GRA07230
      YSCALE=(YMAX-YMIN)/49.0
                                                                           GRA07240
                                                                           GRA07250
      IF(YMAX) 25,25,27
   27 IF(YMIN) 28,25,25
                                                                           GRA07260
   28 JYO=-YMIN/YSCALE+1.0
                                                                           GRA07270
      GO TO 26
                                                                           GRA07280
   25 JYO=0
                                                                           GRA07290
   26 DO 95 I=1,50
                                                                           GRA07300
      IF(I.EQ.1) P(1) = '+'
                                                                           GRA07310
      IF(I.EQ.1) P(100) = '+'
                                                                           GRA07320
      IF(I.EQ.50) P(100) = '+'
                                                                           GRA07330
      IF(I.EQ.50) P(1)='+'
                                                                           GRA07340
      IYREF=51-I
                                                                           GRA07350
      DO 60 J=1,N
                                                                           GRA07360
      JYTEM = (Y(J) - YMIN) / YSCALE + 1.0
                                                                           GRA07370
      IF(JYTEM-IYREF) 60,30,60
                                                                           GRA07380
                                                                           GRA07390
   30 KJ=(X(J)-XMIN)/XSCALE+1.0
   35 P(KJ) = '*'
                                                                           GRA07400
   60 CONTINUE
                                                                           GRA07410
      IF(IYREF-50) 65,70,65
                                                                           GRA07420
```

```
65 IF(IYREF-1) 66,75,66
                                                                           GRA07430
   66 IF(JYO) 80,80,67
                                                                           GRA07440
                                                                           GRA07450
   67 IF(JYO-IYREF) 80,68,80
                                                                           GRA07460
   68 P(1) = '+'
      WRITE (4,690) P
                                                                           GRA07470
  690 FORMAT(2X,5H0.000,2(50A1))
                                                                           GRA07480
      GO TO 85
                                                                           GRA07490
   70 WRITE (4,700) YMAX,P
                                                                           GRA07500
  700 FORMAT(F7.3,2(50A1))
                                                                           GRA07510
      GO TO 85
                                                                           GRA07520
   75 WRITE (4,700) YMIN,P
                                                                           GRA07530
      GO TO 85
                                                                           GRA07540
   80 WRITE (4,800) P
                                                                           GRA07550
  800 FORMAT(7X,2(50A1))
                                                                           GRA07560
   85 DO 90 J=1,100
                                                                           GRA07570
   90 P(J) = '
                                                                           GRA07580
   95 CONTINUE
                                                                           GRA07590
      RETURN
                                                                           GRA07600
      END
                                                                           GRA07610
C
                                                                           GRA07620
C
                                                                           GRA07630
C
                                                                           GRA07640
                                                                           GRA07650
       FUNCTION DEGRAD (JDEG, AMIN)
     * * * * DEGRAD CONVERTS DEGREES + MINUTES (1/102S) TO RADIANS
C
                                                                           GRA07660
       ALFA= .174532925199 E-1
                                                                           GRA07670
       BETA=.290888208666 E-3
                                                                           GRA07680
       A=JDEG
                                                                           GRA07690
       IF(A) 100,200,300
                                                                           GRA07700
  100
                                                                           GRA07710
       DEGRAD=A*ALFA-AMIN*BETA
       GO TO 400
                                                                          GRA07720
  200
       DEGRAD=AMIN*BETA
                                                                          GRA07730
       GO TO 400
                                                                           GRA07740
  300
       DEGRAD=A*ALFA+AMIN*BETA
                                                                           GRA07750
  400
       RETURN
                                                                          GRA07760
       END
                                                                          GRA07770
                                                                          GRA07780
C
C
                                                                          GRA07790
C
                                                                          GRA07800
      SUBROUTINE RADEG(RAD, JDEG, TMIN)
                                                                          GRA07810
C
               CONVERTS RADIANS TO DEGREES (SIGNED) AND MINUTES
                                                                          GRA07820
      TMIN=3437.74677078*RAD
                                                                          GRA07830
      JDEG=TMIN/60.
                                                                          GRA07840
      TMIN=TMIN-FLOAT (JDEG*60)
                                                                          GRA07850
      IF(JDEG.LT.O) TMIN=-TMIN
                                                                          GRA07860
      RETURN
                                                                          GRA07870
      END
                                                                          GRA07880
      FUNCTION IPUNIX(VAL, IDEC)
                                                                          GRA07890
C
         CONVERTS REAL VALUE(VAL) TO ROUNDED INTEGER RETAINING
                                                                          GRA07900
C
          SPECIFIED (IDEC) NO. OF DECIMAL PLACES
                                                                          GRA07910
          USE FOR PUNCHED OUTPUT WITH NO DECIMAL POINT
                                                                          GRA07920
      P=VAL*10.**IDEC
                                                                          GRA07930
      IP=P
                                                                          GRA07940
      FRACT=P-FLOAT(IP)
                                                                          GRA07950
      IPUNIX=P
                                                                          GRA07960
      IF(FRACT) 10,30,20
                                                                          GRA07970
                                                                          GRA07980
   10 IF(FRACT+.5) 15,15,30
   15 IPUNIX=P-1.
                                                                          GRA07990
      GO TO 30
                                                                          GRA08000
   20 IF(FRACT-.5) 30,25,25
                                                                          GRA08010
   25 IPUNIX=P+1.
                                                                          GRA08020
   30 RETURN
                                                                          GRA08030
```

c c		END	GRA08040 GRA08050 GRA08060
С			GRA08070
		FUNCTION DERAD2(J,K,C)	GRA08080
С		CONVERTS WHOLE DEG, MIN AND FRACTIONAL SEC TO RADIANS	GRA08090
		DATA X,Y,Z/.174532925199E-1,.290888208666E-3,.4848136811E-5/	GRA08100
		A=J	GRA08110
		B=K	GRA08120
		IF(J.LT.0) GO TO 1	GRA08130
		IF(K.LT.0) GO TO 2	GRA08140
		DERAD2=X*A+Y*B+Z*C	GRA08150
		RETURN	GRA08160
	1	DERAD2=X*A-Y*B-Z*C	GRA08170
		RETURN	GRA08180
	2	DERAD2=Y*B-Z*C	GRA08190
		RETURN	GRA08200
		END	GRA08210
			

APPENDIX I-B

STATION FORTRAN

STATION FORTRAN converts station foresight and backsight level readings to elevations. In addition, the program calculates station spacing, total elevation change, and total elevation error for each line. The program source listing is given below:

```
C Title : Title of Line
       NA: Total Number Of Station
   BENCH: Bench Mark Elevation
C CORR1 : Correction Factor 1
C CORR2: Correction Factor 2
                                                                                   STA00010
       CHARACTER * 80 TITLE
                                                                                   STA00020
       INTEGER SUM
                                                                                   STA00030
       WRITE(6,*) 'TYPE TITLE NAME'
       READ(5,1011) TITLE
                                                                                   STA00040
1011 FORMAT(A80)
                                                                                   STA00050
       WRITE(2,1012) TITLE
                                                                                   STA00060
1012
       FORMAT(//, A80,//)
                                                                                   STA00070
       READ(1,*) NA, BENCH, CORR1, CORR2
                                                                                   STA00080
       SUMB=0.0
                                                                                   STA00090
       SUMF=0.0
                                                                                   STA00100
       BSUM=0.0
                                                                                   STA00110
       FSUM=0.0
                                                                                   STA00120
                                                                                   STA00130
С
С
                                                                                   STA00140
С
       ELEV=BENCH
                                                                                   STA00150
       DO 100 I=1,NA
                                                                                   STA00160
                                                                                   STA00170
       WRITE(2,1000)
                                                                                   STA00180
1000 FORMAT(1X,'BACKSIGHT',4X,'MEAN',2X,'INTERVAL',4X,'FORESIGHT',4X, STA00190 +'MEAN',4X,'INTERVAL',/,1X,'-----',4X,'----',2X,'-----',4X,'STA00200 +-----',5X,'----',4X,'-----',/) STA00210
                                                                                   STA00220
C B1, B2, B3 : Corresponds To Top-Middle-Bottom Backsight Readings
C F1, F2, F3: Corresponds To Top-Middle-Bottom Foresight Readings
С
C
                                                                                   STA00230
       READ(1,*) B1,B2,B3,F1,F2,F3
                                                                                   STA00240
С
                                                                                   STA00250
       BMEAN = (B1 + B2 + B3)/3.0
                                                                                   STA00260
```

```
FMEAN = (F1+F2+F3)/3.0
                                                                         STA00270
C
                                                                         STA00280
      BDIFF1=B1-B2
                                                                         STA00290
      BDIFF2=B2-B3
                                                                         STA00300
      BDIFF3=BDIFF1+BDIFF2
                                                                         STA00310
                                                                         STA00320
      SUMB=SUMB+BDIFF3
      FDIFF1=F1-F2
                                                                         STA00330
                                                                         STA00340
      FDIFF2=F2-F3
      FDIFF3=FDIFF1+FDIFF2
                                                                         STA00350
      SUMF=SUMF+FDIFF3
                                                                         STA00360
C
                                                                         STA00370
      BSUM=BSUM+BMEAN+CORR1
                                                                         STA00380
      FSUM=FSUM+(-1.0*FMEAN)+CORR2
                                                                         STA00390
C
                                                                         STA00400
      ELEV=BSUM+FSUM+BENCH
                                                                         STA00410
      ELV=BSUM+FSUM
                                                                         STA00420
C
                                                                         STA00430
      WRITE(2,1001) B1,F1
                                                                         STA00440
1001 FORMAT(1x, F8.3, 22x, F8.3)
                                                                         STA00450
                                                                         STA00460
      WRITE(2,1002) B2, BMEAN, BDIFF1, F2, FMEAN, FDIFF1
1002 FORMAT(1X,F8.3,2X,F8.3,2X,F3.2,8X,F8.3,4X,F8.3,2X,F3.2)
                                                                         STA00470
      WRITE(2,1003) B3,BDIFF2,F3,FDIFF2
                                                                         STA00480
1003 FORMAT(1X,F8.3,12X,F3.2,8X,F8.3,13X,F3.2)
                                                                         STA00490
      WRITE(2,1004) BDIFF3,FDIFF3
                                                                         STA00500
1004 FORMAT(3X,17HSUMS OF INTERVAL:,2X,F6.2,5X,17HSUMS OF INTERVAL:,2X,STA00510
     +F6.2)
                                                                         STA00520
      WRITE(2,1007) SUMB, SUMF
                                                                         STA00530
1007 FORMAT(3X,18HCONT. INTER. SUMS:,1X,F6.2,5X,18HCONT. INTER. SUMS:,1STA00540
     +X, F6.2)
                                                                         STA00550
      WRITE(2,1005) BSUM, FSUM
                                                                         STA00560
1005 FORMAT(3X,'CONT. MEAN',/,8X,'SUMS:',F8.3,25X,F8.3,/)
                                                                        STA00570
      WRITE(2,1006) I,ELEV
                                                                        STA00580
1006 FORMAT(20X, 'ELEVATION OF STATION ', 13,':',2X,F9.3,/)
                                                                         STA00590
      WRITE (3,1017) ELEV
                                                                         STA00600
1017
      FORMAT(F9.3)
                                                                         STA00610
100
      CONTINUE
                                                                         STA00620
C
                                                                         STA00630
      SUMB=SUMB * 100.
                                                                         STA00640
      SUMF=SUMF*100.
                                                                         STA00650
      WRITE(2,1008) SUMB
                                                                        STA00660
1008 FORMAT(//,3X,33HTOTAL BACKSIGHT DISTANCE(FEET): ,F10.2)
                                                                        STA00670
      WRITE(2,1009) SUMF
                                                                        STA00680
1009 FORMAT(/,3X,33HTOTAL FORESIGHT DIATANCE(FEET): ,F10.2)
                                                                        STA00690
      WRITE(2,1010) ELV
                                                                        STA00700
1010 FORMAT(/,3X,28HTOTAL ELEVATION CHANGE(FEET): ,F10.2)
                                                                        STA00710
      WRITE(2,1014) CORR1,CORR2
                                                                        STA00720
1014 FORMAT(/,3X,25H CORRECTION FARCTORS ARE:,2X,'CORR1: ',F7.5,
                                                                        STA00730
     +2X,'CORR2: ',F7.5)
                                                                        STA00740
      STOP
                                                                        STA00750
      END
                                                                        STA00760
```

APPENDIX I-C

COMPARISON OF UPDW/UDD FORTRAN ALGORITHMS

UPDW FORTRAN algorithm is based on the two-dimensional harmonic analysis method of Bhattachararyya (1965). This program was written by Agrwal (1968). It was used to differentiate local and regional gravitational trends. A comparison between the algorithms used in the programs UPDW FORTRAN and UDD FORTRAN (Ruddman and Blakley, 1983) was conducted at the onset of this study. The purpose of this comparison was to determine which algorithm was best for this study. The algorithm used in UDD FORTRAN is based on a method developed by Henderson and Zietz (1949) while the algorithm used in UPDW FORTRAN is based on the method of Bhattachararyya (1965).

The algorithm used in UDD FORTRAN is based on:

Equation 1:

$$\Delta T(h) = \sum_{i=1}^{n-1} \Delta \overline{T}(r_i) K(r_i, h) + \Delta \overline{T}(r_n) K(r_n, h)$$

Figure 23: Contour map of vertical gravity component over a sphere. Contour interval is 0.40 milligals. This data was used in comparing the algorithms of the programs UPDW and UDD FORTRAN.

where

h : height above surface

K(r;,h): Continuation and vertical Derivative Coefficients

T(h) : Calculated field

 $T(r^{i})$: Average value of T on the ith circle of radius r

Using this equation Ruddman and Blackely (1983) developed a UDD FORTRAN that determined the upward and downward continuation of a potential field. In addition, the program can determine the second vertical derivative of a potential field. To use this program the data had to be gridded. Once gridded the potential field can be filtered by continuing it upward or downward, or by taking the 2nd vertical derivative. Filtering is accomplished by using a series concentric rings about each grid point. The radius of these rings is defined as follows:

 $r_i = gridspacing * n , where n=1,2,3,...,k-1.$

The potential field values that intersect the respective circles are multiplied by the appropriate table of coefficients (Henderson and Zietz, 1949). After this is done for each grid point, values of the operation are summed at the grid points resulting in filtered values.

Figure 24: Contour plot of the second vertical derivative field of the spherical gravity field, using UDD FORTRAN. Contour interval is 0.04 milligals.

The two-dimesional harmonic analysis method used in the program UPDW FORTRAN (Agarwal, 1968) is based on: Equation 2:

$$\begin{split} T(x,y,z) = & \sum_{m=0}^{m_o} \sum_{n=0}^{n_o} \left[A_{mn} COS(2 \Pi m \frac{X}{L_x} COS(2 \Pi n \frac{Y}{L_y}) + B_{mn} COS(2 \Pi m \frac{X}{L_x}) SIN(2 \Pi n \frac{Y}{L_y}) + E_{mn} SIN(2 \Pi m \frac{X}{L_x}) COS(2 \Pi n \frac{Y}{L_y}) + F_{mn} SIN(2 \Pi m \frac{X}{L_x}) SIN(2 \Pi n \frac{Y}{L_y}) \right] \\ & \left[e^{-2 \Pi \left(\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2} \right)^{\frac{1}{2} x}} \right] \left[-2 \Pi \frac{m^2}{L_x^2} + \frac{n^2}{L_y^2} \right]^{\frac{1}{2}} \end{split}$$

where

 A_{mn} , B_{mn} , E_{mn} , F_{mn} : are coefficients of the solution to the partial differential equation.

m : number of values along x-axis

n : number of values along y-axis

S. : Uniform spacing along x-axis

S_v : Uniform spacing along y-axis

 $L_x=mS_x$: L_x is the Nynquist Frequency

 $L_v=nS_v$: Uniform spacing along y-axis

Figure 25: Contour plot of the second vertical derivative of spherical gravity field, using UPDW FORTRAN. Contour interval is 0.04 milligals.

Downward Continuation: Z > 0

Upward Continuation : Z < 0

Vertical Derivative : r= 0, 1, 2, 3,, n

The two dimensional harmonic analysis method allows the potential field to be continue upward or downward at any level. In addition, this method can determine the nTH vertical derivative of a potential field at the specified The coefficients A_{mn} , B_{mn} , E_{mn} , and \mathbf{F}_{mn} equation 2 are first calculated by the algorithm. coefficients are the solution to the partial differential the coefficients are calculated equation. Once upward/downward continuation and/or the vertical derivative of the potential field can be calculated since the remaining values in the equation are known. To calculate the upward or downward continuation of a potential field at the surface assign the appropriate "Z" value and set r to zero. The nTH vertical derivative is calculated in a similar fashion; however, the value of r is greater than one. It is apparent the continuation and nTH vertical derivative use different terms of the same equation when calculating the respective fields.

A theoretically calculated data set was computed for a sphere. This output was used as input for UPDW FORTRAN and UDD FORTRAN, so that a comparison of these programs could

Figure 26: Contour plot of the potential field values listed in a paper by Tasubi (1959).

Tasubi Gravity Data (1959)

be conducted (Figure 23). The output from both programs was contoured with the results shown in Figures 24 and 25, respectively. Both maps have concentric rings about their centers. In fact, when the two maps are overlain, like contours, at the maps' center, closely approximate each other. The difference is at the maps edges. These differences are attributed to the algorithms being used. UDD FORTRAN output has a minimum edge effect, while UPDW FORTRAN values are effected at the edge. This aspect of the two methods is the only advantage UDD FORTRAN has over UPDW FORTRAN. A critical advantage UPDW FORTRAN has over UDD FORTRAN is that a continuation field can be continued upward or downward at any level. UDD FORTRAN can continue a field upward or downward only at grid spacing intervals. The maximum a field can be continued upward or downward with UDD FORTRAN is four grid levels. A second advantage of UPDW FORTRAN when compared to UDD FORTRAN is UPDW can process a matrix of potential field values up to 60x60 while UDD can process a maximum matrix of The capability of UPDW to process a 60x60 was deemed important because it reduced the time in performing the potential field filtering. For the reasons listed above, UPDW FORTRAN was chosen to perform the analysis of the gravity data in this study. To compensate for the edge effects of UPDW the output was overlapped. A listing of both UPDW and UDD FORTRAN are given below:

Figure 27: Contour plot of the potential field values listed in a paper by Tasubi (1959), continued to a level of +15.9 kilometers.

Upward Continuation Of Tasubi Gravity Data at 15.9 Km.

To verify the output from UPDW FORTRAN the data of Tasubi (1959) was gridded and contoured for analysis (Figure 26). The potential field was continued upward 15.9 kilometers using UPDW FORTRAN. The contour plot of this operation (Figure 27) was compared to the values in Tasubi's paper (1959), and no discernable differences were identified.

UPDW FORTRAN:

Written by: Agarwal (1968)

```
C
                                                                         UPD00010
    THIS PROGRAM CALCULATES THE UPWARD OR DOWNWARD CONTINUATION AT ANY UPD00020
C HEIGHT OR DEPTH IN A PARTICULAR LOCATION. IT ALSO OBTAINS FIRST, SECONDUPD00030
C OR HIGHEST SET OF DERIVATIVES. USES TWO DIMENSIONAL FOURIER ANALYSIS. UPD00040
                                                                         UPD00050
   THIS PROGRAM ALSO OBTAINS 1ST, 2ND, OR HIGHEST SET OF DERIVATIVES.
                                                                         UPD00060
C
                                                                         UPD00070
C
  THE GAUSSIAN DISTRIBUTION FOR THE CALCULATIONS USED IN THIS PROGRAM UPD00080
   IS AFTER TSUBOI (1959)
                                                                         UPD00090
                                                                         UPD00100
   Z: UPWARD (-IVE) OR DOWNWARD (+IVE) HEIGHT.
                                                                         UPD00110
                                                                         UPD00120
C
   ID=0 FOR NO DERIVITVE
                                                                         UPD00130
C
   ID=1 FOR FIRST DERIVITIVE
                                                                         UPD00140
   ID=2 FOR 2ND DERIVITIVE
                                                                         UPD00150
   ID=3 FOR 3RD DERIVITIVE AND SO ON
                                                                         UPD00160
C
                                                                         UPD00170
С
   X1(I,J) IS THE REAL INPUT MATRIX IN SPACE DOMAIN.
                                                                         UPD00180
C
                                                                         UPD00190
С
  X(J) IS THE FINAL SYMMETERIZED DATA, USING GYCLIC PROPORTIES OF
                                                                         UPD00200
C
   FOURIER TRANSFORMS.
                                                                         UPD00210
C
                                                                         UPD00220
   FOR COMPUTATION PROGRAM USES X(J)+IY(J) WHERE Y(J)=0.0
                                                                         UPD00230
   OUTPUT RESULTS ARE GIVEN AS X(J)+IY(J) IN FREQUENCY DOMAIN
                                                                         UPD00240
C
                                                                         UPD00250
  N(J,K,0): ARRAY OF DATA IS TOW DIMENSIONAL WITH SIDE J BY K
С
                                                                         UPD00260
C
   NOPTS: NUMBER OF DATA POINTS (J*K)
                                                                         UPD00270
С
   DELT: THE DIGITIZING INTERVAL IN MILES.
                                                                         UPD00280
C
                                                                         UPD00290
С
                                                                         UPD00300
      DIMENSION X(15000), Y(15000), S(15000), N(3), X1(76,76)
                                                                         UPD00310
   20 FORMAT(5X,315)
                                                                         UPD00320
   22 FORMAT(1HJ,31X,23HDEGREE OF DERIVATIVE = ,15,23X,24HSIZE OF OUTPUTUPD00330
     1 \text{ MATRIX} = ,15)
                                                                         UPD00340
   23 FORMAT(1HJ,20X,34HELEVATION OF CONTINUATION FIELD = ,F10.5,5X,37HDUPD00350
     1IGITIZING INTERVAL OF DATA POINTS = ,F10.5)
                                                                         UPD00360
   30 FORMAT(5X,F10.5)
                                                                         UPD00370
   35 FORMAT(1X,6E11.4)
                                                                         UPD00380
   36 FORMAT(1X, 10E13.4)
                                                                         UPD00390
   45 FORMAT(1HJ)
                                                                         UPD00400
   40 FORMAT(1H1,60X,10HINPUT DATA)
                                                                         UPD00410
   42 FORMAT(1HT,60X,10H********)
                                                                         UPD00420
   50 FORMAT(1HT, 25X, 80(1H*))
                                                                         UPD00430
   60 FORMAT(1X,6HDELT =,F8.3,8X,18HNYQUIST FREQUENCY=,F8.3)
                                                                         UPD00440
   70 FORMAT(1HJ,22X,15HFREQUENCY =2*J*,F10.6,1X,15HCYCLES PER MILE)
                                                                         UPD00450
  316 FORMAT(1H1,40X,47HUPWARD OR DOWNWARD CONTINUATION AND DERIVATIVES)UPD00460
  317 FORMAT(41X,47(1H*))
                                                                         UPD00470
  320 FORMAT(1HL,56X,17HREAL (SPACE) PART)
                                                                         UPD00480
  325 FORMAT(1HT, 56X, 17H************)
                                                                         UPD00490
C XMIN : MINIMUM XMIN=MINX-TERV where MINX= minimum x value
C YMIN: MINIMUM YMIN=MINY-TERV where MINY= minimum y value
C TERV : Digitizing Interval
```

```
UPD00500
      READ(1,*) ID, XMIN, YMIN, TERV
                                                                           UPD00510
      READ(1,*) DELT
      READ(1,*) Z
                                                                           UPD00520
                                                                           UPD00530
      READ(1,*) (N(J),J=1,3)
                                                                           UPD00540
      NOPTS=N(1)*N(2)
                                                                           UPD00550
      WRITE(6,*) NOPTS, N(1), N(2)
                                                                           UPD00560
      NN=N(1)
                                                                           UPD00570
      NNN=N(2)
                                                                           UPD00580
      DO 9 I=1,NN
      READ(1,1235) (X1(I,J),J=1,NNN)
                                                                           UPD00590
C Choose One Format: Current Format gives X, Y, and Z values
                                                                           UPD00600
      WRITE(6,1235) (X1(I,J),J=1,NNN)
                                                                           UPD00610
      FORMAT(23X, F10.2)
C235
                                                                           UPD00620
      FORMAT(F10.2)
1235
                                                                           UPD00630
    9 CONTINUE
                                                                           UPD00640
      WRITE(2,40)
                                                                           UPD00650
      WRITE(2,42)
                                                                           UPD00660
      DO 10 I=1,NN
                                                                           UPD00670
      WRITE(2,36) (X1(I,J),J=1,NNN)
                                                                           UPD00680
      WRITE(2,45)
                                                                           UPD00690
   10 CONTINUE
                                                                           UPD00700
      WRITE(2,50)
                                                                           UPD00710
C SETTING X AS THE FINAL SYMMERTIZED MATRIX OF SIZE (2N-2)*(2N-2). REMEMUPD00720
                                                                           UPD00730
C BER HERE X IS STORED IN A VECTOR FORM.
                                                                           UPD00740
C
                                                                            UPD00750
С
                                                                            UPD00760
      DO 1 I=1,NN
                                                                            UPD00770
      DO 2 J=1, NNN
                                                                           UPD00780
      J1=(2*NN-2)*(I-1)+J
                                                                           UPD00790
      X(J1)=X1(I,J)
                                                                           UPD00800
    2 CONTINUE
                                                                           UPD00810
      N1=NN-2
                                                                           UPD00820
      DO 3 J=1,N1
                                                                           UPD00830
      J2=J1+J
                                                                           UPD00840
      X(J2)=X1(I,NN-J)
                                                                           UPD00850
    3 CONTINUE
                                                                           UPD00860
    1 CONTINUE
                                                                           UPD00870
      N2 = 2 * NN - 2
                                                                            UPD00880
      DO 5 K=1,N1
                                                                           UPD00890
      DO 4 J=1,N2
                                                                            UPD00900
      J3=J2+J
      X(J3) = X(J3 - (4*NN-4)*K)
                                                                            UPD00910
                                                                           UPD00920
    4 CONTINUE
                                                                           UPD00930
      J2=J3
                                                                           UPD00940
    5 CONTINUE
                                                                           UPD00950
C END OF SYMMETRIZED VECTOR. NOW WE RESET N(1), N(2), NOPTS, ETC....
                                                                           UPD00960
                                                                           UPD00970
                                                                           UPD00980
      N(1) = 2 * NN - 2
      N(2) = 2 * NNN - 2
                                                                           UPD00990
                                                                           UPD01000
      NN=N(1)
                                                                           UPD01010
      NNN=N(2)
      NOPTS=N(1)*N(2)
                                                                           UPD01020
                                                                           UPD01030
      FN=1./(2.*DELT)
                                                                            UPD01040
      WRITE(2,60) DELT, FN
      PRINT *, 'FP=', FP, 'NOPTS=', NOPTS
                                                                           UPD01050
      FP=FN/(FLOAT(NOPTS))
                                                                           UPD01060
                                                                           UPD01070
      WRITE(2,70) FP
      CALL ZERO(Y, NOPTS)
                                                                           UPD01080
                                                                           UPD01090
      CALL ZERO(S, NOPTS)
                                                                           UPD01100
      CALL ARMDFT(N, X, Y, S)
```

```
UPD01110
C MULTIPLY FREO. BY A FACTOR; EXP((1**2+J**2)*(2.0*PI*Z/(NN*DELT))),
                                                                            UPD01120
                                                                            UPD01130
C FOR 1=0,2,2.....NN AND J=0,1,2....NNN
                                                                            UPD01140
С
      DO 121 I=1,NN
                                                                            UPD01150
                                                                            UPD01160
      IF(I.GT.(NN/2+1)) GO TO 11
                                                                            UPD01170
      A=I-1
                                                                            UPD01180
      GO TO 12
                                                                            UPD01190
   11 A=NN+1-I
                                                                            UPD01200
   12 CONTINUE
      K=(I-1)*NNN+1
                                                                            UPD01210
                                                                            UPD01220
      L=K+NNN-1
                                                                            UPD01230
      DO 121 J=K,L
                                                                            UPD01240
      IF(J.GT.((L+K)/2+1)) GO TO 13
                                                                            UPD01250
      B=J-1-(NN*(I-1))
                                                                            UPD01260
      GO TO 14
                                                                            UPD01270
   13 B=NN+1-J+(NN*(I-1))
                                                                            UPD01280
   14 CONTINUE
      XYA=(SQRT(A**2+B**2)*2.0*3.14159*Z)/(FLOAT(NN)*DELT)
                                                                            UPD01290
                                                                            UPD01300
      CONT=EXP(XYA)
      IF(ID.EQ.0) GO TO 15
                                                                            UPD01310
      CONTDI=(SQRT(A**2+B**2)*(2.0*3.14159)/(FLOAT(NN)*DELT))**ID
                                                                            UPD01320
                                                                            UPD01330
   15 CONTINUE
      X(J) = X(J) * CONT
                                                                            UPD01340
                                                                            UPD01350
      Y(J) = Y(J) * CONT
                                                                            UPD01360
      IF(ID.EQ.0) GO TO 121
                                                                            UPD01370
      X(J) = X(J) * CONTDI
                                                                            UPD01380
      Y(J) = Y(J) * CONTDI
                                                                            UPD01390
  121 CONTINUE
                                                                            UPD01400
      J=0
                                                                            UPD01410
      DO 250 J3=1, NOPTS
                                                                            UPD01420
      J=J+1
                                                                            UPD01430
                                                                            UPD01440
C REPLACE FOURIER COEFFS. BY COMPLEX CONJUGATE
                                                                            UPD01450
                                                                            UPD01460
      F=Y(J)
      Y(J) = -F
                                                                            UPD01470
  250 CONTINUE
                                                                            UPD01480
                                                                            UPD01490
      CALL ZERO(S, NOPTS)
                                                                            UPD01500
      CALL ARMOFT(N, X, Y, S)
                                                                            UPD01510
      J=0
                                                                            UPD01520
      DO 350 J4=1, NOPTS
      J=J+1
                                                                            UPD01530
                                                                            UPD01540
C TAKE COMPLEX CONJUGATE
                                                                            UPD01550
      GG=Y(J)
                                                                            UPD01560
      Y(J) = \neg GG
  350 CONTINUE
                                                                            UPD01570
      \Omega = T
                                                                            UPD01580
                                                                            UPD01590
      DO 400 J5=1, NOPTS
                                                                            UPD01600
      J=J+1
      X(J)=X(J)/FLOAT(NOPTS)
                                                                            UPD01610
                                                                            UPD01620
      Y(J)=Y(J)/FLOAT(NOPTS)
  400 CONTINUE
                                                                            UPD01630
C
                                                                            UPD01640
C RESET NN AND NNN. PICK UP USEFUL SIZE OF RESULTS
                                                                            UPD01650
                                                                            UPD01660
C
      WRITE(2,316)
                                                                            UPD01670
                                                                            UPD01680
      WRITE(2,317)
                                                                            UPD01690
      WRITE(2,320)
                                                                            UPD01700
      WRITE(2,325)
                                                                            UPD01710
      NN=(NN+2)/2
                                                                            UPD01720
      NNN=(NNN+2)/2
```

