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TELEMETRY CASE REPORT

Sea turtles and survivability in demersal 
trawl fisheries: Do comatose olive ridley sea 
turtles survive post-release?
Sara M. Maxwell1,10* , Matthew J. Witt2, Gaspard Abitsi3, Marie Pierre Aboro4, Pierre Didier Agamboue3, 
Georges Mba Asseko5, François Boussamba4, Emmanuel Chartrain4, Micheline Schummer Gnandji6, 
Brice Didier Koumba Mabert7, Felicien Mavoungou Makanga4, Jean Churley Manfoumbi8, 
Jean Noel Bibang Bi Nguema5, Jacob Nzegoue3, Carmen Karen Kouerey Oliwina3, Guy‑Philippe Sounguet4,9 
and Angela Formia3

Abstract 

Incidental capture of air‑breathing species in fishing gear is a major source of mortality for many threatened popula‑
tions. Even when individuals are discarded alive, they may not survive due to direct injury, or due to more cryptic 
internal physiological injury such as decompression sickness. Post‑release mortality, however, can be difficult to deter‑
mine. In this pilot study, we deployed survivorship pop‑up archival tags (sPAT) (n = 3) for an air‑breathing species, the 
olive ridley sea turtle (Lepidochelys olivacea), one of the first studies to do so. We found that at least two of the three 
turtles survived after being captured in demersal fish trawl nets and being resuscitated from a comatose state follow‑
ing standard UN Food and Agriculture Organization guidelines. One turtle died; however, the absence of a change in 
light level but continued diving activity suggested that the turtle was likely predated. Whether capture contributed to 
the turtle’s susceptibility to predation post‑release is unknown, and average tow duration during this fishing trip was 
similar in duration to that of a turtle that survived (1.5 h). The two surviving turtles displayed normal horizontal and 
vertical movements based on previous tagging studies. This study suggests that resuscitation techniques may be 
effective; however, additional study is necessary to increase sample sizes, and to determine the severity of decom‑
pression sickness across different levels of activity and in other fishing gears. This will result in better population 
mortality estimates, as well as highlight techniques to increase post‑release survivorship.

Keywords: Post‑release mortality, Trawl fishing, Bycatch, Resuscitation, Decompression sickness, Olive ridley sea 
turtle
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Fisheries bycatch, or the incidental capture of non-target 
species in fishing gear, is a major human threat to marine 
species worldwide [1]. Air-breathing species may drown 
in nets or on lines used for fishing [2]. Generally, indi-
viduals captured as bycatch are not marketable species, 
either due to limited human demand or due to regulatory 
restrictions, and are discarded either dead or alive, or 

may be used as bait [1]. Sea turtles are a large marine spe-
cies caught as bycatch, and the recovery of their popula-
tions worldwide has been impeded by bycatch in marine 
fisheries, particularly fishing trawls [3]. Trawls operate by 
towing a large funnel-shaped net across the sea bottom 
or through the water column to capture target species; 
however, trawls indiscriminately capture other species as 
well, including sea turtles that co-occur with target spe-
cies such as shrimp and fish. Gear modifications such 
as turtle excluder devices (TEDs) have been introduced 
to reduce the capture of sea turtles in trawl nets. The 
use of TEDs has resulted in increase in some sea turtle 
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populations [4]; however, TEDs are not required in many 
parts of the world, or across all fisheries that may come 
into contact with sea turtles [5].

