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Abstract. The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes asso-
ciated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes
as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as
the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that
enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the
landscape in the form of embankment construction has terminated this pathway of sediment delivery for much
of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting > 1 m below mean
high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding
of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we
combine time series observations of water level, salinity, and suspended sediment concentration with ship-based
measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible
range of variability, cross-channel transects designed to encompass a 12.4 h tidal cycle were performed in both
dry and wet seasons during spring and neap tides.

Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local
salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges–Brahmaputra–
Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal
variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sed-
iment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport
an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment
transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and wa-
ter discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and
Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and
tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme
of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment
delivery to the region, which are especially important in predicting and preparing for responses of the natural
system to ongoing environmental change.
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1 Introduction

The world’s great deltas are currently threatened by a va-
riety of factors, including global sea-level rise (Overeem
and Syvitski, 2009), overpopulation (Ericson et al., 2006),
changes in sediment supply (Syvitski, 2003; Syvitski and
Milliman, 2007; Anthony et al., 2015; Darby et al., 2016;
Best, 2019), and other human-related activities such as wa-
ter diversions, flood control structures, and groundwater and
hydrocarbon extraction (Syvitski et al., 2009). The Ganges–
Brahmaputra–Meghna (GBM) delta is one of the most heav-
ily populated regions that is undergoing locally accelerated
sea-level rise (∼ 0.5 cm yr−1; Higgins et al., 2014) due to a
combination of natural and anthropogenic factors including
eustatic sea-level change, tectonic subsidence, fine-grained
sediment compaction, and groundwater extraction (Overeem
and Syvitski, 2009; Syvitski, 2008; Steckler et al., 2010). In
addition, when factors such as tidal amplification due to an-
thropogenic reworking of the distributary channel network
are considered, the relative rate of sea-level rise can exceed
1.6 cm yr−1 (Pethick and Orford, 2013). Furthermore, the fu-
ture viability of the delta is threatened by the proposed con-
struction of dams and water diversions associated with In-
dia’s National River Linking Project, which, if completed
as proposed, could drastically reduce sediment delivery to
Bangladesh (Higgins et al., 2018).

Restoration of land-surface elevation in many populated
areas in the GBM delta is already necessary due to the rela-
tive loss in elevation that has occurred since the widespread
construction of embankments during the 1960s to 1980s.
Both planned (tidal river management) and unplanned (em-
bankment failures) flooding of local polders (the embanked
islands) has demonstrated the capacity of the natural system
for effective sediment transport and deposition, with decime-
ters of annual accretion observed during recent breach events
(Khadim et al., 2013; Auerbach et al., 2015; Kamal et al.,
2018; Darby et al., 2018). One of the most important strate-
gies that has been forwarded to reduce the threat of unin-
tended inundations in SW Bangladesh is a plan for polder
management (Brammer, 2014). However, many questions
concerning potential management strategies remain, not the
least of which are an accurate quantification of total avail-
able sediment mass and an understanding of the tidal pro-
cesses involved in its transport and deposition. Toward these
goals, the present study provides observation-based calcula-
tions of water and sediment transport through a major tidal
channel in the delta across spring–neap tidal cycles and sea-
sonal timescales, with the goal of identifying the timing and
magnitude of mass sediment exchange between the different
tidal channels. Not considered in the present study are the
potential impacts of tropical cyclones, which directly impact
Bangladesh 0.3–1.5 times per year (Murty et al., 1986; Alam
et al., 2003; Saha and Khan, 2014) and can significantly af-
fect the local landscape (Auerbach et al., 2015). The results
presented herein are considered in the context of prior re-

search concerning sediment accumulation and rates of chan-
nel infilling to better understand the role of tidal mass trans-
port within the lower GBM delta plain.

2 Background

Much of the low-lying coastal region of SW Bangladesh is
under threat of long-term inundation (Auerbach et al., 2015;
Brown and Nicholls, 2015). The risk is particularly acute for
islands that were embanked (“poldered”) in the 1960s and
1970s as part of a program designed to increase the area of
arable land through the prevention of tidal inundation in agri-
cultural areas (Islam, 2006; Nowreen et al., 2014). Approxi-
mately 5000 km of polder embankments were built by hand,
generating 9000 km2 of new farmland, but also eliminating
the semi-diurnal exchange of water and sediment between
the tidal channels and tidal platform (Islam, 2006; Nowreen
et al., 2014). As a result, sediment resupply pathways have
been effectively terminated and the former floodplain surface
in these regions now lies 1.0–1.5 m below mean high water
due to a combination of sediment starvation, enhanced com-
paction, and tidal-range amplification (Auerbach et al., 2015;
Pethick and Orford, 2013).

In contrast to the poldered landscape, the adjacent man-
grove system of the Sundarbans National Forest is primarily
inundated during spring high tides, and its sedimentation and
vegetation are keeping pace with sea-level rise (Rogers et al.,
2013; Auerbach et al., 2015). Protecting the Sundarbans Na-
tional Forest is of critical importance, as coastal wetlands and
mangroves provide irreplaceable ecosystem services includ-
ing storm-surge buffering (Uddin et al., 2013; Marois and
Mitsch, 2015; Hossain et al., 2016; Sakib et al., 2015), serv-
ing as effective carbon traps (Mcleod et al., 2011; Alongi,
2014; Pendleton et al., 2012), and perhaps even helping to
combat the impacts of ocean acidification (Yan, 2016).

