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Modelling the spatial spread of vector-borne zoonotic pathogens maintained in

enzootic transmission cycles remains a major challenge. The best available

spatio-temporal data on pathogen spread often take the form of human

disease surveillance data. By applying a classic ecological approach—

occupancy modelling—to an epidemiological question of disease spread, we

used surveillance data to examine the latent ecological invasion of tick-borne

pathogens. Over the last half-century, previously undescribed tick-borne patho-

gens including the agents of Lyme disease and human babesiosis have rapidly

spread across the northeast United States. Despite their epidemiological impor-

tance, the mechanisms of tick-borne pathogen invasion and drivers underlying

the distinct invasion trajectories of the co-vectored pathogens remain unresolved.

Our approach allowed us to estimate the unobserved ecological processes under-

lying pathogen spread while accounting for imperfect detection of human cases.

Our model predicts that tick-borne diseases spread in a diffusion-like manner

with occasional long-distance dispersal and that babesiosis spread exhibits

strong dependence on Lyme disease.

1. Introduction
Tick-borne diseases (TBDs) are responsible for over 300 000 human cases per year

in the USA alone [1] and are globally emerging owing to the expanding ranges of

tick vectors, reservoir hosts and pathogens [2–4]. Understanding the ecological

process of TBD invasion is fundamental for developing effective surveillance

systems and designing measures to limit further geographical spread. However,

quantifying the spatial spread of zoonotic TBD maintained in enzootic trans-

mission cycles remains a major challenge [5] because longitudinal data from

sampling vectors and wildlife host species at wide spatial scales are not currently

available. For this reason, human surveillance data offer us the best spatially

explicit time series available. However, these data represent only the observed epi-

demiological manifestation of a complex constellation of processes: introduction

and establishment of tick-borne pathogens in enzootic transmission cycles (gener-

ating entomological risk), human exposure to infected tick vectors, human

infection, progression from infection to disease, case diagnosis and case reporting.

Occupancy and metapopulation models, commonly used in population

ecology, can be applied to model the spread of TBD. Occupancy models

& 2016 The Author(s) Published by the Royal Society. All rights reserved.
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explicitly consider the observation process (in this case, diag-

nosing and reporting human cases) as contingent on the

underlying distribution of a species (in this case, a tick-

borne pathogen) and have been used to examine the

prevalence of imperfectly detected human and wildlife

pathogens and disease vectors [6–10]. However, their use

in modelling the spatio-temporal distribution of invading

pathogens is relatively new [11,12] and to the best of our

knowledge, they have not been applied to explore the pro-

cesses underlying spatial spread of disease. Metapopulation

models consider the dynamics of spatially separated but

interacting populations (such as the patchy distribution of a

tick-borne pathogen) [13]. Metapopulation models have

been used to model infectious disease dynamics [13–16],

but have not been applied within an occupancy framework

to dissect the processes underlying spatial disease spread.

Lyme disease and babesiosis are recently emerging in

North America: Lyme disease was first described in Lyme,

Connecticut in 1976 and babesiosis on Nantucket Island,

Massachusetts in 1969 [17,18]. Both the Lyme disease bac-

teria, Borrelia burgdorferi, and the babesiosis parasite, Babesia
microti, share the same tick vector (Ixodes scapularis) and an

overlapping community of vertebrate reservoir hosts. Despite

their similarities, Lyme disease has rapidly spread through

most of New England and the Midwest, and over 30 000

cases of Lyme disease are reported each year in the USA,

although the true burden of disease is estimated to be 10

times greater [1,4]. By contrast, babesiosis expansion appears

to follow that of Lyme disease and fewer than 2000 babesiosis

cases are reported yearly [19–21].

How do the two co-vectored pathogens move across the

landscape and what explains their markedly different inva-

sion trajectories? The spread of tick-borne pathogens and

diseases coarsely followed the spread of I. scapularis ticks

out of southern New England; however, little is known

about the latent processes underlying rapid emergence

[20,22]. Apparent spread of reported disease may reflect the

underlying ecological invasion, epidemiological (exposure)

and/or observation processes (human case diagnosis and

surveillance).