```
UPD01730
      DO 7 I=1,NN
                                                                           UPD01740
      DO 8 J=1,NNN
                                                                           UPD01750
      X1(I,J)=X((2*NN-2)*(I-1)+J)
                                                                           UPD01760
    8 CONTINUE
    7 CONTINUE
                                                                           UPD01770
                                                                           UPD01780
      DO 21 I=1,NN
                                                                           UPD01790
      WRITE(2,36) (X1(I,J),J=1,NNN)
                                                                           UPD01800
      WRITE(2,45)
                                                                           UPD01810
   21 CONTINUE
      PRINT *, 'NNN=', NNN, 'NN=', NN
                                                                           UPD01820
                                                                           UPD01830
      XMIN1=XMIN
                                                                           UPD01840
      DO 1375 I=1,NNN
          XMIN1=XMIN1+TERV
                                                                           UPD01850
                                                                           UPD01860
            YMIN1=YMIN
                                                                           UPD01870
      DO 1377 J=1,NN
                                                                           UPD01880
          YMIN1=YMIN1+TERV
                                                                           UPD01890
            WRITE(3,1112) XMIN1,YMIN1,X1(I,J)
                                                                           UPD01900
1112
      FORMAT (F8.3, 1X, F8.3, 1X, E16.4)
                                                                           UPD01910
1377
      CONTINUE
                                                                           UPD01920
1375
      CONTINUE
                                                                           UPD01930
      WRITE(2,50)
                                                                           UPD01940
      WRITE (2,45)
                                                                           UPD01950
      WRITE(2,45)
      WRITE(2,23) Z,DELT
                                                                           UPD01960
                                                                           UPD01970
      WRITE(2,45)
                                                                           UPD01980
      WRITE(2,22) ID,NN
                                                                           UPD01990
      STOP
                                                                           UPD02000
      END
      SUBROUTINE ZERO(X, NOPTS)
                                                                           UPD02010
                                                                           UPD02020
C
                                                                           UPD02030
C SETS VECTOR TO ZERO
                                                                           UPD02040
C
                                                                           UPD02050
      REAL X(15000)
                                                                           UPD02060
      DO 1 J=1, NOPTS
                                                                           UPD02070
      X(J) = 0.0
                                                                           UPD02080
    1 CONTINUE
                                                                           UPD02090
      RETURN
                                                                           UPD02100
      END
                                                                           UPD02110
       SUBROUTINE AR ID FT (N, X, Y, S)
С
       ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM
                                                                           UPD02120
                                                                           UPD02130
С
                                                                           UPD02140
       INTEGER N
       REAL X (15000), Y (15000), S(15000)
                                                                           UPD02150
                                                                           UPD02160
С
       CALL GR ID FT (N,X,Y)
                                                                           UPD02170
       CALL GR ID FS (N,X,Y,S)
                                                                           UPD02180
                                                                           UPD02190
       RETURN
       END
                                                                           UPD02200
                                                                           UPD02210
C
       SUBROUTINE GR ID FT (NOPTS, X, Y)
                                                                           UPD02220
C
       ONE DIMENSIONAL FOURIER TRANSFORM
                                                                           UPD02230
                                                                           UPD02240
C
                                                                           UPD02250
       REAL X(15000), Y(15000)
C
                                                                           UPD02260
                                                                           UPD02270
       INTEGER J,K,M,MR,J1,J2,J3,J4,J5,JT
                                                                           UPD02280
       REAL I1, I2, I3, I4, I5
                                                                           UPD02290
       INTEGER P, PMAX, U, V
                                                                           UPD02300
C
С
       NEEDS SORT ID TO RECOVER UNSCRAMBLED FOURIER COEFICIENTS
                                                                           UPD02310
C
                                                                           UPD02320
C
       THIS SUBROUTINE REPLACES X + I Y BY ITS FOURIER TRANSFORM WHERE
                                                                           UPD02330
C
      X(F)+IY(F) = SUM T=0, (NOPTS-1) OF (X(T)+IY(T))*EXP(-F*T/NOPTS).
                                                                           UPD02340
```

```
UPD02350
C
                                                                            UPD02360
       REAL I (PMAX), R (PMAX), C(PMAX, PMAX), S (PMAX, PMAX),
С
                                                                            UPD02370
C
      1A ((PMAX-1)**2+1), B((PMAX-1)**2+1)
                                                                            UPD02380
C
                                                                           UPD02390
       REAL I (13), R(13), C(13,13), S(13,13), A(145), B(145)
                                                                           UPD02400
C
                                                                           UPD02410
       PMAX=13
                                                                            UPD02420
С
                                                                            UPD02430
       TWOPI=6.283185307
                                                                           UPD02440
       M=NOPTS
                                                                            UPD02450
  100
       CONTINUE
       IF (M.NE. (M/4)*4) GO TO 400
                                                                           UPD02460
                                                                            UPD02470
С
                                                                            UPD02480
C
       FACTORS OF FOUR
                                                                            UPD02490
C
                                                                           UPD02500
       MR=M
                                                                           UPD02510
       M=M/4
                                                                           UPD02520
       DO 300 J=1,M
                                                                           UPD02530
       ARG= TWOPI*FLOAT(J-1)/FLOAT(MR)
                                                                           UPD02540
       C1=COS(ARG)
                                                                            UPD02550
       S1=SIN(ARG)
                                                                            UPD02560
       C2=COS(2.0*ARG)
       S2=SIN(2.0*ARG)
                                                                            UPD02570
                                                                            UPD02580
       C3=COS(3.0*ARG)
                                                                           UPD02590
       S3=SIN(3.0*ARG)
                                                                            UPD02600
       DO 200 K=MR, NOPTS, MR
                                                                            UPD02610
       J1=J+K-MR
       J2=J1+M
                                                                            UPD02620
                                                                            UPD02630
       J3=J2+M
       J4 = J3 + M
                                                                            UPD02640
                                                                           UPD02650
       R1=X(J1)+X(J3)
                                                                           UPD02660
       R2=X(J1)-X(J3)
       I1=Y(J1)+Y(J3)
                                                                           UPD02670
                                                                           UPD02680
       I2=Y(J1)-Y(J3)
                                                                            UPD02690
       R3=X(J2)+X(J4)
                                                                            UPD02700
       R4=X(J2)-X(J4)
       I3=Y(J2)+Y(J4)
                                                                           UPD02710
                                                                           UPD02720
       I4=Y(J2)-Y(J4)
                                                                           UPD02730
       X(J1)=R1+R3
                                                                            UPD02740
       Y(J1) = I1 + I3
                                                                           UPD02750
       X(J2) = (R2+I4)*C1+(I2-R4)*S1
       Y(J2) = (I2-R4)*C1-(R2+I4)*S1
                                                                            UPD02760
       X(J3) = (R1-R3)*C2+(I1-I3)*S2
                                                                           UPD02770
                                                                           UPD02780
       Y(J3) = (I1-I3)*C2-(R1-R3)*S2
                                                                           UPD02790
       X(J4) = (R2-I4)*C3+(I2+R4)*S3
       Y(J4) = (I2+R4)*C3-(R2-I4)*S3
                                                                           UPD02800
  200
       CONTINUE
                                                                           UPD02810
                                                                            UPD02820
  300
       CONTINUE
       GO TO 100
                                                                           UPD02830
                                                                           UPD02840
  400
       CONTINUE
                                                                           UPD02850
       IF (M.NE. (M/2)*2) GO TO 700
                                                                           UPD02860
C
С
       FACTORS OF TWO
                                                                           UPD02870
                                                                            UPD02880
C
                                                                           UPD02890
       MR=M
       M=M/2
                                                                           UPD02900
                                                                           UPD02910
       DO 600 J=1,M
                                                                           UPD02920
       ARG=TWOPI*FLOAT(J-1)/FLOAT(MR)
                                                                           UPD02930
       C1=COS(ARG)
                                                                           UPD02940
       S1=SIN(ARG)
                                                                           UPD02950
       DO 500 K=MR, NOPTS, MR
                                                                           UPD02960
       J1=J+K-MR
```

```
UPD02970
       J2=J1+M
                                                                            UPD02980
       R1=X(J1)+X(J2)
                                                                            UPD02990
       R2=X(J1)-X(J2)
                                                                            UPD03000
       I1=Y(J1)+Y(J2)
                                                                            UPD03010
       I2=Y(J1)-Y(J2)
                                                                            UPD03020
       X(J1)=R1
                                                                            UPD03030
       Y(J1)=I1
                                                                            UPD03040
       X(J2) = R2 * C1 + I2 * S1
                                                                            UPD03050
       Y(J2) = I2*C1-R2*S1
                                                                            UPD03060
  500
       CONTINUE
                                                                            UPD03070
  600
       CONTINUE
                                                                            UPD03080
       GO TO 400
                                                                            UPD03090
       CONTINUE
  700
       IF (M.NE. (M/3)*3) GO TO 1000
                                                                            UPD03100
                                                                            UPD03110
C
                                                                            UPD03120
       FACTORS OF THREE
C
                                                                            UPD03130
C
                                                                            UPD03140
       MR=M
                                                                            UPD03150
       M=M/3
                                                                            UPD03160
       A1=COS(TWOPI/3.0)
                                                                            UPD03170
       B1=SIN(TWOPI/3.0)
       A2=COS(2.0*TWOPI/3.0)
                                                                            UPD03180
                                                                            UPD03190
       B2=SIN(2.0*TWOPI/3.0)
                                                                            UPD03200
       DO 900 J=1,M
                                                                            UPD03210
       ARG=TWOPI*FLOAT(J-1)/FLOAT(MR)
                                                                            UPD03220
C
       ABSORB TWIDDLE FACTOR INTO ANALYSIS COEFFICIENTS
                                                                            UPD03230
C
                                                                            UPD03240
C
                                                                            UPD03250
       C21=COS (ARG)
                                                                            UPD03260
       S21=SIN(ARG)
                                                                            UPD03270
       C22=C21*A1-S21*B1
                                                                            UPD03280
       S22=C21*B1+S21*A1
                                                                            UPD03290
       C23=C21*A2-S21*B2
                                                                            UPD03300
       S23=C21*B2+S21*A2
                                                                            UPD03310
       C31=COS(2.0*ARG)
                                                                            UPD03320
       S31=SIN(2.0*ARG)
                                                                            UPD03330
       C32=C31*A2-S31*B2
                                                                            UPD03340
       S32=C31*B2+S31*A2
                                                                            UPD03350
       C33=C31*A1-S31*B1
                                                                            UPD03360
       S33=C31*B1+S31*A1
       DO 800 K=MR, NOPTS, MR
                                                                            UPD03370
       J1=J+K-MR
                                                                            UPD03380
                                                                            UPD03390
       J2=J1+M
                                                                            UPD03400
       J3=J2+M
                                                                            UPD03410
       R1=X(J1)
                                                                            UPD03420
       I1=Y(J1)
                                                                            UPD03430
       R2=X(J2)
                                                                            UPD03440
       I2=Y(J2)
                                                                            UPD03450
       R3=X(J3)
                                                                            UPD03460
       I3=Y(J3)
                                                                            UPD03470
       X(J1) = R1 + R2 + R3
                                                                            UPD03480
       Y(J1) = I1 + I2 + I3
       X(J2)=R1*C21+I1*S21+R2*C22+I2*S22+R3*C23+I3*S23
                                                                            UPD03490
                                                                            UPD03500
       Y(J2)=I1*C21-R1*S21+I2*C22-R2*S22+I3*C23-R3*S23
                                                                            UPD03510
       X(J3)=R1*C31+I1*S31+R2*C32+I2*S32+R3*C33+I3*S33
       Y(J3)=I1*C31-R1*S31+I2*C32-R2*S32+I3*C33-R3*S33
                                                                            UPD03520
  800
       CONTINUE
                                                                            UPD03530
  900
       CONTINUE
                                                                            UPD03540
                                                                            UPD03550
       GO TO 700
                                                                            UPD03560
 1000
       CONTINUE
       IF (M.NE. (M/5)*5) GO TO 1300
                                                                            UPD03570
                                                                            UPD03580
C
```

```
UPD03590
       FACTORS OF FIVE
C
                                                                           UPD03600
C
                                                                           UPD03610
       MR=M
                                                                           UPD03620
       M=M/5
       A1=COS(TWOPI/5.0)
                                                                           UPD03630
                                                                           UPD03640
       B1=SIN(TWOPI/5.0)
                                                                           UPD03650
       A2 = COS(2.0 \times TWOPI/5.0)
                                                                           UPD03660
       B2=SIN(2.0*TWOPI/5.0)
                                                                           UPD03670
       A3 = COS(3.0 * TWOPI/5.0)
       B3=SIN(3.0*TWOPI/5.0)
                                                                           UPD03680
       A4=COS(4.0*TWOPI/5.0)
                                                                           UPD03690
                                                                           UPD03700
       B4=SIN(4.0*TWOPI/5.0)
                                                                           UPD03710
       DO 1200 J=1,M
                                                                           UPD03720
       ARG=TWOPI*FLOAT(J-1)/FLOAT(MR)
                                                                           UPD03730
C
                                                                           UPD03740
C
      ABSORB TWIDDLE FACTOR INTO ANALYAIS COEFFICIENTS
                                                                           UPD03750
C
                                                                           UPD03760
       C21=COS(ARG)
                                                                           UPD03770
       S21=SIN(ARG)
                                                                           UPD03780
       C22=C21*A1-S21*B1
                                                                           UPD03790
       S22=C21*B1+S21*A1
                                                                           UPD03800
       C23=C21*A2-S21*B2
                                                                           UPD03810
       S23=C21*B2+S21*A2
       C24=C21*A3-S21*B3
                                                                           UPD03820
                                                                           UPD03830
       S24=C21*B3+S21*A3
                                                                           UPD03840
       C25=C21*A4-S21*B4
                                                                           UPD03850
       S25=C21*B4+S21*A4
                                                                           UPD03860
       C31=COS(2.0*ARG)
                                                                           UPD03870
       S31=SIN(2.0*ARG)
                                                                           UPD03880
       C32=C31*A2-S31*B2
                                                                           UPD03890
       S32=C31*B2+S31*A2
       C33=C31*A4-S31*B4
                                                                           UPD03900
                                                                           UPD03910
       S33=C31*B4+S31*A4
                                                                           UPD03920
       C34=C31*A1-S31*B1
                                                                           UPD03930
       S34=C31*B1+S31*A1
                                                                           UPD03940
       C35=C31*A3-S31*B3
       S35=C31*B3+S31*A3
                                                                           UPD03950
                                                                           UPD03960
       C41=COS(3.0*ARG)
                                                                           UPD03970
       S41=SIN(3.0*ARG)
                                                                           UPD03980
       C42=C41*A3-S41*B3
       S42=C41*B3+S41*A3
                                                                           UPD03990
       C43=C41*A1-S41*B1
                                                                           UPD04000
       S43=C41*B1+S41*A1
                                                                           UPD04010
                                                                           UPD04020
       C44=C41*A4-S41*B4
                                                                           UPD04030
       S44=C41*B4+S41*A4
                                                                           UPD04040
       C45=C41*A2-S41*B2
       S45=C41*B2+S41*A2
                                                                           UPD04050
                                                                           UPD04060
       C51=COS(4.0*ARG)
                                                                           UPD04070
       S51=SIN(4.0*ARG)
                                                                           UPD04080
       C52=C51*A4-S51*B4
                                                                           UPD04090
       S52=C51*B4+S51*A4
                                                                           UPD04100
       C53=C51*A3-S51*B3
                                                                           UPD04110
       S53=C51*B3+S51*A3
       C54=C51*A2-S51*B2
                                                                           UPD04120
                                                                           UPD04130
       S54=C51*B2+S51*A2
                                                                           UPD04140
       C55=C51*A1-S51*B1
                                                                           UPD04150
       S55=C51*B1+S51*A1
       DO 1100 K=MR, NOPTS, MR
                                                                           UPD04160
                                                                           UPD04170
       J1=J+K-MR
                                                                           UPD04180
       J2=J1+M
       J3=J2+M
                                                                           UPD04190
                                                                           UPD04200
       J4=J3+M
```

```
UPD04210
       J5=J4+M
                                                                          UPD04220
       R1=X(J1)
                                                                          UPD04230
       I1=Y(J1)
                                                                          UPD04240
       R2=X(J2)
       I2=Y(J2)
                                                                          UPD04250
                                                                          UPD04260
       R3=X(J3)
                                                                          UPD04270
       I3=Y(J3)
       R4=X(J4)
                                                                          UPD04280
                                                                          UPD04290
       I4=Y(J4)
       R5=X(J5)
                                                                          UPD04300
                                                                          UPD04310
       I5=Y(J5)
                                                                          UPD04320
       X(J1) = R1 + R2 + R3 + R4 + R5
                                                                          UPD04330
       Y(J1)=I1+I2+I3+I4+I5
       X(J2)=R1*C21+I1*S21+R2*C22+I2*S22+R3*C23+I3*S23+R4*C24+I4*S24+ UPD04340
     1R5*C25+I5*S25
                                                                          UPD04350
       Y(J2)=I1*C21-R1*S21+I2*C22-R2*S22+I3*C23-R3*S23+I4*C24-R4*S24+ UPD04360
                                                                          UPD04370
     115*C25-R5*S25
       X(J3)=R1*C31+I1*S31+R2*C32+I2*S32+R3*C33+I3*S33+R4*C34+I4*S34+ UPD04380
                                                                          UPD04390
     1R5*C35+I5*S35
       Y(J3)=I1*C31-R1*S31+I2*C32-R2*S32+I3*C33-R3*S33+I4*C34-R4*S34+ UPD04400
                                                                          UPD04410
     1I5*C35-R5*S35
       X(J4)=R1*C41+I1*S41+R2*C42+I2*S42+R3*C43+I3*S43+R4*C44+I4*S44+ UPD04420
     1R5*C45+I5*S45
                                                                          UPD04430
       Y(J4)=I1*C41-R1*S41+I2*C42-R2*S42+I3*C43-R3*S43+I4*C44-R4*S44+ UPD04440
                                                                          UPD04450
     1I5*C45-R5*S45
       X(J5)=R1*C51+I1*S51+R2*C52+I2*S52+R3*C53+I3*S53+R4*C54+I4*S54+
                                                                          UPD04460
                                                                          UPD04470
     1R5*C55+I5*S55
       Y(J5)=I1*C51-R1*S51+I2*C52-R2*S52+I3*C53-R3*S53+I4*C54-R4*S54+
                                                                          UPD04480
     1I5*C55-R5*S55
                                                                          UPD04490
                                                                          UPD04500
 1100
       CONTINUE
                                                                          UPD04510
 1200
       CONTINUE
                                                                          UPD04520
       GO TO 1000
                                                                          UPD04530
       CONTINUE
 1300
                                                                          UPD04540
       IF (M .LE. 1) GO TO 2400
С
                                                                          UPD04550
                                                                          UPD04560
C
       GENERAL FACTORS
                                                                          UPD04570
C
                                                                          UPD04580
       DO 1400 J=2, PMAX
                                                                          UPD04590
       P=J
       IF (M .EQ. (M/P)*P) GO TO 1500
                                                                          UPD04600
                                                                          UPD04610
 1400
       CONTINUE
                                                                          UPD04620
       CALL FCT ERR
                                                                          UPD04630
 1500
       CONTINUE
                                                                          UPD04640
       JT = (P-1) **2+1
С
                                                                          UPD04650
C
                                                                          UPD04660
       SET UP ARBITRARY FACTORS
                                                                          UPD04670
C
       DO 1600 J=1,JT
                                                                          UPD04680
       ARG=TWOPI*FLOAT(J-1)/FLOAT(P)
                                                                          UPD04690
       A(J) = COS(ARG)
                                                                          UPD04700
                                                                          UPD04710
       B(J) = SIN(ARG)
                                                                          UPD04720
 1600
       CONTINUE
                                                                          UPD04730
       MR=M
       M=M/P
                                                                          UPD04740
                                                                          UPD04750
       DO 2300 J=1,M
       ARG=TWOPI*FLOAT(J-1)/FLOAT(MR)
                                                                          UPD04760
                                                                          UPD04770
C
                                                                          UPD04780
       ABSORB TWIDDLE FACTOR INTO ANALYSIS COEFFICIENTS
C
C
                                                                          UPD04790
       DO 1800 U=1,P
                                                                          UPD04800
                                                                          UPD04810
       C(U,1) = COS(FLOAT(U-1)*ARG)
       S(U,1)=SIN(FLOAT(U-1)*ARG)
                                                                          UPD04820
```

```
DO 1700 V=2,P
                                                                            UPD04830
                                                                            UPD04840
        JT = (U-1) * (V-1) + 1
        C(U,V)=C(U,1)*A(JT)-S(U,1)*B(JT)
                                                                            UPD04850
                                                                            UPD04860
        S(U,V)=C(U,1)*B(JT)+S(U,1)*A(JT)
 1700
       CONTINUE
                                                                            UPD04870
                                                                            UPD04880
 1800
       CONTINUE
       DO 2200 K=MR, NOPTS, MR
                                                                            UPD04890
                                                                            UPD04900
C
С
       GENERAL ANALYSIS
                                                                            UPD04910
C
                                                                            UPD04920
       DO 1900 U=1,P
                                                                            UPD04930
       JT=J+K-MR+(U-1)*M
                                                                            UPD04940
       R(U) = X(JT)
                                                                            UPD04950
                                                                            UPD04960
       I(U)=Y(JT)
 1900
       CONTINUE
                                                                            UPD04970
       DO 2100 U=1,P
                                                                            UPD04980
       XT=0.0
                                                                            UPD04990
       YT=0.0
                                                                            UPD05000
       DO 2000 V=1,P
                                                                            UPD05010
       XT=XT+R(V)*C(U,V)+I(V)*S(U,V)
                                                                            UPD05020
       YT=YT+I(V)*C(U,V)-R(V)*S(U,V)
                                                                            UPD05030
 2000
       CONTINUE
                                                                            UPD05040
       JT=J+K-MR+(U-1)*M
                                                                            UPD05050
       X(JT)=XT
                                                                            UPD05060
       Y(JT) = YT
                                                                            UPD05070
 2100
       CONTINUE
                                                                            UPD05080
 2200
                                                                            UPD05090
       CONTINUE
 2300
       CONTINUE
                                                                            UPD05100
       GO TO 1300
                                                                            UPD05110
 2400
       CONTINUE
                                                                            UPD05120
                                                                            UPD05130
       RETURN
                                                                            UPD05140
       END
      SUBROUTINE GR ID FS (NOPTS, X, Y, S)
                                                                            UPD05150
      UNSCRAMBLING PROGRAM FOR ONE DIMENSIONAL FOURIER COEFFICIENTS
                                                                            UPD05160
C
C
                                                                            UPD05170
            X(15000), Y(15000), S(15000)
                                                                            UPD05180
      REAL
C
                                                                            UPD05190
      INTEGER JT
                                                                            UPD05200
                                                                            UPD05210
      INTEGER DO, LIM(13), STEP(13), P,PMAX
      INTEGERA, B, C, D, E, F, G, H, I, J, K, L, M, AL, BL, CL, DL, EL, FL, GL, HL, IL, JL, UPDO5220
     1KL, LL, ML, AS, BS, CS, DS, ES, FS, GS, HS, IS, JS, KS, LS, MS
                                                                            UPD05230
                                                                            UPD05240
C
      DIGIT REVERSER FOR USE WITH FOUR ID . S MUST BE THE SAME SIZE AS UPD05250
C
      X AND Y
                                                                            UPD05260
C
                                                                            UPD05270
C
     EQUIVALENCES TO ALLOW INDEXING TO SET PARAMETERS AND ALLOW SCALARSUPD05280
C
      FOR USE IN DO LOOPS.
                                                                            UPD05290
C
                                                                            UPD05300
      EQUIVALENCE (AS, STEP(1)), (BS, STEP(2)), (CS, STEP(3)), (DS, STEP(4)), UPD05310
     1(ES,STEP(5)),(FS,STEP(6)),(GS,STEP(7)),(HS,STEP(8)),(IS,STEP(9)),
                                                                            UPD05320
     2(JS,STEP(10)),(KS,STEP(11)),(LS,STEP(12)),(MS,STEP(13))
                                                                            UPD05330
                                                                            UPD05340
      EQUIVALENCE (AL,LIM(1)),(BL,LIM(2)),(CL,LIM(3)),(DL,LIM(4)),
                                                                            UPD05350
     1(EL,LIM(5)),(FL,LIM(6)),(GL,LIM(7)),(HL,LIM(8)),(IL,LIM(9)),
     2(JL,LIM(10)),(KL,LIM(11)),(LL,LIM(12)),(ML,LIM(13))
                                                                            UPD05360
C
                                                                            UPD05370
C
      PMAX IS SET TO AGREE WITH FOUR ID
                                                                            UPD05380
C
                                                                            UPD05390
      PMAX=13
                                                                            UPD05400
C
                                                                            UPD05410
C
      SET LIMITS AND STEP SIZES FROM INNER LOUPS GOING OUT
                                                                            UPD05420
C
                                                                            UPD05430
      DO=13
                                                                            UPD05440
```

```
UPD05450
      M=NOPTS
                                                                           UPD05460
  100 CONTINUE
                                                                           UPD05470
С
                                                                           UPD05480
      CHECK FOR FACTORS OF FOUR
C
C
                                                                           UPD05490
                                                                           UPD05500
      IF (M .NE. (M/4)*4) GO TO 200
                                                                           UPD05510
      M=M/4
                                                                           UPD05520
C
      REALLY WANT 0-4*M-1 BUT WE GO FROM 1 TO 4*M.
                                                      4 STEPS
                                                               OF M WITH
                                                                           UPD05530
C
C
      MAXIMUM DISPLACEMENT OF M INITIALLY
                                                                           UPD05540
C
                                                                           UPD05550
                                                                           UPD05560
      LIM(DO) = 4*M
                                                                           UPD05570
      STEP(DO) = M
                                                                           UPD05580
      DO=DO-1
                                                                           UPD05590
      GO TO 100
                                                                           UPD05600
  200 CONTINUE
                                                                           UPD05610
C
                                                                           UPD05620
C
      CHECK FOR REMAINING FACTORS
                                                                           UPD05630
C
                                                                           UPD05640
      IF (M .LE. 1) GO TO 500
                                                                           UPD05650
C
                                                                           UPD05660
C
      FACTORS OF 2,3,5,7,11,13
                                                                           UPD05670
C
      DO 300 JT=2, PMAX
                                                                           UPD05680
                                                                           UPD05690
      P=JT
      IF (M .EQ. (M/P)*P) GO TO 400
                                                                           UPD05700
  300 CONTINUE
                                                                           UPD05710
                                                                           UPD05720
C
      ERROR EXIT IF FACTORS ABOVE PMAX ARE NEEDED
                                                                           UPD05730
C
                                                                           UPD05740
C
                                                                           UPD05750
      CALL FCT ERR
  400 CONTINUE
                                                                           UPD05760
                                                                           UPD05770
      M=M/P
                                                                           UPD05780
C
      REALLY WANT 0-P*M-1 BUT WE USE 1 TO P*M. P STEPS OF M WITH
C
                                                                           UPD05790
      MAXIMUM INITIAL DISPLACEMENT OF M
C
                                                                           UPD05800
C
                                                                           UPD05810
                                                                           UPD05820
      LIM(DO) = P*M
                                                                           UPD05830
      STEP(DO)=M
                                                                           UPD05840
      DO=DO-1
                                                                           UPD05850
      GO TO 200
                                                                           UPD05860
  500 CONTINUE
C
                                                                           UPD05870
      FINISH OUT THE DO LOOPS TO MAKE OUTER LOOPS EXECUTE ONLY ONCE
C
                                                                           UPD05880
                                                                           UPD05890
C
                                                                           UPD05900
      DO 600 JT=1,DO
                                                                           UPD05910
      LIM(JT)=1
                                                                           UPD05920
      STEP(JT)=1
                                                                           UPD05930
  600 CONTINUE
C
                                                                           UPD05940
      SET JT SO THAT JT RUNS FROM 1 TO NOPTS IN STEPS OF 1 WHILE M WILL UPD05950
C
С
      RUN WITH REVERSE DIGITS
                                                                           UPD05960
C
                                                                           UPD05970
                                                                           UPD05980
      JT=0
      DO 700 A=1,AL,AS
                                                                           UPD05990
                                                                           UPD06000
      DO 700 B=A,BL,BS
                                                                           UPD06010
      DO 700 C=B,CL,CS
      DO 700 D=C,DL,DS
                                                                           UPD06020
                                                                           UPD06030
      DO 700 E=D,EL,ES
                                                                           UPD06040
      DO 700 F=E,FL,FS
                                                                           UPD06050
      DO 700 G=F,GL,GS
                                                                           UPD06060
      DO 700 H=G,HL,HS
```