Capture of sea turtles in trawls (and other gear types) 
can result in traumatic injury and in physiological impacts 
due to forced submergence (reviewed in [6]). While sea 
turtles have behavioral and physiological adaptations to 
reduce the potential of decompression sickness in their 
normal diving activity [7, 8], there is evidence that cap-
ture in fishing operations results in increased metabolic 
and locomotor activity, and exertional myopathy [9]. As a 
result, turtles experience physiological changes that likely 
override adaptations for reducing decompression sickness, 
resulting in deleterious effects [10]. In addition to death 
due to drowning, lactate levels may increase, stress-related 
hormones may increase, and turtles’ ability to recover may 
be further impacted by increases in other blood chemistry 
values such as glucose, phosphorus, potassium and cre-
atine phosphokinase that indicate metabolic disturbance 
[6, 8, 11–14]. As a result of these physiological impacts, 
many turtles are also brought onboard fishing vessels in a 
comatose state, where they are unresponsive but still alive. 
They can potentially be resuscitated from this state, and 
several protocols exist for resuscitation (e.g., [5, 15, 16]), 
of which one of the most common is elevation of the rear 
end of the turtle to allow the lungs to drain. Resuscitation 
may occur for up to 24 h, or until the turtle appears vagile 
and alert (reanimated) at which point it is released from 
the vessel.

Despite resuscitation, survivorship of sea turtles post-
release is largely unknown, as physiological impacts 
may affect long-term survivorship, with decompression 
sickness of particular concern. Decompression sickness 
results from forced submergence and rapid ascension 
to the surface as nets are retrieved to the vessel [10, 17]. 
Decompression sickness occurs from rapid degassing 
of nitrogen from solutes, resulting in nitrogen gas bub-
ble formation in the blood stream and tissues causing 
severe pathological impacts. This may result in death, 
though death may occur after a turtle has been released 
alive from a fishing vessel, making it difficult to know 
the true survivorship of turtles. When mortality occurs 
post-release, it can be difficult to account for this ‘cryp-
tic’ source of mortality in population estimates and man-
agement efforts [18]. While telemetry devices have been 
used in the past to infer survivorship of sea turtles and 
other marine species [19–23], it has traditionally been 
difficult to definitively distinguish the failure of devices 
from death of a tagged animal [24, 25].

Recently, technology has been developed that allows 
for the determination of survivorship of marine spe-
cies once they are released. Survivorship pop-up archi-
val (sPAT) tags developed by Wildlife Computers Inc. 

(Redmond WA USA) are released from a tagged individ-
ual after 30 days unless putative death is detected prior 
to the programmed release date. A combination of light 
and depth levels is used to infer the animal death as a 
result of either: (a) floating continuously on the surface 
(floater) or (b) sank to the bottom (sinker). Tags that 
detach at 30 days post-release and where neither ‘floater’ 
nor ‘sinker’ states have been activated are considered 
survivors for the purposes of this study. Potential preda-
tion and subsequent ingestion of an animal can also be 
inferred by a lack of change in light levels, indicating that 
dawn and dusk were not detectable.

sPAT tags have been used to determine post-bycatch 
survivorship in several elasmobranchs including mako 
sharks (Isurus oxyrinchus, [26]), silky sharks (Carcharhi-
nus falciformis, [27]), school sharks (Galeorhinus galeus, 
[28]), great hammerheads (Sphyrna mokarran, [29]) and 
spinetail devil rays (Mobula japonica, [30]) but applica-
tion to air-breathing marine species subject to decom-
pression sickness, such as sea turtles has been limited, 
though satellite tags have been used to infer survivor-
ship but using more limited data (e.g., [19, 24]). Here, we 
deployed sPAT tags to determine survivorship of olive 
ridley sea turtles (Lepidochelys olivacea) captured in 
demersal fish trawling vessels in Gabon, Africa. Gabon 
regularly hosts four sea turtle species, including leath-
erback (Dermochelys coriacea), green (Chelonia mydas), 
hawksbill (Eretmochelys imbricata) and olive ridley sea 
turtles [31–35]. Many of these species are caught in 
trawling nets; however, olive ridleys are caught in dispro-
portionately large numbers compared to the number of 
individuals in the local population [36], making trawling 
of particular concern. We illustrate attachment design 
and procedure, and results of the deployment of three 
sPAT tags in pilot study conducted in 2016. We discuss 

Fig. 1 Olive ridley turtle on deck of fishing vessel fitted with Wildlife 
Computers survivorship pop‑up archival tag attached using a short 
tether to attach to the rear supracaudal scutes. Inset: survivorship tag
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the potential implications of these results on the larger 
population, and implications for management.