Ixodes scapularis only move a few metres during each life

stage [23,24]; thus, tick-borne pathogen dispersal is depen-

dent on movement of mammalian and avian hosts, which

differ greatly both in their dispersal capacity, proportion of

the tick population fed and reservoir competence for both

B. burgdorferi and B. microti [19,25–27]. It remains unclear

whether the risk of TBD propagates locally, generating a

rabies disease-like invasion front [11,16] or if TBD risk is

driven by long-distance dispersal as occurs for West Nile

Virus fever [28]. Although several studies have identified

possible ecological correlates of TBD prevalence in

humans, including density of infected ticks [29], and corre-

lates of the distribution of infected ticks, including

proximity to water bodies [30] and, for babesiosis, preva-

lence of Lyme disease [31], the ecological factors driving

spread of reported TBD at the scale of the northeast United

States remain unresolved. Spread differences between patho-

gens may reflect biological differences or may be in part an

artefact of the better-defined symptomatology and/or heigh-

tened awareness of Lyme disease compared with babesiosis

[32–34].

We use an occupancy model to test the following ecologi-

cal and epidemiological hypotheses about the processes of

TBD spread and the observed differences in Lyme disease

and babesiosis emergence.

Processes underlying spread.

(i) Both local spread and long-distance dispersal contrib-

ute to the spread of TBD;

(ii) high tick density facilitates introductions of TBD; and

(iii) proximity to water (a major river or the Atlantic coast-

line) facilitates spread of TBD.

Contrasting spread trajectories.

(iv) Lyme disease presence facilitates the colonization and

persistence of babesiosis; and

(v) Lyme disease is more likely to be reported than

babesiosis.

Our modelling approach allows us to quantify the spatial

dynamics of pathogen invasion and provides insights into the

future distribution of Lyme disease and babesiosis in the

northeast United States.

2. Material and methods
(a) Data
As Lyme disease and babesiosis are nationally notifiable diseases,

states are required to collect and report surveillance data. We com-

piled human case data available at the town level from the

Connecticut, Massachusetts, New Hampshire and Rhode Island

state health departments from 1984 to 2014 for Lyme disease

and from 1985 to 2014 for babesiosis (figure 1 and electronic sup-

plementary material, figure S1 and table S1). Data from Vermont

and Maine were not available at the town level. We included both

probable and confirmed cases and excluded imported cases.

Reporting effort varied across states and over time [35,36] (elec-

tronic supplementary material, table S1). Here, we are primarily

interested in the invasion process and thus modelled spatio-

temporal occupancy dynamics rather than the abundance of

cases. The disease status of a town was defined as either 0 (no

cases reported) or 1 (at least one case reported) based on the

yearly surveillance data as in a typical Levins-type metapopula-

tion model, which does not consider the internal dynamics of a

subpopulation [13,16].

Density data for infected I. scapularis were derived from a

previously published field- and climate-based model for density

of infected nymphal I. scapularis ticks based on sampling from

2004 to 2006 [37]. Infected tick density is thus a static spatial

predictor; however, habitat suitability for I. scapularis and thus

infected I. scapularis density is dynamic [38] and exhibits

spatio-temporal variation not captured by this covariate.

We determined the minimum Cartesian distance from the

town geographical centroid to one of the three major rivers in

our study area—the Hudson, Connecticut and Merrimack

Rivers—or the Atlantic coastline in R v. 3.1.1 [39] as a measure

of proximity to a major water body.

(b) Model
To test hypotheses regarding the patterns and drivers of TBD spread,

we fitted an occupancy model including observation (disease report-

ing) and ecological processes. This allowed us to quantify the

contribution of latent processes to disease spread and test the signifi-

cance of covariates to each spread process independently. We

compare this ecological process model with a null model that

assumes the probability of at least one reported human case in a

town depends only on its disease status and that of its adjacent neigh-

bours in the previous time step (electronic supplementary material,

text S1, see neighbourhood definitions, below).
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Figure 1. Study area, (a) shown with available surveillance data and model predictions. (b) Lyme disease reports and (c) model predicted town-level disease status
from 1985 to 2013. (d ) Babesiosis reports and (e) model predictions. Town colours in (a) are for visualization only. In (b – d ), towns in which disease was reported in
the previous year are indicated in black. Predictions are one-step-ahead predictions conditional on the previous years’ reports.
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Town-level case reports are available for each of

i ¼ 1, 2, . . . , 816 towns. Let Zi,t be the disease status of town i
at time t (a random variable). The disease status of town i at

time t (Zi,t) arises from an underlying Bernoulli process with

the probability of at least one reported human case occurring

in town i at time t ðpi,tÞ, where pi,t depends on the infection

status of town i and its neighbours, defined below, in the

previous year (t� 1).