For the GBM delta, a unit-scale analysis of mass balance
(Rogers et al., 2013) suggests that the annual sediment load
of the GBM river system (∼ 1.1 Gt yr−1) is sufficient to ag-
grade the entire delta system at rates ≥ 0.5 cm yr−1 and thus
provides potential to keep pace with moderately high rates
of sea-level rise. Such aggradation, of course, requires ef-
fective dispersal of riverine sediment to disparate regions of
the delta. Recent research suggests a close coupling of dis-
charge at the river mouth to sediment deposition in the re-
mote delta plain by way of tidal exchange (Allison and Kep-
ple, 2001; Rogers et al., 2013; Auerbach et al., 2015; Wil-
son et al., 2017). Such tidally supported sedimentation yields
mean accretion rates of ∼ 1 cm yr−1, with local observations
regularly reaching 3–5 cm yr−1, which together indicate ro-
bust sediment delivery to the Sundarbans and SW coastal re-
gion (Rogers et al., 2013; Rogers and Overeem, 2017). Thus,
as the principal conduit for sediment that can maintain the
elevation of this region, an understanding and quantification
of the tidal water and sediment exchange is essential to fore-
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see impacts of accelerated sea-level rise and the potential for
mitigation.

3 Methods

3.1 Study area

Our research concerns a network of tidal channels located
approximately 80 km from the coast along the Pussur River
system, itself one of five similarly sized tidal distributary net-
works (Fig. 1). Tidal exchange extends > 120 km inland of
the coast along the Pussur River, with one branch ultimately
connecting to the Gorai River, a distributary of the main-
stem Ganges River (Fig. 1). The tidal range along the Pus-
sur River approaches its maximum in the study area at 4–
5 m for the spring tidal range compared with 3–3.5 m on the
coast at Hiron Point. The area is also societally relevant, ly-
ing at the transition from the pristine Sundarbans Forest to
the embanked polders near the formerly active shipping port
of Mongla and cyclone- and flood- impacted island of Polder
32 (labeled P32 in Fig. 1; Auerbach et al., 2015).

Within this area, our observations were collected in the pri-
mary tidal channel of the Shibsa River and two of its major
bifurcations that connect with the Pussur channel, the Dhaki
River and Bhadra River (Fig. 1). The Shibsa River is the
largest of these channels, with local widths of 1–2 km com-
pared to 0.25–0.8 and 0.15–0.3 km for the Dhaki and Bhadra,
respectively. At its eastern extent, the Dhaki River connects
to the Pussur, serving as the first major cross-channel to
link the Shibsa and Pussur River channels after they bi-
furcate ∼ 60 km to the south (Fig. 1). At its upstream ex-
tent, the Pussur tidal channel connects with the downstream
mouth of the Gorai River, which delivers a water discharge of
∼ 3000 m3 s−1 during the monsoon season and decreasing to
∼ 0 m3 s−1 during the dry season (Winterwerp and Giardino,
2012). Salinity in the study area ranges from 0–1 PSU dur-
ing the monsoon to 20–30 PSU during the dry season (Shaha
and Cho, 2016; Ayers et al., 2017). This seasonal variation
in salinity is controlled by local runoff, freshwater discharge
from the Gorai River, and to a much larger extent, the mag-
nitude of the regional discharge plume of the GBM rivers
(Rogers et al., 2013).

3.2 Hydrodynamic observations

To establish tidal stage and capture surface-water elevations
during the hydrodynamic surveys, pressure sensors were de-
ployed at multiple locations across the study area (Fig. 1).
All sensors were deployed as close to low water as possible
and recorded at 5 or 10 min intervals. Periods of subaerial
sensor exposure (of up to 150 min at low tide) were interpo-
lated using a robust ordinary least-squares method provided
by Grinsted (2008). The agreement between measurement
and prediction was generally good, with the predicted range
being 0.98 of the measured range for a given time period,

thus suggesting that the interpolated data are both reason-
able and conservative. The values reported herein are of the
interpolated values. Tidal range, water temperature, and con-
ductivity have also been monitored continuously since 2014
at the Sutarkhali station (Fig. 1b), with an optical backscat-
ter sensor (OBS) calibrated to measure suspended sediment
concentration (SSC) added in late March 2015. Prior to de-
ployment in the tidal channel, this OBS was used to measure
vertical profiles of SSC on the Shibsa River, with simulta-
neous water samples being collected to calibrate the instru-
ment response to SSC. Water samples were filtered using pre-
weighed 0.4 µm nitrocellulose filters and washed with fresh-
water to remove salts. The filters were then dried overnight
and reweighed to determine the volume concentration of sed-
iment. The OBS measurements were calibrated by compar-
ing the voltage response observed in the field with the mea-
sured concentrations from the same time and location in a
method modified from Ogston and Sternberg (1999). Corre-
lation between filtered samples and instrument voltage was
strong, with an average r squared value of 0.83 ± 0.1. While
the sediment concentrations recorded by this near-bed instru-
ment are not directly comparable to the depth-averaged mea-
surements made during the present cross-channel surveys,
we herein use these data to extend our understanding of sys-
tem behavior between the dry and monsoon seasons. For a
broader context, data from the sensors deployed at the Su-
tarkhali station are also compared to monthly averaged water
discharge for the Ganges and Brahmaputra rivers for the pe-
riod 1980–2000 based on data from the Bangladesh Water
Development Board and Ganges River sediment discharge
data digitized from Lupker et al. (2011).