```
DO 700 I=H, IL, IS
                                                                           UPD06070
                                                                           UPD06080
      DO 700 J=I,JL,JS
      DO 700 K=J,KL,KS
                                                                           UPD06090
                                                                           UPD06100
      DO 700 L=K,LL,LS
                                                                           UPD06110
      DO 700 M=L,ML,MS
                                                                           UPD06120
      JT=JT+1
      S(JT) = X(M)
                                                                           UPD06130
                                                                           UPD06140
  700 CONTINUE
                                                                           UPD06150
C
                                                                           UPD06160
      COPY BACK OUT THE SCRATCH ARRAY
C
C
                                                                           UPD06170
                                                                           UPD06180
      DO 800 JT=1, NOPTS
                                                                           UPD06190
      X(JT)=S(JT)
                                                                           UPD06200
  800 CONTINUE
                                                                           UPD06210
      JT=0
                                                                           UPD06220
      DO 900 A=1,AL,AS
      DO 900 B=A,BL,BS
                                                                           UPD06230
                                                                           UPD06240
      DO 900 C=B,CL,CS
                                                                           UPD06250
      DO 900 D=C,DL,DS
      DO 900 E=D,EL,ES
                                                                           UPD06260
                                                                           UPD06270
      DO 900 F=E,FL,FS
                                                                           UPD06280
      DO 900 G=F,GL,GS
                                                                           UPD06290
      DO 900 H=G,HL,HS
                                                                           UPD06300
      DO 900 I=H,IL,IS
                                                                           UPD06310
      DO 900 J=I,JL,JS
                                                                           UPD06320
      DO 900 K=J,KL,KS
                                                                           UPD06330
      DO 900 L=K,LL,LS
                                                                           UPD06340
      DO 900 M=L,ML,MS
                                                                           UPD06350
      JT=JT+1
                                                                           UPD06360
      S(JT)=Y(M)
  900 CONTINUE
                                                                           UPD06370
C
                                                                           UPD06380
      COPY BACK OUT OF THE SCRATCH ARRAY
                                                                           UPD06390
C
C
                                                                           UPD06400
                                                                           UPD06410
      DO 950 JT=1, NOPTS
                                                                           UPD06420
      Y(JT)=S(JT)
                                                                           UPD06430
  950 CONTINUE
                                                                           UPD06440
      RETURN
                                                                           UPD06450
                                                                           UPD06460
      SUBROUTINE FCT ERR
                                                                           UPD06470
C
      FACTORING ERROR
                                                                           UPD06480
C
Ċ
      FACTORING ERROR IN FOUR ID OR SORT ID.
                                                                           UPD06490
C
                                                                           UPD06500
C
      CURRENTLY TAKEN IF A FACTOR ABOVE 13 IS REQUIRED. (THE ARRAYS
                                                                           UPD06510
C
      ARE NOT BIG ENOUGH TO HANDLE THINGS ABOVE 13.)
                                                                           UPD06520
                                                                           UPD06530
                                                                           UPD06540
      WRITE (6,100)
                                                                           UPD06550
      CALL EXIT
  100 FORMAT (1X,15HFACTORING ERROR)
                                                                           UPD06560
      RETURN
                                                                           UPD06570
                                                                           UPD06580
      END
      SUBROUTINE AR MD FT (N, X, Y, S)
                                                                           UPD06590
      ARBITRARY RADIX MULTI DIMENSIONAL FOURIER TRANSFORM
                                                                           UPD06600
C
C
                                                                           UPD06610
С
     FIRST SUBSCRIPT VARIES FASTEST IN KEEPING WITH FORTRAN CONVENTIONSUPD06620
С
                                                                           UPD06630
      INTEGER N (10)
                                                                           UPD06640
      REAL X (15000), Y(15000), S(15000)
                                                                           UPD06650
С
                                                                           UPD06660
      CALL GR MD FT (N,X,Y)
                                                                           UPD06670
                                                                           UPD06680
      CALL GR MD FS (N, X, S)
```

```
UPD06690
      CALL GR MD FS (N,Y,S)
                                                                            UPD06700
      RETURN
                                                                            UPD06710
      END
      SUBROUTINE GR MD FT (N, X, Y)
                                                                            UPD06720
                                                                            UPD06730
      GENERAL RADIX MULTI DIMENSIONAL FOURIER TRANSFORM
C
                                                                            UPD06740
                                                                            UPD06750
      INTEGER N(10)
                                                                            UPD06760
      REAL X(15000), Y(15000)
                                                                            UPD06770
С
      INTEGER DIMEN, J, JJ, J0, J1, J2, J3, J4, K, M, MR, P, PMAX, PROD, S0, U, V
                                                                            UPD06780
      REAL ARG, A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C10, C11, C12, C13, C14,
                                                                            UPD06790
     1C20,C21,C22,C23,C24,C30,C31,C32,C33,C34,C40,C41,C42,C43,C44,I0,I1,UPD06800
     212,13,14,R0,R1,R2,R3,R4,S1,S2,S3,S10,S11,S12,S13,S14,S20,S21,
                                                                            UPD06810
     3S22,S23,S24,S30,S31,S32,S33,S34,S40,S41,S42,S43,S44,TWOPI,XT,YT UPD06820
                                                                            UPD06830
C
                                                                            UPD06840
      REAL A (19), B(19), C(19,19), I(19), R(19), S(19,19)
                                                                            UPD06850
C
                                                                            UPD06860
      PMAX=19
                                                                            UPD06870
С
                                                                            UPD06880
      TWOPI=6.283185307
      DIMEN=1
                                                                            UPD06890
                                                                            UPD06900
      PROD=1
                                                                            UPD06910
  100 CONTINUE
                                                                            UPD06920
      PROD=PROD*N(DIMEN)
                                                                            UPD06930
      DIMEN=DIMEN+1
      IF (N(DIMEN) .GT. 0) GO TO 100
                                                                            UPD06940
                                                                            UPD06950
      DIMEN=DIMEN-1
      SO=PROD
                                                                            UPD06960
                                                                            UPD06970
      M=PROD
                                                                            UPD06980
  200 CONTINUE
                                                                            UPD06990
      SO=SO/N(DIMEN)
                                                                            UPD07000
      DIMEN=DIMEN-1
                                                                            UPD07010
  300 CONTINUE
                                                                            UPD07020
      IF (M/SO .NE. M/SO/4*4) GO TO 600
                                                                            UPD07030
      MR=M
                                                                            UPD07040
      M=M/4
                                                                            UPD07050
      DO 500 J=1,M
                                                                            UPD07060
      ARG=TWOPI*FLOAT((J-1)/S0)/FLOAT(MR/S0)
      C1=COS(ARG)
                                                                            UPD07070
                                                                            UPD07080
      S1=SIN(ARG)
      C2=COS(2.0*ARG)
                                                                            UPD07090
                                                                            UPD07100
      S2=SIN(2.0*ARG)
                                                                            UPD07110
      C3=COS(3.0*ARG)
      S3=SIN(3.0*ARG)
                                                                            UPD07120
                                                                            UPD07130
      DO 400 K=MR, PROD, MR
                                                                            UPD07140
      J0=J+K-MR
      J1=J0+M
                                                                            UPD07150
                                                                            UPD07160
      J2=J1+M
                                                                            UPD07170
      J3=J2+M
                                                                            UPD07180
      R0=X(J0)+X(J2)
                                                                            UPD07190
      R1=X(J0)-X(J2)
      I0=Y(J0)+Y(J2)
                                                                            UPD07200
                                                                            UPD07210
      I1=Y(J0)-Y(J2)
                                                                            UPD07220
      R2=X(J1)+X(J3)
                                                                            UPD07230
      R3=X(J1)-X(J3)
      12=Y(J1)+Y(J3)
                                                                            UPD07240
                                                                            UPD07250
      I3=Y(J1)-Y(J3)
                                                                            UPD07260
      X(J0) = R0 + R2
                                                                            UPD07270
      Y(J0) = I0 + I2
      X(J2) = (R1+I3)*C1+(I1-R3)*S1
                                                                            UPD07280
      Y(J2) = (I1-R3)*C1-(R1+I3)*S1
                                                                            UPD07290
                                                                            UPD07300
      X(J1) = (R0-R2)*C2+(I0-I2)*S2
```

```
UPD07310
    Y(J1) = (I0-I2)*C2-(R0-R2)*S2
                                                                          UPD07320
    X(J3) = (R1-I3)*C3+(I1+R3)*S3
    Y(J3) = (I1+R3)*C3-(R1-I3)*S3
                                                                          UPD07330
                                                                          UPD07340
400 CONTINUE
500 CONTINUE
                                                                          UPD07350
                                                                          UPD07360
    GO TO 300
                                                                          UPD07370
600 CONTINUE
                                                                          UPD07380
    IF (M/SO .NE. M/SO/2*2) GO TO 900
                                                                          UPD07390
    MR=M
                                                                          UPD07400
    M=M/2
                                                                          UPD07410
    DO 800 J=1,M
                                                                          UPD07420
    ARG=TWOPI*FLOAT((J-1)/S0)/FLOAT(MR/S0)
                                                                          UPD07430
    C1=COS(ARG)
                                                                          UPD07440
    S1=SIN(ARG)
    DO 700 K=MR, PROD, MR
                                                                          UPD07450
                                                                          UPD07460
    JO=J+K-MR
                                                                          UPD07470
    J1=J0+M
                                                                          UPD07480
    RO=X(JO)+X(J1)
                                                                          UPD07490
    R1=X(J0)-X(J1)
                                                                          UPD07500
    IO=Y(JO)+Y(J1)
                                                                          UPD07510
    I1=Y(J0)-Y(J1)
                                                                          UPD07520
    X(J0)=R0
                                                                          UPD07530
    Y(JO)=IO
                                                                          UPD07540
    X(J1) = R1 * C1 + I1 * S1
                                                                          UPD07550
    Y(J1)=I1*C1-R1*S1
                                                                          UPD07560
700 CONTINUE
                                                                          UPD07570
800 CONTINUE
                                                                          UPD07580
    GO TO 600
                                                                          UPD07590
900 CONTINUE
                                                                          UPD07600
    IF (M/SO .NE. M/SO/3*3) GO TO 1200
                                                                          UPD07610
    MR=M
    M=M/3
                                                                          UPD07620
                                                                          UPD07630
    A1=COS(TWOPI/3.0)
                                                                          UPD07640
    B1=SIN(TWOPI/3.0)
                                                                          UPD07650
    A2 = COS(2.0 \times TWOPI/3.0)
                                                                          UPD07660
    B2=SIN(2.0*TWOPI/3.0)
                                                                          UPD07670
    DO 1100 J=1,M
    ARG=TWOPI*FLOAT((J-1)/S0)/FLOAT(MR/S0)
                                                                          UPD07680
                                                                          UPD07690
    C10=COS (ARG)
                                                                          UPD07700
    S10=SIN(ARG)
                                                                          UPD07710
    C11=C10*A1-S10*B1
                                                                          UPD07720
    S11=C10*B1+S10*A1
    C12=C10*A2-S10*B2
                                                                          UPD07730
                                                                          UPD07740
    S12=C10*B2+S10*A2
    C20=COS(2.0*ARG)
                                                                          UPD07750
                                                                          UPD07760
    S20=SIN(2.0*ARG)
                                                                          UPD07770
    C21=C20*A2-S20*B2
                                                                          UPD07780
    S21=C20*B2+S20*A2
                                                                          UPD07790
    C22=C20*A1-S20*B1
                                                                          UPD07800
    S22=C20*B1+S20*A1
    DO 1000 K=MR, PROD, MR
                                                                          UPD07810
                                                                          UPD07820
    JO=J+K-MR
                                                                          UPD07830
    J1=J0+M
                                                                          UPD07840
    J2=J1+M
                                                                          UPD07850
    R0=X(J0)
                                                                          UPD07860
    IO=Y(JO)
                                                                          UPD07870
    R1=X(J1)
                                                                          UPD07880
    I1=Y(J1)
    R2=X(J2)
                                                                          UPD07890
                                                                          UPD07900
    I2=Y(J2)
                                                                          UPD07910
    X(JO)=RO+R1+R2
                                                                          UPD07920
    Y(JO) = IO + I1 + I2
```

```
UPD07930
     X(J1)=R0*C10+I0*S10+R1*C11+I1*S11+R2*C12+I2*S12
     Y(J1)=I0*C10-R0*S10+I1*C11-R1*S11+I2*C12-R2*S12
                                                                         UPD07940
     X(J2)=R0*C20+I0*S20+R1*C21+I1*S21+R2*C22+I2*S22
                                                                         UPD07950
     Y(J2)=I0*C20-R0*S20+I1*C21-R1*S21+I2*C22-R2*S22
                                                                         UPD07960
                                                                         UPD07970
1000 CONTINUE
1100 CONTINUE
                                                                         UPD07980
                                                                         UPD07990
     GO TO 900
                                                                         UPD08000
1200 CONTINUE
                                                                         UPD08010
     IF (M/SO .NE. M/SO/5*5) GO TO 1500
                                                                          UPD08020
     MR=M
                                                                         UPD08030
     M=M/5
                                                                         UPD08040
     A1=COS (TWOPI/5.0)
                                                                         UPD08050
     B1=SIN(TWOPI/5.0)
                                                                         UPD08060
     A2 = COS(2.0 \times TWOPI/5.0)
                                                                         UPD08070
     B2=SIN(2.0*TWOPI/5.0)
                                                                         UPD08080
     A3 = COS(3.0 \times TWOPI/5.0)
     B3=SIN(3.0*TWOPI/5.0)
                                                                         UPD08090
     A4=COS(4.0*TWOPI/5.0)
                                                                         UPD08100
                                                                         UPD08110
     B4=SIN(4.0*TWOPI/5.0)
                                                                         UPD08120
     DO 1400 J=1,M
                                                                         UPD08130
     ARG=TWOPI*FLOAT((J-1)/S0)/FLOAT(MR/S0)
                                                                          UPD08140
     C10=COS(ARG)
                                                                          UPD08150
     S10=SIN(ARG)
                                                                         UPD08160
     C11=C10*A1-S10*B1
                                                                         UPD08170
     S11=C10*B1+S10*A1
                                                                         UPD08180
     C12=C10*A2-S10*B2
                                                                         UPD08190
     S12=C10*B2+S10*A2
                                                                         UPD08200
     C13=C10*A3-S10*B3
                                                                         UPD08210
     S13=C10*B3+S10*A3
     C14=C10*A4-S10*B4
                                                                         UPD08220
                                                                         UPD08230
     S14=C10*B4+S10*A4
                                                                         UPD08240
     C20=COS(2.0*ARG)
                                                                         UPD08250
     S20=SIN(2.0*ARG)
                                                                          UPD08260
     C21=C20*A2-S20*B2
     S21=C20*B2+S20*A2
                                                                          UPD08270
     C22=C20*A4-S20*B4
                                                                         UPD08280
                                                                         UPD08290
     S22=C20*B4+S20*A4
     C23=C20*A1-S20*B1
                                                                         UPD08300
                                                                         UPD08310
     S23=C20*B1+S20*A1
                                                                          UPD08320
     C24=C20*A3-S20*B3
                                                                         UPD08330
     S24=C20*B3+S20*A3
                                                                         UPD08340
     C30=COS(3.0*ARG)
     S30=SIN(3.0*ARG)
                                                                          UPD08350
                                                                          UPD08360
     C31=C30*A3-S30*B3
                                                                          UPD08370
     S31=C30*B3+S30*A3
                                                                          UPD08380
     C32=C30*A1-S30*B1
                                                                          UPD08390
     S32=C30*B1+S30*A1
     C33=C30*A4-S30*B4
                                                                         UPD08400
     S33=C30*B4+S30*A4
                                                                         UPD08410
                                                                         UPD08420
     C34=C30*A2-S30*B2
                                                                         UPD08430
     S34=C30*B2+S30*A2
                                                                         UPD08440
     C40=COS (4.0*ARG)
                                                                         UPD08450
     $40=SIN(4.0*ARG)
     C41=C40*A4-S40*B4
                                                                         UPD08460
     S41=C40*B4+S40*A4
                                                                         UPD08470
                                                                         UPD08480
     C42=C40*A3-S40*B3
     S42=C40*B3+S40*A3
                                                                         UPD08490
                                                                         UPD08500
     C43=C40*A2-S40*B2
                                                                          UPD08510
     S43=C40*B2+S40*A2
                                                                          UPD08520
     C44=C40*A1-S40*B1
                                                                          UPD08530
     S44=C40*B1+S40*A1
                                                                          UPD08540
     DO 1300 K=MR, PROD, MR
```

```
UPD08550
     J0=J+K-MR
     J1 = J0 + M
                                                                         UPD08560
                                                                         UPD08570
     J2=J1+M
                                                                         UPD08580
     J3=J2+M
                                                                         UPD08590
     J4=J3+M
                                                                         UPD08600
     R0=X(J0)
     I0=Y(J0)
                                                                         UPD08610
                                                                         UPD08620
     R1=X(J1)
     I1=Y(J1)
                                                                         UPD08630
                                                                         UPD08640
     R2=X(J2)
                                                                         UPD08650
     I2=Y(J2)
                                                                         UPD08660
     R3=X(J3)
     I3=Y(J3)
                                                                         UPD08670
                                                                         UPD08680
     R4=X(J4)
                                                                         UPD08690
     I4=Y(J4)
                                                                         UPD08700
     X(J0) = R0 + R1 + R2 + R3 + R4
                                                                         UPD08710
     Y(J0)=I0+I1+I2+I3+I4
                                                                         UPD08720
     X(J1)=R0*C10+I0*S10+R1*C11+I1*S11+R2*C12+I2*S12+R3*C13+I3*S13+
                                                                         UPD08730
    1R4*C14+I4*S14
     Y(J1)=I0*C10-R0*S10+I1*C11-R1*S11+I2*C12-R2*S12+I3*C13-R3*S13+
                                                                         UPD08740
    114*C14-R4*S14
                                                                         UPD08750
     X(J2)=R0*C20+I0*S20+R1*C21+I1*S21+R2*C22+I2*S22+R3*C23+I3*S23+
                                                                         UPD08760
                                                                         TIPD08770
    1R4*C24+I4*S24
     Y(J2)=I0*C20-R0*S20+I1*C21-R1*S21+I2*C22-R2*S22+I3*C23-R3*S23+
                                                                         UPD08780
                                                                         UPD08790
    1I4*C24-R4*S24
     X(J3)=R0*C30+I0*S30+R1*C31+I1*S31+R2*C32+I2*S32+R3*C33+I3*S33+
                                                                         UPD08800
    1R4*C34+I4*S34
                                                                         UPD08810
     Y(J3)=I0*C30-R0*S30+I1*C31-R1*S31+I2*C32-R2*S32+I3*C33-R3*S33+
                                                                         UPD08820
    1I4*C34-R4*S34
                                                                         11PD08830
     X(J4)=R0*C40+I0*S40+R1*C41+I1*S41+R2*C42+I2*S42+R3*C43+I3*S43+
                                                                         UPD08840
                                                                         UPD08850
    1R4*C44+I4*S44
     Y(J4)=I0*C40-R0*S40+I1*C41-R1*S41+I2*C42-R2*S42+I3*C43-R3*S43+
                                                                         UPD08860
    1I4*C44-R4*S44
                                                                         UPD08870
                                                                         UPD08880
1300 CONTINUE
                                                                         UPD08890
1400 CONTINUE
                                                                         UPD08900
     GO TO 1200
                                                                         UPD08910
1500 CONTINUE
                                                                         UPD08920
     IF (M .LE.SO) GO TO 2600
     DO 1600 J=2, PMAX
                                                                         UPD08930
     P=J
                                                                         UPD08940
     IF (M/SO .EQ. M/SO/P*P) GO TO 1700
                                                                         UPD08950
                                                                         UPD08960
1600 CONTINUE
                                                                         UPD08970
     GO TO 2800
1700 CONTINUE
                                                                         UPD08980
                                                                         UPD08990
     MR=M
     M=M/P
                                                                         UPD09000
     DO 1800 U=1,P
                                                                         UPD09010
                                                                         UPD09020
     ARG=TWOPI*FLOAT(U-1)/FLOAT(P)
                                                                         UPD09030
     A(U) = COS(ARG)
                                                                         UPD09040
     B(U) = SIN(ARG)
1800 CONTINUE
                                                                         UPD09050
     DO 2500 J=1,M
                                                                         UPD09060
     ARG=TWOPI*FLOAT((J-1)/S0)/FLOAT(MR/S0)
                                                                         UPD09070
     DO 2000 U=1,P
                                                                         UPD09080
     C(U,1) = COS(FLOAT(U-1)*ARG)
                                                                         UPD09090
                                                                         UPD09100
     S(U,1)=SIN(FLOAT(U-1)*ARG)
                                                                         UPD09110
     DO 1900 V=2,P
     JJ = (U-1)*(V-1)-(U-1)*(V-1)/P*P+1
                                                                         UPD09120
     C(U,V)=C(U,1)*A(JJ)-S(U,1)*B(JJ)
                                                                         UPD09130
     S(U,V)=C(U,1)*B(JJ)+S(U,1)*A(JJ)
                                                                         UPD09140
                                                                         UPD09150
1900 CONTINUE
2000 CONTINUE
                                                                         UPD09160
```

```
IIPD09170
      DO 2400 K=MR, PROD, MR
                                                                             UPD09180
      DO 2100 U=1,P
                                                                             UPD09190
      JJ=J+K-MR+(U-1)*M
                                                                             UPD09200
      R(U) = X(JJ)
                                                                             UPD09210
      I(U)=Y(JJ)
                                                                             UPD09220
 2100 CONTINUE
                                                                             UPD09230
      DO 2300 U=1,P
                                                                             UPD09240
      XT=0.0
                                                                             UPD09250
      YT=0.0
                                                                             UPD09260
      DO 2200 V=1,P
      XT=XT+R(V)*C(U,V)+I(V)*S(U,V)
                                                                             UPD09270
                                                                             UPD09280
      YT=YT+I(V)*C(U,V)-R(V)*S(U,V)
                                                                             UPD09290
 2200 CONTINUE
                                                                             UPD09300
      JJ=J+K-MR+(U-1)*M
                                                                             UPD09310
      X(JJ) = XT
      Y(JJ)=YT
                                                                             UPD09320
                                                                             UPD09330
 2300 CONTINUE
                                                                             UPD09340
 2400 CONTINUE
                                                                             UPD09350
 2500 CONTINUE
                                                                             UPD09360
      GO TO 1500
                                                                             UPD09370
 2600 CONTINUE
                                                                             UPD09380
      IF (DIMEN .GT. 0) GO TO 200
 2700 CONTINUE
                                                                             UPD09390
                                                                             UPD09400
      RETURN
 2800 CONTINUE
                                                                             UPD09410
                                                                             UPD09420
      DIMEN=DIMEN+1
                                                                             UPD09430
      WRITE (6,2900) DIMEN, N(DIMEN)
                                                                             UPD09440
      GO TO 2700
 2900 FORMAT (1X,28HFACTORING ERROR IN DIMENSION, 12,10H. N(DIM)=,15)
                                                                             UPD09450
                                                                             UPD09460
      END
                                                                             IIPD09470
      SUBROUTINE GR MD FS (PTS, X, T)
      GENERAL RADIX MULTI DIMENSIONAL FOURIER SORT
                                                                             UPD09480
                                                                             UPD09490
C
                                                                             UPD09500
      INTEGER PTS(10)
                                                                             UPD09510
      REAL X(15000), T(15000)
                                                                             UPD09520
C
      INTEGER DIMEN, DO, II, JJ, P, PMAX, SO, S(19), U(19)
                                                                             UPD09530
      INTEGERA, B, C, D, E, F, G, H, I, J, K, L, M, N, O, Q, R, V, W, AL, BL, CL, DL, EL, FL, UPD09540
                                                                             UPD09550
     1GL, HL, IL, JL, KL, LL, ML, NL, OL, QL, RL, VL, WL, AS, BS, CS, DS, ES, FS, GS, HS, IS
                                                                             UPD09560
     2, JS, KS, LS, MS, NS, OS, QS, RS, VS, WS
      EQUIVALENCE (AS, S(1)), (BS, S(2)), (CS, S(3)), (DS, S(4)), (ES, S(5)),
                                                                             UPD09570
     1(FS,S(6)),(GS,S(7)),(HS,S(8)),(IS,S(9)),(JS,S(10)),(KS,S(11)),
                                                                             UPD09580
     2(LS, S(12)), (MS, S(13)), (NS, S(14)), (OS, S(15)), (QS, S(16)),
                                                                             UPD09590
     3(RS,S(17)),(VS,S(18)),(WS,S(19)),(AL,U(1)),(BL,U(2)),(CL,U(3)),
                                                                             UPD09600
     4(DL,U(4)),(EL,U(5)),(FL,U(6)),(GL,U(7)),(HL,U(8)),(IL,U(9)),
                                                                             UPD09610
     5(JL,U(10)),(KL,U(11)),(LL,U(12)),(ML,U(13)),(NL,U(14)),(OL,U(15)UPDO9620
     6),(QL,U(16)),(RL,U(17)),(VL,U(18)),(WL,U(19))
                                                                             UPD09630
C
                                                                             UPD09640
      PMAX=19
                                                                             UPD09650
C
                                                                             UPD09660
                                                                             UPD09670
      DO=19
      DIMEN=1
                                                                             UPD09680
                                                                             UPD09690
      50 = 1
                                                                             UPD09700
  100 CONTINUE
      M=PTS(DIMEN)
                                                                             UPD09710
                                                                             UPD09720
  200 CONTINUE
                                                                             UPD09730
      IF (M .LE. 1) GO TO 500
      DO 300 J=2, PMAX
                                                                             UPD09740
                                                                             UPD09750
      P=J
                                                                             UPD09760
      IF (M .EQ. M/P*P) GO TO 400
                                                                             UPD09770
  300 CONTINUE
                                                                             UPD09780
      GO TO 1100
```

```
400 CONTINUE
                                                                         UPD09790
                                                                         UPD09800
     U(DO) = M \times SO
                                                                         UPD09810
     S(DO)=M/P*SO
                                                                         UPD09820
     M=M/P
                                                                         UPD09830
     DO=DO-1
     GO TO 200
                                                                         UPD09840
 500 CONTINUE
                                                                         UPD09850
                                                                         UPD09860
     SO=SO*PTS(DIMEN)
                                                                         UPD09870
     DIMEN=DIMEN+1
                                                                         UPD09880
     IF (PTS(DIMEN) .GT. 0) GO TO 100
     IF (DO .LE. 0) GO TO 700
                                                                         UPD09890
     DO 600 J=1,DO
                                                                         UPD09900
                                                                         UPD09910
     U(J)=1
     S(J)=1
                                                                         UPD09920
                                                                         UPD09930
 600 CONTINUE
                                                                         UPD09940
 700 CONTINUE
     JJ=0
                                                                         UPD09950
     DO 800 A=1,AL,AS
                                                                         UPD09960
     DO 800 B=1,BL,BS
                                                                         UPD09970
                                                                         UPD09980
     DO 800 C=1,CL,CS
                                                                         UPD09990
     DO 800 D=1,DL,DS
     DO 800 E=1,EL,ES
                                                                         UPD10000
                                                                         UPD10010
     DO 800 F=1,FL,FS
                                                                         UPD10020
     DO 800 G=1,GL,GS
     DO 800 H=1, HL, HS
                                                                         UPD10030
     DO 800 I=1,IL,IS
                                                                         UPD10040
     DO 800 J=1,JL,JS
                                                                         UPD10050
                                                                         UPD10060
     DO 800 K=1,KL,KS
                                                                         UPD10070
     DO 800 L=1,LL,LS
                                                                         UPD10080
     DO 800 M=1,ML,MS
                                                                         UPD10090
     DO 800 N=1,NL,NS
                                                                         UPD10100
     DO 800 O=1,OL,OS
     DO 800 Q=1,QL,QS
                                                                         UPD10110
                                                                         UPD10120
     DO 800 R=1,RL,RS
                                                                         UPD10130
     DO 800 V=1,VL,VS
     DO 800 W=1,WL,WS
                                                                         UPD10140
     II=A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+Q+R+V+W-18
                                                                         UPD10150
                                                                         UPD10160
     JJ=JJ+1
     T(JJ)=X(II)
                                                                         UPD10170
 800 CONTINUE
                                                                         UPD10180
                                                                         UPD10190
     DO 900 J=1,S0
                                                                         UPD10200
     X(J)=T(J)
900 CONTINUE
                                                                         UPD10210
1000 CONTINUE
                                                                         UPD10220
                                                                         UPD10230
     RETURN
1100 CONTINUE
                                                                         UPD10240
     WRITE (6,1200) DIMEN, PTS (DIMEN)
                                                                         UPD10250
                                                                         UPD10260
     GO TO 1000
1200 FORMAT (1X,28HFACTORING ERROR IN DIMENSION, 12, 10H. N(DIM)=, 15)
                                                                         UPD10270
```

END

UPD10280

UDD FORTRAN

Written By: Ruddman and Blackley