Methods
Survivorship pop-up archival (sPAT) tags (Wildlife Com-
puters, Redmond WA, USA; 124  mm length × 38  mm 
maximum height, approximately 60  g in air) were 
deployed on three olive ridley sea turtles captured in 
the commercial demersal fish trawl fishery in coastal 
Gabon, Africa (Fig.  1). Turtle excluder devices (TEDs) 
are required on shrimp trawling vessels in Gabon but not 
on demersal fish trawling vessels, which represent over 
80% of the trawling fleet [36]. Two adult females and one 
adult male were instrumented with transmitters in April, 
July and October of 2016 (Table  1). Tags were attached 
opportunistically by trained fishery observers to tur-
tles brought aboard in a comatose state (alive but unre-
sponsive). Turtles were captured in demersal trawl gear, 
brought onboard the fishing vessel and resuscitated by 
elevating the rear end of the turtle. The tag was attached 
once the turtle was reanimated. Curved carapace length 
(CCL) was measured, and Inconel flipper tags (National 
Band and Tag Company, USA) attached to the front left 
and right flippers prior to release from the vessel. Release 
location and time were recorded, as was water depth at 
the  capture location. Additionally, the average duration 
of trawls within each approximately 3-day fishing trip 
was recorded, however, the duration of individual trawls 
was not available.

Tag attachment and operation
Tags were attached to the turtle at the left or right sup-
racaudal scute of the carapace (Fig.  1). A power drill 
was used to drill a small (approximately 3 cm diameter) 
hole in the scute, and tags were attached using a metal 
wire and crimps. Once deployed, tags were automati-
cally activated by exposure to saltwater. Tags operated 
for up to 30  days. If a turtle died, the tag was released 
from the turtle via a corrodible pin. If a turtle was con-
sidered dead, it was classified into one of two groups 
based on the time–depth recorder within the tag: floated 
continuously on the surface for 24  h (floater), or sank 
to the bottom and remained at a consistent depth for 
24 h (sinker). Additionally, the tag is designed to detect 
if there is a change in light level over a 24-h period in 
order to indicate potential predation events; if dawn or 
dusk were not detected, but change in depth occurs, this 
indicated  the tag had likely been ingested. If mortality 
was not observed after 30 days, the tag was released via 
a corrosive pin and the turtle considered alive. The tag 
further reports if the corrodible pin has been broken or 
corroded when released within the 30-day period. The 

release location and survivorship status of the turtle, as 
well as daily minimum and maximum depth, daily mini-
mum and maximum water temperature, and if there was 
a light level change over the 24-h period prior to release, 
were transmitted via the Argos satellite system once the 
tag was released.

Results
Of the three turtles instrumented, two of the turtles 
survived (Turtles A and C), while one is presumed dead 
(Turtle B) and was categorized as a ‘floater’ (Table  1). 
Data transmitted by the tag suggest that this turtle may 
have been predated as no change in the light level for 
24 h was detected prior to tag release, but the tag was not 
recorded at the surface during that 24-h period (Fig. 2). 
Additionally, in the 24  h prior, the turtle was diving, 
though it is possible that the turtle died and was then 
consumed, or that the tag was consumed and not the 
turtle.