To quantify water and sediment flux in this area of the tidal
transport system, cross-channel hydrodynamic surveys were
conducted during spring and neap tidal conditions at two
transects on the Shibsa River during the dry (March 2015)
and wet (August–September 2015) seasons. An additional
wet season transect was also conducted during moderate
tides on the Pussur River. On the Shibsa River, the south-
ern transect was located south of the poldered landscape and
entirely within the confines of the Sundarbans Forest (Fig. 1).
The northern transect was located ∼ 12 km upstream in the
poldered region, just south of the Dhaki–Shibsa confluence
and adjacent to Polder 32 to the east and Polder 10–12 to
the west (Fig. 1b). Two secondary channels are present be-
tween these transect locations that divert water onto the Sun-
darbans tidal platform and associated creek network. Dry
season surveys at both the southern and northern transects
took place during peak neap (15–16 March) and spring (21–
22 March) tides. During the ensuing monsoon season, spring
tides were measured on 30–31 August (southern transect)
and 2 September (northern transect), followed by neap tides
on 7 and 8 September (northern and southern transects, re-
spectively). Surveys lasted for 11–13 h as conditions allowed,
encompassing approximately one-half of a tidal cycle (i.e.,
one high and one low tide). Because this system is largely
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Figure 1. (a) Location of Bangladesh and the specific region of interest for this study, as well as the approximate outlines of the five major
tidal distributary basins of the SW delta in purple. (b) Satellite image of P-32 study area, with bathymetry overlain in the regions of the
northern and southern transects. Long-term and short-term pressure sensor locations are also identified. (c) Characteristic river cross sections
for the northern and southern transects. The specific transects used for these cross sections are highlighted in black in (b).

semi-diurnal with a minimal mixed component, we are con-
fident that this time interval was long enough to accurately
describe the system dynamics.

The surveys were conducted using SonTek M9 multifre-
quency ADCPs to collect flow-perpendicular observations of
current velocity and direction. Data were collected at 1 Hz
using both 1.0 and 3.0 MHz transducers, resulting in vertical
bins ranging in height from 0.1–1.0 m. From these values,
total discharge was calculated by integrating velocity over
space and time. River conventions are used for presenting
velocity and discharge data, wherein positive values refer to
the ebb or downstream direction and negative values to the
flood or upstream transport. A typical survey day included
50–60 individual river crossings at the transect location, mea-
suring cumulative discharge in both directions across the
channel. Examples of cross-channel transects of velocity and
SSC used to compute instantaneous water and sediment dis-
charge can be found in Fig. 2. Because surveys could only
be conducted during daylight hours and as weather condi-
tions allowed, discharge is interpolated to complete a 12.4 h
tidal cycle, which is the average tidal cycle duration in the
area (range: 11.9–13.1 h). By assuming that the change in
tidal prism is negligible between consecutive tides, as sug-
gested by the similarity in tidal elevations (Fig. 3), we can
tile measurements in 12.4 h increments and interpolate using

a cubic spline. Working conditions were particularly chal-
lenging during the monsoon season, resulting in especially
short-duration survey days. In the absence of measured dis-
charge, we use a mass balance approach to constrain the mag-
nitude of the missing tidal-prism data. For the monsoon sea-
son spring tides, we treat the region between the southern
and northern transects and the southern Bhadra River as a
closed system with no long-term (> 1 semi-diurnal period)
water storage. Using measured Bhadra River discharge val-
ues and assuming a negligible to slightly southerly directed
net flux through the adjacent Sundarbans allows us to de-
termine the likely range of values for the unmeasured ebb
prism at the southern transect. For the monsoon season neap
tides, we consider the larger region bounded by the southern
transect to the southwest, the Pussur River below the Dhaki
River confluence to the southwest, and the Bangladesh Wa-
ter Development Board gauging station at the Gorai Railway
Bridge ∼ 275 river km to the north. Balancing the measured
net flux through the Pussur River and the recorded upstream
discharge of the Gorai River of 3000 m3 s−1 with the mea-
sured ebb prism at the southern transect allows us to estimate
the missing southern-transect flood prism. We then repeated
this spring tide procedure to estimate the unmeasured neap
flood prism at the northern transect.

Earth Surf. Dynam., 7, 231–245, 2019 www.earth-surf-dynam.net/7/231/2019/
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Figure 2. Example channel cross sections of velocity and SSC collected near maximum ebb-oriented tides during the wet season at the north
(a) and south (b) transects. Velocity measurements are spatially integrated to compute water discharge. SSC are averaged, with the product
of velocity and SSC used to compute sediment discharge.

3.3 Sediment observations

In addition to water discharge, observations of SSC along
the transect lines were made using a combination of fil-
tered water samples and optical backscatter (OBS) measure-
ments. While the exact sampling method varied depending
on available instrumentation and river conditions, the gen-
eral approach involved collecting OBS profiles to the max-
imum possible depth (< 10 m) at either two (northern tran-
sect) or three (southern transect) locations along the chan-
nel edges and centerline (Figs. 1, 2). OBS measurements
were supplemented by simultaneous water samples (100–
200 mL) collected from various depths using a Niskin sam-
pler, which were used to calibrate the OBS as described
above (Sect. 3.1).

In order to calculate total sediment fluxes, the vertically
and horizontally distributed SSC observations collected for
each channel cross section were averaged to produce a series
of temporally discrete SSC values over the course of one tidal
cycle (Figs. 2, 4). This spatial averaging appears suitable be-
cause the variance was considerably smaller than the tempo-
ral variability associated with tidal discharge and strong sea-

sonal contrasts. Using wet season data as an example, the av-
erage standard deviation of SSC through time at one sample
location was 0.2 g L−1, while the average standard deviation
of SSC between stations at any given time was 0.13 g L−1.
When conditions did not allow samples to be collected at
depths below the water surface, a scaling factor of 1.25 was
applied to account for the higher subsurface SSC, which we
determined by the relationship between depth-averaged con-
centrations and surface concentrations from the other avail-
able data. Similarly, measurements from 15 March (dry sea-
son neap tide) were only collected at depths of 5 and 15 m
and were thus scaled by a factor of 0.81 to be comparable to
other measurements that included surface SSC values.

An important caveat for all SSC measurements is that we
present data collected primarily from the upper water column
and not sampled isokinetically due to instrument limitations
and high current velocities. Thus, our values principally rep-
resent suspended load and do not account for bedload trans-
port, which likely represents an additional component of to-
tal sediment transport. As with our water-discharge measure-
ments, SSC values were calculated over an entire tidal cy-
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cle by repeating a measured time series in 12.4 h increments,
then interpolating using a cubic spline. From these values, the
integrated product of water discharge and SSC yields net sed-
iment flux, which we compute using the time series for each
component as calculated using the aforementioned methods.