```
THIS PROGRAM FOLLOWS HENDERSONS TECNIQUE FOR UPWARD AND DOWNWARD
                                                                           UDD00010
   CONTINUATION AND FIRST AND SECOND DERIVATIVES. WRITTEN FOR FORTRAN UDD00020
C
C
    77. OUTPUT MAPS ARE THE SIZE OF INPUT MAPS. UP TO AND MAXIMUM ARRAYUDD00030
C
    OF 25 X 25.
                                                                           UDD00040
                                                                           UDD00050
С
                                                                           UDD00060
C
   DIMENSION STATEMENTS FOR DATA UP TO 25 X 25
                                                                           UDD00070
C
                                                                           UDD00080
       DIMENSION ISET(20), P(75,75), C(11,19), R(26,26,11), HEAD(70)
                                                                           06000000
       COMMON P,C,R
                                                                           UDD00100
   READ IN HEADING AND ISELECT (CONTAINS CODES FOR LIST OF MAPS DESIRED
                                                                           UDD00110
   CODES ARE IDENTIFIED LATER IN THIS PROGRAM.
                                                                           UDD00120
C
                                                                           UDD00130
       READ(1,1) (HEAD(I), I=1,70)
                                                                           UDD00140
1
       FORMAT (70A1)
                                                                           UDD00150
       READ(1,*) (ISET(L),L=1,19)
                                                                           UDD00160
C
                                                                           UDD00170
  READ IN MAXIMUM VALUE OF I. I BEGINS AT 26 AND MUST BE 50 OR LESS. SIUDDOO180
  FOR JMAX. READ IN ON SAME CARD THE VALUE (BASE) TO BE SUBRACTED FORM UDD00190
  VALUES P(I,J). NEXT READ A SCALE VALUE TO MODIFY DATA TO FIT THE LIMUDD00200
   SIZE MAP FORMAT OF F4.0. P(I,J) DATA IS MULTIPLIED BY THIS SCALE FACUDD00210
                                                                           UDD00220
       READ(1,*) IMAX, JMAX, BASE, YMIN, XMIN, TERV
                                                                           UDD00230
       PRINT *, IMAX, JMAX, BASE
                                                                           UDD00240
       READ(1,*) SCALE
                                                                           UDD00250
C
                                                                           UDD00260
C
    READ OM P(I,J) DATA. SUBTRACT BASE. MULTIPLY BY SCALE. PRINT HEADINUDD00270
C
    AND PLOT ON MAP TYPE OUTPUT. MAP IS PRINTED FROM P(26,26) TO P(IMAUDD00280
C
     IF DATA IS LESS THAN 25 X 25 A BLANK IS PRINTED IN THE SPACES TO FIUDD00290
C
     THE MAP.
                                                                           UDD00300
                                                                           UDD00310
       READ(1,1111) ((P(I,J), I=26,IMAX), J=26,JMAX)
                                                                           UDD00320
C111
       FORMAT(12X, F8.2)
                                                                           UDD00330
1111
       FORMAT(F8.6)
                                                                           UDD00340
C
                                                                           UDD00350
C
                                                                           UDD00360
       DO 6 J=26, JMAX
                                                                           UDD00370
       DO 5 I=26, IMAX
                                                                           UDD00380
5
       P(I,J) = (P(I,J) - BASE) * SCALE
                                                                           UDD00390
6
       CONTINUE
                                                                           UDD00400
C
                                                                           UDD00410
       WRITE(2,7)
                                                                           UDD00420
7
         FORMAT (1H1)
                                                                           UDD00430
С
                                                                           UDD00440
       WRITE(2,101) (HEAD(I),I=1,70)
FORMAT(20X,70A1,/)
                                                                           UDD00450
101
                                                                           UDD00460
C
                                                                           UDD00470
       WRITE(2,8) BASE, SCALE
                                                                           UDD00480
8
       FORMAT(20X, 'INPUT DATA LESS BASE OF ',F6.2,3X, 'MULTIPLIED BY SCAUDD00490
     +LE OF', F5.2,/)
                                                                           UDD00500
C
                                                                           UDD00510
       DO 9 J=26, JMAX
                                                                           UDD00520
        WRITE(2,222)
                                                                          UDD00530
222
         FORMAT(4X,24(1H*,4X),1H*)
                                                                          UDD00540
                                                                          UDD00550
        WRITE(2,10) (P(I,J),I=26,IMAX)
         FORMAT(2X,25(F4.0,1X),/)
10
                                                                          UDD00560
                                                                          UDD00570
```

```
IF (IMAX.LT.50) THEN
                                                                            UDD00580
                                                                            UDD00590
              WRITE(2,601)
                                                                            UDD00600
601
              FORMAT (1H1)
                                                                            UDD00610
          END IF
                                                                            UDD00620
9
       CONTINUE
                                                                            UDD00630
C
                                                                            UDD00640
           IF (JMAX.LT.50) THEN
                                                                            UDD00650
              LMAX=50-JMAX
               DO 603 LL=1,LMAX
                                                                            UDD00660
                                                                            UDD00670
603
                  WRITE(2,604)
                    FORMAT(4X,24(1H*,4X),1H*,//)
                                                                            UDD00680
604
                                                                            UDD00690
          END IF
                                                                            UDD00700
C
C
      NEXT SECTION PREPARES REGIONS BEYOND EDGE OF MAP TO BE USED IN ANUDDO0710
      APPROACH IS TO FILL THE SURROUNDING SPACE BY EXTENDING EACH EDGE UDD00720
C
       NORMAL TO THE MAP FOR 25 UNITS.
                                                                            110000730
C
C
                                                                            UDD00740
                                                                            UDD00750
       IMAX1=IMAX + 1
                                                                            UDD00760
       IMAX25 = IMAX + 25
       JMAX1 = JMAX + 1
                                                                            UDD00770
                                                                            UDD00780
       JMAX25 = JMAX + 25
                                                                            UDD00790
C
                                                                            UDD00800
         DO 14 J=26, JMAX
                                                                            UDD00810
         DO 15 I=1,25
                                                                            UDD00820
          P(I,J)=P(26,J)
15
            DO 16 I=IMAX1,IMAX25
                                                                            UDD00830
            P(I,J)=P(IMAX,J)
                                                                            UDD00840
16
                                                                            UDD00850
14
        CONTINUE
                                                                            UDD00860
C
                                                                            UDD00870
        DO 17 I=26, IMAX
        DO 18 J=1,25
                                                                            UDD00880
                                                                            UDD00890
18
         P(I,J)=P(I,26)
          DO 19 J=JMAX1, JMAX25
                                                                            UDD00900
                                                                            UDD00910
19
        P(I,J)=P(I,JMAX)
                                                                            UDD00920
17
        CONTINUE
С
                                                                            UDD00930
                                                                            UDD00940
C
        DO 20 I=1,25
                                                                            UDD00950
        DO 21 J=1,25
                                                                            UDD00960
                                                                            UDD00970
21
         P(I,J)=P(26,26)
                                                                            UDD00980
20
        CONTINUE
                                                                            UDD00990
C
C
                                                                            UDD01000
        DO 22 I=IMAX1, IMAX25
                                                                            UDD01010
                                                                            UDD01020
        DO 23 J=1,25
23
         P(I,J)=P(IMAX,26)
                                                                            UDD01030
22
        CONTINUE
                                                                            UDD01040
                                                                            UDD01050
С
                                                                            UDD01060
C
        DO 24 I=1,25
                                                                            UDD01070
        DO 25 J=JMAX1,JMAX25
                                                                            UDD01080
25
         P(I,J)=P(26,JMAX)
                                                                            UDD01090
24
        CONTINUE
                                                                            UDD01100
C
                                                                            UDD01110
C
                                                                            UDD01120
        DO 26 I=IMAX1, IMAX25
                                                                            UDD01130
        DO 27 J=JMAX1, JMAX25
                                                                            UDD01140
27
         P(I,J)=P(IMAX,JMAX)
                                                                            UDD01150
26
                                                                            UDD01160
        CONTINUE
С
                                                                            UDD01170
С
  CALCULATION OF AVERAGE VALUE OF DATA ON RINGS CENTERED AT EACH MAP POUDD01180
   CALL THESE R(I,J,K), WHERE K=1 TO 11.
                                                                            UDD01190
```

```
UDD01200
C
                                                                                                                                                                                                                                                             UDD01210
                             M=0
                             DO 28 I=26, IMAX
                                                                                                                                                                                                                                                             UDD01220
                                                                                                                                                                                                                                                             UDD01230
                                M=M+1
                                                                                                                                                                                                                                                             UDD01240
                                N=0
                             DO 29 J=26, JMAX
                                                                                                                                                                                                                                                             UDD01250
                             N=N+1
                                                                                                                                                                                                                                                             UDD01260
                                                                                                                                                                                                                                                             UDD01270
C
                                                                                                                                                                                                                                                             UDD01280
                             R(M,N,1)=P(I,J)
                                                                                                                                                                                                                                                             UDD01290
C
                                                                                                                                                                                                                                                             UDD01300
                             R(M,N,2) = (P(I,J+1)+P(I,J-1)+P(I+1,J)+P(I-1,J))/4.0
                                                                                                                                                                                                                                                             UDD01310
C
                                                                                                                                                                                                                                                             UDD01320
                             R(M,N,3) = (P(I+1,J+1)+P(I+1,J-1)+P(I-1,J+1)+P(I-1,J-1))/4.0
C
                                                                                                                                                                                                                                                             UDD01330
                             R(M,N,4) = (P(I+2,J+1)+P(I+2,J-1)+P(I-2,J+1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-1)+P(I-2,J-
                                                                                                                                                                                                                                                             UDD01340
                  *P(I+1,J+2)+P(I+1,J-2)+P(I-1,J+2)+P(I-1,J-2))/8.0
                                                                                                                                                                                                                                                             UDD01350
                          IF(I.EQ.26.AND.J.EQ.26) THEN
                                                                                                                                                                                                                                                             UDD01360
                          PRINT *, P(I+2,J+1), P(I+2,J-1), P(I-2,J+1), P(I-2,J-1), P(I+1,J+2) UDD01370
                                                                                                                                                                                                                                                             UDD01380
                   *, P(I+1,J+2), P(I-1,J+2), P(I-1,J-2), R(M,N,4)
                                                                                                                                                                                                                                                             UDD01390
C
                                                                                                                                                                                                                                                             UDD01400
                                                                                                                                                                                                                                                             UDD01410
                             R(M,N,5) = (P(I+2,J+2)+P(I+2,J-2)+P(I-2,J+2)+P(I-2,J-2))/4.0
                                                                                                                                                                                                                                                             UDD01420
C
                                                                                                                                                                                                                                                             UDD01430
                             R(M,N,6) = (P(I+2,J+3)+P(I+2,J-3)+P(I-2,J+3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-3)+P(I-2,J-
                  *P(I+3,J+2)+P(I+3,J-2)+P(I-3,J+2)+P(I-3,J-2))/8.
                                                                                                                                                                                                                                                             UDD01440
C
                                                                                                                                                                                                                                                             UDD01450
                                                                                                                                                                                                                                                             UDD01460
                             R(M,N,7) = (P(I+5,J)+P(I-5,J)+P(I,J+5)+P(I,J-5)+P(I+3,J+4)
                  *+ P(I+3,J-4)+P(I+4,J+3)+P(I+4,J-3)+P(I-4,J+3)+P(I-4,J-3)+
                                                                                                                                                                                                                                                             UDD01470
                  *P(I-3,J+4)+P(I-3,J-4))/12.
                                                                                                                                                                                                                                                             UDD01480
                                                                                                                                                                                                                                                             UDD01490
C
                            R(M,N,8) = (P(I+7,J+1)+P(I+1,J+7)+P(I+7,J-1)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-7)+P(I+1,J-
                                                                                                                                                                                                                                                             UDD01500
                  P(I-7,J+1)+P(I-1,J+7)+P(I-7,J-1)+P(I-1,J-7)+P(I+5,J+5)+
                                                                                                                                                                                                                                                             UDD01510
                  *P(I+5,J-5)+P(I-5,J+5)+P(I-5,J-5))/12.
                                                                                                                                                                                                                                                             UDD01520
C
                                                                                                                                                                                                                                                             UDD01530
                             R(M,N,9) = (P(I+10,J+6)+P(I+10,J-6)+P(I+6,J+10)+P(I+6,J-10)
                                                                                                                                                                                                                                                             UDD01540
                  *+P(I-10,J+6)+P(I-10,J-6)+P(I-6,J+10)+P(I-6,J-10))/8.
                                                                                                                                                                                                                                                             UDD01550
                                                                                                                                                                                                                                                             UDD01560
C
                                                                                                                                                                                                                                                             UDD01570
                             R(M,N,10) = (P(I+7,J+15)+P(I+15,J+7)+P(I-7,J+15)+P(I-15,J+7)
                  *+P(I+7,J-15)+P(I+15,J-7)+P(I-7,J-15)+P(I-15,J-7))/8.
                                                                                                                                                                                                                                                             UDD01580
                                                                                                                                                                                                                                                             UDD01590
C
                            R(M,N,11) = (P(I,J+25)+P(I,J-25)+P(I-20,J+15)+P(I-15,J+20)
                                                                                                                                                                                                                                                             UDD01600
                  *+P(I-20,J-15)+P(I-15,J-20)+P(I+20,J+15)+P(I+15,J+20)+
                                                                                                                                                                                                                                                             UDD01610
                  *P(I+20,J-15)+P(I+15,J-20)+P(I+25,J)+P(I-25,J))/12.
                                                                                                                                                                                                                                                             UDD01620
C
                                                                                                                                                                                                                                                             UDD01630
29
                         CONTINUE
                                                                                                                                                                                                                                                             UDD01640
28
                         CONTINUE
                                                                                                                                                                                                                                                             UDD01650
С
                                                                                                                                                                                                                                                             UDD01660
C
             FOR EACH MAP THERE IS A SET OF COEFFICIENTS
                                                                                                                                                                                               C(K,L), WHERE
                                                                                                                                                                                                                                                 K UDD01670
C
             RING NUMBER AND L IS THE CODED INTGER FOR THE DESIRED MAP. CODES AREUDDO1680
C
              'ONE' IF THE MAP IS DESIRED, OR 'ZERO' IF IT IS NOT.
                                                                                                                                                                                                          CODES ARE EN- UDD01690
C
             TERED ON THE ISELECT INPUT FROM COLUMNS 1 TO 19. THE FOLLOWING LISTUDD01700
C
             GIVES THE CODES.
                                                                           THUS, A 'ONE' IN COLUMN 1 REQUESTS A MAP CONTINUEDUDD01710
             UPWARD ONE GRID UNIT. A 'ZERO' IN COULMNS W WILL SUPPRESS THE MAP
C
                                                                                                                                                                                                                                                            UDD01720
C
             THAT IS CONTINUED UPWARD 2 GRID UNITS, ETC.
                                                                                                                                                                                                                                                             UDD01730
C
                                                                                                                                                                                                                                                            UDD01740
C
                                                                                                                                                                                                                                                            UDD01750
C
             COEFFICENTS FOR UPWARD CONTINUATION 1. CODE L=1.
                                                                                                                                                                                                                                                            UDD01760
C
                                                                                                                                                                                                                                                            UDD01770
                         C(1,1) = .11193
                                                                                                                                                                                                                                                            UDD01780
                         C(2,1) = .32193
                                                                                                                                                                                                                                                            UDD01790
                         C(3,1) = .06062
                                                                                                                                                                                                                                                            UDD01800
                         C(4,1) = .15206
                                                                                                                                                                                                                                                            UDD01810
```

```
C(5,1) = .05335
                                                                               UDD01820
                                                                               UDD01830
        C(6,1) = .06586
        C(7,1) = .06650
                                                                               UDD01840
                                                                               UDD01850
        C(8,1) = .05635
                                                                               UDD01860
        C(9,1) = .03855
                                                                               UDD01870
        C(10,1) = .02273
        C(11,1) = .03015
                                                                               UDD01880
                                                                               UDD01890
C
                                                                               UDD01900
C
                                                                               UDD01910
C
   COEFFICENTS FOR UPWARD CONTINUATION 2, CODE L=2
                                                                               UDD01920
C
        C(1,2) = .04034
                                                                               UDD01930
        C(2,2) = .12988
                                                                               UDD01940
        C(3,2) = .07588
                                                                               UDD01950
                                                                               UDD01960
        C(4,2) = .14559
                                                                               UDD01970
        C(5,2) = .07651
                                                                               UDD01980
        C(6,2) = .09902
                                                                               UDD01990
        C(7,2) = .11100
                                                                               UDD02000
        C(8,2) = .13051
        C(9,2) = .07379
                                                                               UDD02010
        C(10,2) = .04464
                                                                               UDD02020
                                                                               UDD02030
        C(11,2) = .05998
                                                                               UDD02040
C COEFFICENTS FOR UPWARD CONTINUATION 3. CODE L=3
                                                                               UDD02050
                                                                               UDD02060
C
        C(1,3) = .01961
                                                                               UDD02070
        C(2,3) = .06592
                                                                               UDD02080
        C(3,3) = .05260
                                                                               UDD02090
                                                                               UDD02100
        C(4,3) = .10563
                                                                               UDD02110
        C(5,3) = .07146
                                                                               UDD02120
        C(6,3) = .10226
        C(7,3) = .12921
                                                                               UDD02130
                                                                               UDD02140
        C(8,3) = .13635
                                                                               UDD02150
        C(9,3) = .10322
                                                                               UDD02160
        C(10,3) = .06500
        C(11,3) = .08917
                                                                               UDD02170
                                                                               UDD02180
  COEFFICIENTS FOR UPWARD CONTINUATION 4. CODE L=4
                                                                               UDD02190
C
                                                                               UDD02200
        C(1,4) = .01141
                                                                               UDD02210
                                                                               UDD02220
        C(2,4) = .03908
                                                                               UDD02230
        C(3,4) = .03566
        C(4,4) = .07450
                                                                               UDD02240
        C(5,4) = .05841
                                                                               UDD02250
        C(6,4) = .09173
                                                                               UDD02260
        C(7,4) = .12915
                                                                               UDD02270
        C(8,4) = .15474
                                                                               UDD02280
                                                                               UDD02290
        C(9,4) = .12565
                                                                               UDD02300
        C(10,4) = .08323
        C(11,4) = .11744
                                                                               UDD02310
C
                                                                               UDD02320
C
   COEFFICIENTS FOR UPWARD CONTINUATION 5. CODE L=5
                                                                               UDD02330
C
                                                                               UDD02340
                                                                               UDD02350
        C(1,5) = .00742
        C(2,5) = .02566
                                                                               UDD02360
                                                                               UDD02370
        C(3,5) = .02509
        C(4,5) = .05377
                                                                               UDD02380
        C(5,5) = .04611
                                                                               UDD02390
                                                                               UDD02400
        C(6,5) = .07784
        C(7,5) = .11986
                                                                               UDD02410
        C(8,5) = .16159
                                                                               UDD02420
                                                                               UDD02430
        C(9,5) = .14106
```

```
C(10,5) = .09897
                                                                              UDD02440
                                                                              UDD02450
       C(11,5) = .14458
                                                                              UDD02460
C
                                                                              UDD02470
C
 COEFFICIENTS FOR DOWNWARD CONTINUATION 1. CODE L=6
                                                                              UDD02480
C
        C(1,6)=4.8948
                                                                              UDD02490
       C(2,6) = -3.0113
                                                                              UDD02500
                                                                              UDD02510
       C(3,6) = .0081
                                                                              UDD02520
       C(4,6) = -.5604
                                                                              UDD02530
       C(5,6) = -.0376
                                                                              UDD02540
        C(6,6) = -.0689
                                                                              UDD02550
       C(7,6) = -.0605
       C(8,6) = -.0534
                                                                              UDD02560
                                                                              UDD02570
       C(9,6) = -.0380
                                                                              UDD02580
       C(10,6) = -.0227
                                                                              UDD02590
       C(11,6) = -.0302
                                                                              UDD02600
C
C
    COEFFIECIENTS FOR DOWNWARD CONTINUATION 2. CODE L=7
                                                                              UDD02610
                                                                              UDD02620
C
       C(1,7)=16.1087
                                                                              UDD02630
       C(2,7) = -13.2209
                                                                              UDD02640
       C(3,7) = .4027
                                                                              UDD02650
                                                                              UDD02660
        C(4,7) = -1.9459
                                                                              UDD02670
        C(5,7) = .0644
       C(6,7) = -.0596
                                                                              UDD02680
       C(7,7) = -.0522
                                                                              UDD02690
                                                                              UDD02700
       C(8,7) = -.0828
       C(9,7) = -.0703
                                                                              UDD02710
                                                                              UDD02720
       C(10,7) = -.0443
                                                                              UDD02730
       C(11,7) = -.0600
                                                                              UDD02740
C
                                                                              UDD02750
C
   COEFFICIENTS FOR DOWNWARD CONTINUATION 3. CODE L=8
                                                                              UDD02760
C
                                                                              UDD02770
       C(1,8)=41.7731
                                                                              UDD02780
       C(2,8) = -38.2716
                                                                              UDD02790
        C(3,8)=1.7883
       C(4,8) = -4.7820
                                                                              UDD02800
       C(5,8) = .5367
                                                                              UDD02810
                                                                              UDD02820
       C(6,8) = .1798
       C(7,8) = .1342
                                                                              UDD02830
                                                                              UDD02840
       C(8,8) = -.0560
                                                                              UDD02850
       C(9,8) = -.0900
       C(10,8) = -.0639
                                                                              UDD02860
                                                                              UDD02870
       C(11,8) = -.0891
                                                                              UDD02880
 COEFFICIENTS FOR DOWNWARD CONTINUATION 4. CODE L=9
                                                                              UDD02890
С
                                                                              UDD02900
                                                                              UDD02910
       C(1,9)=92.5362
                                                                              UDD02920
       C(2,9) = -89.7403
       C(3,9)=5.1388
                                                                              UDD02930
       C(4,9) = -9.9452
                                                                              UDD02940
       C(5,9)=1.7478
                                                                              UDD02950
       C(6,9) = .8908
                                                                              UDD02960
       C(7,9) = .6656
                                                                              UDD02970
                                                                              UDD02980
       C(8,9) = .0718
                                                                              UDD02990
       C(9,9) = -.0890
                                                                              UDD03000
       C(10,9) = -.0802
       C(11,9) = -.1173
                                                                              UDD03010
                                                                              UDD03020
C
C COEFFICIENTS FOR DOWNWARD CONTINUATION 5. CODE L=10
                                                                              UDD03030
C
                                                                              UDD03040
                                                                              UDD03050
       C(1,10)=183.2600
```

```
UDD03060
       C(2,10) = -183.9380
                                                                              UDD03070
       C(3,10)=11.8804
       C(4,10) = -18.6049
                                                                              UDD03080
                                                                              UDD03090
        C(5,10)=4.2324
       C(6,10)=2.4237
                                                                              UDD03100
        C(7,10)=1.7777
                                                                              UDD03110
                                                                              UDD03120
        C(8,10) = .3606
                                                                              UDD03130
       C(9,10) = -.0571
                                                                              UDD03140
       C(10,10) = -.0921
       C(11,10) = -.1444
                                                                              UDD03150
                                                                              UDD03160
  COEFFICIENTS FOR FIRST DERIVATIVE ON SURFACE. CODE L=11
                                                                              UDD03170
                                                                              UDD03180
                                                                              UDD03190
       C(1,11)=1.87282
       C(2,11) = -1.13625
                                                                              UDD03200
                                                                              UDD03210
       C(3,11) = -.05949
                                                                              UDD03220
       C(4,11) = -.30210
       C(5,11) = -.05857
                                                                              UDD03230
                                                                              UDD03240
       C(6,11) = -.07597
                                                                              UDD03250
       C(7,11) = -.07072
       C(8,11) = -.05758
                                                                              UDD03260
                                                                              UDD03270
       C(9,11) = -.03905
       C(10,11) = -.02286
                                                                              UDD03280
        C(11,11) = -.05020
                                                                              UDD03290
                                                                              UDD03300
C
   COEFFICIENTS FOR FIRST DERIVATIVE DOWN 1. CODE L=12
                                                                              UDD03310
                                                                              UDD03320
C
       C(1,12)=6.62394
                                                                              UDD03330
       C(2,12) = -5.62446
                                                                              UDD03340
       C(3,12)=.12727
                                                                              UDD03350
                                                                              UDD03360
       C(4,12) = -.88750
                                                                              UDD03370
       C(5,12) = .00361
                                                                              UDD03380
       C(6,12) = -.04856
                                                                              UDD03390
       C(7,12) = -.04007
       C(8,12) = -.04575
                                                                              UDD03400
                                                                              UDD03410
       C(9,12) = -.03615
       C(10,12) = -.02233
                                                                              UDD03420
                                                                              UDD03430
       C(11,12) = -.05000
                                                                              UDD03440
  COEFFICIENTS FOR FIRST DERIVATIVE DOWN 2. CODE L=13
                                                                              UDD03450
                                                                              UDD03460
       C(1,13)=16.98074
                                                                              UDD03470
       C(2,13) = -16.05517
                                                                              UDD03480
       C(3,13) = .76135
                                                                              UDD03490
       C(4,13) = -1.98701
                                                                              UDD03500
                                                                              UDD03510
       C(5,13) = .23820
       C(6,13) = .09219
                                                                              UDD03520
       C(7,13) = .07475
                                                                              UDD03530
       C(8,13) = -.00768
                                                                              UDD03540
       C(9,13) = -.02726
                                                                              UDD03550
       C(10,13) = -.02077
                                                                              UDD03560
                                                                              UDD03570
       C(11,13) = -.04934
                                                                              UDD03580
                                                                              UDD03590
С
 COEFFICIENT FOR FIRST DERIVATIVE DOWN 3. CODE L=14
                                                                              UDD03600
C
       C(1,14)=36.11116
                                                                              UDD03610
                                                                              UDD03620
       C(2,14) = -35.96237
                                                                              UDD03630
       C(3,14)=2.17080
       C(4,14) = -3.83054
                                                                              UDD03640
                                                                              UDD03650
       C(5,14) = .76745
                                                                              UDD03660
       C(6,14) = .42646
                                                                              UDD03670
       C(7,14) = .32573
```

```
UDD03680
       C(8,14) = .06859
                                                                             UDD03690
       C(9,14) = -.01084
                                                                             UDD03700
       C(10,14) = -.01812
                                                                             UDD03710
       C(11,14) = -.04832
                                                                             UDD03720
C COEFFICIENTS FOR FIRST DERIVATIVE DOWN 4. CODE L=15
                                                                             UDD03730
                                                                             UDD03740
C
       C(1,15)=67.88049
                                                                             UDD03750
                                                                             UDD03760
       C(2,15) = -69.68033
       C(3,15)=4.76651
                                                                             UDD03770
                                                                             UDD03780
       C(4,15) = -6.69004
                                                                             UDD03790
       C(5,15)=1.74330
                                                                             UDD03800
       C(6,15)=1.05352
       C(7,15) = .77613
                                                                             UDD03810
                                                                             UDD03820
       C(8,15) = .19699
       C(9,15) = .01469
                                                                             UDD03830
                                                                             UDD03840
       C(10,15) = -.01433
                                                                             UDD03850
       C(11,15) = -.04693
                                                                             UDD03860
C COEFFICIENT FOR 2ND DERIVATIVE ON THE SURFACE. CODE L=16.
                                                                             UDD03870
                                                                             UDD03880
       C(1,16)=2.82994
                                                                             UDD03890
                                                                             UDD03900
       C(2,16) = -2.49489
                                                                             UDD03910
       C(3,16) = .05173
                                                                             UDD03920
       C(4,16) = -.39446
       C(5,16) = .00932
                                                                             UDD03930
                                                                             UDD03940
       C(6,16) = -.00732
       C(7,16) = .00304
                                                                             UDD03950
                                                                             UDD03960
       C(8,16) = .00219
                                                                             UDD03970
       C(9,16) = .00040
                                                                             UDD03980
       C(10, 16) = .00004
                                                                             UDD03990
       C(11,16)=.00
                                                                             UDD04000
C
C
    COEFFICIENTS FOR 2ND DERIVATIVE DOWN 1. CODE L=17
                                                                             UDD04010
C
                                                                             UDD04020
                                                                             UDD04030
       C(1,17)=7.08408
                                                                             UDD04040
       C(2,17) = -6.93715
                                                                             UDD04050
       C(3,17) = .36265
       C(4,17) = -.80764
                                                                             UDD04060
                                                                             UDD04070
       C(5,17) = .13050
                                                                             UDD04080
       C(6,17) = .07231
       C(7,17) = .06502
                                                                             UDD04090
                                                                             UDD04100
       C(8,17) = .02312
       C(9,17) = .00565
                                                                             UDD04110
                                                                             UDD04120
       C(10,17) = .00103
                                                                             UDD04130
       C(11,17) = .00043
                                                                             UDD04140
C COEFFICIENTS FOR 2ND DERIVATIVE DOWN 2. CODE L=18.
                                                                             UDD04150
                                                                             UDD04160
C
                                                                             UDD04170
       C(1,18)=14.15751
       C(2,18) = -14.51327
                                                                             UDD04180
       C(3,18) = .96018
                                                                             UDD04190
                                                                             UDD04200
       C(4,18) = -1.42970
                                                                             UDD04210
       C(5,18)=.35907
       C(6,18) = .22256
                                                                             UDD04220
       C(7,18) = .17330
                                                                             UDD04230
                                                                             UDD04240
       C(8,18) = .05501
                                                                             UDD04250
       C(9,18) = .01239
       C(10,18) = .0021
                                                                             UDD04260
       C(11,18) = .00085
                                                                             UDD04270
                                                                             UDD04280
                                                                             UDD04290
C COEFFICIENTS FOR 2ND DERIVATIVE DOWN 3. CODE L=19
```