(i) Observation process
TBDs are substantially under-reported [1,35], and heterogeneities

in reporting across space and time are difficult to quantify. Our

data include reported cases; therefore, we modelled pi,t as the

probability of at least one reported human case occurring in

town i at time t. Data on B. burgdorferi or B. microti incidence

(e.g. information from serosurveys) are not available at regional

spatial scales and therefore, we cannot estimate incidence rates

of symptomatic and asymptomatic disease nor reporting rates

for the two diseases. Reporting occurs at the state-level and

states have differing case definitions, reporting efforts and

surveillance infrastructure. Therefore, we introduced a state

reporting effect rs, which captures state-level variation in

surveillance. More specifically, we defined state reporting effect

rs as the probability cases in any town in state s will be

documented by the public health department of their state

(constant probability across towns) given the modelled

probability of case occurrence pi,t:

Zi,t � Bernðpi,trsÞ: ð2:1Þ

While surveillance probably varies across towns within the same

state, available data do not include site-time replicates; therefore,

a model including town-varying reporting effects is not identifi-

able [11,40]. To test the hypothesis that the Lyme disease

surveillance is more intensive than babesiosis (hypothesis (v)),

we compared rs estimated for each disease.

(ii) Ecological process
We adapted a previously described occupancy model [41]

to model the latent ecological processes underlying TBD

spread—initial colonization of a previously unoccupied area,

local persistence or extinction, and potentially, recolonization.

(Parameters are defined in the electronic supplementary material,

table S2.)

(i) Initial colonization. If town i was not diseased at the pre-

vious time step (zi,t�1 ¼ 0) and the town has never

before reported disease (
Pt�1

u¼1 zi,u ¼ 0), then the town is

available for initial colonization with probability Gi,t.

(ii) Persistence. If town i was diseased at the previous time

step (zi,t�1 ¼ 1), then disease may persist locally with

probability Fi,t. (The probability of local extinction is

1�Fi,t)

(iii) Re-colonization. If town i was not diseased at the previous

time step (zi,t�1 ¼ 0), but the town previously reported

disease at some point during the surveillance period

(
Pt�1

u¼1 zi,u � 1), then the town can be re-colonized with

probability Qi,t. This allowed us to distinguish between

primary and subsequent introductions.

The indicator variable Ai,t represents local disease history and

the availability of town i for initial disease introduction. If a

town has never reported disease, it is available to be colonized

by disease, Ai,t ¼ 1. If the town has previously reported disease

in any year, Ai,t ¼ 0:

Ai,t ¼ 1 if
Pt�1

u¼1 zi,u ¼ 0
0 otherwise

:

�
ð2:2Þ

The probability of reported disease in town i at time t is the

sum of the three processes:

pi,t ¼ zi,t�1Fi,t þ ð1� zi,t�1ÞAi,tGi,t þ ð1� zi,t�1Þ
� ð1� Ai,tÞ Qi,t þ logðNi,tÞB:

ð2:3Þ

We included town population size Ni,t as a covariate at the high-

est level of the model because it may influence both the

observation process (owing to increased local reporting effort

in larger towns) as well as the latent process of disease spread,

as larger towns have more susceptible hosts who may be infected

and diseased.

Because both Lyme and babesiosis cases may have occurred

before reporting commenced, there is a non-zero probability of

human cases occurring for town i in the year case reports were

initiated, t ¼ t0,i. We treated the latent probability of reported

cases occurring during this first year of reporting in town i as a

random variable:

pi,t0,i � Unifð0, 1Þ: ð2:4Þ

(iii) Spatial structure
Disease may persist or colonize each town owing to spread from

neighbouring towns, probably owing to pathogen movement via

dispersal of small mammals or birds [42–44]. We explored a var-

iety of models for how a town’s risk for initial colonization,

persistence or re-colonization may depend on neighbouring

towns’ disease status (hypothesis (i)). To determine an appropriate

definition for the spatial neighbourhood (the spatial extent of

towns that exert disease pressure on the focal town), we fitted a

series of models with different measures of neighbourhood disease

intensity Di,t and evaluated model fit with D deviance information

criterion (DDIC) compared with the non-spatial process-based

model (electronic supplementary material, table S3) [45].