4 Results

4.1 Long-term pressure and OBS

At our long-term station deployed in a secondary tidal chan-
nel (Fig. 1), recorded water-level variations show tidal-period
excursions with a range of 1.8 to 4.8 m over the 12 months of
observation (Fig. 3). This variance is, of course, driven pri-
marily by the fortnightly spring–neap tidal cycle, but there
is also a seasonal variability showing the monsoon period
to have a reduced tidal range compared with the dry sea-
son. In this case, the neap tidal range is ∼ 10 % less during
the monsoon season, and the spring tidal range is as much
∼ 20 % less, accounting for a nearly 1 m difference (3.9 m
vs. 4.8 m). This reduced range in the monsoon season, how-
ever, is not manifested in the elevation of high-tide water
levels, which remained largely consistent between seasons.
Rather, the difference is caused by higher water levels dur-
ing low tide (Fig. 3), which has the effect of truncating the
tidal range and yielding an overall higher mean water level.
These higher low-water levels associated with the monsoon
suggest that they are tied to regional freshwater drainage and
discharge. In addition, another contributing factor could be
the seasonally reversing monsoon wind stresses, but such
a setup should enhance high water levels as well, suggest-
ing that they are not the primary cause. Although further re-
search on this topic is needed, these distinctions are impor-
tant herein for understanding the behavior of the tidal delta
plain, as landscape elevations in this region are closely tied
to mean high-tide water levels, and not mean sea level (Auer-
bach et al., 2015). Thus, as first demonstrated by Pethick and
Orford (2013), the monthly mean tide-gauge data often used
to track seasonal to interannual variations in water level may
have relatively little bearing on the tidal inundation period
and sedimentation rates that control tidal-platform elevation
(Rogers et al., 2013).

The arrival of fully freshwater (wet season) conditions
occurs in July, following the peak in Brahmaputra River
water discharge and roughly coincident with peak Ganges
River water discharge (Fig. 4). Coupled with our long-term
pressure gauge, the OBS sensor recorded relatively con-
stant, but low, mean SSC from the late dry season into the
early monsoon period (late March through July), with weak
but noticeable spring–neap variability ranging from ∼ 0.01
to 0.20 g L−1 (Fig. 3). However, moving into peak mon-
soon season, SSC increases markedly from early August
through September, concurrent with the Ganges River sed-
iment discharge peak (Figs. 2, 3). Individual measurements
regularly exceeded 0.50 g L−1 during this time, with max-

ima > 2.5 g L−1 (Fig. 3). SSC variability around the semi-
diurnal tide and spring–neap cycles was greatly enhanced
compared with that during the dry season, with SSC values
during spring tidal cycles exceeding those observed during
neap conditions by a factor of 2–10. By the end of observa-
tions in October 2015, SSC began to drop to levels similar to
those observed in mid-August (0.01–1.0 g L−1; Fig. 3), but
on average remained well above those of the dry season. For
comparison, the mean annual SSC of the main-stem Ganges–
Brahmaputra River is ∼ 1 g L−1, and depth-averaged values
in the main estuary mouth and on the inner shelf commonly
range 2–5 g L−1 during high river discharge (Barua et al.,
1994; Ali et al., 2007). In total, SSC values well in excess
of 1 g L−1 are regularly observed during the wet season from
the main-stem river to the inner shelf and into the tidal chan-
nels of the lower delta plain. These results support previous
evidence for the strong coupling of seasonal river discharge
with penecontemporaneous sedimentation in the remote tidal
delta plain (Rogers et al., 2013).

4.2 Hydrography – water discharge

Dry season tidal range on the Shibsa River, as measured
at Nalian near the northern transect (Fig. 1b), varied from
2.3 m during the neap minima to 5.6 m during spring max-
ima (Fig. 3). The tidal period was slightly longer during neap
tides than spring tides (12.9 h vs. 12.3 h), and the mixed com-
ponent of the semi-diurnal tide was more pronounced, with
consecutive tidal ranges varying by as much as 0.55 m during
neap tides versus 0.23 m during spring tides (Fig. 3). During
the monsoon fieldwork, the tidal range was 2.4 and 4.2 m
for neap and spring tides, respectively. As with the dry sea-
son, total tidal period during neap tides was slightly longer
than spring tides (12.8 h vs. 12.0 h). The mixed semi-diurnal
variability was again greater during neap tides as well, which
varied by as much as 0.25 m, while spring tide variability was
typically < 0.10 m (Fig. 3).

In this study, we calculate the tidal prism by integrating
water discharge over the individual ebb and flood limbs of the
tide, with net discharge calculated as the difference between
them. During the dry season, our observations captured both
peak flood and ebb discharges, with interpolation being used
over the remaining < 5–15 % of the tidal cycle (Fig. 5). Dur-
ing the wet season, field conditions during several surveys
limited our measurement to only a partial tidal cycle (∼ 8–
9 h survey; Fig. 5). Only during northern-transect spring tides
were conditions favorable for collecting observations of sim-
ilar duration to the dry season (∼ 11 h survey; Fig. 5). Within
these limits, however, we have used conservative interpola-
tion methods to generate error-bound estimates of total water
discharge, the resulting patterns of which provide robust ob-
servations concerning system behavior (see Sect. 2; Fig. 5).