Average tow duration during the fishing trips during 
which Turtle A and B were caught were approximately 
1.3  h; however, average tow durations for Turtle C’s 
trip were considerably longer, averaging 3.5  h (Table 1). 
Turtles were caught in depths ranging from 12 to 17 m, 
with the presumed dead turtle (Turtle B) caught at the 
greatest depth (17  m; Table  1). Turtle movements var-
ied considerably (Fig.  3). The greatest straight-line dis-
tance was 270  km south in 30  days (Turtle A; Table  1), 
but distance per day was as low as 0.9  km/d for Turtle 
C which appeared to remain in the vicinity where cap-
ture occurred near the mouth of the Komo Estuary. 
The Komo Estuary is adjacent to a known nesting site, 
and some  olive ridley turtles nesting there are known 
to remain resident in the area for the months following 
nesting [37]. The nesting season occurs from September 
through March with a peak in November [32], and this 
turtle was recorded in the area in the area in July and 
August, further suggesting this may be a resident forag-
ing ground during other parts of the year.

Turtles experienced mean minimum daily tempera-
tures between 20.5 and 25.3  °C, with maximum mean 
daily temperatures of 27.6 °C (Fig. 2, Table 1). Maximum 
daily dive depths ranged from 21.3 to 37.9 m, though the 
tag attached to turtle B reported the shallowest depth 
(21.3) and collected only 3 days of data before presumed 
death and tag release (Fig. 2). The maximum dive depth 
recorded by any of the turtles was 56 m.

Discussion
Our results, while preliminary, suggest post-release mor-
tality occurred in a single individual following resus-
citation from a comatose state. Two of the three turtles 
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survived, and while a third died, it appears to be due to 
predation; however, it is unknown whether injuries or 
changes in behavior from trawl capture could have made 
it more susceptible to predation, or if it died and was then 
scavenged shortly thereafter. Depth of capture was great-
est for the turtle that died (Turtle B 17 m; Table 1). Mean 
tow duration, however, for the turtle that died (Turtle B, 
1:21) was similar (Turtle A, 1:25) or half as long (Turtle 
C, 3:30) as the turtles that lived, complicating speculation 
as to whether capture may have played a part in its death 
(though it should be noted that the exact tow duration 

for these capture events are unknown). No direct injuries 
to the turtle were observed, but it is possible that other 
physiological impacts such as aspirational pneumonia, 
exertional myopathy or decompression sickness may 
have occurred despite a relatively short tow time, result-
ing in increased susceptibility to predators. These results 
highlight the need for further research beyond this pilot 
study.

Implementation of onboard resuscitation is likely a use-
ful post-capture management technique in this fishery, 
and mandating these techniques along with additional 
outreach to fishers, is worthwhile. The mean maximum 
dive depths for these instrumented turtles (Fig.  2) are 
similar to dive depths recorded for turtles in other parts 
of the world (Australia, [38, 39]; French Guiana, [40]), 
as well as from previous studies in this region on nest-
ing female turtles [37], suggesting potentially ‘normal’ 
dive behavior of turtles post-release, though we caution 
that the tags did not collect the full dive profile data to 
allow us to fully assess behavior, and that Turtle B’s tag 
collected only 3  days of data before death and subse-
quent release. We additionally caution that there may be 
a greater risk for decompression sickness when capture 
occurs at greater depths, or in other regions of the world 
where water temperatures are colder. Gabon resides on 
the equator and the turtles in this study encountered 
mean water temperatures between 20.5 and 27.6  °C 
(range 17.6–30.2  °C; Table  1). Solubility of nitrogen at 
depth increases proportionally with decreasing tem-
peratures, so it is critical to conduct similar survivorship 
studies in more temperate regions where turtles are sub-
ject to bycatch, as well as on species that are likely to dive 
to greater depths or in fisheries where trawling occurs at 
greater depths.