```
UDD04300
C
                                                                         UDD04310
       C(1,19)=24.74755
                                                                         UDD04320
       C(2,19) = -26.02351
                                                                         UDD04330
       C(3,19)=1.92719
                                                                         UDD04340
       C(4,19) = -2.30269
                                                                         UDD04350
       C(5,19) = .72474
       C(6,19) = .46253
                                                                         UDD04360
       C(7,19) = .3392
                                                                         UDD04370
       C(8,19) = .09985
                                                                         UDD04380
                                                                         UDD04390
       C(9,19) = .02070
                                                                         UDD04400
       C(10,19) = .00322
                                                                         UDD04410
       C(11,19) = .00122
                                                                         UDD04420
C
  THIS SECTION MAKE THE FINAL CALCULATIONS FOR THOSE MAPS SELECTED BY
                                                                         UDD04430
C
                                                                         UDD04440
C
   USER IN HIS ISELECT CODE.
                                                                         UDD04450
C
       DO 30 L=1,19
                                                                         UDD04460
                                                                         UDD04470
        LEVEL=L
                                                                         UDD04480
         IF (ISET(L)) 30,30,555
C
                                                                         UDD04490
                                                                         UDD04500
555
        WRITE(2,1113)
        UDD04510
1113
                                                                         UDD04520
C
                                                                         UDD04530
        WRITE(2,7)
         WRITE(2,101) (HEAD(I), I=1,70)
                                                                         UDD04540
                                                                         UDD04550
C
                                                                         UDD04560
           IF (L.EQ.1) THEN
                                                                         UDD04570
              WRITE(2,171)
                                                                         UDD04580
           ELSE IF (L.EQ.2)
                             THEN
                                                                         UDD04590
              WRITE(2,172)
                                                                         UDD04600
           ELSE IF (L.EQ.3) THEN
                                                                         UDD04610
              WRITE(2,173)
                                                                         UDD04620
           ELSE IF(L.EQ.4)
                            THEN
                                                                         UDD04630
              WRITE(2,174)
                                                                         UDD04640
           ELSE IF(L.EQ.5) THEN
                                                                         UDD04650
              WRITE(2,175)
                                                                         UDD04660
           ELSE IF(L.EQ.6) THEN
                                                                         UDD04670
              WRITE(2,176)
           ELSE IF(L.EQ.7) THEN
                                                                         UDD04680
                                                                         UDD04690
              WRITE(2,177)
                                                                         UDD04700
           ELSE IF(L.EQ.8)
                            THEN
                                                                         UDD04710
              WRITE(2,178)
                                                                         UDD04720
           ELSE IF(L.EQ.9)
                            THEN
                                                                         UDD04730
              WRITE(2,179)
           ELSE IF(L.EQ.10) THEN
                                                                         UDD04740
              WRITE(2,180)
                                                                         UDD04750
           ELSE IF (L.EQ.11) THEN
                                                                         UDD04760
                                                                         UDD04770
              WRITE(2,181)
                                                                         UDD04780
           ELSE IF(L.EQ.12) THEN
                                                                         UDD04790
              WRITE(2,182)
           ELSE IF(L.EQ.13) THEN
                                                                         UDD04800
                                                                         UDD04810
              WRITE(2,183)
                                                                         UDD04820
           ELSE IF(L.EQ.14) THEN
                                                                         UDD04830
              WRITE(2,184)
                                                                         UDD04840
           ELSE IF(L.EQ.15) THEN
              WRITE(2,185)
                                                                         UDD04850
                                                                         UDD04860
           ELSE IF(L.EQ.16) THEN
                                                                         UDD04870
              WRITE(2,186)
                                                                         UDD04880
           ELSE IF(L.EQ.17)
                             THEN
              WRITE(2,187)
                                                                         UDD04890
                                                                         UDD04900
           ELSE IF(L.EQ.18) THEN
                                                                         UDD04910
              WRITE(2,188)
```

```
ELSE
                                                                                 UDD04920
                                                                                 UDD04930
                WRITE(2,189)
             END IF
                                                                                 UDD04940
        DO 33 I=26, IMAX
                                                                                 UDD04950
        DO 34 J=26, JMAX
                                                                                 UDD04960
                                                                                 UDD04970
         P(I,J)=0.0
        DO 35 K=1,11
                                                                                 UDD04980
C
                                                                                 UDD04990
         Q1=C(K,L)*R(I-25,J-25,K)
                                                                                 UDD05000
35
         P(I,J)=P(I,J)+Q1
                                                                                 UDD05010
34
        CONTINUE
                                                                                 UDD05020
33
                                                                                 UDD05030
        CONTINUE
С
                                                                                 UDD05040
   NEXT SECTION PRINTS ALL MAPS IN SAME FORMAT AS INPUT MAP.
C
                                                                                 UDD05050
                                                                                 UDD05060
        DO 36 J=26, JMAX
                                                                                 UDD05070
        WRITE(2,223)
                                                                                 UDD05080
223
        FORMAT (4X, 24 (1H*, 4X), 1H*)
                                                                                 UDD05090
                                                                                 UDD05100
        WRITE(2,37) (P(I,J),I=26,IMAX)
37
        FORMAT(2X,25(F4.0,1X),/)
                                                                                 UDD05110
        IF (IMAX.LT.50) THEN
                                                                                 UDD05120
         WRITE(2,701)
                                                                                 UDD05130
701
         FORMAT (1H1)
                                                                                 UDD05140
        END IF
                                                                                 UDD05150
36
         CONTINUE
                                                                                 UDD05160
C
                                                                                 UDD05170
        XMIN1=XMIN
                                                                                 UDD05180
                                                                                 UDD05190
        DO 122 J=26, JMAX
          XMIN1=XMIN1+TERV
                                                                                 UDD05200
             YMIN1=YMIN
                                                                                 UDD05210
        DO 123 I=26,IMAX
                                                                                 UDD05220
          YMIN1=YMIN1+TERV
                                                                                 UDD05230
                                                                                 UDD05240
            WRITE(3,1112) XMIN1, YMIN1, P(I,J)
                                                                                 UDD05250
1112
      FORMAT(F7.1,1X,F7.1,1X,F8.2)
123
        CONTINUE
                                                                                 UDD05260
122
        CONTINUE
                                                                                 UDD05270
        IF (JMAX.LT.50) THEN
                                                                                 UDD05280
                                                                                 UDD05290
          LMAX=50-JMAX
                                                                                 UDD05300
           DO 703 LL=1,LMAX
703
          WRITE(2,704)
                                                                                 UDD05310
704
                                                                                 UDD05320
          FORMAT(4X,24(1H*,4X),1H*,//)
        END IF
                                                                                 UDD05330
705
        CONTINUE
                                                                                 UDD05340
30
        CONTINUE
                                                                                 UDD05350
        STOP
                                                                                 UDD05360
С
         WRITE(2,91)
                                                                                 UDD05370
C1
         FORMAT(1X, 'ERROR, TOO LARGE L VALUE')
                                                                                 UDD05380
       FORMAT(20X, 'MAP CONTINUED UPWARD 1 GRID UNIT',//)
171
                                                                                 UDD05390
       FORMAT(20X, 'MAP CONTINUED UPWARD 2 GRID UNIT',//)
172
                                                                                 UDD05400
173
       FORMAT(20X, 'MAP CONTINUED UPWARD 3 GRID UNIT',//)
                                                                                 UDD05410
174
       FORMAT (20X, 'MAP CONTINUED UPWARD 4 GRID UNIT', //)
                                                                                 UDD05420
       FORMAT(20X, 'MAP CONTINUED UPWARD 5 GRID UNIT',//)
175
                                                                                 UDD05430
176
       FORMAT(20X,'MAP CONTINUED DOWNWARD 1 GRID UNIT',//)
                                                                                 UDD05440
       FORMAT(20X, 'MAP CONTINUED DOWNWARD 2 GRID UNIT',//)
FORMAT(20X, 'MAP CONTINUED DOWNWARD 3 GRID UNIT',//)
FORMAT(20X, 'MAP CONTINUED DOWNWARD 4 GRID UNIT',//)
177
                                                                                 UDD05450
178
                                                                                 UDD05460
179
                                                                                 UDD05470
       FORMAT(20X, 'MAP CONTINUED DOWNWARD 5 GRID UNIT'
       FORMAT(20X, 'MAP OF FIRST DERIVATIVE ON SURFACE', //)
FORMAT(20X, 'MAP OF FIRST DERIVATIVE ON SURFACE', //)
180
                                                                                 UDD05480
181
                                                                                 UDD05490
182
       FORMAT(20X, 'MAP OF FIRST DERIVATIVE DOWN 1 GRID UNIT', //)
                                                                                 UDD05500
183
       FORMAT(20X, 'MAP OF FIRST DERIVATIVE DOWN 2 GRID UNIT', //)
                                                                                 UDD05510
184
       FORMAT(20X, 'MAP OF FIRST DERIVATIVE DOWN 3 GRID UNIT', //)
                                                                                 UDD05520
185
       FORMAT(20X, 'MAP OF FIRST DERIVATIVE DOWN 4 GRID UNIT', //)
                                                                                 UDD05530
```

186	FORMAT(20X, 'MAP OF SECOND DERIVATIVE ON SURFACE',	//) UDD05540
187	FORMAT(20X, 'MAP OF SECOND DERIVATIVE DOWN 1 GRID	UNIT',//) UDD05550
188	FORMAT(20X, 'MAP OF SECOND DERIVATIVE DOWN 2 GRID	UNIT',//) UDD05560
189	FORMAT(20X, 'MAP OF SECOND DERIVATIVE DOWN 3 GRID	UNIT',//) UDD05570
	END	UDD05580

APPENDIX I-D

ANALYSIS OF GRAVMOD FORTRAN

GRAVMOD FORTRAN is designed to give the modeler a two dimensional approximation of the subsurface geology, for a selected traverse. The model is comprised of polygons that approximate the subsurface geology. Each polygon is assigned a density, based on the known geology. The contrast densities used in the program are the difference between the polygonal density and the value 2.67 g/cm³ (average crustal density). In addition. the number polygonal sides, of polygonal coordinates, traverse length, station spacing, number of stations, and observed Bouquer anomalies are the other input variables.

The program uses the input variables to generate a series of theoretical Bouguer curves, along the traverse, for each polygon. Theoretical anomalies are summed, after the last polygonal curve is calculate, at each station. A theoretical Bouguer curve for the model is the result of this summation. To test the validity of a model the theoretical and Bouguer curves are compared. If the sum of the residuals values between curves is a low value the model is accepted;

otherwise, the input is modified and the process is repeated.

In this study, a model was accepted if a majority of the residuals values were less than 0.5 milligals.

GRAVMOD FORTRAN is based on an algorithm first introduced by Talwani and others (1959). This algorithm is based on the equation 2:

$$\begin{split} A(0,0) = & 2G\Delta P \sum_{j=1}^{n} \left[\frac{X_{j}Z_{j+1} - X_{j+1}Z_{j}}{(X_{j+1} - X_{j})^{2} + (Z_{j+1} - Z_{j})^{2}} \right] \\ & \left[\frac{Z_{j+1} - Z_{j}}{2} \ln \left(\frac{X_{j+1}^{2} + Z_{j+1}^{2}}{X_{j}^{2} + Z_{j}^{2}} \right) + (X_{j+1} - X_{j}) \left(\arctan \left(\frac{X_{j+1}}{Z_{j+1}} \right) - \arctan \left(\frac{X_{j}}{Z_{j}} \right) \right) \right] \end{split}$$

where

A(0,0): Gravity anomaly at point 0,0

G : Newton's Gravitational constant

delta P: Density contrast between polygonal unit and 2.67

 q/cm^3

n : Number of polygons

 X_{i} , Z_{i} : X and Z coordinates of the polygon

This equation provides interesting insight to the limitations of the algorithm. This method assumes an infinite extension of the geologic formation along strike. Because of this assumption, variations of lithology along strikes are not modelled. This is the primary reason, that residual values

between theoretical and observed Bouguer curves often are not equal to zero. A second limitation of this method is that an infinite number of models exists that satisfy the criteria of acceptance. This is because the polygonal density and polygonal shape are unknowns, in the geologic sense. Remember from linear algebra if an equation has two unknowns then the number of solutions is infinite. This is why it is imperative to have geologic constraints, such as lithologic densities, and structures for the traverse. These constraints make the number of possible solutions finite because they limit the possible number of unknowns. Lastly, Talwani's method does not accurately predict the boundary values of the model.

GRAVMOD FORTRAN

```
ROUTINE GRAVMOD (MODIFIED FROM PARASNIS, 1973, PG. 380)
                                                                        GRA00010
C
      MODIFIED FOR IBM NOWROOZI 1985
                                                                        GRA00020
C
      PROGRAM TO CALCULATE THE GRAVITY ANOMOLY ALONG A GROUND
                                                                        GRA00030
C
      PROFILE AT RIGHT ANGLES TO THE STRAKE OF A TWO-DIMENSIONAL
                                                                        GRA00040
C
      FEATURE OF ARBITRARY, UNIFORM CROSS-SECTION.
                                                                        GRA00050
C
                                                                        GRA00060
C
     ANY NUMBER OF K(<36) MODELS CAN BE HANDLED. EACH MODEL MUST
                                                                        GRA00070
C
      HAVE THE FOLLOWING PARAMETER SET:
                                                                        GRA00080
C
           NCOR: NUMBER OF POLYGON CORNERS
                                                                        GRA00090
C
           NCR: NUMBER OF POLYGON CORNERS + 1
                                                                        GRA00100
          XS, XF: (XS<XF) CORRDINATES OF END POINTS OF PROFILE (NEAR-
C
                                                                        GRA00110
C
                  EST MDX MUST BE POSITIVE.)
                                                                        GRA00120
C
           D:CALCULATION INTERVAL (METERS)
                                                                        GRA00130
          X(), Z(): X-Z CORRDINATES OF EACH CORNER OF THE POLYGON, MOV-
C
                                                                        GRA00140
                  ING CW. EACH CORRDINATE IS ON A SEPERATE LINE.
C
                                                                        GRA00150
C
           N:NUMBER OF DATA POINTS
                                                                        GRA00160
C
     OUTPUT IS A TABLE OF X(METERS) VS GRAVITY ANOMOLY (MGALS)
                                                                        GRA00170
GRA00190
       CHARACTER * 1 C(30,128), LAY, HAY, BAY
                                                                        GRA00200
       DIMENSION X(33), Z(33), A(500), G(35,500), S(500), TITL(80), R(500)
                                                                        GRA00210
     +,S1(500),DDD(500,3)
                                                                        GRA00220
C
                                                                        GRA00230
       READ(1,*) XS,D,XF,N
                                                                        GRA00240
                                                                        GRA00250
       XS=NINT(XS)/3.281
       D=NINT(D)/3.281
                                                                        GRA00260
       XF=NINT(XF)/3.281
                                                                        GRA00270
C
                                                                        GRA00280
       DATA C/3840 * ' '/LAY/'1'/HAY/'2'/BAY/'3'/
                                                                        GRA00290
       DATA (C(15,I),I=1,128)/128 * '-'/
                                                                        GRA00300
C
C
       DATA (C(I,1),I=1,30)/30 * '|'/
                                                                        GRA00310
C
                                                                        GRA00320
C
                                                                        GRA00330
С
      READ IN TITLE AND PARAMETERS
                                                                        GRA00340
C
                                                                        GRA00350
       READ(1,1) (TITL(I), I=1,80)
                                                                        GRA00360
       FORMAT(80A1)
                                                                        GRA00370
1
C
       K=NUMBER OF MODELS
                                                                        GRA00380
       READ(1,*) K
                                                                        GRA00390
C
      READ LIMIT VALUES
                                                                        GRA00400
       READ(1,*) XMIN,XMAX
                                                                        GRA00410
С
      XS=STARTING POINT; D=INTERVALS; XF=END POINT; N=(XF-XS)/D +1
                                                                        GRA00420
       WRITE(2,3) (TITL(I), I=1,80)
                                                                        GRA00430
3
       FORMAT (80A1)
                                                                        GRA00440
     WRITE(2,2) K,N,XS,D,XF
FORMAT('///',5X,'K=',15,5X,'N=',15,3X,'XS=',F5.2,3X,'D=',F5.2
                                                                        GRA00450
2
                                                                        GRA00460
     +,5X,'XF=',F9.2)
                                                                        GRA00470
C
                                                                        GRA00480
C
      CALCULATE ANOMALY FOR EACH MODEL
                                                                        GRA00490
C
                                                                        GRA00500
       PRINT *, K, XS, XF, D, N
                                                                        GRA00510
       DO 50 M=1,K
                                                                        GRA00520
       RHO=0.0
                                                                        GRA00530
       P=XS
                                                                        GRA00540
       READ(1,*) NCOR, RHO
                                                                        GRA00550
       PRINT *, NCOR, RHO
C
                                                                        GRA00560
       WRITE(2,4) NCOR, RHO, M
                                                                        GRA00570
      FORMAT('///','NCOR=',15,10X,'RHO=',F5.2,10X,'MODEL=',15)
                                                                        GRADOSSO
       READ(1,*) (X(I),Z(I),I=1,NCOR)
                                                                        GRA00590
```

```
DO 121 I=1, NCOR
                                                                            GRA00600
       X(I) = NINT(X(I))/3.281
                                                                            GRA00610
                                                                            GRA00620
        Z(I) = NINT(Z(I))/3.281
                                                                            GRA00630
121
       CONTINUE
       WRITE(2,6)
                                                                            GRA00640
                                                       ZCOR
                                                                            GRA00650
6
       FORMAT('///','
                             XCOR
       WRITE(2,7) (X(I),Z(I),I=1,NCOR)
                                                                            GRA00660
7
       FORMAT(5X,F10.2,15X,F10.2)
                                                                            GRA00670
       WRITE(2,2000) M
                                                                            GRA00680
       IF (P.GT.XF) GO TO 50
                                                                            GRA00690
       DO 40 I=1,N
                                                                            GRA00700
       S(I) = 0.0
                                                                            GRA00710
       CALL PRISMG(P, 0.0, X, Z, NCOR, ANOM)
                                                                            GRA00720
       ANOM=ANOM*1000.0*RHO
                                                                            GRA00730
                                                                            GRA00740
       WRITE(2,2001) P, ANOM
                                                                            GRA00750
       A(I)=P
                                                                            GRA00760
       G(M,I) = ANOM
       P=P+D
                                                                            GRA00770
40
       CONTINUE
                                                                            GRA00780
50
       CONTINUE
                                                                            GRA00790
C
                                                                            GRA00800
С
       STACK ANOMALIES INTO ONE PROFILE MODEL
                                                                            GRA00810
C
                                                                            GRA00820
       WRITE(2,8) K
                                                                            GRA00830
      FORMAT('1', 'SUMMATION OF ALL K = ',15,5X, 'MODELS',30X, 'OBSERVED GGRA00840
8
     +RAVITY VALUES')
                                                                            GRA00850
С
                                                                            GRA00860
       CHUD=-200.
                                                                            GRA00870
       AMIN=0.0
                                                                            GRA00880
       AMAX=0.0
                                                                            GRA00890
       BMIN=0.0
                                                                            GRA00900
       BMAX=0.0
                                                                            GRA00910
       DO 60 I=1,N
                                                                            GRA00920
       S(I) = 0.0
                                                                            GRA00930
       CHUD=CHUD+200.
                                                                            GRA00940
       DO 70 J=1,K
                                                                            GRA00950
       S(I)=S(I)+G(J,I)
                                                                            GRA00960
70
       CONTINUE
                                                                            GRA00970
       IF (CHUD.LT.XMIN.OR.CHUD.GT.XMAX) THEN
                                                                            GRA00980
       R(I) = 0.0
                                                                            GRA00990
       WRITE(2,2001) A(I), CHUD, S(I), R(I)
                                                                            GRA01000
       WRITE(3,2003) CHUD, S(I), R(I)
                                                                            GRA01010
       ELSE
                                                                            GRA01020
       READ(1,*) R(I)
                                                                            GRA01030
       WRITE(2,2001) A(I), CHUD, S(I), R(I)
                                                                            GRA01040
       WRITE(3,2003) CHUD, S(I), R(I)
                                                                            GRA01050
2003
       FORMAT(1X, E8.3, 2X, F9.3, 2X, F9.3)
                                                                            GRA01060
       END IF
                                                                            GRA01070
       BMIN=MIN(BMIN, A(I))
                                                                            GRA01080
       BMAX=MAX(BMAX,A(I))
                                                                            GRA01090
       AMIN=MIN(AMIN,S(I),R(I))
                                                                            GRA01100
       AMAX=MAX(AMAX,S(I),R(I))
                                                                            GRA01110
60
       CONTINUE
                                                                            GRA01120
C
                                                                            GRA01130
       PRINT *, 'AMIN=', AMIN, 'AMAX=', AMAX, 'BMIN=', BMIN, 'BMAX=', BMAX
                                                                            GRA01140
       DO 123 I=1,N
                                                                            GRA01150
       CALL PLOT1(A(I),S(I),C,30,128,LAY,AMIN,AMAX,BMIN,BMAX)
                                                                            GRA01160
       CALL PLOT1(A(I),R(I),C,30,128,HAY,AMIN,AMAX,BMIN,BMAX)
                                                                            GRA01170
       CALL PLOT1(A(I),S1(I),C,30,128,BAY,AMIN,AMAX,BMIN,BMAX)
                                                                            GRA01180
123
       CONTINUE
                                                                            GRA01190
                                                                            GRA01200
       CALL OOUT(C, 30, 128, D, AMIN, AMAX)
                                                                            GRA01210
```

```
STOP
                                                                        GRA01220
1000
                                                                        GRA01230
       FORMAT (I3)
              (3F10.0, I6)
                                                                        GRA01240
1001
       FORMAT
                                                                        GRA01250
1002
       FORMAT (2F10.0)
                                                                        GRA01260
1003
       FORMAT (13,F10.0,8A5)
     FORMAT ('//',' MODEL',13,'//',4X,' X(METERS)',7X,' ','/',4X, GRA01270
+' G(MGAL)-',5X,'-----') GRA01280
2000
2001
      FORMAT (15X,F10.1,2X,F7.1,11X,F10.4,10X,F10.4,10X,F10.4)
                                                                        GRA01290
                                                                        GRA01300
       END
                                                                        GRA01310
                                                                        GRA01320
С
C
                                                                        GRA01330
C
                                                                        GRA01340
C
                                                                        GRA01350
C
                                                                        GRA01360
      SUBROUTINE PRISMG
C
                                                                        GRA01370
     PROGRAM TO CALCULATE GRAVITY ANOMALY OF ARBITRARY POLYGONAL
C
                                                                        GRA01380
C
     SHAPE WITH UNIFORM DENSITY AT POSITION (XOB, ZOB). ANOMALY IN
                                                                        GRA01390
     GALS: Z POSITIVE UP: XCOR AND ZCOR ARE ARRAYS CONTAINING THE
                                                                        GRA01400
C
      CORNERS OF THE POLYGON. LAST CORNER-FIRST CORNER.
C
                                                                        GRA01410
      REF: GEOPHYSICS V48 # 7,PG 999-1010 (1005-6)
C
                                                                        GRA01420
C
                                                                        GRA01430
SUBROUTINE PRISMG(XOB, ZOB, XCOR, ZCOR, NCR, ANOM)
                                                                        GRA01450
      DIMENSION XCOR(1), ZCOR(1), X(40), Z(40)
                                                                        GRA01460
      REAL A
                                                                        GRA01470
      FACTOR=1.334E-5
                                                                        GRA01480
      NCOR1=NCR-1
                                                                        GRA01490
      DO 1000 I=1,NCR
                                                                        GRA01500
                                                                        GRA01510
      X(I) = XCOR(I) - XOB
      Z(I) = ZOB - ZCOR(I)
                                                                        GRA01520
1000
     CONTINUE
                                                                        GRA01530
      ANOM=0.0
                                                                        GRA01540
      DO 2000 I=1, NCOR1
                                                                        GRA01550
      IF (X(I).EQ.0.0.AND.Z(I).EQ.0.0) GO TO 2000
                                                                        GRA01560
      IF (X(I+1).EQ.0.0.AND.Z(I+1).EQ.0.0) GO TO 2000
                                                                        GRA01570
      THETA1=ATAN2(Z(I),X(I))
                                                                        GRA01580
      THETA2=ATAN2(Z(I+1),X(I+1))
                                                                        GRA01590
      IF (ABS(THETA1-THETA2).LT.1.E-6) GO TO 2000
                                                                        GRA01600
      IF (Z(I).EQ.Z(I+1)) GO TO 2
                                                                        GRA01610
      C1=COS(THETA1)
                                                                        GRA01620
                                                                        GRA01630
      C2=COS (THETA2)
      IF(X(I).EQ.X(I+1)) GO TO 3
                                                                        GRA01640
      PHI=ATAN2(Z(I+1)-Z(I),X(I+1)-X(I))
                                                                        GRA01650
      CP=COS(PHI)
                                                                        GRA01660
      SP=SIN(PHI)
                                                                        GRA01670
      TP=SP/CP
                                                                        GRA01680
      A=X(I+1)+Z(I+1)*(X(I+1)-X(I))/(Z(I)-Z(I+1))
                                                                        GRA01690
      S1=SIN(THETA1)
                                                                        GRA01700
      S2=SIN(THETA2)
                                                                        GRA01710
      IF (X(I+1).EQ.0.0) GO TO 4
                                                                        GRA01720
      IF (X(I).EQ.0.0) GO TO 5
                                                                        GRA01730
      IF ((S1-C1*TP)/(S2-C2*TP)) 10,11,11
                                                                        GRA01740
    ANOM=A*SP*CP*(THETA1-THETA2+TP*ALOG((S1-C1*TP)/(S2-C2*TP)))+ANOM GRA01750
11
10
      GO TO 2000
                                                                        GRA01760
2
      ANOM=ANOM+Z(I)*(THETA2-THETA1)
                                                                        GRA01770
      GO TO 2000
                                                                        GRA01780
3
      IF (C1/C2) 12,13,13
                                                                        GRA01790
13
      ANOM=ANOM+X(I)*ALOG(C1/C2)
                                                                        GRA01800
12
      GO TO 2000
                                                                        GRA01810
4
      IF (S1-C1*TP) 14,15,15
                                                                        GRA01820
15
     ANOM=ANOM+A*SP*CP*(THETA1-1.570796327+TP*ALOG(S1-C1*TP))
                                                                        GRA01830
```