The average tidal-prism magnitudes for the northern and
southern transects are 2.1±0.7×108 and 3.4±1.4×108 m3,
respectively. Included in these averages are the absolute val-
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Figure 3. (a) Long-term water-level elevation (blue) and suspended sediment concentration (red) recorded at Sutarkhali. Black is the tidally
filtered water level to highlight seasonal trends of relatively higher water during the monsoon, despite similar maximum tidal elevation. Also
note the arrival of increased SSC associated with monsoon discharge of the GBM, beginning in August. Areas shaded in gray depict the
periods of focused fieldwork, highlighted below in panels (b) and (c). Days on which transect measurements were recorded are noted with
vertical black lines; solid are from the southern transect, and dashed are from the northern transect. In (b), the horizontal red line represents
the maximum SSC observed in the spring–neap tidal cycle following our focused fieldwork, as SSC was not measured at this location
previously.

ues of flood and ebb tidal prisms measured on spring and
neap tides during both wet and dry seasons (Table 1). Thus,
the tidal prism at the northern transect averages only ∼ 60 ±

10 % that of the southern transect regardless of season, even
though they are located just 10 km apart. Most of this differ-
ence in discharge (ca. 80–100 %) can be balanced by water
storage between the two locations, with the product of tidal
range and area between transects being ca. 6.7×107 m3. Con-
sidering differences in seasonal discharge, results show that
the neap ebb prism is ∼ 30 % greater during the monsoon at
both transects, despite having a smaller tidal range compared
with the dry season survey. This difference of 4–6 × 107 m3

equates to an excess ebb discharge of 1800–2800 m3 s−1,
which is about 45–70 % of the mean monsoon discharge of
the upstream Gorai River. We thus take the greater wet sea-
son ebb prism to simply reflect the addition of local freshwa-
ter discharge from the Gorai River (Table 1; Fig. 1).

Strictly speaking, defining a tidal regime as either ebb
or flood dominant refers to the water velocity rather than
discharge (Pethick, 1980; Brown and Davies, 2010). In the
present study, however, we are interested in the net move-
ment of water and sediment and thus refer to a particular
discharge regime as either ebb or flood “dominated” or “ori-

ented” based on the net tidal prism (i.e., the difference be-
tween ebb and flood discharge). With this in mind, our sur-
veys suggest that the system varies between ebb and flood
orientation across both tidal phase and season (Table 1).
For example, both transects during the dry, spring and wet,
and neap surveys show the average ebb tidal prism to be
26±16 % larger than the flood limb. In contrast, the other two
survey periods (dry, neap and wet, spring) yielded balanced
to slightly flood-dominated tidal prisms (9 ± 8 %). In sum-
mary, although our results on water balance are insufficient
for a full understanding of the patterns, a key finding is that
the ebb and flood tidal prisms rarely balance at this location.
These tidal-prism asymmetries appear to be a salient char-
acteristic of the complex, interconnected channel network of
the GBMD tidal delta plain. Thus, even our limited observa-
tions require a lateral (east–west) exchange of water between
the Shibsa and parallel Pussur channels (Fig. 1), which we
presume to be driven by locally nonuniform tidal phasing
within the channel network. Given these emergent circulation
patterns, it is clear that individual channels do not operate as
closed systems and exhibit local nonuniform mass exchange,
providing a first indication of how the morphologic evolution
of this tidal delta plain and its channel network may occur.
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Table 1. Measurements of sediment flux and tidal prism from the Shibsa River. Within each season, the bottom two rows represent measure-
ments taken during spring tides.

Transect Tidal Tidal prism (m3) Sediment load (kg)

Range (m) Ebb Flood Net Ebb Flood Net

D
ry

se
as

on South 2.1 2.00 × 108
−2.00 × 108 4.30 × 105 2.05 × 107

−4.70 × 107
−2.66 × 107

North 2.2 1.40 × 108
−1.50 × 108

−1.30 × 107 1.55 × 107
−2.37 × 107

−8.21 × 106

South 5.5 4.50 × 108
−4.30 × 108 2.30 × 107 1.83 × 108

−2.30 × 108
−4.69 × 107

North 5.7 3.10 × 108
−2.30 × 108 7.90 × 107 2.15 × 108

−1.90 × 108 2.49 × 107

M
on

so
on South 2.7 2.64 × 108

−1.81 × 108 8.28 × 107 4.47 × 107
−3.89 × 107 5.77 × 106

North 2.2 1.83 × 108
−1.06 × 108 7.69 × 107 6.20 × 107

−4.12 × 107 2.08 × 107

South 4 4.71 × 108
−5.12 × 108

−4.16 × 107 3.20 × 108
−3.85 × 108

−6.50 × 107

North 3.9 2.40 × 108
−2.85 × 108

−4.43 × 107 2.54 × 108
−3.31 × 108

−7.65 × 107

Figure 4. (a) Ganges and Brahmaputra River water discharge (Qw)
and salinity measured at Sutarkhali station, demonstrating the re-
duction in P-32 salinity associated with the arrival of freshwater
from the GBM rivers. (b) Ganges River sediment discharge (Qs)
interpolated from Lupker et al. (2011) and SSC measured at Su-
tarkhali station, demonstrating the increase in local SSC coincident
with the peak SSC discharge of the Ganges.

Although relative dominance between the ebb and flood
tidal prisms persistently covaries (as described above), the
mean and instantaneous water discharge (m3 s−1) is almost
always flood dominant (Fig. 6). This circumstance arises
from the significant phase shift that occurs as the tide wave
propagates up channel, resulting in a shorter flood period and
thus higher peak discharge. From our measurements of in-
stantaneous discharge across seasons and tidal conditions, we
calculate mean ebb and flood discharges (m3 s−1) for each
transect (Fig. 6). Mean discharge for the northern transect
is ∼ 9100 m3 s−1 on the flood and 8600 m3 s−1 on the ebb,
and for the southern transect, mean flood and ebb discharges
are ∼ 14 600 and 14 200 m3 s−1, respectively. From these re-
sults, we observe that mean discharge at the northern tran-
sect is again ∼ 61 ± 1 % of that of the southern transect, as
also recognized for the tidal prism. Another notable result is
that the mean flood discharge (m3 s−1) is 3–6 % greater than
on the ebb tide, despite the tidal prism generally being ebb
dominant. This disparity is a function of the shallow-water
distortion of the M2 tide, which produces an asymmetrical
waveform with a steeper rising limb than falling limb, and a
corresponding reduction in the duration of the flood tide by
∼ 60–90 min.