We model each ecological process (initial colonization,

persistence and re-colonization) as a function of spatially depen-

dent disease spread in addition to spread independent of spatial

context. For example, following previously described notation

[41], initial colonization is modelled as

logitðGi,tÞ ¼ g0 þ g1Di,t þ g2D2
i,t: ð2:5Þ

Here, the logit-scaled probability of initial colonization is a function

of the spatial neighbourhood; the coefficients g1 and g2 represent

first- and second-order dependence of initial colonization on

neighbourhood disease intensity Di,t. Evidence of a second-order

relationship between colonization and neighbourhood disease

intensity could, for example, represent a saturating effect of

increased pathogen pressure from nearby towns [41]. Alterna-

tively, a quadratic dependence on neighbourhood disease

intensity may reveal a surveillance effect analogous to an Allee

effect [46]. For instance, colonization probability may have a posi-

tive relationship with Di,t at low levels, but in towns/years with

high Di,t, population awareness may be high, leading to changes

in human behaviours and thus exposure patterns, potentially

resulting in a decreased probability of colonization of reported dis-

ease. The intercept, g0, represents an additional colonization

pressure, independent of spatial neighbourhood.

(iv) Ecological covariates
To test the hypotheses about drivers of tick-borne pathogen spread

outlined in the Introduction, we included covariates at the process

level (initial colonization, persistence or re-colonization) (equations

(2.10)–(2.12)).

To test if high tick density facilitates disease spread (hypoth-

esis (ii)), we included density of infected nymphal ticks, Ti,t, as a

covariate; the coefficients g3, f3, u3 represent the effect of tick

density on initial colonization, persistence and re-colonization,

rspb.royalsocietypublishing.org
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respectively. To test if proximity to water facilitates movement of

tick-borne pathogens (hypothesis (iii)), we included distance to a

major water body, Mi,t, as a covariate; the coefficients g4, f4, u4

represent the effect of proximity to water on initial colonization,

persistence and re-colonization, respectively. To test if Lyme dis-

ease facilitates spread of babesiosis (hypothesis (iv)), we included

Lyme endemicity, Ci,t, defined as the number of years a town has

reported cases of Lyme disease prior to year t, as a predictor for

babesiosis status; the coefficients g5, f5, u5 represent the effect

of Lyme endemicity on initial colonization, persistence and

re-colonization, respectively.

The equations describing the saturated model for the pres-

ence of disease reports in reported disease in town i at time t
(Zi,t) are as follows:

Zi,t � Bernðpi,trsÞ, ð2:6Þ

probability of reported disease (pi,t):

pi,t ¼ zi,t�1Fi,t þ ð1� zi,t�1ÞAi,t Gi,t þ ð1� zi,t�1Þ
� ð1� Ai,tÞ Qi,t þ blogðNi,tÞ, ð2:7Þ

probability of initial colonization (Gi,t):

logitðGi,tÞ ¼ g0 þ g1Di,t þ g2D2
i,t þ g3Ti,t þ g4Mi,t þ g5Ci,t, ð2:8Þ

probability of persistence (Fi,t):

logitðFi,tÞ ¼ f0 þ f1Di,t þ f2D2
i,t þ f3Ti,t þ f4gMi,t

þ f5Ci,t, ð2:9Þ

probability of re-colonization (Qi,t):

logitðQi,tÞ ¼ u0 þ u1Di,t þ u2D2
i,t þ u3Ti,t þ u4Mi,t þ u5Ci,t: ð2:10Þ

(v) Model implementation and validation
We fitted the models using a Markov chain Monte Carlo (MCMC)

algorithm with Gibbs sampling to simulate sequences of depen-

dent samples from the posterior distribution of model

parameters, implemented in JAGS v. 3.4.0 [47] (model code in elec-

tronic supplementary material, text S2). All priors were non-

informative (electronic supplementary material, table S2). We ran

three independent chains, and inference was based on 100 000

samples after discarding a burn-in of 10 000 iterations and thinning

chains every 10 draws. MCMC convergence was assessed with the

Brooks–Gelman–Rubin convergence diagnostic [48].