Applying these preliminary results to the demersal fish 
trawl fishery in Gabon [36], survival following very basic 
resuscitation of trawl-captured sea turtles may be higher 
than expected, which would reduce the predicted mortal-
ity of ridleys in this trawl fishery by a proportion yet to be 
determined. We urge very strong caution in interpreting 
these results, however, given three factors. First, our sam-
ple size is low and second, captures occurred in relatively 
shallow, nearshore waters (between 12 and 17 m depth). 
Casale et  al. [36] indicate that the fishery also occurs 
further offshore in relatively high density and in some 
cases nearing 200 m depths (see Figure 1 in [36]). These 
depths are likely to greatly influence ridleys suscepti-
bility to decompression sickness and other associated 
physiological impacts as olive ridleys appear to spend 
considerable time on the seafloor bottom where they are 
caught in this fishery [37]. Third, mortality in this fishery 
may occur for non-comatose turtles released alive. Indi-
viduals that are hyperactive when brought onboard often 

Fig. 2 Daily maximum depth (black) and minimum and maximum 
temperatures (gray) of three olive ridley turtles instrumented with 
Wildlife Computers survivorship pop‑up archival tags (sPAT). Turtles 
A and C survived, and tags were programed to release after 30 days. 
Turtle B was characterized as a ‘floater’ as its maximum depth on the 
fourth day was 1 m; however, it was likely predated, as there was no 
change in light level on the third day, as indicated by the star
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subsequently develop decompression sickness [10, 17]. 
As a result, these turtles may subsequently die as they 
are likely to be released almost immediately after land-
ing, as they are alive and animated. Our post-release sur-
vivorship estimates were biased toward turtles that were 
comatose upon landing, and turtles with a strong loco-
motor response would likely have been recorded as ‘alive.’ 
Post-release survival of hyperanimated turtles is another 
important area of study.

Understanding post-release mortality is critical, and 
studies have looked at post-release mortality across 
other gear types and fisheries. For example, turtles lightly 
hooked in longline fisheries show no difference between 
control turtles in diving behavior [22] or mortality [21, 
22]. In coastal gillnets, post-release mortality was higher 
than in longlines (28.6% [41]). While we focus here on 
trawl gear, other gear types are used in the Central West 

African region that may impact turtles, including purse 
seines, longlines and gillnets. Artisanal gillnets are wide-
spread in Gabon and other areas of Central West Africa, 
particularly in coastal and estuarine habitats where tur-
tles are found, and these fisheries use long soak times 
(12 + h) [42, 43]. While depth does impact severity of 
decompression sickness, Fahlman et  al. [17] provided 
evidence that the time of submergence is also critically 
important, as moderate and severe decompression sick-
ness was observed more often when turtles were sub-
merged for longer, such as in gillnets, even when set at 
moderate depths of only 10–20 m. This indicates a criti-
cal need to also conduct similar survivorship studies in 
gillnet fisheries where turtles are frequently caught in 
artisanal fishing operations [43], and to better under-
stand how the combination depth and time of submer-
gence may influence survivorship.

Fig. 3 Deployment (white circles) and pop‑up (black circles) locations of three olive ridley turtles instrumented with Wildlife Computers 
survivorship pop‑up archival tags (sPAT) and survivorship status of turtles A–C indicated (died or survived). Inferential movement between 
deployment and pop‑up locations (black broken line). Inset map: African continent and Gabon (black filled polygon) with geographic extent of 
study region (black polygon)
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While this study suggests that post-release mortality 
may be moderate, Casale et al. [36] indicates that 6.2% of 
turtles are brought aboard fish trawling vessels already 
dead. In Gabon, TEDs are required for shrimp trawling 
vessels but not demersal fish trawl vessels. The major-
ity of trawlers in Gabon target fish (87.5%, n = 28), and 
shrimp trawlers amount to only 12.5% of the Gabonese 
trawl fleet (n = 4), and largely operate in the bay of Port-
Gentil, an isolated area approximately 250 km2. There is 
clearly a need for TEDs in demersal fish trawling opera-
tions; however, TEDs operate by excluding large items 
from entering the cod end while retaining small items 
such as shrimp. In demersal fish trawling operations, 
large-bodied fish are targeted, so design needs to allow 
fishermen to maintain levels of target catch. Gabon is 
currently developing a design for TEDs adapted to its 
fish trawling fleet that will minimize sea turtle bycatch, 
and it is hoped it will soon be written into law.
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