4.3 Hydrography – sediment transport

Suspended sediment measurements collected during the hy-
drographic surveys show similar patterns to those of our
long-term OBS station. Wet season sediment concentrations
were generally 30–50 % higher than during the dry season
(Fig. 5). Much greater differences in SSC were observed,
however, between neap and spring tidal conditions, with the
latter concentrations being typically ∼ 3-fold greater (0.3–
1.5 g L−1 vs. 0.1–0.5 g L−1). These sediment concentrations,
coupled with the water-discharge observations, were then ex-
trapolated over the tidal cycle to generate estimates of the
rates and magnitude of sediment transport (Table 1). Results
show that integrated sediment transport over a tidal limb var-
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Figure 5. Instantaneous water discharge, water level, and depth and width-averaged SSC for each day of cross-channel transects. Dry season
measurements are in (a), while monsoon season transects are in (b). Spring tides in either season are shaded in gray. The two left columns
are southern measurements, and the two right columns are from the northern transect. Black dots correspond to specific measurements, while
gray lines represent the estimated error tiled forwards and backwards by 12.4 h. For discharge, dashed lines in the monsoon represent maxima
based on extrapolations from the dry season ratio. While seemingly unreasonable, they are provided here for context.

Figure 6. Comparison of mean (diamond), median (black line), 25th and 75th percentile (lower and upper limits of darkly shaded box), and
total range (lightly shaded box) for water discharge (a) and sediment discharge (b). (a) Demonstration that median and mean discharge along
either transect are comparable to those of either the Ganges or Brahmaputra River. (b) Demonstration that as with water, mean sediment
discharge on both the flood and ebb tides is approximately the same as the weekly averaged Ganges sediment discharge.
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ied by more than an order of magnitude at both transects.
Minima of 0.16 × 108 kg (north) and 0.2 × 108 kg (south) of
sediment exchange were observed during the neap dry season
ebb tide, with maxima during spring monsoon flood tides be-
ing an order of magnitude greater at 3.3×108 kg (north) and
3.9 × 108 kg (south) . These values equate to mean rates of
sediment transport ranging from ∼ 700 kg s−1 during neap
dry season conditions to ∼ 17 000 kg s−1 during monsoon
season spring tides. Comparing the ebb and flood limbs of
our surveys, the mean sediment discharge for the ebb tide
is 5800 kg s−1 compared to 7800 kg s−1 for the flood tide,
demonstrating an overall flood dominance in sediment trans-
port.

These patterns are further supported by the net sediment
transport values (i.e., ebb–flood; Table 1). For a given tidal
cycle, net sediment transport was typically 106–107 kg, with
magnitude varying largely with tidal phase and spring tides
generating 1.5 to 3 times greater net transport than during
neap tides (Table 1). Seasonally, net sediment transport rates
were ∼ 30 % greater during the wet season, similar to our
observations of suspended sediment concentration. Finally, a
comparison of net sediment transport with corresponding net
water discharge shows the two to covary, as expected, with
greater net water discharge resulting in greater net sediment
transport (Fig. 7). However, an important attribute of this re-
lationship reveals a significant bias toward flood-dominant
sediment transport. Data show that even neutral to weakly
ebb-dominant water discharge yields net sediment transport
in the flood direction (Fig. 7). As noted for water discharge
(m3 s−1), this disparity is a function of the non-negligible
tidal components beyond M2 that result in a shortened flood
limb and extended ebb period (Fig. 3; Table 1). Together,
mean sediment discharge and net sediment transport patterns
thus indicate an overall flood-oriented asymmetry and net on-
shore transport of sediment.

5 Discussion

5.1 Relative importance of tides and river

The GBM tidal delta plain comprises a complex channel net-
work that has been little studied and will require substan-
tial investigation to be understood well. Nevertheless, results
of the current study allow for numerous observations on the
scaling and magnitude of tidal mass transport within this re-
gion, establishing a baseline for the role that tides play in
defining the delta system, particularly in the southwest region
away from direct fluvial inputs. To begin, we take an average
of the flood and ebb tidal prisms measured at the two sites
on the Shibsa River over both spring and neap tidal phases
during wet and dry seasons and extrapolate the mean tidal
prism over 1 year. In other words, an average 2.7 × 108 m3

of water passes through this region on each of the ∼ 705
tides per year. This basic estimation accounts for an aver-
age ∼ 2 × 1011 m3 of water annually conveyed through our

Figure 7. Net water discharge vs. net sediment discharge for all
of the survey days on the Shibsa River. As expected, we observe a
positive trend to this relationship. The negative y intercept of the
best-fit curve demonstrates the overall flood-oriented nature of sed-
iment transport in this tidal channel.

survey locations 80 km inland of the coast. Furthermore, this
mass exchange is principally tidal water, as the 50–75 % of
annual Gorai River discharge captured by the Shibsa River
(i.e., ∼ 0.2 × 1011 m3) accounts for only 10 % of the total
water exchange observed for that channel.