Our primary objectives were to test evidence in the data for

our a priori hypotheses and model-based prediction. Thus, we

generated the model set described above and used model selec-

tion to determine support in the data for the model/hypothesis.

We used the DIC to evaluate whether increasing model complex-

ity decreased model deviance while penalizing for overfitting

(electronic supplementary material, table S4). Parameter esti-

mates from a model that includes non-significant parameters

(i.e. the full covariate model) should not be biased but may intro-

duce excess noise to predictions [49]. Accordingly, in the Results

and Discussion, we present parameter estimates from what we

call the parsimonious model—the best-fit model under DIC

stripped of covariates whose parameter estimate credible inter-

vals overlap 0. Parameter estimates change little between the

full covariate and parsimonious models (compare figure 2 with

electronic supplementary material, figure S2 and figure 3 with

electronic supplementary material, figure S3), confirming that

bias is not introduced by exclusion of non-significant parameters.

We validate the parsimonious models in two ways. First, we

evaluate one-step-ahead predictions (i.e. model predictions con-

ditional on data observed for the previous year with area

under the curve (AUC), determined using the R package

‘pROC’) [50]. Second, to test forecasting capacity, we partitioned

the data into a ‘training’ period including case reports through

2011 used to fit the model parameters, and a ‘validation’

period including data from 2012 to 2014. We calculated neigh-

bourhood disease intensity Di,t for each year as defined in

equation (2.5), so that forecasts in 2013 and 2014 were a function

of forecasted neighbourhood disease status in the previous year,

not reported status. Out-of-fit forecasts were assessed with AUC.

To convert continuous predicted probabilities of disease into

binary disease forecasts, we identified a probability threshold

that minimizes the difference between model sensitivity and

specificity [51].

3. Results
(a) Lyme disease
The spread of Lyme disease exhibits strong spatial depen-

dence and is associated with I. scapularis density, as

evidenced by the best-fitting Lyme disease model (electronic

supplementary material, table S4). One-step-ahead model

predictions of disease had a mean AUC of 0.93 (AUC . 0.7

is generally considered a good fit) [52]. When reporting

began in Connecticut in 1984, Lyme disease cases were

reported only in eastern coastal Connecticut. The model pre-

dicts the diffusion-like spread of cases from neighbours

northwards along two seemingly independent corridors:

along the Atlantic coast through Rhode Island, eastern Mas-

sachusetts and into southeastern New Hampshire; and

along the New York state border, with an apparent lag

further inland (figure 1). By 2014, the model predicts most

New England towns report Lyme disease cases, with the

exception of a corridor of uninfected towns in west central

Massachusetts and northwestern New Hampshire.

The occupancy model distinguishes the three processes

contributing to the spread of reported disease and the contri-

bution of spatial and environmental covariates (figures 2a
and 3a, electronic supplementary material, table S3). We

find a significant spatial effect for each disease process, evi-

dence that disease risk propagates from neighbours

(figure 2a and electronic supplementary material, table S3).

The spatial neighbourhood which best predicts spread of dis-

ease is an inverse distance weighted sum of the disease status

of all towns in the study area rather than only adjacent towns,

evidence that both local spread (from adjacent towns) as well

as spread at longer distances contribute to movement of

Lyme disease (electronic supplementary material, table S3).

As neighbourhood disease intensity increases, the probability

of each invasion process increases (figure 2a). We estimated a

mean dispersal velocity for Lyme disease of 11.4 km per year

by fitting a connectivity function (though this model of

spatial neighbourhood did not provide the best fit to the

data, electronic supplementary material, table S5).

Lyme disease persistence and re-colonization but not

initial colonization are positively associated with tick habitat

suitability (figure 3a). Lyme disease spread is not associated

with proximity to a water body. State reporting effects were

high (greater than 0.95) across all states, which suggests a

lack of variability in reporting between states (electronic

supplementary material, figure S4).