```
GRA01840
14
      GO TO 2000
                                                                           GRA01850
      IF (S2-C2*TP) 16,17,17
5
       \texttt{ANOM=ANOM+A*SP*CP*(THETA2-1.570796327+TP*ALOG(S2-C2*TP))} 
                                                                           GRA01860
17
                                                                           GRA01870
16
      GO TO 2000
                                                                           GRA01880
2000
      CONTINUE
                                                                           GRA01890
      ANOM=FACTOR*ANOM
                                                                           GRA01900
      RETURN
                                                                           GRA01910
      END
                                                                           GRA01920
C
                                                                           GRA01930
C
                                                                           GRA01940
C
                                                                           GRA01950
C
      SUBROUTINE PLOT1(X1,Y1,GP,NA,NF,HELP,AMIN,AMAX,BMIN,BMAX)
                                                                           GRA01960
      CHARACTER * 1 GP(NA, NF), HELP
                                                                           GRA01970
                                                                           GRA01980
      REAL X2, Y2
                                                                           GRA01990
      Y2=NINT((Y1-AMIN)/(AMAX-AMIN)*NA)+1
                                                                           GRA02000
      X2=NINT((X1-BMIN)/(BMAX-BMIN)*NF)+1
                                                                           GRA02010
       PRINT *, Y2,X2
C
      IF (Y2.GE.1.AND.Y2.LE.NA.AND.X2.GE.1.AND.X2.LE.NF) THEN
                                                                           GRA02020
                                                                           GRA02030
      GP(Y2,X2) = HELP
                                                                           GRA02040
      END IF
                                                                           GRA02050
      RETURN
                                                                           GRA02060
      END
                                                                           GRA02070
C
      REAL FUNCTION FUNMIN(X,NC,NR,NL,NM)
                                                                           GRA02080
                                                                           GRA02090
      REAL X(NC, NR)
      FUNMIN=X(1,NL)
                                                                           GRA02100
                                                                           GRA02110
      DO 100 I=NL,NM
                                                                           GRA02120
      DO 100 J=1,NC
                                                                           GRA02130
      IF (FUNMIN.GT.X(J,I)) FUNMIN=X(J,I)
                                                                           GRA02140
100
      CONTINUE
                                                                           GRA02150
      RETURN
                                                                           GRA02160
      END
                                                                           GRA02170
                                                                           GRA02180
C
                                                                           GRA02190
      REAL FUNCTION FUNMAX(X,NC,NR,NL,NM)
                                                                           GRA02200
      REAL X(NC,NR)
                                                                           GRA02210
      FUNMAX=X(1,NL)
                                                                           GRA02220
      DO 100 I=NL,NM
                                                                           GRA02230
      DO 100 J=1,NC
                                                                           GRA02240
      IF (FUNMAX.LT.X(J,I)) FUNMAX=X(J,I)
                                                                           GRA02250
100
      CONTINUE
                                                                           GRA02260
      RETURN
                                                                           GRA02270
      END
                                                                           GRA02280
C
      SUBROUTINE OOUT(X,NA,NF,D,AMIN3,AMAX3)
                                                                           GRA02290
                                                                           GRA02300
      CHARACTER * 1 X(NA,NF)
                                                                           GRA02310
      DIMENSION T(21)
                                                                           GRA02320
      INTEGER Y1
                                                                           GRA02330
C
                                                                           GRA02340
      WRITE(2,500)
      PRINT *, 'AMAX=', AMAX3, 'AMIN=', AMIN3
                                                                           GRA02350
                                                                           GRA02360
      DO 100 I=NA,6,-6
                                                                           GRA02370
       IF (I.EQ.NA) THEN
                                                                           GRA02380
        Y1=NINT(AMAX3)
                                                                           GRA02390
                                                                           GRA02400
        Y1=Y1-NINT(((AMAX3-AMIN3)/FLOAT(NA))*6)
                                                                           GRA02410
      END IF
                                                                           GRA02420
C
                                                                           GRA02430
      WRITE(2,1000) Y1, (X(I,J),J=1,NF)
C
                                                                           GRA02440
                                                                           GRA02450
       DO 100 J=I-1, I-5, -1
```

	WRITE(2,2000) (X(J,K),K=1,NF)	GRA02460
100	CONTINUE	GRA02470
С		GRA02480
С		GRA02490
	RETURN	GRA02500
С		GRA02510
500	FORMAT(/////,50X,'THEORITICAL AND OBSERVED BOUGER ANOMALIES',	//)GRA02520
1000	FORMAT(14,128A1)	GRA02530
2000	FORMAT(4X,128A1)	GRA02540
	END	GRA02550

APPENDIX I-E

ANALYSIS OF QUAD BAS

QUAD.BAS was developed by Decker and James (1988) to statistically analyze rectified stream data. The algorithm of this program is based the quadrat presence/absence method proposed by Abdel-Rahman and Hay (1978). Prior to the quadrat presence/absence method the two most common techniques for sampling geological fractures was the quadrat length and quadrat frequency methods.

The quadrat length method sums the lengths of all fractures in a specified orientation class interval. A rose diagram of the summed lengths could then be plotted. This method does not distinguish between one long fracture and several shorter independent fractures in the same orientation class. Statistical analysis of the fracture data using this method is complex and yield random results.

The quadrat frequency method counts the total number of fractures in a specified orientation class, regardless of length. As a result, different trends are distinguished, and because the data are true frequencies of individuals statistical tests based on frequencies are possible. Abdel-Rahman and Hay (1979) point out that this method does not give a true representation of the population because the individual fractures in a quadrat may represent a cluster of fractures related to a small scale geologic event.

The quadrat presence/absence method determines whether a certain orientation class is present or absent using a sample size of 50 or more random quadrat sample units. Using this methodology, a single fracture may be counted more than once if it falls in more than one sampling quadrat. This means there is a higher probability that a long fracture will be counted more than once resulting in the close approximation to the pattern of fracture lengths. Using this method data can be statistical analyzed quickly while minimizing measurement errors.

The algorithm used in QUAD.BAS is based on the Possion equation below:

$$p(n) = \frac{e^{-x}x^n}{n!}$$

where

n : number of points falling in any one class category

e : base of the natural logarithm

x : mean of the number of observations in each class (Total number of observations, N, divided by number of classes)

The program QUAD BAS is located on the diskette along with several input files name *.STR (* means all files ending with the prefix STR).

QUAD BAS

```
DECLARE SUB writm1 (class1, class2, pp!, mm)
DECLARE SUB writm (class, pp!, mm)
DECLARE SUB tails (meen!, level!, tn!, pn!)
DECLARE SUB prob (x!, n!, p!)
DECLARE SUB quadrat (qx!, qy!, qr!, q!())
DECLARE SUB group (meen!, pn!, tn!, tot!())
' ----- QUADRAT.BAS ------
' ----- Circular statistics using Poisson distributions -----
' program to create data set of quadrats from any given 'lineament' file
' data must be in x1,y1 - x2,y2 format
 RESET: SCREEN 2: CLOSE: KEY OFF
 CONST pi# = 3.1415927#, pi2# = pi * 2, rad# = pi / 180
     DIM q(361), tot(361)
'get name of file to work on
begin0: CLS: PRINT: PRINT
INPUT "[DD:\path] filename . ext = "; ifil$
'ON ERROR GOTO handle1
begin: OPEN ifil$ FOR INPUT AS #1
'ON ERROR GOTO handler
     GOTO skip1
' error handler for file name
handle1: BEEP: LOCATE 10, 5
     IF ERR = 53 THEN PRINT "That file was not found" ELSE PRINT "error #"; ERR
     RESUME begin0
'skip error handler above
skipl: CLS:
     LOCATE 3, 10: PRINT " Determining graphic limits of "; ifil$
     LOCATE 6, 37: PRINT "n= 1";
' begin with a lower and upper set from the data
          ct% = 1
     INPUT #1, x1, Y1, x2, y2
     11x = x1: urx = x2
     IF x2 < x1 THEN 11x = x2: urx = x1
     lly = Y1: ury = y2
IF y2 < Y1 THEN lly = y2: ury = Y1
getlim: IF EOF(1) THEN CLOSE #1: GOTO step2
          ct% = ct% + 1
     LOCATE 6, 40: PRINT ct%
     INPUT #1, x1, Y1, x2, y2
' lower x
 IF 11x > x1 THEN 11x = x1
 IF 11x > x2 THEN 11x = x2
' lower y
 IF lly > Y1 THEN lly = Y1
 IF 11y > y2 THEN 11y = y2
' upper x
 IF urx < x1 THEN urx = x1
 IF urx < x2 THEN urx = x2
' upper y
 IF ury < Y1 THEN ury = Y1
 IF ury < y2 THEN ury = y2
```

GOTO getlim step2: vv% = 190dx = ABS(llx - urx) 'total change in X dy = ABS(ury - lly) ' total change in Y $cd\bar{d} = dy / dx$ vx% = 310 - CINT(181 / cdd)IF vx% < 0 THEN vx% = 9: vy% = 190 - CINT(181 * cdd)' setup screen for map SCREEN 1, 0: CLS VIEW (vx%, 9)-(310, vy%), 2 WINDOW (llx, lly)-(urx, ury) LOCATE 1, 1: PRINT SPC(39); LOCATE 1, 1: PRINT "Is data in 1> 360 or 2>180 format" a\$ = INPUT\$(1) getfmt: dfmt% = VAL(a\$)IF dfmt% <> 1 AND dfmt% <> 2 THEN BEEP: GOTO getfmt arend% = 360 / dfmt% - 1 ' check for type of analysis LOCATE 1, 1: PRINT SPC(39); LOCATE 1, 1: PRINT "1> whole or 2> quadrat analysis" a\$ = INPUT\$(1)getan: ana% = VAL(a\$)IF ana% <> 1 AND ana% <> 2 THEN BEEP: GOTO getan IF ana% = 1 THEN nq = 1IF dx > dy THEN qr = dx ELSE qr = dyqr = qr / 2qx = .5' * dx + 11x qy = .5 * dy + 11ypaflg% = 1GOTO comence END IF LOCATE 1, 1: PRINT SPC(39); LOCATE 1, 1: INPUT "# of quadrats= ", nq LOCATE 1, 1: PRINT SPC(39); LOCATE 25, 1: PRINT "dx="; dx; " dy="; dy; LOCATE 1, 1: INPUT "radius of quardat= ", qr IF qr > dx / 10 THEN qr = dx / 10LOCATE 1, 1: PRINT SPC(39); LOCATE 25, 1: PRINT SPC(39); ' determine qx and qy for quadrat center comence: RANDOMIZE TIMER FOR iq = 1 TO nqON ana% GOTO skpq, quad quad: LOCATE 25, 1: PRINT "quadrat #"; iq; redo: qx = RND(1) * dx + 11xqy = RND(1) * dy + 11y' display quadrat LOCATE 1, 1: PRINT "qx="; qx; " qy="; qy

CLS 1 ' clear graphics screen only

```
LINE (qx - qr, qy - qr)-(qx + qr, qy + qr), 1, B
skpq:
  CALL quadrat(qx, qy, qr, q())
' change q() to presence/absence and check for empty set if paflg%=0
 IF paflg% = 1 THEN GOTO skppa
     chk = 0
     FOR i = 0 TO arend%
      IF q(i) > 0 THEN q(i) = 1: chk = 1
     NEXT i
  IF chk = 0 THEN
     LINE (qx - qr, qy - qr)-(qx + qr, qy + qr), 0, B
   GOTO redo
  END IF
' keep track of all data [in the case of once through no problem
skppa: FOR i = 0 TO arend%
     tot(i) = tot(i) + q(i)
       NEXT i
     NEXT iq
 SCREEN 0
' now the probability shit
 get n
  ntot = 0
     FOR i = 0 TO arend%
     ntot = ntot + tot(i)
     NEXT i
    SCREEN 2: CLS
    LOCATE 10, 20: PRINT "Which Probability Level Do You Desire ?"
    LOCATE 11, 30: INPUT " ex. 99 or 95:", level
      level = 1 - level / 100
     meen = (ntot / arend%)
     LOCATE 15, 20: PRINT "Mean value is....", meen
 CALL tails (meen, level, tn, pn)
 CLS
     LOCATE 5, 10: PRINT "Peak = "; pn
     LOCATE 7, 10: PRINT "Trough ="; tn
     a$ = INPUT$(1)
' display data set
    CLS: LOCATE 10, 10: PRINT "Do you want a hardcopy of the data set ? [Y/N]"
    a$ = UCASE$(INPUT$(1))
 IF a$ <> "Y" THEN GOTO noprt
getpv: LOCATE 15, 10: PRINT "1> all data or 2> just peaks and troughs"
    pval = VAL(UCASE$(INPUT$(1)))
    IF pval <> 1 AND pval <> 2 THEN BEEP: GOTO getpv
          CLS: LOCATE 10, 35: PRINT "working"
' print header info
   LPRINT "
                              Azimuthal data from "; ifil$
  IF ana% = 1 THEN LPRINT "
                                       Whole data frequency analysis"
 IF aUME begin0
 SUB group (meen, pn, tn, tot())
 SHARED arend%, ntot
```

```
'this program looks for significant peaks and groups them into larger classes
'with max. class determined by user
LOCATE 15, 10: INPUT "please give maximum class grouping desired:
' outer loop determines significant peaks around which to group
  FOR i = 0 TO arend%
    IF tot(i) < pn GOTO 1</pre>
     ii = 0: 11 = 1: mm = 1: 111 = 0: iii = 0
     g1 = tot(i)
      meen = ntot / (360 / 1)
      CALL prob(meen, gl, pp)
      CALL writm(i, pp, mm)
this loop finds the groupings about the significant peaks
   FOR j = i TO (i + max)
      ii = ii + 1
       IF (i - ii) >= 0 THEN kk = i - ii
       IF (i - ii) < 0 THEN kk = (360 + i) - ii
    mm = mm + 1
'to correct for counting above 359 or below zero
     IF (j + 11) > 359 THEN 11 = -360
'test to see which class has higher frequency on either side of peak
    'to save time, two if statements are used to check for troughs before
    'grouping is done
     IF 111 = -999 GOTO stepp2
      IF tot(j + 11) \le tn THEN 111 = -999
      IF tot(j + 11) > tot(kk) THEN
         g1 = g1 + tot(j + 11)
         meen = ntot / (360 / mm)
 'calcualte probability of occurrence for this grouping
          PRINT "gl="; gl; "j="; j; "meen="; meen; "tot="; tot(j + 11)
          a$ = INPUT$(1)
         CALL prob(meen, g1, pp)
 'write to printer the results of test
         CALL writm(j + 11, pp, mm)
         ii = ii - 1
         GOTO 2
        END IF
' check for troughs
stepp2: IF iii = -999 GOTO step3
        IF tot(kk) \le tn THEN iii = -999
        IF tot(j + 11) < tot(kk) THEN
          g1 = g1 + tot(kk)
          meen = ntot / (360 / mm)
'calcualte probablitiy of occurrence for this grouping
          CALL prob(meen, g1, pp)
' write results to printer
          CALL writm(kk, pp, mm)
          11 = 11 - 1
          GOTO 2
      END IF
```

' check to see if two classes either side of grouping are equal

```
stna% = 2 THEN LPRINT "
                              using "; nq; " quadrats with a "; qr; " radius."
    LPRINT CINT((1 - level) * 100); "% critical values min peak="; pn; "
 max trough="; tn
    LPRINT
     FOR i = 0 TO arend%
 ON pval GOTO pall, ptp
ptp: IF tot(i) >= pn OR tot(i) <= tn THEN GOTO pall
     GOTO skpprt
pall: LPRINT USING "
                         ###"; i;
      LPRINT USING "
                        #######"; tot(i);
' mark peaks and troughs
  IF tot(i) >= pn THEN
     LPRÎNT " +"
  ELSEIF tot(i) <= tn THEN
              -"
     LPRINT "
  ELSE LPRINT " "
  END IF
skpprt: NEXT i
' now determine grouping of the various peaks
noprt: CALL group(meen, pn, tn, tot())
' make a file of angular data for plotting in the rose program
    OPEN "\000\poisson.roz" FOR OUTPUT AS #2
     FOR i = 0 TO arend%
      FOR j = 1 TO tot(i)
      PRINT #2, i
      NEXT j
     NEXT i
 SCREEN 2
     END
handler: CLS: LOCATE 5, 1: PRINT "Error handler"
     LOCATE 6, 1: PRINT "error= #"; ERR
      a\$ = INPUT\$(1)
      RESDECLARE SUB makeang (ang!, dlen!)
DECLARE SUB smooth (sdat!())
DECLARE SUB autocor ()
DECLARE SUB crosscor ()
                ROSE corr.BAS
' program to plot a rose diagram to the screen
' also does some simple statistics
' ---- written by Bill Decker 6/21/87 --- modified 6/29/88
 COMMON SHARED nf
   RESET
     CONST pi# = 3.141592654#, pi2# = 2 * pi, hpi# = pi / 2, rad# = pi / 180
   DIM dat(361, 2), pdat(361, 2, 2), bdat(361), stot(2), tot(2)
   SCREEN 2: KEY OFF: CLS
' constants and counters
begin:
       tot(1) = 0: tot(2) = 0: stot(1) = 0: stot(2) = 0: cbar = 0: sbar = 0:
nf = 1
```

```
FOR i = 0 TO 360
    dat(i, 1) = 0
    dat(i, 2) = 0
    pdat(i, 1, 1) = 0: pdat(i, 2, 1) = 2
    pdat(i, 1, 2) = 0: pdat(i, 2, 2) = 2
    bdat(i) = 0
   NEXT i
' get data format
20 PRINT : PRINT
     PRINT "Is the data in <1> 360 or <2> 180 degree format?"
     a$ = INPUT$(1)
dfmt = VAL(a\$)
     IF dfmt < 1 OR dfmt > 2 THEN BEEP: GOTO 20
' get increment
30 PRINT : PRINT
 PRINT "
          Increment for rose diag. construction
 INPUT "
                                            = ", inc
          equal subdivision of 360 degrees
 inc = ABS(inc)
 IF inc = 0 THEN GOTO 30
 IF 360 MOD inc <> 0 THEN BEEP: GOTO 30 ' not an even subdivision of 360
'double increment if 180 degree format
**********************
     inc = inc * dfmt
inf: CLS : LOCATE 3, 15: PRINT "INPUT DD [path] NAME . EXT for input file "
          LOCATE 5, 20: INPUT "Filename: ", flin$(nf)
     LOCATE 10, 5: PRINT "Is data <A> angular or <L> linear (x1-y1 x2-y2) ?"
getform: a$ = UCASE$(INPUT$(1))
         IF a$ = "A" THEN datflg = 2: GOTO 70
         IF a$ = "L" THEN
         datflg = 1
' get length weighting
  PRINT : PRINT
   PRINT "Use length weighted formula? [Y/N]"
   lw$ = UCASE$(INPUT$(1))
   IF lw$ <> "Y" THEN min1 = 0: max1 = 1000: GOTO 70 'skip min/max if no length
weighting
set minimum length
    PRINT : PRINT
    INPUT "Input minimum length ", minl
```

APPENDIX I-F

REMAINING PROGRAMS

The remaining programs mentioned in this paper are listed below:

TWOLINE SAS: This program is used to plot two simultaneous curves on the same graph.

```
OPTIONS MPRINT ;
%MACRO GPH(DATTA);
  /* INTIALIZE AXIS LABELS */
   %LET XTIT=DISTANCE (KM);
   %LET YTIT=MILLIGALS;
   %LET TIT2=THEORETICAL AND BOUGUER;
   %LET TIT3=
                   ANOMALIES
   *LET DESC=THEORECTICAL/BOUGUER VS DIST;
   %LET XSCALE=15;
 /* INTIALIZE PAGE TITLE */
  %IF &DATTA=IN.D622 %THEN %DO;
      %LET TIT1=STATE ROAD 622;
      %LET NAM=SR622;
      %LET INC=0.5;
  %END;
  %IF &DATTA=IN.D60 %THEN %DO;
      %LET TIT1=
                  U.S. 60
      %LET NAM=US60;
      %LET INC=0.5;
 %END;
  %IF &DATTA=IN.D634 %THEN %DO;
      %LET TIT1=STATE ROAD 634;
      %LET NAM=SR634;
      %LET INC=1.0;
 %END;
 %IF &DATTA=IN.D636 %THEN %DO;
      %LET TIT1=STATE ROAD 636;
      %LET NAM=SR636;
      %LET INC=1.0;
 %IF &DATTA=IN.D637 %THEN %DO;
      %LET TIT1=STATE ROAD 637;
      %LET NAM=SR637;
      %LET INC=1.0;
 %END:
 %IF &DATTA=IN.D460 %THEN %DO;
      %LET TIT1= U.S. 460 ;
```

```
%LET NAM=US460;
      %LET INC=1.0;
  %END;
   DATA MOD;
     SET &DATTA;
      DIST=(DIST/3.2808)/1000;
   RUN;
/*Find the maximum x value */
   PROC MEANS DATA= MOD NOPRINT;
    VAR DIST:
     OUTPUT OUT=MOD1 MAX=MAXX ;
   RUN;
   DATA MOD2;
     set mod1;
      MAXX = ROUND(MAXX, .5) + .5;
      CALL SYMPUT('MAX', MAXX);
      %LET XMAX=&MAX;
  run;
/* use sas annotate graphic macros*/
/* %label and %line are listed in the Model SAS program
DATA ANNO;
%DCLANNO;
LENGTH TEXT $40;
%LABEL(50,75,"&TIT2",BLACK,0,0,4.0,SIMPLEX,5);
%LABEL(50,72,"&TIT3",BLACK,0,0,4.0,SIMPLEX,5);
%LABEL(20,25,'+',BLUE,0,0,2.0,SIMPLEX,5);
%LABEL(22,25, 'BOUGUER ANOMALY', BLACK, 0, 0, 2.0, SIMPLEX, 6);
%LABEL(60,25,'*',RED,0,0,2.0,SIMPLEX,5);
%LABEL(62,25, 'THEORETICAL ANOMALY', BLACK, 0,0,2.0, SIMPLEX, 6);
%LINE(42,21,43,21,BLACK,1,3);
%LABEL(50,21, 'REGIONAL TREND', BLACK, 0, 0, 2.0, SIMPLEX, 5);
RUN;
 /* GET READY FOR PLOTTING */
    SYMBOL1 V=PLUS C=BLUE I=JOIN;
    SYMBOL2 V=STAR C=RED I=JOIN;
    SYMBOL3 V=NONE C=BLACK W=3 I=RL;
PROC GPLOT DATA=MOD; *OUT=IN.gpHH ANNOTATE=ANNO;
                                      "&XTIT")
AXIS1 LABEL=(H=2.5 C=BLACK F=SIMPLEX
    VALUE=(H=2.5 F=SIMPLEX C=BLACK) color=black
    ORDER=0 TO &XMAX BY &INC LENGTH=10 CM;
AXIS2 LABEL=(H=2.5 F=SIMPLEX C=BLACK J=L A=90 "&YTIT")
      VALUE=(H=2.5 C=BLACK F=SIMPLEX)
      ORDER=10 TO 20 BY 2 COLOR=BLACK
      LENGTH=10 CM;
PLOT1 BANOM*DIST=1 TANOM*DIST=2 / NOLEGEND
                             HAXIS=AXIS1 OVERLAY
                             VAXIS=AXIS2
                             NAME="&NAM"
                             DES="&DESC";
PLOT2 BANOM*DIST=3/VAXIS=AXIS2;
RUN:
%MEND GPH;
GOPTIONS DEV=TEK4010 GEPILOG='18'X GPROLOG='1B0C' GPROTOCOL=GSAS7171
         NOTEXT82 HPOS=100 VPOS=100
         COLORS=(BLACK RED BLUE GREEN YELLOW PURPLE BROWN ORANGE);
%GPH(IN.D622);
%GPH(IN.D60);
```

```
%GPH(IN.D634);
%GPH(IN.D636);
%GPH(IN.D637);
%GPH(IN.D460);
CONTOUR SAS: This program contours three dimensional data in a X,
Y, Z format.
GOPTIONS NOTEXT82 DEVICE=ZETA836C
HSIZE=9.0
VSIZE=15.0
ROTATE;
CMS FI GOOD DISK GMAP DATA B;
DATA AREA;
    INFILE GOOD;
      INPUT X Y Z;
RUN;
PROC G3GRID DATA=AREA OUT=GPH;
  GRID Y*X=Z / PARTIAL
            NEAR=25
            AXIS1=37.26 TO 37.600 BY .01
            AXIS2 = -78.49 \text{ TO } -78.26 \text{ BY } .010;
RUN:
TITLE1 J=C H=3 F=NONE C=BLACK
'CONTOUR GRAVITY MAP OF FARMVILLE BASIN';
FOOTNOTE2 J=C H=1 F=NONE C=BLACK 'CONTOUR LINE ';
PROC GCONTOUR DATA=GPH;
    PLOT Y*X=Z/LEVELS=10 TO 20 BY .5;
RUN;
MODEL SAS: This program is used to generate the gravity models
shown in this study. Note all graphic macros listed below were
written by SAS Institue, Cary North Carolina.
OPTIONS MPRINT DQUOTE;
%MACRO SEQUEN(SEQ);
IF UPCASE("&SEQ")='AFTER' OR UPCASE("&SEQ")=:'A' THEN WHEN="A";
                                                ELSE WHEN = "B";
%MEND SEQUEN;
%MACRO SYSTEM(XS,YS,HS);
XSYS = "&XS"; YSYS = "&YS"; HSYS = "&HS";
%MEND SYSTEM;
%MACRO DCLANNO;
 length function color style
                                  $ 8.;
 length xsys ysys hsys
                                  $ 1.;
 length when position
                                  $ 1.;
 retain xsys ysys hsys;
```

style=" "; position = "5"; color = " "; function= " ";

```
%system(4,4,4);
  %sequen(BEFORE);
%MEND DCLANNO;
%MACRO POLY(X1,Y1,COLR,PATTERN,LINTYP);
 X=&X1;
 Y=&Y1;
 LINE= &LINTYP;
 STYLE = &PATTERN;
 COLOR = &COLR;
FUNCTION = "POLY
                    "; OUTPUT;
%MEND POLY;
%MACRO POLYCON(X1,Y1,COLIN);
 X=&X1;
 Y=&Y1;
COLOR=&COLIN;
FUNCTION = 'POLYCONT'; OUTPUT;
%MEND POLYCON;
%MACRO FRAME (COLIN, LINTYP, WIDTH, PATTERN);
 Y= .;
IF "&COLIN"=: '*' THEN; ELSE COLOR="&COLIN";
  STYLE="&PATTERN";
  LINE=&LINTYP;
  SIZE=&WIDTH;
FUNCTION = 'FRAME
                   '; OUTPUT;
%MEND FRAME;
%MACRO PUSH;
X=.;
Y=.;
FUNCTION='PUSH
                   '; OUTPUT;
%MEND PUSH;
%MACRO SWAP;
X=.;
Y=.;
FUNCTION='SWAP
                   '; OUTPUT;
%MEND SWAP;
%MACRO CNTL2TX;
X=.;
Y=.;
FUNCTION='CNTL2TXT'; OUTPUT;
%MEND CNTL2TX;
%MACRO TXT2CNT;
X=.;
Y=.;
FUNCTION="TXT2CNTL"; OUTPUT;
%MEND TXT2CNT;
%MACRO POP;
X=.;
Y=.;
FUNCTION="POP
                   "; OUTPUT;
%MEND POP;
%MACRO DRAW2TX(COLIN, LINTYP, WIDTH);
X = .;
Y=.;
SIZE=&WIDTH;
LINE=&LINTYP;
```

```
IF "&COLIN"=: '*' THEN; ELSE COLOR="&COLIN";
FUNCTION="DRAW2TXT"; OUTPUT;
%MEND DRAW2TX;
%MACRO LINE(X1,Y1,X2,Y2,COLIN,LINTYP,WIDTH);
%MOVE(&X1,&Y1);
%DRAW(&X2,&Y2,&COLIN,&LINTYP,&WIDTH);
%MEND LINE;
%MACRO MOVE (X1,Y1);
X=&X1;
Y=&Y1;
FUNCTION= "MOVE
                   "; OUTPUT;
%MEND MOVE;
%MACRO DRAW(X1, Y1, COLIN, LINTYP, WIDTH);
X=&X1;
Y=&Y1;
LINE = &LINTYP:
SIZE = &WIDTH;
   IF "&COLIN" =:
                   '*' THEN ; ELSE COLOR = "&COLIN";
FUNCTION = "DRAW "; OUTPUT;
%MEND DRAW;
%MACRO LABEL(X1, Y1, TXT, COLTXT, ANG, ROT, HGT, FONT, POS);
X=&X1;
Y=&Y1;
ANGLE = & ANG;
ROTATE= &ROT;
SIZE= &HGT;
STYLE= "&FONT";
TEXT= &TXT;
  IF "&POS" =: '*' THEN; ELSE POSITION = "&POS";
   IF "&COLTXT" =: '*' THEN ; ELSE COLOR = "&COLTXT";
FUNCTION = "LABEL "; OUTPUT;
%MEND LABEL;
%MACRO RECT(X1,Y1,X2,Y2,COLIN,LINTYP, WIDTH );
%MOVE (&X1, &Y1);
%DRAW (&X2, &Y1, &COLIN, &LINTYP, &WIDTH);
%DRAW (&X2, &Y2, &COLIN, &LINTYP, &WIDTH);
%DRAW (&X1, &Y2, &COLIN, &LINTYP, &WIDTH);
%DRAW (&X1, &Y1, &COLIN, &LINTYP, &WIDTH);
%MEND RECT;
%MACRO BAR (X1, Y1, X2, Y2, COLOR, BARTYP, PATTERN );
*MOVE
      (&X1, &Y1);
X = &X2:
Y = &Y2;
LINE = &BARTYP;
STYLE ="&PATTERN"
  IF "&COLOR" =: '*'
                      THEN ; ELSE COLOR = "&COLOR";
FUNCTION = "BAR "; OUTPUT;
       BAR;
%MEND
%MACRO MODEL(DATTA);
   %LOCAL MAX YSCALE MINXY;
  /* INTIALIZE AXIS LABELS */
   %LET XTIT=DISTANCE (KM);
   %LET YTIT=DEPTH (KM);
   %LET TIT2=GRAVITY MODEL;
   %LET DESC=GRAVITY MODEL;
   %LET XSCALE=15;
 /* INTIALIZE PAGE TITLE */
```