The significance of these observations from the upstream
Shibsa River tidal channel becomes more apparent when
compared with the main-stem GBM rivers. In this case, the
∼ 2 × 1011 m3 of water conveyed annually through the up-
per Shibsa River is nearly 20 % of the ∼ 11 × 1011 m3 of to-
tal annual water discharge from the entire GBM watershed
(Lupker et al., 2011; Fig. 4). This is an impressive exchange
of mass through the upper reaches of a single tidal chan-
nel along the GBM tidal delta plain. For context, the Shibsa
River comprises approximately half (by planform area) of the
Pussur River tidal system (Fig. 1), itself just one of five ma-
jor tidal drainages along the GBM tidal delta plain (Fig. 1).
Taken together, these basins include ∼ 10 tidal channels hav-
ing a similar area (width × length) to the Shibsa River. We
take the tidal flow through these systems to be broadly simi-
lar given the linear relationship between peak tidal discharge
and the cross-sectional area of large tidal channels (Rinaldo
et al., 1999), plus the fact that land-surface elevation and tidal
range are similar across the region (Chatterjee et al., 2013).
Thus, even at a first order, estimates of total mass transport
across the tidal region would well exceed the ∼ 11×1011 m3

total volume discharged by the main-stem GBM rivers.
The comparable values between our observations of tidal

water exchange in this limited study area and the total
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freshwater discharge of the GBM rivers demonstrates how
tides hold equivalence in controlling landscape development
in the GBMD, which was suggested as far back as Gal-
loway (1975). To further consider the geomorphic impor-
tance of tides to the GBMD, we make analogous estimations
of sediment transport (Qs) that supports land-surface aggra-
dation and the dominant water discharge (Qdom) that controls
tidal-channel morphology (Rinaldo et al., 1999). As done
for water discharge, by taking the average of our tidal hy-
drography data for sediment transport, we calculate the mean
annual exchange of suspended sediment through the Shibsa
River tidal station to be ∼ 1 × 1011 kg (∼ 100 Mt). For com-
parison, this estimate of sediment load is roughly 15 % of the
∼ 700 Mt of sediment annually discharged to the coast by the
GBM rivers (Goodbred and Kuehl, 1999). Thus, if we extrap-
olate any similar transport value to the other nine GBM tidal
channels, then the sediment exchange through the tidal chan-
nels is easily found to be comparable to the main river mouth.
There is, of course, the important caveat that tidal sediment
transport is not unidirectional, so this integrated exchange
of tidal sediment is not a net flux as it is for river sediment
discharge. Nevertheless, the relevant point is that local geo-
morphic reaches of the tidal delta plain have the opportunity
for landscape building through tidal water and sediment ex-
change at a similar magnitude to the main-stem GBM rivers.
This assertion is not surprising given the relative stability of
the tidal delta plain, which experiences relatively little net
erosion (∼ 4 km2 yr−1, or ∼ 0.02 % annual loss; Sarwar and
Woodroffe, 2013) and is offset by widespread sediment de-
position on both the land surface (Rogers et al., 2013) and in
channels (Wilson et al., 2017).

From this study, we understand that tidal energy, indepen-
dent of the main river mouth, accounts for a twice-daily ex-
change of a mass equivalent to 4–15 % of the yearly aver-
aged daily GBM river discharge. In primary channels, the
magnitude of this exchange is controlled more by the spring–
neap tidal variability than by the seasonal input of new ma-
terial (Fig. 5). In the smaller Bhadra tidal channel, on the
other hand, SSC variability demonstrates profound season-
ality, presumably because discharge (and therefore stream
power) is at least an order of magnitude smaller here than in
the Shibsa River. This disparity is important when we con-
sider land-building processes, as the majority of the Sundar-
bans Forest is plumbed by tidal channels on the scale of the
Bhadra River or smaller. Storms may also play a role in re-
mobilizing sediment from the shelf onto the tidal delta plain,
as suggested by Hanebuth et al. (2013) in their study of an-
cient salt kilns buried along the coast. However, there are no
observations of significant direct storm deposition from re-
cent cyclones (Aila, 2009 and Sidr, 2007), such as that rec-
ognized from the offshore Bengal shelf and Swatch of No
Ground canyon (e.g., Kudrass et al., 1998, 2018; Michels et
al., 1998; Rogers and Goodbred, 2010). The potentially lim-
ited impact of storms on sedimentation and the channel net-
work of the tidal delta plain may be due its frequent and per-

sistent exposure to high sediment concentrations and strong
currents (> 3 m s−1) driven by the tides. Nevertheless, future
research should aim to quantify storm inputs and their rela-
tive importance upon sedimentation and morphodynamics of
the tidal delta plain.

These findings and discussion points emphasize the essen-
tial role that tides play in maintaining the largest portion of
the GBM lower delta plain, which is not under direct river in-
fluence. However, despite the essential role of tides in mixing
and dispersing sediment to large areas of the delta, the sup-
ply of sediment remains largely contemporaneous with sea-
sonal fluvial discharge, especially in the secondary and ter-
tiary channels that irrigate the Sundarbans. Together, the cou-
pled system in which the GBM rivers deliver sediment that
is subsequently redistributed by tidal energy is fundamen-
tally responsible for the sustainability of this region relative
to sea-level change (e.g., Angamuthu et al., 2018). A signifi-
cant corollary of this fact is that a change in sediment supply
from the GBM rivers, such as that proposed under India’s
National River Linking Project, could pose a serious threat
to delta sustainability (Higgins et al., 2018; Best, 2019).

To summarize, as the central coastal region receives little
direct water and sediment discharge from the GBM, the re-
sults herein emphasize that tidal exchange is the dominant
geomorphic agent in the region with a mass and energy ex-
change of comparable or greater magnitude to the main-stem
rivers. It is, of course, essential to recognize that most fresh-
water and sediment exchanged within the tidal system is ulti-
mately sourced by the main rivers and that these are intrinsi-
cally coupled systems. Thus, the continued sustainability of
the region will require the sustained delivery and exchange
of water and sediment between the fluvial and tidal portions
of the delta.