(b) Babesiosis
The spread of babesiosis exhibits strong spatial dependence

in addition to dependence on Lyme disease endemicity,
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tick density and proximity to water, as evidenced by the best-

fitting babesiosis model (electronic supplementary material,

table S4). One-step-ahead predictions had a mean AUC of

0.92. The babesiosis model predicts the slow spread of babe-

siosis north through eastern coastal Connecticut and into a

few isolated towns on Cape Cod and Nantucket Island

(south of Cape Cod) in the 1990s (figure 1). During the

2000s, the model predicts continuous, slow spread of babesio-

sis northeast along the Atlantic coast. Much of Connecticut,

eastern Massachusetts and southern coastal New Hampshire

have a moderate probability of reporting cases by 2010.

Again, the occupancy model distinguishes the three pro-

cesses underlying spread of babesiosis. We find a

significant spatial effect for each disease process, evidence

that babesiosis risk propagates from neighbours (figure 2b
and electronic supplementary material, table S3). Similar to

Lyme disease, the best-fitting definition of spatial neighbour-

hood indicates that spread is best predicted by an inverse
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distance weighted average of the reporting status of all towns

in the study area in the previous year, suggesting the disease

pressure comes from all towns in New England but particu-

larly nearby towns (electronic supplementary material, table

S3). As neighbourhood disease intensity increases, the prob-

ability of each invasion process increases (figure 2b). We

estimated a mean dispersal velocity for babesiosis of

10.1 km year21 by fitting a connectivity function (electronic

supplementary material, table S5), although again this was

not the best-fitting spatial model.

Babesiosis spread exhibits strong dependence on Lyme

disease; initial colonization, persistence and re-colonization

of babesiosis are each positively associated with a history of

Lyme disease endemicity (figure 3b), and no towns report

babesiosis without a prior history of Lyme disease reporting.

A hypothetical scenario of babesiosis invasion in the absence

of Lyme disease was modelled by setting Lyme history to 0

for all towns. Babesiosis spread is suppressed in such a scen-

ario (figure 2b, dotted lines). Babesiosis persistence and initial

colonization are negatively associated with distance to a

major water body (figure 3b). Babesiosis persistence is

additionally positively associated with tick habitat suitability

(figure 3a). State reporting effect varied across states

(electronic supplementary material, figure S4).

(c) Comparison of Lyme and babesiosis trajectories
When holding all covariates at their mean values, Lyme dis-

ease has significantly higher rates of initial colonization and

re-colonization compared with babesiosis across all neigh-

bourhood disease intensities (figure 2). Independent of

spatial neighbourhood, the probability of Lyme disease initial

colonization is predicted to be 10 times that of babesiosis

(figure 2a,b yellow line intercepts).

(d) Model forecasting
To validate the parsimonious models, we re-fitted the model

to case reports through 2011 in order to forecast disease in

each of 3 years between 2012 and 2014 [53].

Out-of-fit Lyme disease model forecasts have a mean

AUC of 0.93. We identify a probability threshold that mini-

mizes the difference between sensitivity and specificity

(electronic supplementary material, figure S5); forecasted

probabilities of disease greater than 88.6% for Lyme disease

can be interpreted as disease forecasts. The true positive

rate or sensitivity (the probability the model correctly fore-

casts disease) is 86.1% (1596 out of 1854); the true negative

rate or specificity (the probability the model correctly fore-

casts absence of disease) 86.0% (289 out of 336; electronic

supplementary material, figure S6). The model performs

well (mean AUC of 0.94) ahead of the ‘invasion front’, i.e.

in towns with no infected adjacent neighbours in the pre-

vious year. Forecasts ahead of the invasion front have a

sensitivity of 52.9% (9 out of 17) and specificity of 100% (60

out of 60).

Modelling the reporting (observation) process improved

Lyme disease model fit as measured by DDIC compared

with the model without the observation process (electronic

supplementary material, table S4). However, Lyme disease

forecasting AUC, sensitivity and specificity did not differ

between the parsimonious models with and without the

reporting process.