```
%IF &DATTA=IN.MOD622 %THEN %DO;
     %LET TIT1=STATE ROAD 622;
     %LET NAM=SR622;
     %LET INC=0.5;
 %END:
 %IF &DATTA=IN.MOD60 %THEN %DO;
     %LET TIT1= U.S. 60
     %LET NAM=US60;
     %LET INC=0.5;
 %END;
 %IF &DATTA=IN.MOD634 %THEN %DO;
     %LET TIT1=STATE ROAD 634;
     %LET NAM=SR634;
     %LET INC=1.0;
 %END;
 %IF &DATTA=IN.MOD636 %THEN %DO;
     %LET TIT1=STATE ROAD 636;
     %LET NAM=SR636;
     %LET INC=1.0;
 %END;
 %IF &DATTA=IN.MOD637 %THEN %DO;
     %LET TIT1=STATE ROAD 637;
     %LET NAM=SR637;
     %LET INC=1.0;
 %END;
 %IF &DATTA=IN.MOD460 %THEN %DO;
     %LET TIT1= U.S. 460
     %LET NAM=US460;
     %LET INC=1.0;
 %END;
  DATA CONVERT;
     SET &DATTA;
      XX=XX/3280.8;
      YY=YY/3280.8;
  RUN;
  PROC MEANS DATA = CONVERT NOPRINT;
   VAR XX;
    OUTPUT OUT=MOD1 MAX=MAXX;
  RUN;
  PROC MEANS DATA= CONVERT NOPRINT;
   VAR YY;
    OUTPUT OUT=MOD2 MIN=MAXY;
 RUN;
 DATA MOD3;
    set MOD1;
     MAXX= ROUND(MAXX,.5)+.5;
     CALL SYMPUT('MAX', MAXX);
     if maxx > 5 then call symput('inc','1');
     else call symput('inc','.5');
    set MOD2;
     MAXY= ROUND (ABS (MAXY), .5)+.5;
     YSCALE=(MAXY*&XSCALE)/MAXX;
     MINXY=-1*MAXY;
     CALL SYMPUT('MINXY', MINXY);
     CALL SYMPUT('YSCALE', YSCALE);
/* GET READY FOR PLOTTING */
  SYMBOL1 V=NONE;
  DATA DAT1;
```

```
xx=0;
    YY=0;
    RUN;
    DATA ANNO(DROP = ID XX YY RHO RHO1 RH1 RH2 RH3 RH4 PATTERN);
    LENGTH CLR $8.;
    %DCLANNO;
    %SYSTEM(2,2,4);
    %SEQUEN (AFTER);
     SET CONVERT;
     CALL SYMPUT('RHO', RHO);
     CALL SYMPUT('RHO1', RHO1);
     CALL SYMPUT('ID', ID);
     RH1=-0.12; RH2=0.18; RH3=0.21; RH4=0.11;
     CALL SYMPUT('RH1',RH1);
CALL SYMPUT('RH2',RH2);
CALL SYMPUT('RH3',RH3);
     CALL SYMPUT('RH4',RH4);
     ID1=4;
     CALL SYMPUT('ID1', ID1);
      IF SYMGET('RHO') =SYMGET('RH1') THEN DO;
        PATTERN='M3N035'; CLR="GREEN";
      END:
      IF SYMGET('RHO') =SYMGET('RH2') THEN DO;
        PATTERN='M4N320';
                            CLR="PURPLE";
      IF SYMGET('RHO') =SYMGET('RH3') THEN DO;
                      CLR="RED";
        PATTERN='S';
      END;
      IF SYMGET('RHO') =SYMGET('RH4') THEN DO;
         PATTERN='M4X320'; CLR="ORANGE";
      END:
    IF SYMGET('RHO') NE SYMGET('RHO1') THEN DO;
       %POLY(XX,YY,CLR,PATTERN,1);
       OUTPUT;
    END;
    ELSE IF SYMGET('RHO') = SYMGET('RHO1') THEN DO;
      %POLYCON(XX,YY,BLACK);
    OUTPUT;
    END;
 RUN;
TITLE1;
PROC GPLOT DATA=DAT1 ANNOTATE=ANNO; *OUT=IN.GPHH;
AXIS1 LABEL=(H=2.5 C=BLACK F=SIMPLEX "&XTIT")
   VALUE=(H=2.5 F=SIMPLEX C=BLACK)
   ORDER=0 TO &MAX BY &INC LENGTH=10 CM COLOR=BLACK;
AXIS2 LABEL=(H=2.5 C=BLACK F=SIMPLEX J=L A=90 "&YTIT") COLOR=BLACK
      VALUE=(H=2.5 C=BLACK F=SIMPLEX)
      ORDER=&MINXY TO 0 BY .5
      LENGTH=10 CM;
PLOT1 XX*YY / NOLEGEND
             HAXIS=AXIS1 OVERLAY VMINOR=5
             VAXIS=AXIS2 HMINOR=10
                      NAME="&NAM"
                      DES="&DESC";
PLOT2 XX*YY/VAXIS=AXIS2 VMINOR=5;
RUN;
%MEND MODEL;
GOPTIONS DEV=TEK4010 GEPILOG='18'X GPROLOG='1BOC' GPROTOCOL=GSAS7171
         NOTEXT82 HPOS=100 VPOS=100 NODISPLAY;
```