5.2 Sedimentation in the Sundarbans and infilling of
tidal channels

Our observations of tidal sediment exchange provide a useful
baseline for examining sedimentation in the Sundarbans and
broader tidal delta plain, which are at risk from sea-level rise
and inundation without an adequate supply of sediment. To
date, the best estimate of total sedimentation in the Sundar-
bans is 1.1×1011 kg yr−1 (∼ 100 Mt) based on one season of
direct sedimentation measures at 48 stations across the region
(Rogers et al., 2013). This mass of sediment deposited in the
Sundarbans is basically equivalent to the ∼ 100 Mt of sedi-
ment that we observe transported through the Shibsa River
transects. Thus, recalling that our local measurements likely
capture just 5–10 % of total suspended sediment transported
through the tidal channels of the region, it becomes evident
that there is generally adequate suspended sediment available
to support regional sedimentation in the Sundarbans.

Another plausible implication is that there appears to be
adequate sediment available for the restoration of land eleva-
tion within the poldered region, which is a major challenge

www.earth-surf-dynam.net/7/231/2019/ Earth Surf. Dynam., 7, 231–245, 2019



242 R. Hale et al.: Implications for delta management and sustainability

facing coastal Bangladesh (Amir et al., 2013). Although a
definitive answer remains to be determined, this general as-
sertion is supported by observations of the rapid sedimenta-
tion that occurred on Polder 32 in the 2 years following the
embankment failures caused by cyclone Aila in 2009 (Auer-
bach et al., 2015). Measurements at Polder 32 after these
failures found an average of 37 ± 17 cm yr−1 of tidal sedi-
mentation sustained over its 2-year exposure to tidal inunda-
tion, corresponding to a total annual deposition of ∼ 5 Mt.
Based on inundation depth and period, this accounts for an
average of ∼ 0.2 g L−1 of sediment extracted from the tidal
waters that flooded the island during this time. This value
compares to a mean suspended sediment concentration of
∼ 0.6 g L−1 measured during our hydrographic surveys, sug-
gesting that roughly one-third of the tidal sediment inundat-
ing the landscape generated these very rapid sedimentation
rates. Ultimately, limitations in the present data preclude a
closed, precise sediment budget, but our collective observa-
tions over several different studies remain consistent in di-
rection and magnitude. These indicate persistent and rela-
tively rapid rates of deposition that are sustained by the large-
magnitude conveyance of sediment through the tidal chan-
nels and ultimately supplied by seasonal discharge of the
main-stem rivers (Rogers et al., 2013; Auerbach et al., 2015;
this study).

Upstream of our transect sites, the landscape is almost en-
tirely embanked by polder systems. With limited opportu-
nity for sediment deposition on this formerly intertidal plat-
form and with the resulting reduction or redistribution of the
tidal prism upstream, channel sedimentation and infilling has
become a major problem. Wilson et al. (2017) demonstrate
that by preventing the inundation of the intertidal platform,
poldering has reduced the tidal prism of the broader south-
west region by as much as 1.4 × 109 m3. If we assume that
this volume reduction is relatively evenly dispersed across
the delta plain, then it would have led to a 25–50 % reduction
in the local tidal prism measured at our sites. These effects
are at least partially responsible for the ∼ 1400 km of chan-
nel infilling that has taken place over the last few decades, re-
sulting in the creation of new agriculture and aquaculture op-
portunities but also altering drainage, transportation routes,
and feedback responses of the regional tidal hydrodynam-
ics (Wilson et al., 2017). The mass of sediment that has in-
filled these channels is calculated to be 6.15×1011 kg, which
would be ∼ 1.2 × 1010 kg yr−1 assuming a roughly constant
rate (Wilson et al., 2017). Of these infilled channels, ∼ 15 %
(∼ 200 km) are part of the former channel network connect-
ing upstream of our northern transect (Fig. 1). Thus, a pro-
portional rate of sedimentation lost to these channels would
be ∼ 0.18 × 1010 kg yr−1, which is ∼ 25 % of the estimated
0.68 × 1010 kg fluxing through the northern transect (to the
north) each year. While this sediment exchange is 4 times
greater than the expected total based on infilling rates from
Wilson et al. (2017), it relies on the same previously de-
scribed assumptions (i.e., no lateral exchange with neighbor-

ing rivers, non-end-member flux reflecting an average of end-
member conditions). More importantly, it appears that there
is sufficient sediment available to continue infilling channels,
and future studies should constrain whether this region is, in
fact, infilling faster than other areas on the tidal delta plain,
as this would hold important implications for regional navi-
gation and hydrodynamic changes.

6 Conclusions

In the present study, we have measured tidal and seasonal
variability associated with water discharge and suspended
sediment concentration (SSC), and we used these observa-
tions to compute the magnitude of water and sediment ex-
change through a single tidal channel. As has been suggested
previously, the wet season is found to exert a strong con-
trol on the timing and magnitude of sediment transport in
this system, despite seemingly modest changes to the hydro-
dynamics. Indeed, despite a reduced tidal range and similar
peak SSC, sediment transport during the monsoon is always
of greater magnitude than during the dry season. Understand-
ing this relationship is critical for planning any potential land
recovery strategies in the future. The importance of the mon-
soon also provides a new perspective on the meaning of a
“tidal delta”. While it is clearly the tides that perform much
of the work to shape the delta – including driving a net flood-
oriented direction of sediment flux – it is the seasonal influx
of riverine sediment that allows this work to continue. Fi-
nally, this research demonstrates that the mass of sediment
transported north of our study area is more than sufficient to
fill channels and create additional land. Ideally, future land-
use management strategies could divert some of this excess
sediment into polder interiors through tidal river manage-
ment (e.g., Seijger et al., 2018; Shampa and Pramanik, 2012;
van Staveren et al., 2016) and allow this landscape to con-
tinue to prosper.

Data availability. Data used for this publication will be archived
in the Marine Geoscience Data System http://www.marine-geo.
org/tools/search/DataSets.php?data_set_uids=24710,24711 (last
access: 28 February 2019, Hale et al., 2019a, b).

Sample availability. Samples from this publication are stored in
the sedimentology laboratory at Vanderbilt University.
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