Out-of-fit babesiosis model forecasts have a mean AUC of

0.85. Probabilities of disease greater than 14.0% for babesiosis

(electronic supplementary material, figure S5) can be inter-

preted as disease forecasts. The true positive rate or

sensitivity (the probability the model correctly forecasts dis-

ease) is 74.7% (510 out of 682); the true negative rate or

specificity (the probability the model correctly forecasts

absence of disease) 74.7% (1126 out of 1508; electronic sup-

plementary material, figure S6). The model performs well

(mean AUC of 0.87) ahead of the ‘invasion front’. Forecasts

ahead of the invasion front have a sensitivity of 75.6% (65

out of 86) and specificity of 84.4% (696 out of 824).

Modelling the reporting (observation) process similarly

improved babesiosis model fit as measured by DDIC com-

pared with the model without the observation process

(electronic supplementary material, table S4). Similar to

Lyme disease forecasting, overall babesiosis forecasting per-

formance as measured by AUC, sensitivity and specificity

did not differ between the parsimonious models with or

without the reporting process. Forecasting sensitivity ahead

of the invasion front is sacrificed if the reporting process is

not modelled: sensitivity drops from 75.6% to 46.5% when

reporting is not considered. Forecasting specificity changes

from 84.4% to 92.1% when reporting is not modelled.

4. Discussion
Modelling the spatial spread of vector-borne zoonotic pathogens

maintained in enzootic transmission cycles remains a major chal-

lenge [5]. Human surveillance data often constitute the best

available spatio-temporal data on pathogen spread. Over the

past 40 years, TBD have rapidly spread across the northeast

and midwest United States and pose a significant and growing

public health burden [2,3,20,21,32,54,55]. Although the increase

in human cases of TBD is striking, the crawl of ticks and tick-

borne pathogens across the landscape is largely unobserved.

By applying classic ecological approaches of occupancy and

metapopulation modelling to an epidemiological question of

disease spread, we harnessed human surveillance data to

model the invasion of tick-borne pathogens. We tested hypoth-

eses about how pathogens move (i.e. the spatial dependence of

invasion) and why pathogens are spreading (i.e. environmental

and ecological drivers of spread).

(a) Processes underlying spread
As hypothesized, the processes underlying TBD invasion—

colonization, persistence and re-colonization—each exhibit

strong spatial dependence. Defining neighbourhood disease

intensity as the inverse-distance weighted sum of the disease

status of all towns in the study area rather than by adjacency

provides the best fit to the data, indicating that spatial spread

of both diseases is a combination of both local spread from

adjacent neighbours as well as spread at longer distances.

In this definition of spatial neighbourhood, closer towns are

given greater weight, indicating that local spread contributes

greatly to the spread of TBD.

Local spread is probably attributable to mammalian hosts

that often disperse less than 5 km in addition to avian hosts

moving short distances [42–44,56,57]. Long-distance coloni-

zation plays a smaller, but nonetheless significant role in

colonization of TBD. Long-distance introductions of disease

may be attributable to dispersal on migratory passerines
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[56,58]. Avian dispersal of I. scapularis populations has

been described in geographically isolated sites in Canada

where mammalian introductions were unlikely [43,59]. Alter-

natively, observed long-distance introductions ahead of the

‘invasion front’ may reflect differences between enzootic

infection prevalence, human exposures, human disease inci-

dence or reporting. For babesiosis, there are several

apparent long-distance ‘colonization’ events in which towns

with no infected neighbours report disease and then disease

appears to go extinct. This reflects the low prevalence of babe-

siosis: in many towns in which cases are reported, there is

only a single case. The apparent colonization and extinction

probably reflect the epidemiological process of human infec-

tion and disease reporting rather than reflect the ecological

process of B. microti spread across the landscape (i.e. in

these colonization/extinction events, B. microti does not go

extinct locally, but rather no cases are reported owing to

stochasticity in human infection per surveillance).

Field studies have demonstrated that tick populations need

to be established prior to successful pathogen colonization and

that density of infected nymphal ticks is associated with Lyme

disease prevalence in humans [29,37,60–62]. In contrast to our

hypotheses, we found that tick density was positively associ-

ated with Lyme disease persistence and re-colonization, but

not initial colonization. This may be owing to the lack of

data on spread of infected I. scapularis over the reporting

period. Increased tick density is associated with persistence

of babesiosis, but not initial or re-colonization, probably

owing to collinearity with Lyme disease endemicity.

As predicted, initial colonization and persistence of babe-

siosis is associated with proximity to a major water body.