```
%MODEL(IN.MOD622);
%MODEL(IN.MOD60);
%MODEL(IN.MOD634);
%MODEL(IN.MOD636);
%MODEL(IN.MOD637);
%MODEL(IN.MOD460);
```

APPENDIX II

LISTING OF GRAVITY DATA

PROFILE

- A. U.S. HIGHWAY 460E
- B. STATE ROAD 637
- C. STATE ROAD 636
- D. STATE ROAD 634
- E. U.S. HIGHWAY 60
- F. STATE ROAD 622

U.S. HIGHWAY 460E GRAVITY READINGS

			C T S A T	6 A A V	1 T Y . S T	A T I . M .		
		LONGITUDE	#1 #YAT184		C	PAGE AIR		
STA HAME AND NUM	LATITUBE HDRTH •	EAST +	PRET	METERS	MEAL	MEAL	MEAL M	6 A L
		-78 22.89	398.700	0.000	070032.676	26.173	14.840	979842.250
2 8458 1031	27 17.80 27 18.70	-74 27.41	454.240	0.000	979933.147	31.927 31.746	16,434	#7##44.000 #7##44.000
26 10100	37 18.70	-74 27.56	463.140 462.630	-220.420	979933.147 979933.250	31.446	14.409	179944.000
27 10200	27 14.66 37 14.67	·74 27.63	463.010	3.135	\$79932.312	31.934	16.487	979943.937 979943.937
10400	37 16.45	-74 27.45 -74 27.41	453.660 -	4,268	079932.937 979933.000	31,444	14.344	979943 937
30 10600	27 14.63 37 14.62	.76 27.34	485.190		670933.042 979932.012	31.069	16,444	070043.675
32 10700	37 18.60 37 18.64	•74 27.34 •74 27.31	456.180	0.000	679932.600	31.667	16.040	071043.412
33 10100	37 18.87	-74 27.24	467.760	• • • • • • • • • • • • • • • • • • • •	171132.562 171132.800	31.425	16.212	979943.812 979943.812
36 11000	37 14.67 37 14.66	-74 27.23 -74 27.20	464.490	*******	979932.500	31.016	14.246	878943.812 878943.780
17 11200	37 14.63	.74 27.16	460.410	0.000 4.014	979922.250 979922.125	31.423 31.767	16,120	979943.750
34 11300	37 18.62 37 18.60	-74 27.13 -74 27.11	441,410	1.022	979932.126	31.462	16.114	979943.447 979943.447
11600	37 18.50	-78 27.06	441.800		979932.125 979932.147	31.423	14.013	879943.447
41 11400	37 14.46 37 14.47	·74 27.05 ·74 27.01	440.310		979931.937	31.574	16.478	070043.607 070043.626
43 11400	37 16.43	-74 26.86 -74 26.86	455.610	• 1440.071 • .000	979931.750 979932.062	31.362	16.003	979943.426
44 11900	27 18.42 27 18.26	-74 26.03	453.250		979532.167	21.249 21.106	16.829	079943.662 179943.600
46 12100	37 16.37 37 14.33	-78 26.49 -74 24.44	445.710	0.005	979932.312 979933.600	30.857	16.747	979943.800
47 12200	37 14.30	.74 26.64	441.460	*******	170132.037 071133.260	31,050	15,113	979843.437 879843.376
12400	37 18.27 37 16.23	-78 26.63 -78 26.80	436.690	-50.820	970933.662	30.474	16.149	970043.312
10 12500 11 12600	37 18.20	-74 26.80	426.260		979933.475	30.647 30.540	16.144	979943.312 979943.260
82 12700	37 18.17 37 18.13	-74 26.76 -74 26.74	420.560 414.820	0.000 0.000	171134.662	30.344	16.230	979942.147
63 13800 64 12900	27 14.12	.74 26.73	408.480		979934.812	30.064 29.447	16.132	979943.187 979943.126
13000	37 16.04 37 16.06	-74 24.71 -74 24.70	402.610	-2100.044	979935.662	29.412	16.200	171143.062
17 13200	37 18.02	.78 26.66	390.530	*******	979836.937 979926.062	29.639 28.208	16.320	971143.062 171143.000
13300	37 18.00 37 17.07	-78 26.66 -78 26.64	364.320 376.470		979926.276 979926.662	21.042	16.127	979942.827
13600	37 17.96	-74 26.63	372.610	0.000	979936.642	24.714 24.863	16.010	979942,837 971942.476
41 13600 42 13700	37 17.92 37 17.44	-74 26.61 -74 26.60	366.630 360.740		879927.187	24.300	16.994	678942.412
13 13400	27 17.67	.74 26.54	354.430 344.950	•749.312 0.000	179927.562 179924.00	24,169	16.057	678842.812 678842.760
14 13100	37 17.83 37 17.80	-74 26.66 -74 26.64	344.410		171134.376	24.041	14.342	971943.447 971942.426
16 14100	37 17.76 37 17.72	-74 26.81 -74 26.80	341.850 341.320	2.004	979934.626 979924.687	24.143 24.213	16.484	878842.842
47 14200 10 14200	37 17.72 37 17.67	.74 21.46	353.510	0.000	171134.000	24.740	16.643	\$75042.800 \$75042.427
11 14400	37 17.63	-74 26.45 -74 26.43	360.900 368.360	0.000	979937.412 979927.800	29.321	17.167	878942.427
72 14500 13 14600	37 17.40 37 17.67	-76 26.41	375.710	-2404.046	179137.260	30.264	17.439 17.846	879842.376 879842.312
74 14700 15 14800	37 17.63 37 17.50	-74 24.29 -74 24.34	343.220	•.•00 •2041.104	979934.937	30.467 31.066	17.760	979943.250
14 14900	37 17.47	-76 26.34	354.040	•.•••	979934.312	31,649	17.973 17.934	076042.187 070042.147
77 15000	37 17.46 37 17.42	·76 26.33 ·76 26.33	404.440	0.000 0.000	979926.476 979926.447	31.731	14.044	879942.125
15 15200	37 17.36	-74 26.31	414.860	-2104.044	979936.312 979924.447	32.263 32.672	14.112	979942.126 979942.042
10 15300	37 17.36 37 17.33	•76 26.28 •78 26.26	419,670	0.000	979934.062	31.419	17.762 17.346	171142.000
12 16600	37 17,30	.76 26.26	428,700	********	971933.676 971933.862	31.022	17.402 17.304	971942.000 978941.837
43 18600 14 18700	37 17.27 37 17.26	-78 26.21 -78 26.20	427.860 429.300		171133.312	31.400	17.166	970941.475
15 15400	37 17.22	·76 24.18	430.040	********	979933.125 979933.167	31.740	17.041	978941.876 978941.812
16 15900	37 17.20 37 17.14	-74 26.16 -74 26.13	429.920	1.044	970933.000	31.544	16.022	970041.412
14 16100	37 17.16	-74 26.00	427.860	0.000	979933.042 979932.260	31.627	16.036	979941.780 979941.780
19 16200	37 17.13 37 17.10	·76 26.04 ·74 26.05	423.250	********	470033.147	31,313	14.477	.741.667
11 16400	37 17.04	-74 24.01 -74 25.86	420.760 416.070		979933.260 979933.147	31,174	16.624	979941.447 979941.426
13 16400	37 17.06	-78 26.86	416.240		979922.260	30.600	14.832	870941.426
14 16700 15 16400	37 17.02 37 17.00	*78 26.91 *78 25.89	412.760	1.044	979932.260	30.834 30.433	16,466	979941.842 979941.842
14 14100	37 16.04	-74 25.46	406.870		.733.437	30.210	16,341	878841.800
97 17000 94 17100	37 16.97 37 16.96	-78 26.84 -78 25.81	404.240	0.000	070033.312 070033.562	21.435	16.044	171141.600 171141.600
17200	37 16.93	-74 26.74	294.760	1.044	676933.425	29.674	16.073	979941.437 979941.437
100 17300	37 16.92 37 16.90	*74 28.74 *74 25.74	396.360 393.720	0.000 0.000	079923.812 979933.676	29.694 29.623	16.094	971941.376
102 17500	37 16.67	.76 25.66	291.100	-2667.190	179134.000	20.441	16.102	979941.375
103 17400	37 16.86 37 16.82	-78 25.64 -78 25.61	344.540	1.045	979934.260 979934.167	29.449 29.229	14.196 16.861	976941.312 978941.260
105 17400	37 16,74	-74 25.54	343.620	0.000	171034.275	29,216	16.138	676841.260 678841.147
106 17900	37 16.76 37 16.73	-74 26.54 -74 26.51	340.480 378.260	********	979834.437 979834.600	29.061 26.900	14.077 15.999	879941.147 978941.147
-04 14100	27 16,70	-74 25.44	375.510	0.000	171134.600	24.750	16.937	\$78841.126
14200	37 16,66 37 16,65	-74 25.44 -74 25.43	373,170	********	#7##34.842 #7##34.740	24.678	16,450	979941.042 979941.042
111 18400	37 14.62	.76 25.37	367.880		979924.612	24.442	16.696	971141.000
112 14500	37 16.64	.74 25.34	345.340	********	970036.126 970036.187	26.541 24.399	16.079	978940.937 978840.937
113 16600	37 16.67 37 16.63	·76 26.26 ·76 26.33	362.610	*******	070036.187 070036.312	24.327	14.045	878940.476
116 16500	37 16.62	-74 25.31	367.740	*******	170036.662	24.284	16.184	878840.812

STATE ROAD 637 - GRAVITY READINGS

PRINCIPAL PACTS AT GRAVITY STATIONS ELEVATION SUPP ELEV OSSERVED & FREE AIR PERT METERS MEAL MEAL LATITURE . STA BAME AND MUN LONGITUDE 14.840 970042.286
17.411 97047.260
17.410 97047.167
17.422 97047.167
17.422 97047.167
17.223 97047.167
17.224 97046.021
17.406 97046.021
17.406 97046.021
17.407 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
17.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021
18.408 97046.021 -70 22.00
-74 20.01
-74 20.01
-74 20.04
-74 20.04
-74 20.04
-74 20.04
-74 20.04
-74 20.04
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 20.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-76 27.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42
-77 26.42 070022.076
070026.061
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062
070026.062 26. (72
23. 234
23. 234
32. 247
32. 240
32. 240
32. 240
32. 240
32. 240
32. 240
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 677
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 741
30. 74 37 17.60
37 20.81
37 20.81
37 20.81
37 20.81
37 20.81
37 20.81
37 20.81
37 20.81
37 20.82
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83
37 20.83 1021
1000
2000
2000
10000
11000
11000
11000
14000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000
21000 8465 13.413 979844.600
13.413 979844.600
13.413 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.326 979844.602
13.320 979844.602
13.320 979844.602
13.320 979844.602
13.321 979844.602
13.322 979844.602
13.322 979844.202
13.322 979844.202
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.322 979844.213
13.323 979844.213 070037.426 070037.360 070036.437 970036.107 970036.107 970036.126 970036.126 970036.427 970036.427 970036.427 970036.427 970037.000 970037.000 970037.000 970037.627 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970036.427 970037.662 970037.662 970037.662 44000 44000 45000 47000 47000 74000 71000 72000 74000 74000 74000 77000 78000 12.646 12.736 13.867 13.957 13.957 13.461 13.427 12.427 12.678 12.678 12.678 12.678 12.678 40000 4200 4300 4400 4400 4500 4700 4400 1900 1100 1100 1200 1400

STATE ROAD 637 - GRAVITY READINGS

						1 T Y 6 T	A T 1 0 N 5	
6 TA	MUR 688 SHAR	LATITUDE	Langitude	ELEVATION PERT	SUPP ELEV	MEAL E	PREE AIR MGAL	SQUEURR THEOR S MEAL MEAL
0.4		37 30.20	.74 25.91	341.120	-749.212		24.662	12.236 670646.167
	11000	27 20,20	-74 25.46	364.310	0.000	474436.812	24.244	12.146 878844.147
9.7	67000	37 10.20	-74 24.43	261.000	********	979837.126	24.324	18.217 978946.167
0.4		37 20.20	.78 26.40	362.860	******	979927.128	24.160	12.126 070846.167
8.4	****	37 20.20	.78 25.74	241.410	2.004	171137.260	23.024	12.404 170044.147
100	10000	37 20.20	-74 26.70	244.110	0.000	070037.312 070037.626	23.714	11,811 87844.147 11,852 878844.147
101	10100	37 20.20 37 20.20	-74 25,66 -74 26.61	342.300	0.000	676627.637	22.627	12.000 578844.147
102	10200	17 20.20	.74 24.44	330.840	-2404.064	979834.126	23.063	11.794 #78944.147
104	10400	37 20.20	.74 25.62	323.230	0.000	979934.447	22.031	11.104 #75544.167
106	10500	27 20.20	-78 26.48	317.320	. 2049 . 664	978929.062	22.736	11.912 978946.167
106	10600	37 20.20	.74 25.46	313.000	0,000	879828.642	22.440	12.174 078944.147
107	10700	37 20.20	.74 25.25	313.900	0.000	.70030.412	23.177	12.471 878846.147
104	10800	37 20.20	.78 26.26	315.400	0.000	878939.476	23.349	12.626 878944.147
100	10100	37 20.20	.74 26.33	219.440		070020.027	22.744	12.445 870444.147
110	11000	37 20.14	.74 26.28	322.040		#70#30.424	22.744	12.402 970044.126
1 1	11100	37 20.17	.76 21.22	331.140	*******	979939.147	24.176	12.442 070044.124
1 2	11200	37 20.17	-74 26.20	244.360	********	070026.437	26.061	12.140 070044.124
1 3	11300	37 20.18 37 20.18	-74 26.14	361.770 364.010	0.000	979937.780 979937.437	34.701 24.603	12,703 070046.126
1 4	11500	27 20.20	-78 25.11 -78 26.00	364.320		879927.280	14.742	12.661 979946.147
111	11400	37 20.20	-74 26.01	261,780	*******	071027.042	24.666	12.645 079044.147
117	11700	37 20.22	-74 24.94	340.550	1.044	979836.012	24.415	12.162 070046.167
	11400	37 20.22	.74 24.88	366.940	*******	578837.042	24.320	12.179 878846.187
119	11800	37 20.23	.74 24.12	366.610		079837.260	24.484	12.362 070046.260
130	12000	27 20.26	.76 24.69	366.560	*******	070927.212	24.696	12.433 678844.260
111	12100	37 20.25	-78 24.86	369.370	********	070037.376	24.400	12.643 670946.260
122	12200	37 20.27 37 20.25	*78 24.84 *78 24.81	346.220		878837.126 978836.667	26.213	12.444 979944.260
124	12400	17 20.25	-74 24.74	267.440	********	979936.437	14.744	12.212 070044.250
1116	12500	37 20.25	-74 24.73	367.070	*******	870134.250	24.541	12.030 071144.210
116	12400	37 20,23	-74 24.70	344.450	1.044	979936.260	24.304	11.476 979946.260
127	12700	37 20.23	-74 24.44	354.000	0.000	479834.147	24.210	11.796 979946.260
128	12800	37 20.23	-78 24.61	366.370	0.000	978934.312	24.485	11.883 878944.260
128	12100	37 20.23	-74 24.86	367.240		171126.000	24.312	11,786 979946.260
130	13000	27 20.23	.78 24.53	371.760	1.048	978936.475	24.631	11.361 978946.280
131	13100	37 20.26	-76 24.48	372.600	0.000	970036.647	24.452	11.747 070144.260
132	13200 13300	37 20.25 37 20.27	*74 24.45	370.950	0.000 -2687.105	171136.LOO 171136.LOO	24.118 24.164	11.463 \$78946.210
134	13400	37 20.27	-78 24.41 -78 24.38	371.410	******	679936.626	24.423	11.704 070046.340
126	13500	37 20.27	.74 24.24	378.610	1.045	979936.437	24.497	11.400 171144.210
134	12400	37 30.24	-78 24,29	374.440	0.000	979936.437	24.574	11.746 979946,312
127	13700	37 20.28	-78 24,26	376.440	0.000	679636.167	24.444	11.664 979944.312
134	12400	37 20.24	.78 24.21	340.110	*******	171111.000	24.477	11.510 #79944.312
139	13504	37 20.24	.74 24.16	381.990	*******	079634.476	24.487	11.440 679946.312
140	14000	37 20.24	-74 24.12	244.010	0.000	879834.760	24.647	11.467 070046.212
141	14100	37 20.24 37 20.30	-78 24.04	344.340	********	979934.812	26.012 25.243	11.766 678646.212
143	14300	37 20.30 27 20.32	·74 24.03	394.476 402.030		979834.600	26.704	11.004 670944.276
144	14400	27 20.22	·74 23.86	407.010	********	879931.927	26.446	12.000 078044.278
141	14600	37 80.33	-74 22.01	407.410	*******	170132.447	26.687	11.762 979944.276
144	14600	37 20.36	-74 23.46	406.940		970922.927	24.700	11,863 970044,276
147	14700	37 20.37	·74 82.43	407.410		171124.062	21.000	12.001 678646,437
144	14800	37 20.34	-74 31.40	410.260	*******	171134.042	24.182	12.198 978844.427
149	14700	37 20.40	.74 23.74	413.420	*******	471133.412	24.263	13.163 \$79844.800
180	16000	37 20.42	-74 23.71	414.430	*******	971133.500	24.173	11.570 979844.600
161	16 100	27 20.43	.78 23.68	420.400	*******	179933.312	24.332	11.003 070044.800
152	16100	37 20.43	-78 23.64	423.660	*******	171122.127	34.844	11.816 178844.800
163	15300	37 20.46	-76 23.61	422.180	********	170132.612	26.968	11.864 878944.842
151	,,,,,,	37 10.46	-76 23.66	424.400	********	978633.147 978933.260	26.643 26.632	12.066 170144.842
155	16806	37 20.46 37 20.46	·78 23.63 ·78 23.48	427.430	*********	979932.240	27.643	12.847 978844.642
167	15700	37 20.46	-74 23.44	448,110	0.000	179122.000	27.714	12,300 070046,002
111	16400	37 20.45	.76 22.41	486.000	1.041	170121.426	27.445	12.347 878844.842
•••			,				2	

STATE	ROAD	636	-	GRAVITY	READINGS	

.	IAID NOND	*****		C 7 5 A 1			A T I O M S		
. 1	4 44ME 4HD NUM	LATITUDE MORTH +	LONGITUDE BABT +			MEAL G	FREE AIR		IEGR E
2		37 17.60	-76 23.09	200.700	0.000	979922.476 979922.662	28.173 34.066	14.640	070042,280 070050.612
1	100	37 23.42 37 23.40	-76 20.04 -76 20.03	546.200 567.920	-146.312 0.000	979122.800	36.121	15.750	979950.812
;	300	27 23.24 27 23.37	-76 24.98 -76 28.98	444.910	********	979932,312	35.070 35.187	16.447	978986.812 978986.780
:	400	27 23.37	-76 26.81	683.240 646.070	1.004	979923.424 979924.125	34.490 34.749	14.020	979960.760 878960.760
•	400 700	37 23.36 37 23.33	-74 24.44 -78 26.44	843.670		070034.312 070033.012	34.746	18.156	079000 760
	***	17 13.32 17 23.30	·74 14.40	641.600		878633.612	34.613	16.069	#7 # # # 0 . # # 7 #7 # # 8 0 . # # 7
i	1000	17 23.30 17 23.30	-74 24.71 -74 24.66	584.170 967.430	*.*** *2041,504	979933.487 979933.375	36.129 36.146	14.120	878866.647
12	1200	37 33 30	-74 24.63	646.820 637.760	6.000	979924,260 979924,937	34.860 34.483	14.330	878888.487 878888.487
13	1300	37 23.30 37 23.30	·74 24.60	524.870	0.000	970036.126	34.748	14.812	171150.447
16	1500	17 22 20 27 22.30	·70 28.83	120.050	-2104.044	179936.437 970036.437	34.415	14.441	
4.7	17000	27 23.24 27 23.24	-78 26.44 -74 24.39	620.200	•.•••	970936.760 979934.000	34.863 34.821	14.413	971160,426 971160,426
10	11000	37 23.27	-74 24.24	524.460	********	970034.212 970036.437	35.404 25.457	17,116	978960.626 978860.862
21	2000 21000	37 23.23 37 23.22	-74 24.34 -74 24.31	123.010 122.740	0.000	879926,312	34,884	17,124	870060.842 870060.600
12	22000	37 23.20 27 23.14	·74 24.29	525.130 527.400	********	979936.042	34.475	16.864	#7##40. 100
24	14000 25000	37 23.14 37 23.10	-76 26.23 -74 24.16	816.346 807.090	1.044	979934.642	34.613 34.641	17.003 17.246	17816. 600 17816. 600
26	24000	37 22.17	-74 24.14	441.250		971934.000	34.464 34.162	17.424	170110.600
27	27000 24000	37 23.17 27 23.17	-74 24.11 -76 24.08	494,690	*******	979934.250	33.003 23.676	17,140	\$7 \$ \$50, 800 \$7 \$ \$60, 437
21	20000	37 23.16 27 23.16	-76 24.66 -76 28.60	442.220 475.420	********	979938,760 979939,062	22.721	17,370	.7
21	31000	37 23.15 27 23.15	-78 27,86 -78 27,81	478.040	********	979934.927 979934.927	33,237 32,873	17.000 16.461	679950,437 879950,437
12	32000 32000	37 23.14	-74 27.44	470.190	1.048	979130.000 979939.128	32.771 32.466	14,734	275660.427 27666.427
34	34009 38000	37 23.16 37 23.17	*76 27.63 *76 27.78	467.420 448.390		079039.374	32.449	14.794	171160.600
36	34000 37000	37 23.17 37 23.16	-78 27.74 -78 27.70	443.140 440.480	1,048	978939.642 979939.647	11.642 32.603	14.444	171150.400
78	31000	27 23.20	-76 27.64	466.640	0.000	979929.612	32.424 32.366	16,787	171150.600
3 *	31000 400 0 0	37 23.20 37 23.22	*76 27.61		-2647.100	879839.827	32.222	14.494	#71140.842 #71160.842
41	41000	37 23.22 37 23.22	*74 27.64	453.440 452.220	1.049	878840.000 978940.128	32.126 32.127	14.703	#7###0.542
43	43000	37 23.22	-74 27.48	461.360	0.000 0.000	979140.042 979140.000	31.972 32.007	14.674	878880.842 878886.842
41	4 4 <u>8 9 9</u> 4 E 0 9 9	37 23.22 37 23.22	-78 27,45 -78 27,41	441.630		878840.187	31,939	14.403	178160.842 178160.842
44	46000	37 23.32 37 23.22	·76 27,28	445.160 447.660	0.000	171140,260 171140,260	31.776	16.607	#71460.662
4.4	44000	37 23.72	*74 27.24 *74 27.25	460.000		979940.000 979929.612	31.410 31.402	14.611	979986.562 979986.662
4 9	4 1 0 0 0 5 0 0 0 0	37 23.22 37 23.20	-78 27.20	454.140		979929.625	31.436	16.225	071110.400 17116.400
6.2	5 1000 52000	37 23.20 37 23.16	•74 27,14 •74 27,13	446.780	********	171131.760 171140.600	31.796 31.622	14.244	171160.600
63	£3000 £4000	37 23.17	·74 27.09	435.470 431.300	********	979940.647 979940.760	31.194	16.346	879864.500 979850.437
5 6	\$6000	37 23.16	*74 27.01 *74 24.94	437.900		970140.375 970930.937	31,131	14,194	979950.437 879950.437
6.6	6 6000 6 7000	37 23.13 37 23.12	-74 26.93	448.210		979940.125 979939.937	31.472	14.545	878860 437 878850 437
**	5 2 0 0 0 5 2 0 0 0	37 23.12 37 23.10	-74 26.89 -78 26.86	441.866		171140.000	30.737	16.616	878858.376
60	60000 61000	27 23.10 27 23.10	-78 26.81 -78 26.74	416.420	********	979941.125 979942.187	29 941 29.104	15.724	#79950.376 #79960.316
6.2	42000 43000	37 23.10	*78 26.73 *78 26.70	344.700	0.000	979942.862 978942.412	24.714	15.450	979960.376 979956.437
64	44000	37 23.12	-78 26.66	372.630	1.041	971943,260	27.442	16 173	971150.427 971150.427
4.5	66000	37 23.12 37 23.10	·74 26.43	364.470 365.100	0.000	878942.562 878842.250	27.214	14.746	\$74980.376
4.7	67000 64000	37 23.10 37 23.10	-74 26.64 -78 24.61	364.630 368.240	0.191	979943.125 979942.760	27.021 27.012	14.662	679980.375 679980.375
10	4 9 6 6 0 7 0 0 0	17 23.10 17 23.04	·74 24.46	377.749 386.310	1.649	979942,126 979941,376	27,361 27,344	14,417	878980.376 878880.376
71	71000	37 23.04	.74 24.39	346.940	0.000	979941,250 978941,500	27.141 27.128	14.014	979980.376 979850.312
72	72000 73000	37 23.67 37 23.67	·74 26.34 ·74 26.29	342.320	*******	978941.626	27.034	14.054	171160.212
74	74000 75000	17 23.06 17 23.05	-78 26.26 -78 26.21	373.330 372.070	0.000	978941.937 978941.412	26.762 26.496	14.010	879960.312 879960.312
76	74000	27 23.03 27 23.03	-74 26.16 -76 26.14	372.120	0.000	979941.760 979941.316	26,449 26,306	13.767 13.627	#79960.212
74	76000	27 23.02	+74 26.11	374.500	********	#79940 #37 #79940 760	26.306	12.297	979980.280 979980.260
70	79000 40000	37 23.02 37 23.02	-78 26.08 -78 26.05	361.760 346.960	********	\$76940.312	24.376 24.366	13.201	871160.260
12	\$1000 62000	37 23.00 37 22.18	-78 26.01 -78 26.96	311.040	0.000	176946,000 176936.147	26.612 26.643	-13,240 12,145	879880,250 878880,147
13	£2000 44000	37 22.97	·74 25.14 ·74 26.49		********		26.494 24.954	12.066	978860.187 978960.187
1.5	48000	27 22.02	-74 25.64	412.940	1.044	979934.187	24.122	12.437	978960.126 979960.126
17	4400 47000	37 22.00 37 22.67	*74 25.41 *74 25.76				26.261	12.492	#79960.G62
4.0	44000	37 22.43 37 22.42	-74 26.74 -76 25.70	307.250 355.400	0.000	979134 875 179134 937	26.226 26.133	12 474 12.447	171160.000
10	90009	37 22.40 37 22.74	-76 25.44 -74 25.44	364.930 376.420	*********	071131 427	26.724	12 604	878848 837 878848,837
11	12000	37 22.77	.76 25 64	270.610		179140.042	25.040	12.403	170149 476
u 3	9300 0 840 00	37 21.73 37 22.70	*16 26.61 *76 25.40		4.40	171111.400	21.431		
y 5	95000 86000	37 22.66 37 22.65	-76 26.66 -76 25.64		********		25.771 25.400	12 404	978848.760 178848.760
17	17000	37 22.63 37 22.62	-76 26.61 -76 25.46	394.760	*******	979934.042 979934.125	25.436 25.425	12 234	171141.447 171141.447
; ;	1000	37 22.64	-78 25 46			070027.876	25.754	12:146	171141 424

STATE ROAD 636 - GRAVITY READINGS

				C T 8 A T		1 1 1 . 1	A T I 8 H S		
		LATITUDE		ELEVATION		6	FREE AIR		
512 WATE	200 00-	#887H +	EAST +	7441	METERS	MEAL	MEAL	MEAL P	64L
				402.200		070027.042	26.740	12.040	070040.626
100	10000	37 22.67	-74 26.41 -74 26.30	407.240	0.000	979927.147	24.613	12.042	.74040.442
101	10100	37 23.66	-74 21.36	407.040		878837.167	24.484	11.076	
108	10200	37 11.66	-74 24.33	407.060		979627.042	24.774	11.403	470045.442
103	10200	27 22.63	-74 26.29	404.620	- 0,000	979934.937	26.842	11.004	879848.542
104	10400	37 22.62 37 22.62	-74 26.24	411.000	*******	074424.626	26.847	11.794	879849.662
105	10100	37 22.60	-74 28.23	414.470		070036.126	26.442	11.424	878946.400
106	10700	17 22.40	-74 24,20	414.000	*******	070030.470	26.403	11,436	.,,,,,,,
101	10000	17 22.00	-74 24.14	416.810	*******	070024.125	26.724	11.627	
101	10100	37 22.44	-74-26.00	414.470		.7.634.126	24.432	11.442	171145.500
110	11000	27 22.48	-74 26.06	413.220	1.040	070036.187	26.673	11,470	171041.100
111	11100	37 22.47	-74 24.94	414.510	********	978936.126	26.470	11.623	078840.437
112	11200	37 22.46	-74 24.56	415.560		979926.937	26.424	11.441	879948.427
	11300	37 22.45	-74 24.91	416.960	0.000	479936.426	28.840	11,291	479941.437
113	11400	27 22.43	-74 24.44	420,460	0.000		26.842	11.202	478048.437
114			.74 24.64	421.640		474435.147	26.466	11,076	879849.376
115	11600	37 22.42	-74 24.81	422.530		171136.000	24.406	10,010	670848.378
114	11600	37 22.42	.74 24.74	425.450		979924.447	26.322	10.811	879949.276
117	11700	37 22.42	-74 24 73	424.540	4.000	171134.600	26.240	10.701	070040.371
114	11400	37 32.40		428.900		070034.276	24.342	10.733	876849.376
110	11100	37 22.40	-76 24.44 -78 24.44	431,140	0.000	171114.260	25.434	10.731	879848.376
120	12000	37 22.40		437.340		979924.147	26.444	10.717	878848.376
121	12100	27 22.40	.74 24.40	422.700	0.000	919833.937	24.207	10.401	070040.376
122	12200	37 28.34	-74 24,66	436.700		071111.750	24.274	10.614	076040,378
123	12300	37 22.34	-74 24,51	434.050	*******	070033.662	26.446	10.506	070040.374
124	12400	37 22.34	-74 24.46	442.410		070033.312	25.600	10.511	075046.276
125	12500	27 22.34	-14 24.43	445.440		079922.042	26.441	10.476	876849.312
126	12400	37 32.37	-74 24.34	444.340	*******	074933.125	26.767	10.842	.70141.312
127	12700	37 23.34	-76 24,34	446.330		979933.062	26.466	10.467	876949.313
124	12400	37 22.36	*76 34,31	444.170	********	171133.250	26.424	10,440	878849.250
129	12100	37 32.33	.74 24.24		********	979933.626	25.644	10.443	47444.240
130	12000	37 32.32	.74 24.26	434.740		070033.412	26.297	10,601	878546.260
131	12100	37 22.20	-74 24.21	430.960	1.041	170034.125	25.411	10.761	876949.167
132	12200	37 22.26	*74 24.14			670634.312	26.202	10,713	.7.049.126
133	12300	17 22.26	*74 24.11	424.020		070034.167	24.104	10.646	070040.126
124	12400	37 22.23	-74 24.04	434.670		979934.125	25.002	10,494	.7
136	13500	37 22.23	.74 24.65	422.440	0.000	070034.437	21.011	10.422	079949.124
134	13400	27 22.23	-76 24.01		0.000	070024.562	24.925	10.624	879649.128
137	12700	37 22.22	-78 23.86	418.280		070034.075	24,444	10.497	879849.126
124	12400	17 22.23	*74 23.93	412.990	*******	979936.126	24.424	10.742	
136	13100	37 22.23	-74 23.44		*******	070035.250	24.414	10.701	878945.126
144	14000	37 22.23	-74 23.44	410.370	0.000	979936.437	24.766	10,011	970040.126
141	14100	37 22.83	*74 23.41	464.440		070036.437	24.417	10,736	878840.126
148	14200	37 22.23	*76 23.76	407.010		470926.427	24.474	10.432	070040.126
143	14300	27 22.23	*74 23,72	406.450		070028.862	24.676	10.410	670041.126
144	14400	37 22.23	-74 22.64	404.620	********	070026.427	24.718	10.767	874941.126
146	14600	37 22.23	-74 23.64	404.440	********	979926.250	24.046	10.423	.74045.124
144	14400	37 81.12	-74 21.40	411.120		979936.126	24.044	10.442	971141.062
147	14700	37 22.20	*74 23.64	413.640		171116.000	26.067	10,004	878841.062
146	14400	37 22.14	.74 23.61	414.130	•.•••		24.014	10.662	974845.000
148	14800	37 28.17	-74 22.44	416.210		079934.436	44.010		

STATE ROAD	634 -	GRAVIT	Y READ	INS		A T 1 * H 6	,
STA HAME AND NUM	LATITUDE MORTH +	LONGITUDE GAST +	ELEVATION FEET	SUPP ELEV METERS	MEAL &	PREE AIR	-

STA WAME A		LATITUDE	LONGITUDE	ELEVATION FEET	SUPP ELEV	MEAL .	PREE AIR		ION 6
		MORTH .	CAST +				20.123		.7,,,,,,,,
3 8488	1021	27 17.60	-76 23.49	299.700 472.220	•.000 •749.212	070932.476 070944.125	22.426	17.765	171164.447 -
1	1000	37 24.43 37 24.43	-74 22.61 -74 23.60	449.970	0.000	979844.147	33.625 23.670	17.640	
2	3000	37 24:42	-78 23.64	466.560	********	970044.147	33.413	17.500	679866.647
Ĭ.	4000	27 24.40	.76 22.63	466.170	•••••	979847.937	32.000 32.400	17,145	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•		27 26.77 27 26.76	·76 23.63	443.440	1.004	.7.047.447	32.444	16.441	678864.662
•	7000	37 24.73	-74 23.43	466.920		878947.478	32.694	14.907	979164.862
•		27 24.70	-74 23.39	462.710		979944.147	32.246	14.848	874444 433
•	1000	27 24.67	.76 23.34	447.990	-2404.044	979948.425	32.362 32.314	17,141	070066.437
10	11000	37 24.62	·78 23.26 ·78 22.26	445.000	.2045.604	870944.760	32.262	17.043	878864.376
11	12000	27 24.60 27 24.67	·74 23.34	444.530		979944.425 579844.750 979944.500 979944.502 979944.212 979949.125 979949.125 979946.127 979944.212 979944.325	32.270	17.041	070064.212
ii	13000	37 26.52	.74 23.24	449.470		970048.312	32.336	16.992 17.046	070068,260
14	14000	27 24.50	•74 23.33	443.440	•.•••	878744.626	32.219	17.212	979958,147
16 16	15000	27 24.40 27 24.46	-76 22.23 -76 22.31	436.310	-2104.044	\$70945.250	32,176	17.201	878864.126
17	17000	37 24.42	-76 23.20	435.700	0.000	179940.212	22.177	17.316 17.330	670064.126
18	14000	37 24.34	-74 23.25	427.440		878848.187 878844.426	22.240 22.225	17,140	P74954.000
10	20000	37 24.36 27 24.32	-78 23.29 -78 23.28	440.990	0,000	979948.750	32.247	17,224	878647.937
21	21000	37 28.24	-74 23.26	434.050	•.•••	979948.842	31.446	16.926	979967.476
22	22000	37 24.27	.76 23.23	434.020	********	479944.780	31,004	17.036 17.042	978867.A12
23	23000	27 26.23 27 26.22	-76 23.21 -76 23.16	434.320	1.044	878844.612	31.644	17.062	870967.412
26	21000	27 24.20	-99 44	434.620		179944.500	31.407	14.010	070067.412
26	24000	37 24.20	-74 23.11 -74 23.04 -74 23.03 -74 23.00	434.110		179844.437	31.494 31. 03 4	16.644 16.602	979888.667 979888.667 979888.662 979888.662 979888.662 979888.662 979888.437 979888.378 979988.378 979988.378 979988.378 979988.167 979988.128 979988.128 979988.787 979987.612 979987.612
27	27000	27 24.18	•76 22.06	425.640	********	474444.475	30.727	16.262	
24	24000	37 26.16 37 26.17	-74 23.00	418.110	********	070048.812		16.177	979967,740 978867,740
1 .	30000	37 28.17	-76 22.00	415.000		070048.642 079048.612 079048.612 079048.612 079048.620 079048.427 079048.427 070048.612 070048.750 070048.750 070048.750 070048.750 070048.750 070048.750 070048.750 070048.750 070048.750	30.546	14.344	
31	31000	37 20.16	-74 22.91	413.740	1.044	979948.280	30,430	16.316	878867.447
32	32000	37 34.12 37 28.04	-74 22.49 -76 22.69	410.730	•.•••	670049.312	10,254	t4.346	979967.647 979967.642 979967.662 979967.600 979967.437
34	34000	37 24.03	-78 22.01 -78 22.01 -78 22.05 -76 22.06 -78 23.00 -78 23.01	412.490		970949.167	20,444	14.260	070067.662
36	28000	37 34.02	-74 22.05	418.010	1.044	171141,000	30.827 20.446	14,272	170167.600
34	34000	37 27.67 37 27.67	*76 22.96	407.260	-2887.100	979948.427	30.274	14.344	978867.437
56	34000	37 27.83	-78 23.01	407,000	1,041	979949.500	30.374	14.491	070067.276 070067.276
30	31000	37 27.83 37 27.82 37 27.67	.74 23.03	404.470	0.000	474144.280	20,242 20,143	16:104	979967.212
40	41000	37 27.07	-74 23.03 -74 23.01	467.670	0.000	978944.412	20.611		679867.260
42	42000	37 27.42	-74 23.00 -74 22.04	297.200		979940,125	21,241	16.733	171161.240
42	42000	37 27.78	-78 22.04	312.030	0.000	979848.437	20.130 24.024	16.844	979967,187 974967,126
44 45	44000	37 27.76 27 27.72	-74 22.85 -78 22.86	292.740	********	179949,126 179949,000	24.014	16.444	079967.126
77	41000	27 27.70	-74 22.81	317.700	*******	970944.662	24.912	16.347	079967.107 979967.125 979967.126 979967.042
47	47000	27 27.68	.74 22.40	300.520	********	876948.126 978948.187	24.471 24.470	15.045 -	978957.062 978957.000 978856.827 978956.875 978956.612 979956.750 979956.750 979956.750 979956.647 978956.647
44	44000	27 27.65	-74 22.44	394.100	********		24.321	14.744	479954.937
50	50000 51000	37 27.40	-74 22.81 -76 22.60	207.010		979947.412 979947.600 979947.642 979947.642	24.264	14.723	.7
61 62	62000	27 27.67 27 27.63	.74 22.74	396.170		979947.600	27.868	14,466 -	979966.412
6.3	£3000	37 27.62	.78 22.74	395.460	-749.312	171947.862	27.044	14,466	979986.612
54	64000	37 27.50	.14 22.70	394,250	0.000	979947.562	27.672	14.517	#79966.760
11	66000	37 27.46 37 27.47	·70 22.63 ·70 22.60	347.730		979947.812	27.692	14.344	179956.647
67	67000	37 27.46	-74 22.64	346.620	2.004	979947.812	27.410	14.267	979986.447
5.6	51000	27 27.42	.70 22.64	342.670	9.998	979947.937	26.944	14.024	979986.647
10	40000	37 27.43	•78 22.63 •78 22.61	374.320	0.000	979947.937	26,726		
61	41000	37 27.40 37 27.37	-74 22.60	372.550	- 2404 . 046	979947.562 979947.612 979947.612 979947.827 979947.927 979947.927 979944.187 979944.128 979944.280 979944.376	26.666	12.951	979986,626 979986,800 979986,800 979986,800 979986,437 979986,437 979986,375 979986,312 979986,312 979986,312 979986,312
42	42000	27 27.33	-76 22.48	344.990	- 2041.104	979944.126	26.336 24.186	13.744 13.666	471166.600
43	43000	37 27.32 37 27.28	•74 22.46 •76 22.46	361.440 363.740	•.•00 •.•00	171144.427	26.179	12.773	.7.544.437
44	44000	37 37.27	-74 22.41	340,740		179944.376	25.912	12.607	070186.437
4.6	66000	37 27.25	.76 22.36	267.230		979948.376	25.576 26.330	13.302	979988.376 878986.374
67	47000 44000	37 27.22 37 27.20	-76 22.34 -76 22.31	364.050 362.410	*3101.044 0.000	97994.376 979948.375 979948.375 979948.250 97984.250 97984.000 979947.467 979947.500 979946.937 979946.627	25.223	13,204	170066.212
44	44000	37 27.20	-76 22.25	362.330	0.000	171944.250	26.074	13.067	679966,312
10	70000	37 27.14	-74 22.28	363.670		171144.000	24.941	12.022 12.464	470866.312
71	71000	27 27.17	•74 22.26 •74 22.23	357.450 360.350		474947.667	26.167	12.667	171166,240
72 73	72000 73000	37 27.13 37 27.12	·74 22.20	343.150	0.000	979946.837	24.464	12.476	175554.187
14	74000	37 27.08	.76 22.18	364.610		679946.626	24.734	12.214	670056.167
75	71000	37 27.05	-74 22.16	164.000	1.044	171144.662	24.69 6 24.466	12.240 12.144	979986.126
26	74000	37 27.03 37 27.00	-74 22.13 -76 22.11	361.270 357.400		979946.862 979946.862 979946.750 979944.937 979947.187 979947.125 979947.042	24.339	12,136	67886.187 97886.126 97886.042 97886.042
77	71000	37 27.00	-74 22.00	363.470		171144.937	24,203	12.140	979988.000
7.0	71000	37 24.95	.74 22.04	360.760		979947.147	24.200	12.246 12.126	979988.937
40	80000	37 26.93	.74 22.05	346.620 347.950	********	979947.128	24.022 23.860	12.126	978856.927 97865.927 97865.476 979865.476 978965.760 978866.760
41	41000	37 24.90 37 26.44	·76 22.01	347.950		171147.062	23.406	11.977	179966.476
62 A3	43000	27 26.45	-74 21.98	346,660	1 044	979947.062	23.761	11.941	979955.412
**	44000	37 26.42	-74 21.95	244.420	0.000	979947.062 979947.250 979947.250 979947.250 979947.350 979947.362 979947.867 979947.867	23.476 23.434	. 12.124	978985.780
4.5	44000	37 26.80	-74 21.93 -74 21.91	343.600 343.160	0.000	171147.250	23.642	12,134	
4 6 4 7	4 7 0 0 0	37 26.77	.74 21.49	341.800	1.044	179147.210	23.726	12.077	.7.16.626
**	4 4 0 0 0	37 26.70	-78 21.66	341.210		979947.378	23.467	12.210 11.881	979966,626 979966,642
4.4	4 1000	37 26.66	-78 21.88 -78 21 88	330.800	0.000	*7**47.062	23.481	13.323	
11	11000	37 24.40	-74 21.44		.2547.100		11.601	12,220	
12	83000	37 26.67	.74 21.45	324.430	0.000	979944.374 979944.647	23.479	12.407 12.311	876966.431 979986,376
13	93000	37 26.55	•74 21.43 •74 21.43	318.040		979944.887	23.076	12.447	170116.312

STATE ROAD 634 - GRAVITY READINGS

PRINCIPAL PACTS AT ERAVITY STATIONS LATITUDE LONGITUDE ELEVATION SUPP ELEV OBSERVED & PRES AIR HORTH + EAST + FRET METERS MCAL MGAL ----MEAL MEAL 12.810 970985.212
12.409 970985.250
12.765 970985.260
12.765 970985.167
12.806 970985.167
12.806 970985.167
12.772 970985.125
12.772 970985.062
12.731 970985.062
12.731 970985.000
12.617 970985.000
12.647 970986.003 22.004 22.628 22.649 22.244 22.629 22.641 23.112 23.401 -76 21.40 -76 21.75 -76 21.75 -76 21.76 -76 21.64 -76 21.64 -76 21.64 -76 21.65 -76 21.61 -76 21.61 -76 21.42 -76 21.43 -76 21.43 -76 21.24 37 26.46 31 26.47 31 26.42 37 26.42 37 36.49 37 26.37 31 26.37 37 26.32 37 26.32 37 26.32 37 36.32 37 36.32 37 36.32 37 36.32 85000 96000 97000 95000 10000 10100 10200 10200 10500 10500 10600 10600 10600 10600 96 97 98 99 100 101 102 103 104 105 22.401 23.404 24.145 24.831 25.120 25.648 26.832 12.447 97884.937
12.459 97084.673
12.452 97084.673
12.452 97084.612
12.311 97084.612
12.324 97084.627
12.351 97084.627
12.452 97084.627
12.454 97084.627
12.454 97084.627
12.454 97084.627
12.454 97084.627
12.452 97084.562
12.451 97084.627
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.562
12.452 97084.352
12.452 97084.352
12.452 97084.352
12.452 97085.375
12.452 97085.375
12.452 97085.375
12.354 97083.875
12.355 97085.375
12.356 97083.875
12.357 97083.875
12.358 97083.875
12.358 97083.875
12.358 97083.875
12.358 97083.875
12.358 97083.875
12.358 97083.875 978944.427 978944.124 978944.903 978943.937 978943.250 978943.250 978943.237 978943.375 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 978941.647 26.130 26.764 25.677 25.432 25.504 25.825 26.282 26.282 26.282 26.282 26.282 26.282 27.264 27.262 27.262 27.263 27 1100 11100 11200 11200 11200 11500 11600 11700 11600 -78 21.26 -78 21.26 -78 21.37 -78 21.37 -78 21.37 -78 21.37 -78 21.18 -78 21.18 -78 21.19 -78 21.13 -78 21.13 -78 21.13 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.09 -78 21.10 -78 21.10 -78 21.10 -78 21.10 -78 21.10 -78 21.10 -78 21.09 349.740 337.370 344.800 344.800 344.400 391.440 397.390 410.490 410.490 421.140 422.140 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 423.640 424.710 424.710 425.740 426.740 427.400 428.740 429.740 440.740 440.740 441.640 441.640 442.020 443.640 444.640 445 111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12000 12100 12200 12300 12400 12500 12500 12700 13100 13200 13200 13400 13500 13500 13500

U.S. HIGHWAY 60 - GRAVITY READINGS

PRINCIPAL PACTS AT GRAVITY STATIONS ELEVATION SUPP ELEV DOSERVED G PREE AIR BOUGUER PEET METERS MGAL MGAL MGAL MGAL LATITUDE NORTH + UAR THEOR C

14.540 970942.250
12.410 970958.475
13.220 970958.497
13.304 970958.927
13.304 970958.927
13.304 970958.000
13.146 970958.002
12.754 970958.002
12.754 970958.125
12.402 970958.125
12.402 970958.125
12.404 970958.127
12.504 970958.127
12.504 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.404 970958.127
12.405 970958.210
12.406 970958.210
12.407 970958.210
12.408 970958.210
12.409 970958.210
12.409 970958.210
12.409 970958.210
12.409 970958.210
12.409 970958.210
12.409 970958.210
12.409 970958.212
12.409 970958.212
12.409 970958.212
12.409 970958.212
12.409 970958.212
12.409 970958.212
12.409 970958.212
12.409 970958.213 979932.875
979954.312
979954.467
979955.475
979955.407
979955.407
979955.407
979955.407
979955.407
979955.407
979953.407
979953.842
979953.842
979953.842
979953.842
979953.475
979953.427
979953.427
979953.427 24.172 22.726 23.164 23.179 23.179 23.27.44 21.285 22.744 21.285 22.321 -78 23.89
-78 19.01
-78 19.05
-78 19.05
-78 19.12
-78 19.12
-78 19.21
-78 19.21
-78 19.24
-78 19.34
-78 19.42
-78 19.42
-78 19.51
-78 19.54
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 19.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.64
-78 20.68
-78 20.68
-78 21.66
-78 21.67
-78 21.67 1031 20100 20100 20100 20100 20100 20100 11900 11900 14900 14500 14500 11700 1000 1112145474501234567457456745 18300 18100 14100 14700 14800 97988.500 97882.400 879882.500 979882.500 97988.862 97988.62 97988.62 97988.62 97988.62 97988.647 97988.647 979065,276 979065,667 979065,667 979065,269 979064,667 979064,167 979062,12 979062,042 979062,760 979062,376 12.631 13.175 13.271 13.463 13.626 13.479 13.447 13.342 12.666 13.62 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 13.403 14.603 14. 22.083 22.425 23.425 23.908 24.274 24.674 24.674 24.865 24.24.93 26.876 25.265 25.265 25.265 25.685 25.685 25.64 14300 14100 13100 13100 13100 12100 12100 12100 12100 12100 11100 11300 979958,760 679968,760 979968,612 979968,612 -78 21.14 -78 21.16 -78 21.23 -76 21.26 11100 37 29.66 37 29.67 37 29.68 37 29.68

STATE ROAD 622 - GRAVITY READINGS

PRINCIPAL PACTS AT GRAVITY STATIONS LATITUDE LONGITUDE ELEVATION SUPP ELEV OBSERVED 6 PREE AIR BOUGUER MORTH + EAST + PERT METERS MGAL MGAL MGAL | REAT | Supple | Company 905048 THEOR 6

14.540 979942.250
10.553 979965.750
10.554 979965.627
17.552 979965.627
17.552 979965.627
17.526 979965.627
17.526 979965.627
17.526 979965.600
17.307 979985.500
17.307 979985.500
17.307 979985.300
17.307 979985.300
17.308 979985.301
18.640 979985.312
18.647 979965.312
18.647 979965.312
18.647 979965.312
18.647 979965.312
18.648 979965.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321
18.708 979985.321 STA MAME AND NUM 74.173
31.323
31.000
30.403
30.205
20.964
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20.407
20 37 17.60 37 33.64 37 33.62 37 23.62 37 23.67 37 23.67 37 23.67 37 23.40 37 23.40 37 23.40 37 23.40 37 23.40 37 23.26 -78 23.89 -78 17.63 -78 17.63 -78 17.64 -78 17.64 -78 17.64 -78 17.64 -78 17.62 -78 17.51 -78 17.51 -78 17.51 -78 17.84 -78 17.45 -78 17.45 -78 17.45 -78 17.45 -78 17.24 -78 17.24 -78 17.24 -78 17.24 -78 17.24 -78 17.24 -78 17.24 -78 17.26 -78 18.68 -78 18.68 -78 18.68 -78 18.68 2 BASE 1031 1000 1000 1000 1000 1000 1000 11000 12000 14000 15000 11000 117000 11000 12000 21000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20000 27.241 27.213 27.120 27.357 27.370 27.165 27.025 26.936 26.416 15,402 979044.626 14,509 979084.626 14,006 979084.652 14,006 979084.662 14,006 979084.662 14,006 979084.652 14,442 979084.437 14,244 979084.437 37 32.82 37 32.66 37 32.67 37 32.67 37 32.67 37 32.67 37 32.68 37 32.68 -78 16.40 -78 16.43 -78 16.34 -78 16.31 -78 16.25 -78 16.23 -78 16.21 -78 16.20 42000 43000 44000 45000 46000 47000 14,213 979984.378 979984.312 979984.312

346.300 366.670 370.410

APPENDIX III

LISTING OF GEOLOGIC DATA

Below are a listing of structural readings taken during the course of this investigation. The legend that follows is a reference to where the readings were taken.

LEGEND

Location

629: B, C, D, E: The location of these readings are from State Road 629 in the Gold Hill quadrangle, at Winston Lake. The readings are from SE to NW away from Winston Lake along the blue line valley leading toward State Road 629.

R.R.: N, S, 2N, 3N, 3S: The location of these readings are from the Railroad Cut approximately 1/2 mile west of the Farmville Train Station. The train station is located off business 460 in Farmville, Virginia (Farmville Triangle).

R.C: 1, 2, 3, 5: The location of these readings are from Rock Creek, off of U.S. Highway 60. Readings 1, 2, and 3 are from the creek south of U.S. 60, while the fifth location was along the creek north of U.S. 60. Rock Creek is located in the northern portion of the Hillcrest Quadrangle, at the U.S.

Highway 60 Bridge.

US60: The location of these readings are from a blue line creek that parallels U.S. Highway 60 at the Buckingham and Cumberland County crossing. The creek is located north of U.S. Highway 60 in the Hillcrest quadrangle.

634: The location of these readings are from a blue line creek south of State Road 634 in the western portion of the Hillcrest quadrangle. The stream starts at the base of Bridge 289 along State Road 634 approximately 2 kilometers west of Browns Store on State Road 45.

636: 1, 100, 17DC, PC: The location of these readings are from creeks that run along State Road 636. Locations 1, 100, and 17DC are from Dry Creek starting at Raines Tavern and ending where Dry Creek crosses State Road 600. All readings are located in the north east portion of the Farmville quadrangle. The readings at the PC location are from Perkins Creek. The readings start at Bridge 366 along State Road 636 in the Willis Mountain quadrangle and continue west until Perkins Creek forks.

460: E and W: The location of these readings are from creeks that parallel U.S. Highway 460, in the southern portion of the

Farmville quadrangle. The E location readings start at a blue line stream that starts at the intersection of U.S. Highway 460 and U.S. Route 15. The stream lies south of U.S. 460E, and terminates at Buffalo Creek. The W location readings start at a blue line stream that begins at the intersection of U.S. 460 and State Road 45. The stream lies north of U.S. 460 and terminates at Little Buffalo Creek.

Plant: The location of these readings is at the City Of Farmville Treatment Plant, off of U.S. Highway 460 business in the Farmville quadrangle.

138 : The location of these readings is from the Ganaway Creek north of the Appomattox River in the south western portion of the Farmville quadrangle. The readings start where Ganaway Creek crosses State Road 683 and continue southward until the Buckingham and Cumberland county line.

KFC: The location of these readings is from an outcrop located at the Kentucky Fried Chicken off of U.S. Highway 460 business in the City of Farmville.

CAMP: 1, 2, 3: The location of these readings are from a creek located north of the Bear Creek campground in the Gold Hill quadrangle. The readings start at the terminus of the creek, at the dam, and continue until the creek forks.

Marr : 2: Theses locations all come from strikes and dips on the geologic map of the Willis Mountain quadrangle (Marr, 1980).