River corridors and the Atlantic Coast provide suitable,

humid microhabitats for ticks and are known corridors of

ticks and reservoir hosts [30,58]. The lack of an association

between Lyme disease spread and proximity to water may

be an artefact of the reporting time series available. The

Lyme disease bacteria, B. burgdorferi, had already spread up

the Hudson River and much of the Atlantic Coast prior to

the start of the reporting time series, making it difficult to

capture any association between water corridors of dispersal

and disease. By contrast, the reporting time series captures

the early invasion of the babesiosis parasite, B. microti,
along the Atlantic coastline and up the Hudson River

Valley (figure 1).

(b) Contrasting spread trajectories
Our model captures differences in invasion trajectories for

B. burgdorferi and B. microti. While B. burgdorferi appears to

have spread rapidly and became endemic across most of

New England by the late 2010s, B. microti appears to have

spread slowly and became endemic only in southern coastal

New England (figure 1). Babesiosis spread is characterized by

lower rates of initial colonization and re-colonization

compared with Lyme disease and, importantly, strong

dependence on Lyme disease endemicity (figure 2). How-

ever, the mean model-estimated rate of spread of Lyme

disease and babesiosis did not differ substantially over the

reporting period (11.36 and 10.10 km year21, respectively).

This reveals that differences in current distributions of the

two diseases may reflect a temporal lag in spread of babesio-

sis with respect to Lyme disease owing to differences in the

ecological invasion processes, pathogenesis in humans and/

or owing to differential surveillance measures for the two

diseases, rather than a difference in the speed of invasion.

The association of babesiosis invasion processes with

Lyme disease endemicity is consistent with laboratory studies

which demonstrate that co-infection with B. burgdorferi
enhances transmission of B. microti in reservoir hosts and

thus lowers the ecological threshold for B. microti establish-

ment in proportion to B. burgdorferi infection in the mouse

population [31]. Lyme disease endemicity also probably

serves as a proxy for a suite of other unmeasured environ-

mental, ecological or health system variables associated with

high incidence of TBD, including spatio-temporal variation

in I. scapularis density. The strong dependence on Lyme dis-

ease suggests that spread of babesiosis is likely to continue

until it approximates the range of Lyme disease. However,

our results suggest that Lyme disease, once reported, is more

likely to persist than babesiosis, consistent with previous

studies that have identified a higher basic reproductive

number, R0, for B. burgdorferi compared with B. microti [31].

Consistent with hypotheses, the probability of long-

distance introduction of Lyme disease to towns independent

of spatial context is 10 times more likely than long-distance

movement of babesiosis. This may reflect a smaller propagule

pressure of B. microti-infected ticks owing to the lower preva-

lence of B. microti across the study area as well as the fact that

birds are more competent hosts for B. burgdorferi than for

B. microti [19,58].

Mean state reporting effects are higher for Lyme disease

compared with babesiosis, probably reflecting the higher

prevalence, greater population and physician awareness, and

more distinct symptomatology of Lyme disease compared

with babesiosis [32,34]. Variation in state reporting effects is

higher for babesiosis than for Lyme disease, probably reflecting

heterogeneities in awareness and surveillance efforts across

states [29].

Modelling variation in imperfect reporting is critical for

babesiosis, because disease reports ahead of the apparent

invasion front probably reflect reporting variation rather

than reflect parasite invasion (e.g. the parasite is already

established in the enzootic cycle ahead of the invasion front

observed by human cases). Our results suggest that an occu-

pancy modelling framework may contribute most to

epidemiological models when there is substantial spatial

variation in the reporting process.

(c) Study limitations
Here, we modelled the spatial spread of reported cases of TBD.

Owing to widespread and differential [33] under- and

over-reporting of Lyme disease and babesiosis, evolving case

definitions [35], and changing population awareness, raw epi-

demiological data may not represent the true distribution of

cases and subclinical infections. However, modelling variation

in reporting across states allows us to address the issue of

imperfect detection of human cases.

5. Conclusion
We harness epidemiological surveillance data to examine an

unobserved stochastic process of pathogen spread in an

enzootic cycle. The spatio-temporal framework can be readily

modified and adapted for study of other emerging zoonotic

pathogens [34].
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